KR20100056291A - Sequential injection analyzer with replaceable lab-on-a-chip - Google Patents

Sequential injection analyzer with replaceable lab-on-a-chip Download PDF

Info

Publication number
KR20100056291A
KR20100056291A KR1020080115385A KR20080115385A KR20100056291A KR 20100056291 A KR20100056291 A KR 20100056291A KR 1020080115385 A KR1020080115385 A KR 1020080115385A KR 20080115385 A KR20080115385 A KR 20080115385A KR 20100056291 A KR20100056291 A KR 20100056291A
Authority
KR
South Korea
Prior art keywords
sequential injection
manifold
analyzer
fluid pipeline
reagent
Prior art date
Application number
KR1020080115385A
Other languages
Korean (ko)
Inventor
손문탁
Original Assignee
주식회사 바이오록스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오록스 filed Critical 주식회사 바이오록스
Priority to KR1020080115385A priority Critical patent/KR20100056291A/en
Publication of KR20100056291A publication Critical patent/KR20100056291A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Abstract

PURPOSE: A sequential injection analyzer is provided to easily exchange a fluid pipeline module, and to move or transport the analyzer with a simple and small structure compare to a conventional analyzer. CONSTITUTION: A sequential injection analyzer comprises the following: a detachable fluid pipeline module(260); and a syringe pump and a multiport valve fixed to a manifold(261), the fluid pipeline module is a laminating structure including substrates with minute flow paths. The fluid pipeline module performs a sequential injection analysis while pressured and coupled to the manifold. The detachable fluid pipeline module is formed with glass, silicon, polymethylmethacrylate, polycarbonate, polystyrene resins and others. A base substrate is connected with the manifold while including a penetration hole.

Description

착탈식 유체배관부를 가진 순차주입분석 장치 { Sequential injection analyzer with replaceable lab-on-a-chip}Sequential injection analyzer with replaceable lab piping on replaceable lab-on-a-chip

본 발명은 수용액 중에 특정 성분의 농도를 측정하는 화학분석장치에 관한 것이다. 흐름주입분석장치는 습식화학분석을 자동화 하는 대표적인 방법으로서 시료흡입, 정량주입, 혼합, 반응, 검출과정을 자동으로 수행하여 수작업에서 발생하기 쉬운 오차를 줄여주며, 반복적인 작업을 신뢰성있게 수행한다. 흐름주입분석장치에서 좀더 발전한 것이 순차주입분석장치이다. 연속적으로 시약과 캐리어용액을 흘려보내는 방식과 달리, 순차주입분석기는 멀티포트밸브를 이용하여 시약과 시료를 순차적으로 흡입하여 관로에서 반응을 시키고 반응물을 멀티포트밸브를 이용하여 검출기쪽으로 이송하는 것이 차이점이다. 본 발명은 순차주입분석장치를 개량한 것이다.The present invention relates to a chemical analysis device for measuring the concentration of a specific component in an aqueous solution. The flow injection analysis device is a representative method of automating wet chemical analysis. It automatically performs sample suction, quantification injection, mixing, reaction, and detection process to reduce errors that are likely to occur in manual operation, and performs repetitive work reliably. A further development of the flow injection analysis device is the sequential injection analysis device. Unlike the continuous flow of reagent and carrier solution, the sequential injection analyzer uses a multiport valve to inhale reagent and sample sequentially to react in the pipeline and transfer the reactants to the detector using the multiport valve. to be. The present invention is an improvement of the sequential injection analysis device.

