KR20100066129A - Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst - Google Patents

Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst Download PDF

Info

Publication number
KR20100066129A
KR20100066129A KR1020080124796A KR20080124796A KR20100066129A KR 20100066129 A KR20100066129 A KR 20100066129A KR 1020080124796 A KR1020080124796 A KR 1020080124796A KR 20080124796 A KR20080124796 A KR 20080124796A KR 20100066129 A KR20100066129 A KR 20100066129A
Authority
KR
South Korea
Prior art keywords
photocatalyst
transition metal
manufacturing
solar cell
dye
Prior art date
Application number
KR1020080124796A
Other languages
Korean (ko)
Other versions
KR101002929B1 (en
Inventor
조성용
박기민
김태영
민병준
이승재
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020080124796A priority Critical patent/KR101002929B1/en
Publication of KR20100066129A publication Critical patent/KR20100066129A/en
Application granted granted Critical
Publication of KR101002929B1 publication Critical patent/KR101002929B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A manufacturing method of a photocatalyst having transition metals, and a manufacturing method of a dye-sensitive solar cell including the photocatalyst are provided, which can improve the energy conversion efficiency of the dye sensitized solar cell. CONSTITUTION: A manufacturing method of a photocatalyst including transition metals comprises a step for forming sludge through a centrifuge process, after stirring the photocatalyst in which the transition metal is supported, and a step for creating a photocatalyst particle by calcining and pulverizing the sludge. The transition metal is chrome, vanadium, silver, gold, palladium, platinum, molybdenum, or niobium. A manufacturing method for a dye-sensitized solar cell comprises the following steps: manufacturing paste by using the photocatalyst particle; manufacturing a photoelectrode with the paste; and forming a solar cell with a hot pressing method.

Description

전이금속을 포함하는 광촉매 제조방법, 및 그를 포함하는 염료감응형 태양전지 제조방법{PHOTOCATALYST MAKING METHOD USING TRANSITION METAL, AND THE DYE SENSITIZED SOLAR CELLS INCLUDING PHOTOCATALYST}Photocatalyst manufacturing method comprising a transition metal, and dye-sensitized solar cell manufacturing method including the same {PHOTOCATALYST MAKING METHOD USING TRANSITION METAL, AND THE DYE SENSITIZED SOLAR CELLS INCLUDING PHOTOCATALYST}

본 발명은 질산화은(AgNO3)을 이용하여 은(Ag)만을 선택적으로 광촉매에 담지하여 고성능 광촉매를 제조하고, 광촉매를 사용하여 패이스트(paste)를 제조함으로써 태앙전지의 구성요소인 광전극을 제조하여 에너지 변환효율이 좋은 염료감응형 태양전지를 제조하는 방법에 관한 것이다.The present invention manufactures a high-performance photocatalyst by selectively supporting only silver (Ag) in a photocatalyst using silver nitrate (AgNO 3 ), and manufacturing a paste using a photocatalyst to prepare a photoelectrode that is a component of a Taeang battery To a dye-sensitized solar cell having good energy conversion efficiency.

화석연료에 의존되어 온 현대 인류의 생활은 에너지가 충분한 환경에서 살고 있지 않다. 최근에 원유 원가 상승에 대한 신 재생 에너지 개발은 그 좋은 예로서 향후 에너지 대란을 예고한다 하여도 과언이 아니다.Modern human life, which has been dependent on fossil fuels, does not live in an environment with sufficient energy. It is no exaggeration to say that the recent development of renewable energy in response to rising crude oil costs is a good example of a future energy crisis.

이러한 에너지 대란에 대비하여 미생물을 이용한 바이오 에너지, 풍력, 태양 광, 태양열, 소수력, 폐기물 재활용, 해양의 조력, 지열 등의 재생 에너지 분야와 수소, 연료전지, 석탄가스화 및 액화 등의 신에너지 분야로 전 세계적으로 대체 에너지 개발에 박차를 가하고 있는 실정이다. In preparation for such energy disturbances, we will focus on bioenergy using microorganisms, wind, solar, solar power, hydropower, waste recycling, ocean tidal power, geothermal and renewable energy, and new energy fields such as hydrogen, fuel cells, coal gasification and liquefaction. The world is accelerating the development of alternative energy.

이 중 태양광을 이용한 태양전지(photovoltaic cell or solar cell)는 태양광 에너지를 직접 전기 에너지로 변환시키는 기술을 적용함으로서 다른 신재생에너지에 비해 에너지원이 무한정하며, 전기 발전 과정에서 공해가 배출되지 않아 친환경적이며, 에너지 수급안정성 확보가 가능한 장점이 있다.Among them, photovoltaic cell or solar cell uses technology that converts solar energy directly into electrical energy, so the energy source is infinite compared to other renewable energy, and no pollution is generated during the electricity generation process. It is eco-friendly and can secure energy supply and demand.

또한, 수명이 반영구적이고 소음이 없으며 유지보수가 간단하여 소규모 전원부터 대규모 발전소 용까지 응용이 가능하다는 장점이 있다.In addition, the service life is semi-permanent, no noise, and the maintenance is simple, it can be applied from small power source to large power plant.

현재, 태양전지는 실리콘 산화막을 이용한 실리콘 표면 패시베이션 (passivation) 기술과 전극의 패시베이션 기술을 적용하면서 고효율 실리콘 태양전지를 제조하여 현재 25%까지 도달하는 에너지 변환효율과 제조공정의 확보가 이루어져 널리 사용되고 있다. Currently, solar cells are widely used because they manufacture high-efficiency silicon solar cells by applying silicon surface passivation technology using a silicon oxide film and electrode passivation technology to secure energy conversion efficiency and manufacturing process reaching up to 25%. .

그러나, 실리콘 태양전지는 제조에 대형의 고가장비가 사용되며, 원료 가격의 한계, 고도의 기술 및 다량의 에너지가 필요한 단점이 있다.However, the silicon solar cell is a large expensive equipment used for manufacturing, there is a disadvantage that the raw material price limit, high technology and a large amount of energy is required.

