KR20100074032A - Production method of the counter electrode for dssc - Google Patents

Production method of the counter electrode for dssc Download PDF

Info

Publication number
KR20100074032A
KR20100074032A KR1020090128096A KR20090128096A KR20100074032A KR 20100074032 A KR20100074032 A KR 20100074032A KR 1020090128096 A KR1020090128096 A KR 1020090128096A KR 20090128096 A KR20090128096 A KR 20090128096A KR 20100074032 A KR20100074032 A KR 20100074032A
Authority
KR
South Korea
Prior art keywords
counter electrode
plating
solar cell
substrate
dye
Prior art date
Application number
KR1020090128096A
Other languages
Korean (ko)
Inventor
구긍회
김강범
조현승
진창호
Original Assignee
주식회사 티지에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티지에너지 filed Critical 주식회사 티지에너지
Publication of KR20100074032A publication Critical patent/KR20100074032A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for manufacturing a counter electrode for a dye-sensitized solar cell is provided to improve profitability and efficiency by firmly coating a plating layer on a conductive flexible substrate. CONSTITUTION: A conductive substrate is plated with platinum by using pulse power of 5 to 20 Hz for 5 to 60 seconds under current density of 0.3 to 2ASD and a temperature of 40 to 60 degrees centigrade in a Pt plating solution of pH 1-2. Ti is used as an anode. A substrate plated with platinum is thermally processed at a temperature of 100 to 500 degrees centigrade for 5 to 60 minutes. A surfactant of 0.5 to 2 weight% is added to the plating solution. The surfactant is a polyethylene oxide or polypropylene oxide surfactant.

Description

염료감응 태양전지용 대향전극의 제조 방법{Production Method of the Counter Electrode for DSSC}Manufacturing method of counter electrode for dye-sensitized solar cell {Production Method of the Counter Electrode for DSSC}

본 발명은 염료감응 태양전지용 대향전극의 제조방법에 관한 것으로, 더욱 상세하게는 백금이 도금된 대향전극의 제조방법에 관한 것이다.The present invention relates to a manufacturing method of a counter electrode for a dye-sensitized solar cell, and more particularly to a manufacturing method of a counter electrode plated with platinum.

종래의 염료감응 태양전지는 실리콘 태양전지와는 달리, 가시광선을 흡수하여 전자-홀 쌍(electron-hole pair)을 생성할 수 있는 감광성 염료분자와, 생성된 전자를 전달하는 전이금속 산화물을 주된 구성 재료로 하는 광전기화학적 태양전지이다. Conventional dye-sensitized solar cells, unlike silicon solar cells, are mainly composed of photosensitive dye molecules capable of absorbing visible light to produce electron-hole pairs, and transition metal oxides for transferring the generated electrons. It is a photoelectrochemical solar cell made of a constituent material.

일반적으로 염료감응 태양전지는, 투명 전도성 기판위에 염료분자가 흡착된 나노입자 산화물이 코팅된 반도체 전극("투명전극"이라 함), 투명 전도성 기판위에 백금 혹은 탄소가 코팅된 반대편 전극("대향전극"이라 함), 그리고 그 사이에 채워진 전해질층으로 구성되어 있다.In general, a dye-sensitized solar cell is a semiconductor electrode coated with a nanoparticle oxide adsorbed with a dye molecule on a transparent conductive substrate (called a "transparent electrode"), and an opposite electrode coated with platinum or carbon on a transparent conductive substrate ("counter electrode"). And an electrolyte layer filled therebetween.

투명전극은, 전도성 유리기판 위에 나노입자 산화물의 콜로이드 용액을 코팅 하여 450∼500℃ 전기로에서 열처리함으로써 제작된다. The transparent electrode is manufactured by coating a colloidal solution of nanoparticle oxide on a conductive glass substrate and heat-treating in an electric furnace at 450 to 500 ° C.