흐름주입분석법(flow injection analysis)는 1970년대 루지카와 한슨에 의하여 개척되고 30여년간 수천편의 관련논문과 전문학회가 생겨 수백종의 화학물질에 대해 분석법이 보고되었으며 수질분석, 식품분석,의료분야의 혈액분석, 뇨분석, 독성물질분석등 다양하게 사용되고 있다. 흐름주입분석법을 개량한 순차주 입분석장치는 주사기펌프와 멀티포트밸브로 구성된다. 멀티포트밸브를 이용하여 시료와 시약을 선택하고 주사기펌프로 시약, 시료를 순차적로 흡입하여 튜브속에서 반응을 시키고, 반응이 끝나면 멀티포트밸브를 검출기쪽으로 선택하고 반응물을 검출기로 이송하여 반응정도를 검출한다. 순차주입분석장치의 가장 큰 장점은 시약 소모량이 작다는 점과, 운전방법이 간단하다는 점이다. 그러나 흐름주입분석법에서는 필요치 않는 고가의 멀티포트밸브와 주사기펌프가 필요하다는 단점도 있다. Flow injection analysis was pioneered by Lujika and Hanson in the 1970s, and thousands of papers and professional societies have been published over the past 30 years, and analysis methods have been reported for hundreds of chemicals. It is widely used for urine analysis and toxic substance analysis. The sequential injection analysis device, which is an improved flow injection analysis method, consists of a syringe pump and a multiport valve. Select the sample and reagent by using the multiport valve, and inject the reagent and sample sequentially with a syringe pump to react in the tube.After the reaction, select the multiport valve toward the detector and transfer the reactants to the detector. Detect. The main advantages of the sequential injection analyzer are the low reagent consumption and the simple operation. However, there is a disadvantage that an expensive multiport valve and a syringe pump are not required in the flow injection analysis method.

순차주입분석법은 미국 시애틀의 워싱턴대학팀에서 고안되어 분석화학계에 널리 퍼졌다. fialab.com은 순차주입분석기를 고안한 팀에서 비롯된 회사이며, 다양한 순차주입장치를 선보이고 있다. 특히 lab-on-a-valve 구조는 현재 순차주입방식에서 가장 앞선 시스템으로 평가 받고 있으며, 제작이 간편하고 소형화에도 이점이 많다. 멀티포트밸브를 중심으로 검출기와 혼합코일, 주사기펌프를 배치하여 배관을 간소화하였다(http://www.flowinjection.com/Brochures/fialab3200.aspx).Sequential injection analysis was devised by the University of Washington team in Seattle, USA, and was widely used in the analytical chemistry world. fialab.com originates from a team that designed sequential analyzers and offers a variety of sequential injectors. In particular, the lab-on-a-valve structure is currently evaluated as the most advanced system in the sequential injection method, and is easy to manufacture and has many advantages in miniaturization. The pipe was simplified by arranging the detector, the mixing coil, and the syringe pump around the multiport valve (http://www.flowinjection.com/Brochures/fialab3200.aspx).

그러나 이들의 랩언어밸브 구조는 기계적인 가공이 어렵고 여전히 착탈식이 아니어서 본 발명이 추구하는 간편한 착탈구조를 구현하기 어렵다.However, these wrap language valve structure is difficult to implement the mechanical process and still not removable removable structure that the present invention seeks.

한편 본 발명과 유사하게 소형화를 추구하는 기술로서는 랩언어칩이 있다(http://en.wikipedia.org/wiki/Lab-on-a-chip). 랩언어칩은 펌프, 밸브, 유로를 작은 적층기판에 일체화한 구조를 가지며, 첨단기술로 각광을 받고 있다. 그러나 랩언어칩의 유체구동방식은 고압의 전기를 사용하는 전기삼투압힘을 사용하며, 이를 위해서는 유로가 매우 미세하여야 하며, 검출기역시 미세한 유로에서 시료를 검출해야 하므로 레이저유도형광법같은 고정밀, 고가장비가 필요하다는 단점이 있 다. 비록 칩은 작게 수 있으나, 검출장치와 기타 전자장치를 고려하면 결코 소형화가 쉽지 않다.Similarly to the present invention, there is a lab language chip that seeks miniaturization (http://en.wikipedia.org/wiki/Lab-on-a-chip). Lap language chips have a structure in which pumps, valves, and flow paths are integrated into a small laminated substrate, and are being spotlighted with advanced technology. However, the fluid driving method of the lab language chip uses an electroosmotic force using high pressure electricity. For this purpose, the flow path must be very fine, and the detector must also detect the sample in the fine flow path, so that high-precision and expensive equipment such as laser induction fluorescence is required. The disadvantage is that it is necessary. Although the chip can be small, miniaturization is not easy given the detection devices and other electronic devices.