이를 해결하기 위한 대안으로 연구된 염료감응형 태양전지는 실리콘 태양전지에 비해 제조원가가 낮으며(약 1/4 ~ 1/5) 원재료인 산화티탄, 색소, 전해질 용액이 자원적으로 풍부하며, 대기압 하에서 코팅방식이나 생산방식이 간단하여 대량 제조가 가능한 장점이 있다.The dye-sensitized solar cell researched as an alternative to solve this problem has lower manufacturing cost (about 1/4 to 1/5) than silicon solar cell, and is rich in resources such as titanium oxide, pigment, and electrolyte solution, and atmospheric pressure Under the coating method or the production method is simple, there is an advantage that can be mass produced.

하지만, 염료감응형 태양전지는 태양광의 에너지 변환 효율면에서 실리콘 태 양전지보다 낮은 단점이 있다. However, dye-sensitized solar cells have lower disadvantages than silicon solar cells in terms of energy conversion efficiency of sunlight.

따라서, 실리콘 태양전지와 동일한 효과를 내면서 염료감응형 태양전지의 장점을 갖는 태양전지의 개발이 요구된다.Therefore, the development of a solar cell having the advantages of a dye-sensitized solar cell while having the same effect as a silicon solar cell is required.

본 발명은 종래 기술의 문제점을 해결하기 위하여 태양광 중 자외선(UV) 뿐만 아니라 가시광선 영역에서도 활성을 갖도록 하여 더욱 많은 태양광을 활용하고, 상대전극 및 광전극의 태양광의 흡수 에너지값을 감소시켜 실리콘 태양전지보다 좋은 효율의 태양광 에너지를 갖는 전이금속을 포함하는 광촉매 및 그를 포함하는 염료감응형 태양전지 제조방법을 제공하는 데에 목적이 있다.In order to solve the problems of the prior art, the present invention utilizes more sunlight by making it active in the visible light region as well as ultraviolet (UV) light, and reduces the absorbed energy values of the sunlight of the counter electrode and the photoelectrode. It is an object of the present invention to provide a photocatalyst comprising a transition metal having better solar energy than silicon solar cells and a dye-sensitized solar cell manufacturing method including the same.

본 발명의 전이금속을 포함하는 광촉매 및 그를 포함하는 염료감응형 태양전지 제조방법은 질산화은(AgNO3)을 수용액에 녹여 이온화시킨 다음 광촉매를 투여한 후 입자들을 분산 및 교반하여 생성된 은(Ag)이 담지된 광촉매를 활용하여 패이스트를 제조하고, 그에 이용하여 광전극을 제조함으로써 태양광 에너지 변환효율을 향상시킬 수 있다.The photocatalyst comprising the transition metal of the present invention and a method for producing a dye-sensitized solar cell comprising the same are silver (Ag) produced by dissolving silver nitrate (AgNO 3 ) in an aqueous solution to ionize and then dispersing and stirring the particles after the photocatalyst is administered. By using the supported photocatalyst to produce a paste, and using the photoelectrode to produce a photoelectrode can improve the solar energy conversion efficiency.

본 발명은 전이금속을 포함하는 광촉매 제조방법에 관한 것으로, 전이금속이 담지된 광촉매를 교반하고, 원심분리를 통해 슬러지를 형성하는 단계를 포함하고, 상기 슬러지를 소성 및 파쇄하여 광촉매 입자를 생성하는 단계를 포함할 수 있다.The present invention relates to a method for producing a photocatalyst including a transition metal, comprising stirring a photocatalyst on which a transition metal is supported and forming sludge through centrifugation, and firing and crushing the sludge to produce photocatalyst particles. It may include a step.

본 발명에서 상기 전이금속은 크롬(Cr), 바나듐(V), 은(Ag), 금(Au), 팔라 듐(Pd), 백금(Pt), 몰리브덴(Mo), 및 니오브(Nb) 중 선택되는 어느 하나의 금속으로 형성할 수 있다. In the present invention, the transition metal is selected from chromium (Cr), vanadium (V), silver (Ag), gold (Au), palladium (Pd), platinum (Pt), molybdenum (Mo), and niobium (Nb). It can be formed of any one metal.

또한, 본 발명의 전이금속을 포함하는 광촉매 제조방법은 수용액에 질산화은(AgNO3)을 넣어 이온화하여 교반하는 단계를 포함하고, 상기 교반에 의해 얻어진 용액 내의 광촉매를 넣은 후 교반하여 원심분리를 통해 슬러지를 형성하는 단계를 포함하며, 상기 슬러지를 소성한 후 소정의 크기로 파쇄하여 광촉매 입자를 생성하는 단계를 포함할 수 있다.In addition, the photocatalyst manufacturing method comprising the transition metal of the present invention comprises the step of ionizing and stirring silver nitrate (AgNO 3 ) in an aqueous solution, and after putting the photocatalyst in the solution obtained by the agitation and stirring to sludge through centrifugation And forming a photocatalyst particle by sintering the sludge to a predetermined size.

본 발명에서 상기 이온화하여 교반하는 단계에서 질산화은을 포함하는 수용액 내의 은의 농도는 2.9*10-3mole/L 이상 5.8*10-3mole/L 이하로 형성할 수 있다.In the present invention, the concentration of silver in the aqueous solution containing silver nitrate in the step of ionizing and stirring may be formed at 2.9 * 10 -3 mole / L or more and 5.8 * 10 -3 mole / L or less.

본 발명에서 상기 광촉매 입자 내의 전이금속의 질량분률은 2.47% 이상 2.86% 이하로 형성할 수 있다.In the present invention, the mass fraction of the transition metal in the photocatalyst particles may be 2.47% or more and 2.86% or less.

본 발명에서 상기 광촉매 입자의 크기는 20nm ~ 30nm 으로 형성할 수 있다.In the present invention, the size of the photocatalyst particles may be formed from 20nm to 30nm.