대향전극은, 전도성 유리기판 위에 용매에 용해된 백금화합물을 도포 또는 침적한 후 450∼500℃ 전기로에서 열처리하는 방법(침적소결법), 전도성 기판을 백금용액에서 DC도금하는 방법(DC도금법), 증착법 등을 통하여 제작된다. 침적소결법의 경우, 비교적 고온의 열처리(소결)을 해야만 대향전극의 광전기적 특성을 얻을 수 있다는 단점이 있고, 증착법(sputtering)의 경우 고가의 진공 증착 장비가 필요할 뿐 아니라 증착 두께를 조절하기 어렵고, 증착 후 역시 상기와 같은 온도에서 고온 소결을 해야한다는 어려움이 있다. 또한 DC법도, 고온 열처리(소결)를 생략할 수 있다는 장점이 있지만, 도금층의 부착력(물리적 안정성)이 매우 약하여 태양전지 제작공정 중에 매우 주의해서 다루어야 할 뿐만 아니라 제작이 완료된 태양전지의 수명에 악영향을 미치는 문제가 있다. 또한 DC법에 의하면 도금층의 약한 부착력 때문에 유연성 기판에 적용하는 것이 불가능하였다. The counter electrode is a method of coating or depositing a platinum compound dissolved in a solvent on a conductive glass substrate, followed by heat treatment in an electric furnace at 450 to 500 ° C. (immersion sintering method), DC plating of a conductive substrate in a platinum solution (DC plating method), and deposition method. It is produced through the back. In the case of the sintering method, the photoelectric characteristics of the counter electrode can be obtained only by performing a relatively high temperature heat treatment (sintering). In the case of the sputtering method, it is difficult to control the deposition thickness as well as expensive vacuum deposition equipment. After deposition, there is also a difficulty in performing high temperature sintering at the same temperature. In addition, the DC method has a merit that high temperature heat treatment (sintering) can be omitted, but the adhesion (physical stability) of the plating layer is very weak, so it must be handled with great care during the manufacturing process of the solar cell, and adversely affect the life of the completed solar cell. There is a problem. In addition, according to the DC method, it was impossible to apply to a flexible substrate because of the weak adhesion of the plating layer.

본 발명은 고온 열처리 과정 없이 전도성 유리기판 위에 백금층을 견고하게 코팅시키는 기법에 기반한 경제적이고 효율 높은 염료감응 태양전지용 대향전극의 제조방법을 제공하는 것을 목적으로 한다.The present invention is a high temperature heat treatment It is an object of the present invention to provide a method for manufacturing a counter electrode for an economical and efficient dye-sensitized solar cell based on a technique of firmly coating a platinum layer on a conductive glass substrate without a process.

또한 본 발명은 전도성 유연성 기판 위에 백금층을 견고하게 코팅시켜 경제적이고 효율이 높으며, 장기간 안정성이 보장되는 유리기판 및 유연성 염료감응 태 양전지용 대향전극의 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a glass substrate and a counter electrode for a flexible dye-sensitized solar cell, which is economically and highly efficient by guaranteeing a solid coating of a platinum layer on a conductive flexible substrate.

전술한 과제를 해결하기 위한 본 발명은, (A) Ti를 양극으로 하고, pH 1~2인 백금(Pt) 도금용액에서, 온도 40~60℃, 전류밀도 0.3~2ASD 조건에서 5~20Hz의 펄스전원으로 5~60초 동안 전도성 기판을 백금도금하는 도금단계; 및 (B) 상기 백금도금된 기판을 100~500℃에서 5~60분간 열처리하는 단계;를 포함하는 염료감응 태양전지용 대향전극의 제조방법에 관한 것이다. 이때 제조의 효율성을 높이기 위해, 상기 도금단계(A) 전에, 기판을 탈지하고 다시 수세하는 전처리 과정과, 도금된 기판을 수세하는 후처리 과정을 추가로 포함할 수 있다.The present invention for solving the above problems, (A) Ti as an anode, in a platinum (Pt) plating solution of pH 1 ~ 2, the temperature of 5 ~ 20Hz at a temperature of 40 ~ 60 ℃, current density 0.3 ~ 2ASD conditions Plating step of plating the conductive substrate for 5 to 60 seconds with a pulse power source; And (B) heat-treating the platinum-plated substrate at 100 to 500 ° C. for 5 to 60 minutes. At this time, in order to increase the efficiency of the manufacturing, before the plating step (A), it may further include a pre-treatment process of degreasing and washing the substrate again, and a post-treatment process of washing the plated substrate.

펄스전원으로 도금함으로써 종래 DC도금법에 비해 월등히 우수한 도금층의 부착력 향상효과를 얻을 수 있다. 이때 전류밀도와 도금시간은 서로 대략적인 반비례관계에 있다. 펄스전원이 5Hz 미만이면 도금층의 부착력 증가효과가 미미하고, 20Hz 초과이면 부착력 증가효과에 비해 펄스전원 공급장치가 고가화하여 경제성이 떨어진다.By plating with a pulsed power supply, it is possible to obtain an effect of improving the adhesion of the plating layer which is much superior to the conventional DC plating method. At this time, the current density and the plating time are in inverse proportion to each other. If the pulse power is less than 5Hz, the effect of increasing the adhesion of the plated layer is insignificant, and if the pulse power is more than 20Hz, the pulse power supply becomes expensive compared to the effect of increasing the adhesion, resulting in low economic efficiency.