순차주입분석장치를 제작할 때나 사용할 때 애로사항중에 하나가 바로 배관문제이다. 가장 기본적인 장치로 6포트밸브와 주사기 펌프, 그리고 검출기로 구성된 예를 들어 보면, 모두 12개의 배관입출구가 생기며, 데드볼륨이 없이 배관을 하기 위해서 특수한 고가의 피팅으로 튜브를 연결해주어야 한다. 장치를 사용하다 보면 배관내벽이 오염되거나, 스케일이 끼거나, 사용하는 시약을 다른 종류로 교체하는 경우 그에 따라 배관도 모두 바꾸어야 한다. 한편, 피팅과 튜브로 배관작업을 하면, 차지하는 부피도 커지므로 장치의 크기가 커지게 된다.One of the difficulties in making and using sequential injection analysis is the piping problem. The most basic device consists of a six-port valve, a syringe pump, and a detector. For example, there are twelve pipe inlets and outlets, and the tubing must be connected with special expensive fittings in order to pipe without dead volume. When using the device, if the inner wall of the pipe is contaminated, scaled, or replaced with a different type of reagent, the pipe must be changed accordingly. On the other hand, when the piping work with the fittings and tubes, the volume occupies also increases, which increases the size of the device.

최근 순차주입분석장치가 수질분석이나 식품분석에서 면역분석 같은 생명공학분야에도 사용되면서, 시료나 시약을 매우 적게 사용해야 하는 필요성이 생기고 있다.Recently, as sequential injection analysis devices are used in biotechnology such as water analysis and food analysis, such as immunoassay, there is a need to use very few samples or reagents.

또한 생명공학 분야는 단백질측정이 많으며, 단백질은 유로벽에 잘 달라 붙는 성질이 있으므로, 자주 배관을 교체해주어야 하는 어려움도 있다.In addition, there are many protein measurements in the field of biotechnology, and since proteins adhere well to the flow path walls, there is a difficulty in frequently replacing pipes.

이러한 응용에는 기존의 피팅과 튜브로 이루어진 배관은 내부 부피가 커지므로 부적합하고, 유로를 소형화 하고 배관을 단순화 할 수 있으며, 나아가 배관전체를 간편하게 교체할 수 있는 순차분석장치의 필요성이 제기되고 있다.For these applications, pipes made of conventional fittings and tubes are not suitable because of their large internal volume, which leads to the need for a sequential analysis device that can simplify the flow path, simplify the pipe, and replace the entire pipe easily.

본 발명은 배관부를 분리하여 착탈이 가능한 모듈로 만드는 것을 고안하여 소형화및 손쉬운 배관교체문제를 해결하였다. 주사기펌프, 멀티포트밸브는 모두 매니폴드에 조정하고, 밸브와 펌프의 입출력부분은 테프론이나 오링으로 배관모듈의입출력부분과 밀착되어 누수가 없이 결합되도록 하였다. 배관부를 집적하여 하나의 모듈화하는 과제는 아크릴 수지를 이용한 랩언어칩기술을 이용하여 해결하였다. 이 기술은 기저부 아크릴기판에 원하는 배관형상을 밀링, 핫스탬핑, 컴프레션몰딩, 인젝션몰딩, 레이저가공등 다양한 기법으로 새기고, 그 위에 덮개기판을 덮어 접합하며, 상기 접합은 접착제 없이, 열과 압력으로 접합을 하여 미세한 유로에 변형이나 막힘이 없게 하는 것을 특징으로 한다.The present invention solved the problem of miniaturization and easy pipe replacement by devising to make the module detachable by detaching the pipe. The syringe pump and the multi-port valve are all adjusted to the manifold, and the input and output parts of the valve and the pump are tightly connected to the input / output part of the piping module by Teflon or O-ring so that they can be combined without leakage. The problem of integrating a piping unit and modularizing it was solved by using a lab language chip technology using an acrylic resin. This technology engraves the desired pipe shape on the base acrylic substrate by various techniques such as milling, hot stamping, compression molding, injection molding, and laser processing, and covers and bonds the cover substrate on it. The micro-channel is characterized in that there is no deformation or blockage.

본 발명에 따른 흐름주입분석기는 기존 장치에 비해 거추장스러운 배관용 튜브나 피팅이 없어 크기가 매우 작아 이동이나 휴대가 간편하며, 배관모듈은 착탈이 가능하여 손쉽게 교체할 수 있으으므로 단백질같이 배관벽에 잘 달라붙은 시료를 검출할 때 편리하며, 배관모듈에 새겨진 유로는 매우 정밀하게 만들 수 있어 시료나 시약의 양이 매우 적은 생명공학적 응용에도 쓸 수 있다.The flow injection analyzer according to the present invention has no cumbersome piping tubes or fittings compared to the existing apparatus, so the size is very small, so it is easy to move or carry. It is convenient for detecting stuck samples, and the flow path engraved in the piping module can be made very precisely, and can be used for biotechnological applications where the amount of sample or reagent is very small.