그리고, 본 발명의 염료감응형 태양전지 제조방법은 전이금속을 포함하는 광촉매 입자를 사용하여 패이스트를 제조하는 단계를 포함하고, 상기 패이스트를 사용하여 광전극을 제조하는 단계를 포함하며, 백금(Pt)이 코팅된 상대전극을 제조하여 핫 프레스법을 통해 태양전지 셀을 형성하는 단계를 포함할 수 있다.In addition, the dye-sensitized solar cell manufacturing method of the present invention includes the step of preparing a paste using the photocatalyst particles containing a transition metal, comprising the step of preparing a photoelectrode using the paste, platinum It may include the step of forming a solar cell by hot pressing method by manufacturing a (Pt) coated counter electrode.

본 발명에서 상기 광전극을 제조하는 단계는 50mL 볼밀 반응조당 상기 전이금속을 포함하는 광촉매 7.0g ~ 7.5g 및 시약을 포함하여 패이스트를 제조하는 단계를 포함하고, 불소 도핑 산화주석(FTO)이 코팅된 전도체 유리의 상부에 패이스트 를 코팅하는 단계를 포함할 수 있다.In the present invention, the preparing of the photoelectrode includes preparing a paste including the photocatalyst 7.0g to 7.5g including the transition metal and a reagent per 50 mL ball mill reactor, and comprising fluorine-doped tin oxide (FTO). Coating a paste on top of the coated conductor glass.

본 발명에서 상기 시약은 증류수(H2O), 99 %에탄올, 아세틸아세톤(Acetylaceton), 폴리에틸렌 글리콜(PEG), 트리톤(Triton) X-100, 및 질화수소(HNO3) 용액을 모두 포함하여 형성할 수 있다.In the present invention, the reagent is formed by including distilled water (H 2 O), 99% ethanol, acetylacetone (Acetylaceton), polyethylene glycol (PEG), Triton X-100, and hydrogen nitride (HNO 3 ) solution can do.

본 발명에서 상기 상대전극은 상기 광전극의 제조와 동일한 방법으로 제조할 수 있다.In the present invention, the counter electrode may be manufactured by the same method as the preparation of the photoelectrode.

본 발명의 염료 감응형 태양전지에 있어서 상기 제 1항 또는 제 3항에 의해 형성된 전이금속을 포함한 광촉매 입자를 통해 형성된 패이스트를 기판에 코팅 및 소성하여 형성되는 광전극을 포함할 수 있다.In the dye-sensitized solar cell of the present invention, it may include a photoelectrode formed by coating and firing a paste formed through the photocatalyst particles including the transition metal formed by the above-described claim 1 or 3 on a substrate.

본 발명에 의하면 전이금속을 포함하는 광촉매를 이용하여 광전극을 제조함으로써 염료감응형 태양전지의 에너지 변환 효율을 향상시키는 효과가 있다.According to the present invention, there is an effect of improving the energy conversion efficiency of a dye-sensitized solar cell by manufacturing a photoelectrode using a photocatalyst including a transition metal.

또한, 전이금속을 포함하는 광촉매의 제조 시 사용화되어 있는 P-25 (Degussa, Germaby)를 사용함으로써 원재료 획득이 용이한 효과가 있다.In addition, by using P-25 (Degussa, Germaby), which is used in the preparation of a photocatalyst including a transition metal, there is an effect of easily obtaining raw materials.

염료감응형 태양전지의 에너지 변화 효율을 증가하기 위하여 전이금속을 포함하는 광촉매를 제조하고, 제조된 광촉매를 사용하여 광전극을 제조한다.In order to increase the energy change efficiency of the dye-sensitized solar cell, a photocatalyst including a transition metal is prepared, and a photoelectrode is manufactured using the prepared photocatalyst.

염료감응형 태양전지의 광전극을 제조하기 위한 광촉매는 상용화되어 시판되고 있는 P-25(Degussa, Germaby)를 사용하여 용이하게 제작할 수 있다. The photocatalyst for manufacturing the photoelectrode of the dye-sensitized solar cell can be easily manufactured using P-25 (Degussa, Germaby) which is commercially available and commercially available.

광촉매의 공극 크기(pore size)는 은(Ag)의 담지에 유리하도록 클수록 유리하며 한정하는 것은 아니지만, 13Å이상인 것이 바람직하다. 그리고, 광촉매는 비표면적이 클수록 염료의 흡착량과 태양광의 접촉면이 증가하기 때문에 40m2/g이상으로 사용하는 것이 바람직하다.The pore size of the photocatalyst is more advantageous to be larger to support silver (Ag) and is not limited thereto, but is preferably 13 GPa or more. In addition, it is preferable to use the photocatalyst at 40 m 2 / g or more because the larger the specific surface area, the higher the adsorption amount of the dye and the contact surface of the sunlight.

왜냐하면, 광촉매 입자의 크기가 너무 작으면 입자와 입자 사이의 공극이 줄어들어 비표면적이 작아져 효율이 감소하며, 너무 큰 입자는 생성된 전자가 이동 중 재결합을 통해 소실되기 때문에 에너지 변환효율을 감소시킬 수 있기 때문이다. If the size of the photocatalytic particles is too small, the voids between the particles and the particles are reduced, so the specific surface area is reduced, and the efficiency is reduced. Too large particles reduce the energy conversion efficiency because the generated electrons are lost through recombination during movement. Because it can.

따라서, 광촉매의 입자 크기는 약 20~30nm 정도가 적당하며, 이러한 조건은 상용화되고 있는 P-25 광촉매가 모두 만족하기 때문에 염료감응형 태양전지의 광전극 제조시 P-25 광촉매를 활용할 수 있다. Therefore, the particle size of the photocatalyst is about 20 ~ 30nm is suitable, and this condition is satisfactory for all commercialized P-25 photocatalysts can be utilized in the production of the photoelectrode of the dye-sensitized solar cell P-25 photocatalyst.