백금도금된 기판을 100~500℃에서 5~60분간 열처리한다. 열처리 온도는 100~250℃로도 충분한 효과를 얻을 수 있으나, 그 이상의 온도를 배제하는 것은 아니다.The platinum-plated substrate is heat-treated at 100 to 500 ° C. for 5 to 60 minutes. The heat treatment temperature is sufficient to obtain a sufficient effect even 100 ~ 250 ℃, but does not exclude the temperature higher.

한편, 본 발명자들은, 본 발명에 의한 펄스 도금시에 상기 도금용액에 0.5~2 중량%의 계면활성제를 첨가하는 경우 도금 입자의 크기가 균일하게 되고, 도금 입자의 분포가 균일하게 됨을 발견하였다. 계면활성제가 0.5중량% 미만이면 도금입자 제어효과가 떨어지고, 2중량% 초과이면 도금입자 제어효과의 증가도가 미미하였다. 상기 계면활성제는 폴리에틸렌옥사이드(이하 'EO'로 표시)계 또는 폴리프로필렌옥사이드(이하 'PO'로 표기)계를 사용할 수 있다.On the other hand, the present inventors found that when 0.5 to 2% by weight of surfactant is added to the plating solution during pulse plating according to the present invention, the size of the plated particles becomes uniform and the distribution of the plated particles becomes uniform. If the surfactant is less than 0.5% by weight, the plated particle control effect is inferior, and if it is more than 2% by weight, the increase of plated particle control effect is insignificant. The surfactant may be a polyethylene oxide (hereinafter referred to as "EO") system or a polypropylene oxide (hereinafter referred to as "PO") system.

본 발명에서 상기 전도성 물질이 코팅된 기판은 유리 또는 유연성 있는 합성수지 재질일 수 있다. 합성수지일 경우, 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드 또는 폴리에틸렌나프탈레이트 재질인 것이 좋다.In the present invention, the substrate coated with the conductive material may be glass or a flexible synthetic resin material. In the case of synthetic resin, polyethylene terephthalate, polycarbonate, polyimide, or polyethylene naphthalate is preferable.

상기 전도성 물질은 불소 도핑된 산화 주석, 산화 인듐 주석 또는 다른 금속일 수 있다. 그러나 전도성 물질 자체가 무엇인지는 본 발명의 사상과는 무관한 것이므로 본 발명이 이에 제한되는 것은 아니다.The conductive material may be fluorine doped tin oxide, indium tin oxide or other metal. However, the conductive material itself is not limited to the present invention because it is irrelevant to the spirit of the present invention.

본 발명에 의하면, 종래 전도성 기판에 백금층을 고온소결하는 제조방법에 비해 월등히 경제적인 백금층이 코팅된 염료감응 태양전지용 대향전극을 제공할 수 있게 된다.According to the present invention, it is possible to provide a counter electrode for a dye-sensitized solar cell coated with a platinum layer, which is much more economical than a conventional method for high temperature sintering a platinum layer on a conductive substrate.

또한 본 발명에 의해, 종래 고온소결과정에 적합하지 아니하여 적용할 수 없었던 ITO 유리기판 또는 유연한 전도성 플라스틱 기판을 염료감응형 태양전지에 적 용이 가능하게 된다.In addition, according to the present invention, ITO glass substrates or flexible conductive materials, which were not applicable to conventional high temperature firing results, could not be applied. Plastic substrates can be applied to dye-sensitized solar cells.

본 발명에 의하면, 종래 고온소결법 또는 DC도금법에 비해 월등히 우수한 부착력을 가진 대향전극을 얻을 수 있게 되어 염료감은 태양전지의 제작과정에서 백금층 보호를 위한 과도한 주의를 줄일 수 있게 된다.According to the present invention, it is possible to obtain a counter electrode having adhesion superior to that of the conventional high temperature sintering method or DC plating method, so that the dyeing can reduce excessive attention for protecting the platinum layer in the manufacturing process of the solar cell.

또한 본 발명에 의해 보다 도금입자와 도금의 균일화가 가능하게 되어 저렴하고 광화학적 특성이 우수하면서도 장기적 사용에 안정적인 염료감응형 태양전지를 제작할 수 있게 된다.In addition, by the present invention it is possible to make the plating particles and the plating more uniform, it is possible to manufacture a dye-sensitized solar cell which is inexpensive and excellent in photochemical properties and stable for long-term use.

이하 첨부된 도면과 사전실험 및 실시예를 참조하여 본 발명을 보다 상세히 설명한다. 그러나 이러한 도면과 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and pre-experiments and examples. However, these drawings and embodiments are only examples for easily explaining the contents and scope of the technical idea of the present invention, and thus the technical scope of the present invention is not limited or changed. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention based on these examples.