이하 도면을 보며 설명한다. 도 1은 대표적인 순차주입분석장치의 기능도이다. 우선 순차주입분석의 운전순서를 설명한다. 먼저 시료(154)와 시약1(106), 시 약2(107)을 구비하고, 튜빙펌프(110)을 작동시켜 시료를 흡입하고 배출구로 내보낸다. 이러는 중에, 멀티포트밸브(103)는 시료를 선택하는 위치로 자리잡고, 주사기펌프(109)는 내장된 3웨이밸브(102)를 우측으로 위치하여 시료를 흡입하여 혼합코일(102)에 주입한다. 시료주입이 끝나면 튜빙펌프를 끄고, 멀티포트밸브는 시약1(106)의 위치로 자라잡는다. 이어서 주사기펌프가 시약1을 흡입하여 혼합코일에 주입한다. 혼합코일에는 먼저 시료가 주입되어 있기 때문에 시약1이 순차적으로 주입되게 된다. 같은 방법으로 시약2(107)도 시약1다음에 주입할 수 있다. 일정시간이 지나면 확산등의 영향으로 시약과 시료가 섞이며 반응이 일어난다. 반응이 마무리되면 멀티포트밸브를 검출기(108)위치로 자리잡고,주사기펌프의 내장된 3웨이밸브를 좌측으로 자라잡아 캐리어용액을 펌핑하고 주사기에 채워 넣은 다음, 다시 3웨이밸브를 우측으로 하여 흡입한 캐리어 용액으로 상기 반응용액을 검출기쪽으로 이송한다. 검출기에서는 흡광, 발광, 형광, 전기화학전극등의 방법으로 반응물의 농도를 측정한다.It will be described with reference to the drawings. 1 is a functional diagram of a typical sequential injection analysis device. First, the operation sequence of sequential injection analysis will be explained. First, the sample 154, the reagent 1 106, and the reagent 2 107 are provided, and the tubing pump 110 is operated to suck the sample and to discharge it to the outlet. During this process, the multi-port valve 103 is positioned at the position where the sample is selected, and the syringe pump 109 is positioned at the right of the built-in three-way valve 102 to inhale the sample and inject it into the mixing coil 102. . At the end of the sample injection, turn off the tubing pump and the multiport valve grows to the position of reagent 1 (106). The syringe pump then inhales reagent 1 and injects it into the mixing coil. Since the sample is first injected into the mixed coil, the reagent 1 is sequentially injected. In the same manner, reagent 2 107 may also be injected after reagent 1. After a certain time, the reaction is carried out by mixing the reagent and the sample under the influence of diffusion. When the reaction is completed, the multi-port valve is set to the detector 108 position, the built-in three-way valve of the syringe pump is extended to the left to pump the carrier solution and filled into the syringe, and then the three-way valve is turned to the right side. The reaction solution is transferred to the detector in one carrier solution. The detector measures the concentration of the reactants by methods such as absorption, emission, fluorescence, and electrochemical electrodes.

다음은 본 발명에 핵심인 배관모듈에 대해, 하나의 6포트를 가진 멀티포트밸브를 채택한 순차주입분석기의 실시예를 도2를 이용하여 설명한다.Next, an embodiment of a sequential injection analyzer adopting a multi-port valve having one 6 port will be described with reference to FIG. 2 for a piping module which is the core of the present invention.