광촉매에 포함되는 전이금속은 대표적으로 크롬(Cr), 바나듐(V), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 몰리브덴(Mo), 및 니오브(Nb) 중 선택되는 어느 하나의 금속으로 형성할 수 있으며, 본 발명의 실시 예에서는 은(Ag)을 사용한다.The transition metals included in the photocatalyst are typically chromium (Cr), vanadium (V), silver (Ag), gold (Au), palladium (Pd), platinum (Pt), molybdenum (Mo), and niobium (Nb). It may be formed of any one metal selected from, and the embodiment of the present invention uses silver (Ag).

은(Ag)은 전기적, 열적 전도성이 우수하며, 대기상태에서도 높은 안정성을 가지고, 전자(electron)-정공(hole) 분리에 의한 자유전자의 포획 기능(Schottky barrier law)이 있으며, 공간 내 전자의 여기(electron excitation)를 쉽게 도와주는 역할을 수행한다.Silver (Ag) has excellent electrical and thermal conductivity, has high stability even in the atmospheric state, has a Schottky barrier law of free electrons by electron-hole separation, and It serves to facilitate electron excitation.

이하, 도 1을 참조하여 전이금속(Ag)을 포함하는 광촉매 제조방법을 알 수 있다.Hereinafter, a photocatalyst manufacturing method including a transition metal (Ag) may be known with reference to FIG. 1.

도 1은 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매 제조방법을 나타낸 흐름도로서, 은(Ag)을 효과적으로 광촉매 내부에 포함하기 위하여 증류가 된 물을 용액으로 하고 질산화은(AgNO3)을 용질로 하여 이온화시킨다(S100).1 is a flowchart illustrating a photocatalyst manufacturing method including a transition metal (Ag) according to an embodiment of the present invention. In order to effectively include silver (Ag) in a photocatalyst, distilled water is used as a solution and silver nitrate (AgNO). 3 ) as a solute is ionized (S100).

질산화은(AgNO3)은 증류수에 녹이면 쉽게 은(Ag+) 이온과 질산(NO3 -) 이온으로 쉽게 분리되며, 이러한 성질을 이용하여 질산화은(AgNO3) 0.05g을 넣고 약 6시간 이상 25℃ 환경에서 충분히 교반시켜 은(Ag) 용액을 형성한다(S110).Jilsanhwaeun (AgNO 3) is nokyimyeon is easy to distilled water (Ag +) and nitrate ion (NO 3 -) ions are easily separated, jilsanhwaeun using these properties (AgNO 3) Put more than about 6 hours 0.05g 25 ℃ environment The solution is sufficiently stirred to form a silver (Ag) solution (S110).

이때, 용액 내의 전이금속(Ag)의 농도는 2.9*10-3 mole/L ~ 5.8*10-3 mole/L로 형성할 수 있으며, 최적의 농도로는 2.9*10-3 mole/L의 농도가 바람직하다.At this time, the concentration of the transition metal (Ag) in the solution can be formed from 2.9 * 10 -3 mole / L ~ 5.8 * 10 -3 mole / L, the optimum concentration of 2.9 * 10 -3 mole / L Is preferred.

그리고, 용액 내의 전이금속(Ag)의 농도가 2.9*10-3 mole/L 일 경우 광촉매 입자 내의 전이금속의 질량분률은 2.86%를 나타내고, 5.8*10-3 mole/L일 경우의 광촉매 입자 내의 전이금속의 질량분률은 2.47%를 나타낸다.In addition, when the concentration of the transition metal (Ag) in the solution is 2.9 * 10 -3 mole / L, the mass fraction of the transition metal in the photocatalyst particles is 2.86%, and in the photocatalyst particles when the 5.8 * 10 -3 mole / L The mass fraction of transition metal represents 2.47%.

또한, 교반에 의해 제조된 은(Ag) 용액 내에 사용화되고 있는 P-25 광촉매를 약 10g 넣은 후(S120), 25℃에서 2시간 충분히 교반시킨다.Furthermore, after putting about 10 g of P-25 photocatalysts used in the silver (Ag) solution prepared by stirring (S120), it fully stirs at 25 degreeC for 2 hours.

교반 후 동일한 환경(25℃)에서 1시간 동안 초음파를 쬐어준 후, 다시 21시 간 교반하고(S130), 그 후 4℃, 8000rpm 환경에서 원심분리하여(S140) 슬러지를 형성한다. After stirring for 1 hour in the same environment (25 ℃) after stirring, and then stirred for 21 hours again (S130), and then centrifuged at 4 ℃, 8000 rpm environment (S140) to form a sludge.

형성된 슬러지는 450℃에서 30분간 소성하고(S150), 소성이 완료되면 옥 재질의 나노 막자사발을 이용하여 소성이 완료된 슬러지를 파쇄하여(S160) 약 20nm~30nm의 광촉매 입자를 형성한다(S170). The formed sludge is calcined at 450 ° C. for 30 minutes (S150), and when the sintering is completed, the calcined sludge is crushed using a nano-mortar of jade material (S160) to form photocatalyst particles of about 20 nm to 30 nm (S170). .

그리고, 파쇄가 끝나 형성된 광촉매 입자는 밀봉된 상태에서(질소분위기) 보관하며, 사용할 때마다 분취하여 사용한다.Then, the photocatalyst particles formed after the crushing are stored in a sealed state (nitrogen atmosphere), and each fraction is used after use.

광전극 제조를 위한 패이스트(paste)는 도 1에 의해 제조된 광촉매 입자와 아래의 시약을 혼합하여 제작할 수 있다(표1 참조). Paste for preparing the photoelectrode may be prepared by mixing the photocatalyst particles prepared by FIG. 1 with the following reagents (see Table 1).