하기 실시예에서는 FTO기판을 대상으로 제작하였으나, 사전실험에서 기판의 재질에 무관하게 동일한 효과를 얻을 수 있음을 확인하였으므로, 본 발명이 기판의 재질에 제한되는 것은 아니다.In the following examples, the FTO substrate was manufactured, but since it was confirmed that the same effect can be obtained regardless of the material of the substrate in a preliminary experiment, the present invention is not limited to the material of the substrate.

<사전 실험><Pretest>

종래의 DC도금법으로 사전실험을 수행하여 전기도금시 가능한 Pt 도금층의 두께와 열처리 온도범위를 추정하였다.Pre-experimental experiments were performed using conventional DC plating methods to estimate the thickness and heat treatment temperature range of Pt plating layers available for electroplating.

(1) 가능 Pt 도금층 두께의 확인(1) Confirmation of possible Pt plating layer thickness

FTO 유리기판에 5Å과 25Å로 Pt 도금층을 형성하여 대향전극을 만들고, 대향전극의 광변환 효율을 검토하였다(도표 도시 생략).A Pt plating layer was formed on the FTO glass substrate at 5 kW and 25 kW to form a counter electrode, and the light conversion efficiency of the counter electrode was examined (not shown in the diagram).

사전실험 결과, 열처리온도 100℃, 150℃ 또는 200℃, Pt 도금층 두께 5Å 또는 25Å 모두 종래 침적-소결법에 의한 대향전극과 유사하거나 더 우수한 특성을 보임을 확인하였다. 특히 Pt 도금층 두께가 얇을수록 우수한 결과를 보인 바, 비록 추가 확인 실험을 수행하지는 않았지만, 1Å~30Å의 Pt 도금층일 경우에도 충분한 효과를 발휘할 수 있음을 추정할 수 있었다.As a result of the preliminary experiment, it was confirmed that the heat treatment temperature of 100 ° C., 150 ° C. or 200 ° C., and the thickness of the Pt plating layer 5 μs or 25 μs showed similar or better characteristics to the counter electrode by the conventional deposition-sintering method. In particular, the thinner the thickness of the Pt plated layer, the better the results. Even though no additional verification experiment was performed, it could be estimated that a sufficient effect could be obtained even in the case of a Pt plated layer of 1 ~ 30Å.

(2) 가능한 기판 소재 및 열처리 온도범위의 확인(2) Confirmation of possible substrate material and heat treatment temperature range

① FTO 유리기판에 Pt 도금 두께를 달리하여 대향전극을 제조한 후 저항값을 측정하여 최적 열처리 온도 범위를 결정하였다(도표 도시 생략). After manufacturing the counter electrode with different Pt plating thickness on FTO glass substrate , the resistance value was measured to determine the optimum heat treatment temperature range (not shown in the diagram).

사전실험 결과, 200℃에서 소결 후 저항값이 제일 낮고, 250℃ 이하 (따라서 당연히 종래 소결온도 이하)에서도 충분히 낮은 저항값을 보임을 알 수 있었다. 그러나 종래 침적소결법에 의한 소결온도(400~500℃)를 적용하더라도 침적소결법에 의해 제조된 대향전극과 특성차이가 거의 없었다.As a result of the preliminary experiments, it was found that the resistance value after sintering at 200 ° C. was the lowest, and that the resistance value was sufficiently low even at 250 ° C. or lower (and therefore, of course, below the conventional sintering temperature). However, even if the sintering temperature (400 ~ 500 ℃) by the conventional sintering method was applied, there was almost no difference in characteristics with the counter electrode manufactured by the sintering method.

낮은 저항값은 광변환시 태양전지 내부의 저항을 줄일 수 있어 효율 증가적인 측면에서 유리하다.Low resistance value is advantageous in terms of efficiency increase because it can reduce the resistance inside the solar cell during photoconversion.

② ITO 유리기판에 5Å 두께로 Pt 도금층을 형성하여 대향전극을 만들고, 대향전극의 광변환 효율을 측정하였다(도표 도시 생략). (2) A counter electrode was formed by forming a Pt plating layer having a thickness of 5 에 on an ITO glass substrate , and the light conversion efficiency of the counter electrode was measured (not shown).

분석 결과, ITO 기판이 급격히 변형되는 온도인 300℃보다 다소 낮은 250℃로 열처리하더라도 종래의 침적-소결법을 적용한 경우나, FTO 기판을 사용한 경우와 비교하여 성능특성이 유사하거나 더욱 우수함을 확인하였다.As a result, it was confirmed that even if the ITO substrate was heat treated at 250 ° C., which was slightly lower than 300 ° C., the performance characteristics were similar or better than those of the conventional deposition-sintering method or the FTO substrate.