시료주입구(204)는 튜빙펌프와 연결되고 시료배출구(205)는 폐약통으로 연결된다. 시약주입구1(206), 시약주입구2(207), 시약주입구3(208), 시약주입구4(209)는 각각 해당 시약통으로 연결된다. 주사기펌프의 주사기부분은 주사기포트(201)로 연결되고, 주사기펌프의 3웨이밸브는 3웨이밸브포트(211)로, 6포트밸브는 6포트밸 브포트(202)로 연결된다. 배관모듈은 이 실시예의경우 2층으로 이루어 졌다. 기저기판(224)는 덥개기판(221)과 열확산법으로 접합되어 있다. 기저기판상부 또는 덮개기판바닥에는 미세한 유로가 밀링, 핫스탬핑, 컴프레션몰딩, 인젝션몰딩, 레이저가공등의 방법으로 형성되어 있으며, 기저기판에는 수직 관통공이 있어 각각 주사기포트(221), 3웨이밸브포트(223), 6포트밸브포트(225)로 불리며 각각 매니폴드에 고정된 주사기, 3웨이밸브, 6포트밸브에 밀착되게 된다.The sample inlet 204 is connected to the tubing pump and the sample outlet 205 is connected to the waste medicine container. The reagent inlet 1 206, the reagent inlet 2 207, the reagent inlet 3 208, and the reagent inlet 4 209 are respectively connected to the corresponding reagent bottles. The syringe portion of the syringe pump is connected to the syringe port 201, the three-way valve of the syringe pump is connected to the three-way valve port 211, the six-port valve is connected to the six-port valve port 202. The piping module consisted of two layers in this embodiment. The base substrate 224 is bonded to the cover substrate 221 by thermal diffusion method. On the bottom of the base board or the bottom of the cover board, fine flow paths are formed by milling, hot stamping, compression molding, injection molding, laser processing, etc. 223 and 6-port valve port 225 are respectively in close contact with the syringe, 3-way valve, 6-port valve fixed to the manifold.

도3은 매니폴드에 고정된 주사기, 3웨이밸브, 6포트밸브등의 유체제어기기와 상기 배관모듈이 어떻게 밀착되는 지를 설명하는 그림이다. 주사기펌프는 주사기(238)과 모터의회전운동을 직선운동으로 바꾸어주는 부분(236,237)로 이루어진다. 한편 주사기펌프는 3웨이밸브와 같이 연동되어 동작한다. 3웨이밸브는 테프론디스크(233), 테프론백업판(234), 그리고 백업판을 회전시키는 모터(235) 로 구성된다. 테프론디스크에는 일자형 슬롯이 새겨져 있으며, 3개의 수직관통공과 만나 밀착된다. 테프론디스크가 90도 회전하면 관통공중에 두개와 연결되고(240) 다시 9제자리로 회전하면, 관통공중에 다흔 두개와 연결된다(241). FIG. 3 is a diagram illustrating how the pipe module is in close contact with a fluid control device such as a syringe, a 3-way valve, a 6-port valve, and the like fixed to a manifold. The syringe pump is composed of parts 236 and 237 which change the rotational motion of the syringe 238 and the motor into linear motion. Meanwhile, the syringe pump works in conjunction with the 3-way valve. The three-way valve is composed of a Teflon disk 233, a Teflon backup plate 234, and a motor 235 for rotating the backup plate. Teflon discs are engraved with slotted slots and are fitted with three vertical through holes. When the teflon disk is rotated by 90 degrees, it is connected with the two in the through hole (240), and when it is rotated back to the 9th position, it is connected with the two or four in the through hole (241).

도4를 보면 배관모듈(260)과 매니폴드(261)가 어떻게 착탈되는지 알 수 있다. 배관모듈에 있는 3웨이밸브포트용 관통공들은 매니폴드의 테프론디스크(262)와 밀착되고, 배관모듈의 주사기용포트용 관통공은 매니폴드의 오링(263)을 통해 밀착된다. 테프론이나 오링재료의 탄성으로 압착시 누수가 발생하지 않으며, 테프론시스크는 자기윤활작용으로 누수없이 압착되면서 동시에 회전할 수 있다.4 shows how the piping module 260 and the manifold 261 are detached from each other. Through-holes for the three-way valve port in the piping module is in close contact with the Teflon disk 262 of the manifold, the through-hole for the syringe port of the piping module is in close contact through the O-ring 263 of the manifold. No leakage occurs during compression due to the elasticity of the Teflon or O-ring material, and Teflon Sysk can be rotated at the same time while being compressed without leakage due to self-lubrication.

이제부터 본 발명에 따른 착탈식배관모듈을 갖는 순차주입분석기를 휴대용수 질분석기에 적용한 실시 예를 들어 도면을 보면서 설명한다.It will now be described by looking at the drawings for an embodiment of applying a sequential injection analyzer having a removable piping module according to the present invention to a portable water analyzer.

본 발명은 특히 휴대용 현장용 수질분석기에 적합하다. 도 5는 질산/아질산이온분석기로 적용한 완제품의 사진이다. The present invention is particularly suitable for portable field water analyzers. Figure 5 is a photograph of the finished product applied to the nitric acid / nitrite ion analyzer.

사용된 화학반응은 다음과 같다.The chemical reaction used is as follows.