Paste 제조Paste Manufacturing 전이금속이 담지된 광촉매 입자Photocatalyst Particles Supported by Transition Metals 7.5g7.5g H2OH 2 O 7 mL7 mL EthanolEthanol 2 mL2 mL AcetylacetonAcetylaceton 0.3 mL0.3 mL PEG(20000)PEG (20000) 0.4g0.4g Triton X-100Triton X-100 0.1 mL0.1 mL HNO3 HNO 3 1 mL1 mL

좀 더 자세하게, 패이스트를 제조하는 방법은 전이금속이 담지된 TiO2 광촉매 입자를 약 7.0g ~ 7.5g 분취하며, 좀 더 정확하게는 7.5g을 분취하여 50mL용량을 가진 세라믹 재질의 볼밀 반응조에 넣는다. In more detail, the method for preparing the paste is about 7.0g to 7.5g aliquots of TiO 2 photocatalyst particles containing a transition metal, and more precisely 7.5g is placed in a ball mill reactor with a ceramic volume of 50mL. .

그리고, 표 1의 용량에 따라 증류수(H2O), 99 %에탄올(Ethanol), 아세틸아세톤(Acetylaceton), 폴리에틸렌 글리콜(PEG), 트리톤(Triton) X-100, 및 질화수소(HNO3) 용액을 순서대로 볼밀 반응조에 넣고, 알루미나 볼을 넣은 후 외부와 가스 유출입이 없도록 단단히 밀봉하여 24동안 광촉매 입자와 시약들이 잘 섞이도록 한다.Then, distilled water (H 2 O), 99% ethanol (Ethanol), acetylacetone (Acetylaceton), polyethylene glycol (PEG), Triton X-100, and hydrogen nitride (HNO 3 ) solution according to the capacity of Table 1 In order to the ball mill reactor, alumina balls, and then tightly sealed so that there is no gas outflow and the outside to mix the photocatalyst particles and reagents for 24 hours.

볼밀 작업이 끝나면 제조된 패이스트를 밀봉이 가능한 바이얼에 취하여 암실에 보관한다. After the ball mill is finished, the prepared paste is placed in a sealed vial and stored in the dark room.

이 패이스트를 FTO(Fluorine-doped Tin Oxide, 7~9ohm) 유리판에 면적이 0.25㎠가 되도록 닥터브레이드법을 사용하여 코팅한 후, 450℃, 30분동안 소성릉 시켜 5*10-4mole/L의 Ruthenum 535-bisTBA 염료에 25℃, 24시간 동안 담궈 염료를 광촉매 필름에 흡착시켜 광전극을 제조한다.This paste was coated on a FTO (Fluorine-doped Tin Oxide, 7 ~ 9ohm) glass plate using the doctor braid method to make an area of 0.25cm2, and then calcined at 450 ° C for 30 minutes to give 5 * 10 -4 mole / Soak in L Ruthenum 535-bisTBA dye at 25 ℃ for 24 hours to adsorb the dye to the photocatalyst film to prepare a photoelectrode.

염료 감응형 태양전지의 광전극의 상기와 같은 방법으로 제조하고, 상대전극(백금(Pt)가 코팅된 전극) 역시 광전극과 같은 전극으로 제조한 후 양극을 핫 프레스(hot-pressing)법을 이용하여 최종 염료감응형 태양전지를 제조한다. The photoelectrode of the dye-sensitized solar cell is manufactured by the same method as described above, and the counter electrode (platinum (Pt) coated electrode) is also manufactured by the same electrode as the photoelectrode, and then the hot-pressing method of the anode is performed. To prepare a final dye-sensitized solar cell.

이하, 도 2a 및 도 2b, 도 3a 및 도 3b, 도 4, 및 표 3을 통해 종래의 광촉매와 본 발명의 전이금속을 포함하는 광촉매의 특성을 평가하고, 도 5를 통해 제조된 염료감응형 태양전지 셀의 전기 에너지 변환 효율을 평가할 수 있다.Hereinafter, the characteristics of the photocatalyst including the conventional photocatalyst and the transition metal of the present invention are evaluated through FIGS. 2A and 2B, 3A and 3B, 4, and Table 3, and the dye-sensitized type manufactured through FIG. The electrical energy conversion efficiency of the solar cell can be evaluated.

도 2a는 종래의 P-25 광촉매의 FE-SEM 분석결과를 나타낸 사진이며, 도 2b는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25)의 FE-SEM 분석결과를 나타낸 사진이다.Figure 2a is a photograph showing the result of the FE-SEM analysis of the conventional P-25 photocatalyst, Figure 2b is a FE-SEM analysis of the photocatalyst (P-25) containing a transition metal (Ag) according to an embodiment of the present invention Photo shows the result.

도 2a 및 도 2b를 참조하면, 광촉매의 입자크기가 P-25 광촉매의 경우 약 24nm로 나타나며, 전이금속(Ag)을 포함하는 광촉매(P-25)의 경우 입자크기가 약 25nm로 나타난다. 이에 따라 전이금속이 포함된 광촉매의 경우 입자의 크기가 커짐을 알 수 있다.2A and 2B, the particle size of the photocatalyst is about 24 nm for the P-25 photocatalyst, and the particle size for the photocatalyst (P-25) including the transition metal (Ag) is about 25 nm. Accordingly, in the case of the photocatalyst including the transition metal, the particle size increases.

도 3a는 종래의 P-25 광촉매의 EDX 분석결과를 나타낸 사진이고, 도 3b는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25)의 EDX 분석결과를 나타낸 사진이다.Figure 3a is a photograph showing the results of the EDX analysis of the conventional P-25 photocatalyst, Figure 3b is a photograph showing the EDX analysis of the photocatalyst (P-25) containing a transition metal (Ag) according to an embodiment of the present invention. to be.

도 3a 및 도 3b를 참조하면, 하기의 표2를 얻을 있으며 분석결과 P-25 광촉매는 산소(O)와 티타늄(Ti)의 무게 분율이 각각 40.29%, 59.71%로 나타났고, 전이금속(Ag)을 포함하는 광촉매(P-25)는 산소(O), 티타늄(Ti), 및 은(Ag)의 무게분율이 각각 46.77%, 52.76%, 0.47%로 나타났다.3A and 3B, Table 2 below is obtained. As a result of analysis, the P-25 photocatalyst showed 40.29% and 59.71% of the weight fractions of oxygen (O) and titanium (Ti), respectively. The photocatalyst (P-25) including) exhibited 46.77%, 52.76% and 0.47% by weight of oxygen (O), titanium (Ti) and silver (Ag), respectively.