참고로, 고온(300℃ 이상)에서 열처리 할 경우 기판이 저항체로 변하면서, 성능특성이 급격히 악화되는데, 이는 고온처리에 따라 기판의 인듐(Indium)이 증발하기 때문인 것으로 판단된다.For reference, when the heat treatment at a high temperature (300 ℃ or more), the substrate is turned into a resistor, the performance characteristics deteriorate sharply, it is determined that the indium (Indium) of the substrate evaporates due to the high temperature treatment.

③ 전도성 플라스틱 기판(ITO Plastic Film, (주)플라웍스, 면저항 400Ω/square)에 대해 DC법에 따라 5Å 두께로 Pt 도금하고 150℃에서 열처리하여 대향전극을 제조하고, 대향전극의 광변환 효율을 측정하였다(도표 도시 생략). Pt plating the conductive plastic substrate (ITO Plastic Film, PLASTICS Co., Ltd., sheet resistance 400Ω / square) with thickness of 5 에 according to DC method and heat-processing at 150 ℃ to manufacture the counter electrode, and improve the light conversion efficiency of the counter electrode. It measured (not shown in figure).

분석 결과, 전도성 플라스틱 기판에 전기도금법을 적용하는 경우, 오히려 종래 침적-고온소결법에 의한 대향전극보다 월등히 우수한 성능특성을 가짐을 확인하였다.As a result, when the electroplating method is applied to the conductive plastic substrate, it was confirmed that the electrode having excellent performance characteristics rather than the counter electrode by the conventional deposition-high sintering method.

<실시예><Examples>

비교예 1 : 백금용액 침적-소결법에 의한 대향전극 기판 제조Comparative Example 1: Preparation of the counter electrode substrate by platinum solution deposition-sintering method

FTO 전도성 기판 15mm × 15mm에 Pt 용액(25mM H2PtCl6 in 2-propanol)을 1~2ml 떨어뜨린 후 400~500℃에서 30분간 소결하여 Pt층 형성하여 대향전극을 제조하였다(도 1). 참고로, Pt용액의 농도와 떨어뜨린 양(또는 횟수)에 따라 Pt층의 두께의 균일도를 조절하기가 매우 어려웠다.1 to 2 ml of a Pt solution (25 mM H 2 PtCl 6 in 2-propanol) was dropped on the FTO conductive substrate 15 mm × 15 mm, followed by sintering at 400 to 500 ° C. for 30 minutes to form a Pt layer (FIG. 1). For reference, it was very difficult to control the uniformity of the thickness of the Pt layer according to the concentration of Pt solution and the amount (or the number of times) dropped.

비교예 2 : DC도금법에 의한 대향전극 기판 제조Comparative Example 2 Fabrication of Counter Electrode Substrate by DC Plating

FTO 기판을 대상으로 표 1의 조건에서 DC전원으로 Pt 도금을 수행하고 200~250℃에서 30분간 열처리하여 대향전극을 제조하였다. 이때 도금액의 농도와 pH는 하기 표의 범위가 유지되도록 제어하였다.The counter electrode was manufactured by performing Pt plating on a FTO substrate using DC power under the conditions of Table 1 and performing heat treatment at 200 to 250 ° C. for 30 minutes. At this time, the concentration and pH of the plating liquid was controlled to maintain the range of the following table.

Figure 112009078982502-PAT00001
Figure 112009078982502-PAT00001

도금 두께는 도금 시간이나 전류밀도 등을 조절하여 결정할 수 있는데, 위의 조건으로 도금시 5~10옹스트롱(Å) 두께로 Pt층이 형성되었다.The plating thickness can be determined by adjusting the plating time or the current density, and the Pt layer was formed at a thickness of 5 to 10 angstroms under the above conditions.

실시예 1 : 펄스도금법에 의한 대향전극 기판 제조Example 1 Fabrication of Counter Electrode Substrate by Pulse Plating

DC전원 대신 10Hz의 펄스전원을 인가한 것을 제외하고는 비교예 2와 동일하게 대향전극을 제조하였다.A counter electrode was manufactured in the same manner as in Comparative Example 2 except that a pulse power source of 10 Hz was applied instead of a DC power source.

실시예 2 : 펄스도금법에 의한 대향전극 기판 제조-계면활성제 첨가Example 2 Preparation of Counter Electrode Substrate by Pulse Plating Method-Surfactant Addition

도금액에 계면활성제로 1-나프틸-폴리에틸렌 옥사이드를 1중량% 첨가한 것을 제외하고는 실시예1과 동일하게 대향전극을 제조하였다.A counter electrode was prepared in the same manner as in Example 1, except that 1 wt% of 1-naphthyl-polyethylene oxide was added to the plating solution as a surfactant.