질산이온 -------> 아질산 + 설파닐아마이드 시약 --> 540nm파장흡광도측정Nitrate -------> Nitrite + Sulfanylamide Reagent-> 540nm Wavelength Absorbance Measurement

카드뮴환원제       Cadmium reducing agent

최근 지하수가 질산염으로 오염되어 문제가 되고 있다. 표준 수질분석방법인 카드뮴환원법으로 질산이온을 아질산이온으로 바꾸고 아질산이온을 설파닐아마이드 시약으로 반응시켜 나온 색깔을 540nm에서 흡광도계로 측정하는 방법을 취하여, 본 발명에 따른 순차주입분석기에 적용해 보았다. Recently, groundwater has become a problem due to contamination with nitrates. A standard method of water quality analysis was performed using a method of measuring chromium ions to nitrite ions and reacting nitrite ions with sulfanylamide reagents using an absorbance meter at 540 nm.

도6을 보면 지하수 시료(272)를 준비하고 설파닐아마이드시약(271)을 6포트밸브포트에 연결하고, 카드뮴분말을 길고좁은 용기에 담아 역시 6포트밸브포트에 연결한다. 시료를 흡입하여 카드뮴분말용기로 이송한다음 펌프를 멈추고 일정시간 환원반응을 수행한다. 반응이 마무리되면 다시 카드뮴용기에서 시료를 빼내어 혼합코일로 옮기고 설파닐아마이드시약을 흡입하여 반응시킨다. 반응후 반응물을 검출기로 보내어 흡광도계(273)에서 540nm로 측정한다. 본 실시예의 경우 배관모듈을 52mm x 45mm x 6mm의 크기로 제작하였고 이에 따른 매니폴드는 86mm x 50mm x 45mm의 크기로 제작하였다.6, the groundwater sample 272 is prepared, and the sulfanyl amide reagent 271 is connected to the six-port valve port, and the cadmium powder is put in a long narrow container and connected to the six-port valve port. The sample is aspirated, transferred to a cadmium powder container, and the pump is stopped for a certain period of time. After the reaction is completed, remove the sample from the cadmium container, transfer to the mixed coil and inhale the sulfanylamide reagent to react. After the reaction, the reactant is sent to a detector, which is measured at 540 nm with an absorbometer (273). In the present embodiment, the piping module was manufactured in a size of 52 mm x 45 mm x 6 mm, and the manifold was manufactured in a size of 86 mm x 50 mm x 45 mm.

도1은 순차주입분석기의 기능도이다.1 is a functional diagram of a sequential injection analyzer.

도2는 배관모듈의 평면도이다.2 is a plan view of the piping module.

도3은 배관모듈과 매니폴드가 밀착결합된 형상의 정면되이다.3 is a front view of a shape in which the piping module and the manifold are tightly coupled.

도4는 배관모듈과 매니폴드의 밀착결합시 테프론과 오링의 역할을 보여주는그림이다.4 is a diagram showing the role of Teflon and O-ring in tight coupling between the piping module and the manifold.

도5는 실시예의 사진이다.5 is a photograph of an embodiment.

도6은 지ㅣㄹ산/아질산이온분석기 실시예의 기능도이다.FIG. 6 is a functional diagram of an example of a Zr acid / nitrite ion analyzer. FIG.

Claims (2)

순차주입분석장치로서As a sequential injection analysis device 착탈식 배관모듈을 가지며, 주사기펌프와 멀티포트밸브가 매니폴드에 고정되고, 상기 배관모듈은 미세한 유로가 형성된 기판들의 적층구조이며, 상기 배관모듈이 매니폴드에 압착결합되어 순차주입분석을 수행하고 필요하면 배관모듈을 탈착하여 교체할 수 있는 것을 특징으로 하는 순차주입분석장치It has a removable piping module, the syringe pump and the multi-port valve is fixed to the manifold, the piping module is a laminated structure of the substrate formed with a fine flow path, the piping module is press-bonded to the manifold to perform sequential injection analysis Sequential injection analysis device, characterized in that the pipe module can be removed and replaced 1항에 있어서, 상기 배관모듈은 유리, 실리콘,폴리메틸메타아크릴레이트, 폴리카보네이트, 폴리스티렌수지 등으로 구성된 적층구조로서 기저기판은 매니폴드와 연결되는 관통공을 가지며, 각 기판들에는 미세한 유로가 형성되어 있고 각 기판에는 관통공이 있어 상하 기판의 유로를 연결하는 것을 특징으로 하는 순차주입분석장치According to claim 1, The piping module is a laminated structure consisting of glass, silicon, polymethyl methacrylate, polycarbonate, polystyrene resin, etc., the base substrate has a through hole connected to the manifold, each substrate has a fine flow path Sequential injection analysis device is formed and each substrate has a through hole to connect the flow path of the upper and lower substrates
KR1020080115385A 2008-11-19 2008-11-19 Sequential injection analyzer with replaceable lab-on-a-chip KR20100056291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080115385A KR20100056291A (en) 2008-11-19 2008-11-19 Sequential injection analyzer with replaceable lab-on-a-chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080115385A KR20100056291A (en) 2008-11-19 2008-11-19 Sequential injection analyzer with replaceable lab-on-a-chip

Publications (1)

Publication Number Publication Date
KR20100056291A true KR20100056291A (en) 2010-05-27

Family

ID=42280471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080115385A KR20100056291A (en) 2008-11-19 2008-11-19 Sequential injection analyzer with replaceable lab-on-a-chip

Country Status (1)

Country Link
KR (1) KR20100056291A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537239A (en) * 2012-07-08 2014-01-29 复旦大学附属肿瘤医院 Small-volume [<18>F] fluorine isotope labeled reactor and application thereof
CN103675226A (en) * 2013-12-11 2014-03-26 河北先河环保科技股份有限公司 Columnar underwater in-situ analysis probe based on sequential injection
CN105158492A (en) * 2015-10-22 2015-12-16 东南大学 Automatic pipetting device
CN107965431A (en) * 2017-12-15 2018-04-27 山东豪迈化工技术有限公司 A kind of pumping installations

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537239A (en) * 2012-07-08 2014-01-29 复旦大学附属肿瘤医院 Small-volume [<18>F] fluorine isotope labeled reactor and application thereof
CN103537239B (en) * 2012-07-08 2016-01-06 复旦大学附属肿瘤医院 Small size [ 18f] fluorine isotope labeling reactor and application thereof
CN103675226A (en) * 2013-12-11 2014-03-26 河北先河环保科技股份有限公司 Columnar underwater in-situ analysis probe based on sequential injection
CN105158492A (en) * 2015-10-22 2015-12-16 东南大学 Automatic pipetting device
CN107965431A (en) * 2017-12-15 2018-04-27 山东豪迈化工技术有限公司 A kind of pumping installations

Similar Documents

Publication Publication Date Title
CN108686721B (en) Micro-fluidic chip for separating and detecting whole blood sample and detection method thereof
EP3779439B1 (en) Micro-fluidic chip and analysis instrument having same
US8617489B2 (en) Microfluidic interface
CN111644213B (en) Fluid control device and fluid control method
CN108519373B (en) Chemiluminescence micro-fluidic chip and analysis instrument comprising same
JP6319590B2 (en) LAL reactive substance testing method and apparatus using microfluidic device
Miró et al. Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences–A critical review
US6536477B1 (en) Fluidic couplers and modular microfluidic systems
US8475737B2 (en) Fluidic connectors and microfluidic systems
CN108761055B (en) Microfluidic chip and analytical instrument with same
WO2006080186A1 (en) Detection device using cartridge
CN104155422B (en) Water quality detection pipeline system and method
US20150224499A1 (en) Automated Microfluidic Sample Analyzer Platforms for Point of Care
US8323573B2 (en) Microfluidic cartridge with solution reservoir-pump chamber
US20210123903A1 (en) Micro-fluidic Chip and Analytical Instrument Provided with the Micro-fluidic Chip
CN100552422C (en) A kind of micro flow control chip device that single particle matter is carried out multi-functional detection
KR20100056291A (en) Sequential injection analyzer with replaceable lab-on-a-chip
Martinez-Cisneros et al. Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters
JP2012047604A (en) Inspection sheet, chemical analyzer and method of manufacturing inspection sheet
CN104422780B (en) A kind of protein express-analysis pick-up unit based on the totally-enclosed system of micro-fluidic chip
Cerdà et al. Laboratory automation based on flow techniques
JP2007256147A (en) Mobile micro measuring instrument
CN113717827B (en) Fully-integrated nucleic acid detection micro-fluidic chip and using method thereof
CN113441194A (en) Micro-fluidic detection chip
CN111437896A (en) Microfluidic device and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application