Element

Element
Weight(%)Weight (%)
P-25P-25 전이금속을 포함하는 광촉매Photocatalysts containing transition metals OO 40.2940.29 46.7746.77 TiTi 59.7159.71 52.7652.76 AgAg 00 0.470.47 TotalTotal 100100 100100

도 4는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25) 및 그 외 다수 광촉매의 XRD 분석결과를 나타낸 그래프로서, P-25 광촉매와 전이금속(Ag)을 포함하는 광촉매(P-25) 모두 아나타제(Anatase)와 루타일(Rutile) 구조가 혼합된 결정 구조를 가지고 있음으로 알 수 있으며, 전이금속(Ag)을 포함하는 광촉매(P-25)의 경우 Ag Peak가 나타나는 것을 알 수 있다. 4 is a graph showing XRD analysis results of a photocatalyst (P-25) including a transition metal (Ag) and a number of other photocatalysts according to an embodiment of the present invention, and a P-25 photocatalyst and a transition metal (Ag) It can be seen that all of the photocatalysts (P-25) included have a crystal structure in which anatase and rutile structures were mixed, and in the case of a photocatalyst (P-25) containing a transition metal (Ag), Ag was used. It can be seen that the peak appears.

Variety of photocatalystVariety of photocatalyst Surface area
(m2/g)
Surface area
(m 2 / g)
Total pore
Volume(cc/g)
Total pore
Volume (cc / g)
Average pore
size(Å)
Average pore
size (Å)
P-25P-25 44.8044.80 0.01480.0148 13.2013.20 전이금속을 포함하는 광촉매Photocatalysts containing transition metals 51.6551.65 0.01830.0183 14.1814.18

상기의 표 3은 BET 분석결과를 나타낸 것으로, 분석결과 P-25 광촉매에 비해 전이금속(Ag)을 포함하는 광촉매(P-25)가 Surfacd area, Total pore vomume, average pore size에서 모두 증가하는 것을 알 수 있다.Table 3 shows the results of the BET analysis, which shows that the photocatalyst (P-25) including the transition metal (Ag) increases in the surfacd area, total pore volume, and average pore size compared to the P-25 photocatalyst. Able to know.

즉, 상기의 도 2a 및 도 2b, 도 3a 및 도 3b, 도 4, 및 표 3을 참조하면, 전이금속(Ag)을 포함하는 광촉매(P-25)의 특성이 종래의 P-25 광촉매의 특성과 유사하거나, 오히려 더 향상되어 나타남을 알 수 있다. That is, referring to FIGS. 2A and 2B, 3A and 3B, 4, and Table 3, the characteristics of the photocatalyst P-25 including the transition metal Ag are similar to those of the conventional P-25 photocatalyst. It can be seen that the characteristics are similar or even improved.

도 5는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25)와 종래의 P-25 광촉매의 I-V curves를 측정한 결과를 나타낸 그래프로서, 측정결과는 하기의 표4를 참조한다.FIG. 5 is a graph showing the results of measuring IV curves of a photocatalyst (P-25) including a transition metal (Ag) and a conventional P-25 photocatalyst according to an embodiment of the present invention. See 4.

도 5 및 표 4를 참조하면, 전이금속(Ag)을 포함하는 광촉매(P-25)를 사용한 광전극이 에너지 변환 효율에서 약 1.4% 향상된 효과를 나타내는 것을 알 수 있다.Referring to FIG. 5 and Table 4, it can be seen that the photoelectrode using the photocatalyst (P-25) including the transition metal (Ag) exhibits about 1.4% improvement in energy conversion efficiency.

개방전압(V)Open voltage (V) 광전류(mA/cm2)Photocurrent (mA / cm2) 필펙터Filfector 에너지변환효율(%)Energy conversion efficiency (%) P-25P-25 0.680.68 18.2818.28 55.955.9 6.956.95 P-25+AgP-25 + Ag 0.690.69 21.4221.42 56.556.5 8.358.35

위의 실험 결과(도 2a 및 도 2b, 도 3a 및 도 3b, 도 4, 및 도 5)를 보면 본 발명의 전이금속을 포함하는 광촉매를 이용한 광전극은 염료감응형 태양전지를 작동할 때 특성이 종래 P-25 광촉매를 이용한 광전극에 뒤지지 않으며 에너지 변환 효율이 더 향상된다. 특히, 질량분률 약 2.86%로 전이금속(Ag)이 담지되었을 때의 에너지 변환 효율은 기존의 P-25 보다 약 1.4%의 향상된 증가율을 나타낸다.2A, 2B, 3A, 3B, 4, and 5, the photoelectrode using the photocatalyst including the transition metal of the present invention exhibits characteristics when operating a dye-sensitized solar cell. It is second to the photoelectrode using this conventional P-25 photocatalyst and the energy conversion efficiency is further improved. In particular, the energy conversion efficiency when the transition metal (Ag) is supported at about 2.86% by mass fraction shows an improved increase of about 1.4% compared to the conventional P-25.

상기와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, it has been described with reference to the preferred embodiment of the present invention, but those skilled in the art various modifications and changes of the present invention without departing from the spirit and scope of the present invention described in the claims below I can understand that you can.