참고로, 본 실시예에서는 1-나프틸-폴리에틸렌 옥사이드를 이용하였으나, 사전실험에 의하면 EO계열의 바이페닐-4,4'-디(폴리에틸렌 옥사이드), 4-(1-메틸-1-페닐-에틸)-페닐-폴리에틸렌 옥사이드, 4-메틸-페닐-폴리에틸렌 옥사이드, PO계열의 바이페닐-4,4'-디(폴리프로필렌 옥사이드), 4-(1-메틸-1-페닐-에틸)-페닐-폴리프로필렌 옥사이드, 4-메틸-페닐-폴리프로필렌 옥사이드를 이용하더라도 동일유사한 효과를 얻을 수 있었다.For reference, in this embodiment, 1-naphthyl-polyethylene oxide was used, but according to a preliminary experiment, biphenyl-4,4'-di (polyethylene oxide) of EO series, 4- (1-methyl-1-phenyl-) Ethyl) -phenyl-polyethylene oxide, 4-methyl-phenyl-polyethylene oxide, PO-based biphenyl-4,4'-di (polypropylene oxide), 4- (1-methyl-1-phenyl-ethyl) -phenyl Similar effects were obtained even when -polypropylene oxide and 4-methyl-phenyl-polypropylene oxide were used.

<결과물 분석><Result analysis>

(1) Pt도금의 부착력 실험(1) Adhesion test of Pt plating

열처리 전후에 대향전극의 Pt도금층을 면봉을 사용하여 동일한 압력으로 10mm씩 문질러서, 도금층이 면봉에 묻어나오는지를 실험하였다(표 2). 열처리 전이란 비교예 1의 경우 침적된 Pt 용액이 건조된 상태의 것을, 비교예 2 및 실시예의 경우 도금이 완료되고 수세된 후에 건조된 상태의 것을 의미한다.Before and after the heat treatment, the Pt plating layer of the counter electrode was rubbed by 10 mm at the same pressure by using a cotton swab to test whether the plating layer appeared on the cotton swab (Table 2). In the case of Comparative Example 1, in the case of Comparative Example 1, the deposited Pt solution is in a dried state, and in Comparative Example 2 and Examples, the plating is completed and washed after being washed.

Figure 112009078982502-PAT00002
Figure 112009078982502-PAT00002

표에서 볼 수 있듯이, 열처리 후에는 본 발명의 실시예에 의한 대향전극의 도금층은 고온으로 소결한 종래방식에 의한 비교예 1과 동일한 정도로 강한 부착력을 보였다. 그러나 실시예에 의한 대향전극의 도금층은 열처리하기 전에도 열처리 후와 거의 동일한 정도의 부착력을 나타내었다. 반면, 종래 침적소결법에 의한 경우 열처리 전에는 부착력이 거의 없었고, DC법에 의한 도금층의 부착력은 중간 정도의 부착력을 나타내었다.As can be seen from the table, after the heat treatment, the plated layer of the counter electrode according to the embodiment of the present invention exhibited the same strong adhesion as that of Comparative Example 1 according to the conventional method sintered at a high temperature. However, the plating layer of the counter electrode according to the embodiment exhibited almost the same adhesive strength as after the heat treatment even before the heat treatment. On the other hand, in the case of the conventional sintering method, there was almost no adhesion before heat treatment, and the adhesion of the plated layer by the DC method showed moderate adhesion.

따라서 본 발명에 의하면 열처리하기 전후에 거의 동일하게 도금층이 강하게 부착되므로 태양전지 제작공정에서 보다 안정적으로 손상없이 다루어질 수 있는 효과가 있을 뿐만 아니라, 종래 고온 소결처리한 것과 동일한 도금층 부착력을 보이므로 태양전지 사용과정에서도 DC법에 의한 태양전지에 비해 월등히 우수한 전기적 특성 및 수명특성을 보일 것임을 예상할 수 있다.Therefore, according to the present invention, since the plating layer is strongly attached before and after heat treatment, the coating layer is strongly attached to the solar cell fabrication process, and thus the coating layer adhesion is the same as that of the conventional high temperature sintering process. In the process of using the battery, it can be expected that the electric and life characteristics will be much better than the solar cell by the DC method.

(2) Pt 도금층의 전자현미경 분석(2) Analysis of electron microscope of Pt plating layer

열처리를 거친 대향전극의 표면을 전자현미경으로 관찰하였다(도 2).The surface of the counter electrode subjected to the heat treatment was observed with an electron microscope (FIG. 2).

사진에서 볼 수 있듯이, 본 발명의 실시예 1(도 2의 B) 및 실시예 2(도 2의 C)의 경우 종래 DC법에 의한 도금층(도 2의 A)에 비해 도금된 Pt의 입자수가 월등히 많을 뿐만 아니라 입자의 분포가 매우 균일하였다.As can be seen in the photo, in the case of Example 1 (B of Fig. 2) and Example 2 (C of the present invention) the number of particles of Pt plated compared to the conventional plating layer (A of Fig. 2) by the DC method Not only were they extremely high, but the distribution of particles was very uniform.

이는 본 발명에 의한 펄스도금법에 의한 대향전극을 적용한 태양전지가 이 종래 DC법에 의한 대향전극을 적용한 것에 비해 우수한 전기적 특성을 보일 것임을 예상할 수 있게 한다.This makes it possible to expect that the solar cell to which the counter electrode by the pulse plating method according to the present invention will show excellent electrical characteristics compared with the counter electrode according to the conventional DC method.

(3) 태양전지의 특성 실험(3) Characteristic test of solar cell

이렇게 제조된 대향전극을 활용하여 통상의 염료감응 태양전지를 제작하고 제작된 태양전지의 광변환 효율을 측정하여 표 3에 나타내었다.Using the counter electrode thus prepared, a conventional dye-sensitized solar cell was manufactured, and the light conversion efficiency of the manufactured solar cell was measured and shown in Table 3.

Figure 112009078982502-PAT00003
Figure 112009078982502-PAT00003

상기 표 3에서의 각 단위들은 다음과 같은 의미를 갖는다.Each unit in Table 3 has the following meaning.

① Voc : 개방전압으로써 전류가 0일때 태양전지 양단에 나타나는 전압으로 태양전지로부터 얻을 수 있는 최대 전압이다.① Voc: It is an open voltage, the voltage appearing on both ends of solar cell when current is 0. It is the maximum voltage that can be obtained from solar cell.

② Jsc : 전류밀도로써 태양전지 양단의 전압이 0일 때 흐르는 전류로 일정면적당 발생되는 전류값을 의미한다.② Jsc: It is the current density. It means the current flowing per certain area as the current flowing when the voltage across the solar cell is 0.

③ FF : 개방전압과 단락전류의 곱에 대한 출력의 비로 정의되며 전류-전압 곡선에서 채울 수 있는 최대 직사각형의 면적에 해당한다. Voc, Isc(Jsc)와 더불어 전지의 효율에 직접적인 영향을 미치는 중요한 파라미터이다.③ FF: Defined as the ratio of output to product of open voltage and short circuit current, and corresponds to the largest rectangular area that can be filled in the current-voltage curve. Along with Voc and Isc (Jsc), it is an important parameter that directly affects battery efficiency.

④ 효율: 태양전지의 성능을 나타내는 가장 중요한 인자로서 태양전지로부터 입사된 에너지에 대한 출력에너지의 비로서 정의하며, 다음 식과 같이 표현된다.④ Efficiency: It is defined as the ratio of output energy to energy incident from the solar cell as the most important factor that indicates the performance of the solar cell and is expressed as the following equation.

η(효율, %) = (Voc × Isc × FF)/Pin η (efficiency,%) = (Voc × Isc × FF) / P in

{여기서 Voc는 Open circuit voltage, Isc는 Short circuit current, FF는 Fill Factor, η은 Efficiency}{Voc is Open circuit voltage, Isc is Short circuit current, FF is Fill Factor, η is Efficiency}

표 3에서 볼 수 있듯이, 이는 본 발명에 의한 펄스도금법에 의한 대향전극을 적용한 태양전지는 종래의 침적소결법(비교예 1)에 의한 것이나 종래 DC법(비교예 2)에 의한 것에 비해 평균적으로 거의 동일하거나 더 우수한 전기적 특성을 보였다. 특히 산업적 의미가 있는 태양전지의 성능(효율)은 비교예에 비해 실시예가 유의미하게 증가하였음을 알 수 있다.As can be seen from Table 3, this means that the solar cell to which the counter electrode according to the pulse plating method according to the present invention is applied is based on the conventional deposition sintering method (Comparative Example 1) or on the average compared with the conventional DC method (Comparative Example 2). The same or better electrical properties were shown. In particular, it can be seen that the performance (efficiency) of the solar cell having an industrial significance is significantly increased compared to the comparative example.

도 1은 종래 침적-소결법에 의한 대향전극의 제작과정을 보여주는 사진.1 is a photograph showing the manufacturing process of the counter electrode by the conventional deposition-sintering method.

도 2는 비교예 및 실시예에 의해 제조된 대향전극 표면의 전자현미경 사진.Figure 2 is an electron micrograph of the surface of the counter electrode prepared by Comparative Example and Example.

Claims (5)

(A) Ti를 양극으로 하고, pH 1~2인 Pt 도금용액에서, 온도 40~60℃, 전류밀도 0.3~2ASD 조건에서 5~20Hz의 펄스전원으로 5~60초 동안 전도성 기판을 백금도금하는 도금단계;(A) Platinum-plating a conductive substrate for 5 to 60 seconds using Ti as the anode and a pulsed power source of 5 to 20 Hz at a temperature of 40 to 60 ° C and a current density of 0.3 to 2 ASD in a Pt plating solution with a pH of 1 to 2. Plating step; (B) 상기 백금도금된 기판을 100~500℃에서 5~60분간 열처리하는 단계;(B) heat-treating the platinum plated substrate at 100 to 500 ° C. for 5 to 60 minutes; 를 포함하는 것을 특징으로 하는 염료감응 태양전지용 대향전극의 제조방법.Method for producing a counter electrode for a dye-sensitized solar cell comprising a. 제 1 항에 있어서,The method of claim 1, 상기 도금용액에 0.5~2중량%의 계면활성제가 첨가되는 것을 특징으로 하는 염료감응 태양전지용 대향전극의 제조방법.Method for producing a counter-electrode for dye-sensitized solar cell, characterized in that 0.5 to 2% by weight of the surfactant is added to the plating solution. 제 2 항에 있어서,The method of claim 2, 상기 계면활성제는 폴리에틸렌옥사이드계 또는 폴리프로필렌옥사이드계 계면활성제인 것을 특징으로 하는 염료감응 태양전지용 대향전극의 제조방법.The surfactant is a method of manufacturing a counter electrode for a dye-sensitized solar cell, characterized in that the polyethylene oxide or polypropylene oxide-based surfactant. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,4. The method according to any one of claims 1 to 3, 상기 전도성 기판은 유리기판 또는 합성수지 재질의 기판인 것을 특징으로 하는 염료감응 태양전지용 대향전극의 제조방법.The conductive substrate is a manufacturing method of the counter electrode for a dye-sensitized solar cell, characterized in that the glass substrate or a substrate made of a synthetic resin material. 제 4 항에 있어서,The method of claim 4, wherein 상기 합성수지는 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드, 또는 폴리에틸렌나프탈레이트인 것을 특징으로 하는 염료감응 태양전지용 대향전극의 제조방법.The synthetic resin is a method for producing a counter electrode for a dye-sensitized solar cell, characterized in that the polyethylene terephthalate, polycarbonate, polyimide, or polyethylene naphthalate.
KR1020090128096A 2008-12-22 2009-12-21 Production method of the counter electrode for dssc KR20100074032A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080131169 2008-12-22
KR20080131169 2008-12-22

Publications (1)

Publication Number Publication Date
KR20100074032A true KR20100074032A (en) 2010-07-01

Family

ID=42636843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090128096A KR20100074032A (en) 2008-12-22 2009-12-21 Production method of the counter electrode for dssc

Country Status (1)

Country Link
KR (1) KR20100074032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336957B2 (en) 2010-10-22 2016-05-10 Korea Institute Of Science And Technology Method of preparing counter electrode for dye-sensitized solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336957B2 (en) 2010-10-22 2016-05-10 Korea Institute Of Science And Technology Method of preparing counter electrode for dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
Chen et al. Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells
Huang et al. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells
Xie et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells
Zhang et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination
Lee et al. Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates
Zhou et al. Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells
Chen et al. Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells
KR20070102821A (en) Photosensitizer for photovoltaic cell, and photovoltaic cell prepared from same
Nam et al. Surface engineering of low-temperature processed mesoporous TiO2 via oxygen plasma for flexible perovskite solar cells
CN101354971B (en) Method for preparing dye sensitization TiO2 nano-crystalline film photoelectric electrode doping with metal
Merazga et al. Effect of sol–gel MgO spin-coating on the performance of TiO2-based dye-sensitized solar cells
JP5204079B2 (en) Dye-sensitized solar cell and method for producing the same
Chen et al. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
Heo et al. Fabrication of titanium-doped indium oxide films for dye-sensitized solar cell application using reactive RF magnetron sputter method
Meng et al. Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets
Nursam et al. Analysis of Catalytic Material Effect on the Photovoltaic Properties of Monolithic Dye-sensitized Solar Cells
Prabakar et al. Visible light enhanced TiO2 thin film bilayer dye sensitized solar cells
Zhang et al. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films
KR20100074032A (en) Production method of the counter electrode for dssc
Effendi et al. Studies on graphene zinc-oxide nanocomposites photoanodes for high-efficient dye-sensitized solar cells
Shah et al. Layer-by-layer titanium (IV) chloride treatment of TiO 2 films to improve solar energy harvesting in dye-sensitized solar cells
Supriyanto et al. Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications
Al-Khafaji et al. Influence of grain size, electrode type and additives on dye sensitized solar cells efficiency
Thalluri et al. Morphological and opto-electrical properties of a solution deposited platinum counter electrode for low cost dye sensitized solar cells
Joo et al. Characteristics of Ti thin films and application as a working electrode in TCO-less dye-sensitized solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application