당업자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 범위에 속한다. 또한, 본 명세서에서 설명한 각 구성요소의 물질은 당업자가 공지된 다양한 물질로부터 용이하게 선택하여 대처할 수 있다. 또한, 당업자는 본 명세서에서 설명된 구성요소 중 일부를 성능의 열화 없이 생략하거나 성능을 개선하기 위해 구성요소를 추가할 수 있다. 뿐만 아니라, 당업자는 공정 환경이나 장비에 따라 본 명세서에서 설명한 방법 단계의 순서를 변경할 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 특허청구범위 및 그 균등물에 의해 결정되어야 한다Those skilled in the art can change or modify the described embodiments without departing from the scope of the present invention, and such changes or modifications are within the scope of the present invention. In addition, the materials of each component described herein can be readily selected and coped by a variety of materials known to those skilled in the art. In addition, those skilled in the art may omit some of the components described herein without adding to the performance or add the components to improve performance. In addition, those skilled in the art may change the order of the method steps described herein depending on the process environment or equipment. Therefore, the scope of the present invention should be determined not by the embodiments described, but by the claims and their equivalents.

도 1a는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매 제조방법을 나타낸 흐름도.1A is a flowchart illustrating a photocatalyst manufacturing method including a transition metal (Ag) according to an embodiment of the present invention.

도 2a는 종래의 P-25 광촉매의 FE-SEM 분석결과를 나타낸 사진.Figure 2a is a photograph showing the results of FE-SEM analysis of a conventional P-25 photocatalyst.

도 2b는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25)의 FE-SEM 분석결과를 나타낸 사진.Figure 2b is a photograph showing the results of the FE-SEM analysis of the photocatalyst (P-25) containing a transition metal (Ag) according to an embodiment of the present invention.

도 3a는 종래의 P-25 광촉매의 EDX 분석결과를 나타낸 사진.Figure 3a is a photograph showing the results of EDX analysis of a conventional P-25 photocatalyst.

도 3b는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25)의 EDX 분석결과를 나타낸 그래프.Figure 3b is a graph showing the results of EDX analysis of the photocatalyst (P-25) containing a transition metal (Ag) according to an embodiment of the present invention.

도 4는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25) 및 그 외 다수 광촉매의 XRD 분석결과를 나타낸 그래프.Figure 4 is a graph showing the XRD analysis of the photocatalyst (P-25) and a number of other photocatalyst including a transition metal (Ag) according to an embodiment of the present invention.

도 5는 본 발명의 일 실시 예에 따른 전이금속(Ag)을 포함하는 광촉매(P-25)와 종래의 P-25 광촉매의 I-V curves를 측정한 결과를 나타낸 그래프.5 is a graph showing the results of measuring I-V curves of a photocatalyst (P-25) including a transition metal (Ag) and a conventional P-25 photocatalyst according to an embodiment of the present invention.

Claims (11)

전이금속이 담지된 광촉매를 교반하고, 원심분리를 통해 슬러지를 형성하는 단계; 및Stirring the photocatalyst carrying the transition metal and forming sludge through centrifugation; And 상기 슬러지를 소성 및 파쇄하여 광촉매 입자를 생성하는 단계;Calcining and crushing the sludge to produce photocatalyst particles; 를 포함하는 것을 특징으로 하는 전이금속을 포함하는 광촉매 제조방법.Photocatalyst production method comprising a transition metal comprising a. 제 1항에 있어서, 상기 전이금속은 The method of claim 1, wherein the transition metal 크롬(Cr), 바나듐(V), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 몰리브덴(Mo), 및 니오브(Nb) 중 선택되는 어느 하나의 금속인 것을 특징으로 하는 전이금속을 포함하는 광촉매 제조방법.Chromium (Cr), vanadium (V), silver (Ag), gold (Au), palladium (Pd), platinum (Pt), molybdenum (Mo), and niobium (Nb) Photocatalyst production method comprising a transition metal. 수용액에 질산화은(AgNO3)을 넣어 이온화하여 교반하는 단계;Putting silver nitrate (AgNO 3 ) in an aqueous solution and ionizing and stirring; 상기 교반에 의해 얻어진 용액 내의 광촉매를 넣은 후 교반하여 원심분리를 통해 슬러지를 형성하는 단계; 및Putting a photocatalyst in the solution obtained by the stirring, followed by stirring to form sludge through centrifugation; And 상기 슬러지를 소성한 후 소정의 크기로 파쇄하여 광촉매 입자를 생성하는 단계;Calcining the sludge and then crushing the sludge to a predetermined size to generate photocatalyst particles; 를 포함하는 것을 특징으로 하는 전이금속을 포함하는 광촉매 제조방법.Photocatalyst production method comprising a transition metal comprising a. 제 3항에 있어서, 상기 이온화하여 교반하는 단계에서,The method of claim 3, wherein in the ionizing and stirring step, 질산화은을 포함하는 수용액 내의 은의 농도는 2.9*10-3mole/L 이상 5.8*10-3mole/L 이하인 것을 특징으로 하는 전이금속을 포함하는 광촉매 제조방법.The concentration of silver in the aqueous solution containing silver oxynitride is a photocatalyst manufacturing method comprising a transition metal, characterized in that more than 2.9 * 10 -3 mole / L 5.8 * 10 -3 mole / L. 제 1항 또는 제 3항에 있어서, 상기 광촉매 입자 내의 전이금속의 질량분률은 2.47% 이상 2.86% 이하인 것을 특징으로 하는 전이금속을 포함하는 광촉매 제조방법.The method according to claim 1 or 3, wherein the mass fraction of the transition metal in the photocatalyst particles is 2.47% or more and 2.86% or less. 제 1항 또는 제 3항에 있어서, 상기 광촉매 입자의 크기는 20nm ~ 30nm 인것을 특징으로 하는 전이금속을 포함하는 광촉매 제조방법.The method of claim 1 or 3, wherein the photocatalyst particles have a size of 20 nm to 30 nm. 제 1항 또는 제 3항에 의해 형성된 광촉매 입자를 사용하여 패이스트를 제조하는 단계:A process of preparing a paste using the photocatalytic particles formed by claim 1: 상기 패이스트를 사용하여 광전극을 제조하는 단계; 및Manufacturing a photoelectrode using the paste; And 백금(Pt)이 코팅된 상대전극을 제조하여 핫 프레스법을 통해 태양전지 셀을 형성하는 단계;Preparing a counter electrode coated with platinum (Pt) to form a solar cell through a hot press method; 를 포함하는 염료감응형 태양전지 제조방법.Dye-sensitized solar cell manufacturing method comprising a. 제 7항에 있어서, 상기 광전극을 제조하는 단계는, The method of claim 7, wherein the manufacturing of the photoelectrode, 50mL 볼밀 반응조당 상기 전이금속을 포함하는 광촉매 7.0g ~ 7.5g 및 시약을 포함하여 패이스트를 제조하는 단계; 및Preparing a paste comprising 7.0 g to 7.5 g of a photocatalyst including the transition metal and a reagent per 50 mL ball mill reactor; And 불소 도핑 산화주석(FTO)이 코팅된 전도체 유리의 상부에 패이스트를 코팅하는 단계;Coating a paste on top of the conductive glass coated with fluorine doped tin oxide (FTO); 를 포함하는 특징으로 하는 염료감응형 태양전지 제조방법.Dye-sensitized solar cell manufacturing method comprising a. 제 8항에 있어서, 상기 시약은,The method of claim 8, wherein the reagent, 증류수(H2O), 99 %에탄올, 아세틸아세톤(Acetylaceton), 폴리에틸렌글리콜(PEG), 트리톤(Triton) X-100, 및 질화수소(HNO3) 용액을 포함하는 것을 특징으로 하는 염료감응형 태양전지 제조방법.Dye-sensitized solar system comprising distilled water (H 2 O), 99% ethanol, acetylacetone (Acetylaceton), polyethylene glycol (PEG), Triton X-100, and hydrogen nitride (HNO 3 ) solution Battery manufacturing method. 제 8항에 있어서, 상기 상대전극은,The method of claim 8, wherein the counter electrode, 상기 광전극의 제조와 동일한 방법으로 제조하는 것을 특징으로 하는 염료감응형 태양전지 제조방법.Dye-sensitized solar cell manufacturing method characterized in that the manufacturing in the same manner as the production of the photoelectrode. 염료 감응형 태양전지에 있어서,In dye-sensitized solar cell, 상기 제 1항 또는 제 3항에 의해 형성 된 전이금속을 포함한 광촉매 입자를 통해 형성된 패이스트를 기판에 코팅 및 소성하여 형성되는 광전극을 포함하는 것을 특징으로 하는 염료 감응형 태양전지.A dye-sensitized solar cell comprising a photoelectrode formed by coating and baking a paste formed on the substrate through the photocatalyst particles including the transition metal formed by the above-mentioned.
KR1020080124796A 2008-12-09 2008-12-09 Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst KR101002929B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080124796A KR101002929B1 (en) 2008-12-09 2008-12-09 Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080124796A KR101002929B1 (en) 2008-12-09 2008-12-09 Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst

Publications (2)

Publication Number Publication Date
KR20100066129A true KR20100066129A (en) 2010-06-17
KR101002929B1 KR101002929B1 (en) 2010-12-21

Family

ID=42365264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080124796A KR101002929B1 (en) 2008-12-09 2008-12-09 Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst

Country Status (1)

Country Link
KR (1) KR101002929B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311145A (en) * 2019-07-01 2019-10-08 江苏乾景新能源产业技术研究院有限公司 A method of fuel-cell catalyst is prepared using sludge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548296B1 (en) 2013-12-23 2015-08-28 인하대학교 산학협력단 Manufacturing method of bimetallic transition metal doped titanium dioxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316568A1 (en) 2001-12-21 2011-05-04 Showa Denko K.K. Photocatlyst particles comprising a condensed phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311145A (en) * 2019-07-01 2019-10-08 江苏乾景新能源产业技术研究院有限公司 A method of fuel-cell catalyst is prepared using sludge

Also Published As

Publication number Publication date
KR101002929B1 (en) 2010-12-21

Similar Documents

Publication Publication Date Title
Chen et al. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting
Chen et al. Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems
Chatterjee et al. Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review
Lee et al. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation
Lewis Developing a scalable artificial photosynthesis technology through nanomaterials by design
Zhang et al. Water splitting progress in tandem devices: moving photolysis beyond electrolysis
Abdi et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
Alexander et al. Metal oxide photoanodes for solar hydrogen production
Yang et al. In situ Sn-doped WO 3 films with enhanced photoelectrochemical performance for reducing CO 2 into formic acid
Xu et al. Band positions and photoelectrochemical properties of solution-processed silver-substituted Cu2ZnSnS4 photocathode
Bin et al. Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell
Wang et al. Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst
Suryawanshi et al. Enhanced solar water oxidation performance of TiO2 via band edge engineering: a tale of sulfur doping and earth-abundant CZTS nanoparticles sensitization
Choi et al. Controlled band offsets in ultrathin hematite for enhancing the photoelectrochemical water splitting performance of heterostructured photoanodes
Liu et al. Tandem cells for unbiased photoelectrochemical water splitting
Thalluri et al. Inverted pyramid textured p-silicon covered with Co2P as an efficient and stable solar hydrogen evolution photocathode
Zhang et al. Noble-metal-free perovskite–BiVO4 tandem device with simple preparation method for unassisted solar water splitting
WO2016136374A1 (en) Photocatalyst structure and photocell
CN103237925A (en) Hydrogen production apparatus and hydrogen production process
EP2817437B1 (en) Photovoltaic hybrid electrolysis cell
Wu et al. Metal oxide based photoelectrodes in photoelectrocatalysis: advances and challenges
Cai et al. Application of TiO2 hollow microspheres incorporated with up-conversion NaYF4: Yb3+, Er3+ nanoparticles and commercial available carbon counter electrodes in dye-sensitized solar cells
Koshevoy et al. Photoelectrochemical methods for the determination of the flat-band potential in semiconducting photocatalysts: A comparison study
CN105702472A (en) Solar cell electrode, preparation method therefor, and solar cell
KR101002929B1 (en) Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee