KR20100054571A - METHODS FOR HIGH YIELD SYNTHESIS OF FURFURAL USING TUNGSTATE/γ-ALUMINA CATALYST - Google Patents

METHODS FOR HIGH YIELD SYNTHESIS OF FURFURAL USING TUNGSTATE/γ-ALUMINA CATALYST Download PDF

Info

Publication number
KR20100054571A
KR20100054571A KR1020080113537A KR20080113537A KR20100054571A KR 20100054571 A KR20100054571 A KR 20100054571A KR 1020080113537 A KR1020080113537 A KR 1020080113537A KR 20080113537 A KR20080113537 A KR 20080113537A KR 20100054571 A KR20100054571 A KR 20100054571A
Authority
KR
South Korea
Prior art keywords
perfural
catalyst
furfural
high yield
solid acid
Prior art date
Application number
KR1020080113537A
Other languages
Korean (ko)
Other versions
KR101039362B1 (en
Inventor
김영철
황진수
육신홍
황인택
박노중
임희경
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020080113537A priority Critical patent/KR101039362B1/en
Publication of KR20100054571A publication Critical patent/KR20100054571A/en
Application granted granted Critical
Publication of KR101039362B1 publication Critical patent/KR101039362B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE: A producing method of furfural is provided to improve the yield of the furfural, to reduce the fabrication cost of the furfural, and to reduce the catalyst loss rate. CONSTITUTION: A producing method of furfural using xylose or hemicellulose as a raw material comprises the following steps: converting the raw material into the furfural using a solid acid catalyst body deposited with isopolytungstate to a gamma-alumina supporting body inside a reaction medium including supercritical fluid; and extracting or separating the furfural by spraying the supercritical fluid to the reaction medium. The supercritical fluid is either supercritical carbon dioxide, or supercritical propane.

Description

감마알루미나에 담지된 텅스텐계 촉매를 이용하여 고수율로 퍼퓨랄을 제조하는 방법{Methods for high yield synthesis of furfural using tungstate/γ-alumina catalyst} Method for high yield synthesis of furfural using tungsten catalyst supported on gamma alumina {Methods for high yield synthesis of furfural using tungstate / γ-alumina catalyst}

본 발명은 감마알루미나에 담지된 텅스텐계 촉매를 이용하여 고수율로 퍼퓨랄을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing perfural in high yield using a tungsten-based catalyst supported on gamma alumina.

퍼퓨랄은 지방족 알데히드 중 하나로서, 나일론 합성에 사용되어 왔으나, 최근 정밀화학 중간체 물질, 용매, 그리고 특수한 용도의 수지 원료 물질 등으로 광범위하게 사용되는 매우 유용한 범용성 화학 물질이다. 공업적으로는 순수한 화학 합성법에 의하여 제조되지 않고 바이오매스 자원을 화학 전환하여 만들어지며, 헤미셀룰로오즈를 구성하는 자일란으로부터 유도되어 분리 가능한 자일로오즈를 산 분위기에서 탈수시켜 만들어진다. Perfural, one of aliphatic aldehydes, has been used in nylon synthesis, but is a very useful general purpose chemical which is widely used in fine chemical intermediate materials, solvents, and resin raw materials for special purposes. It is not industrially produced by pure chemical synthesis but is produced by chemical conversion of biomass resources, and is made by dehydrating xylose, which is derived from xylan constituting hemicellulose, in an acid atmosphere.

종래의 퍼퓨랄 제조 공정에서는 사용되는 산 촉매 폐기물과 낮은 전환율로 인한 폐기물 그리고 고전환율 영역에서 진행되는 부반응들에 의한 폐기물의 과다 발생이 문제점으로 지적되고 있으며, 또 퍼퓨랄의 분리 정제 공정에서 과다하게 분 리 공정 에너지가 소비되어야 하는 것도 해결해야 할 기술적 과제로 지적되고 있다. 이처럼 퍼퓨랄은 고전환율 영역에서 고수율로 합성하기 매우 어렵고, 발생되는 폐기물을 저감하는 것이 주요 문제점으로 꼽히고 있다.In the conventional perfural manufacturing process, the excessive generation of waste due to acid catalyst waste used, waste due to low conversion rate, and side reactions proceeding in the high conversion region has been pointed out as a problem, and excessively in perpural separation and purification process. The consumption of separate process energy has also been pointed out as a technical problem to be solved. As such, perfural is very difficult to synthesize in high yield in the high conversion region, and reducing the generated waste is considered as the main problem.

대한민국등록특허 10-0295738에서는 상기 퍼퓨랄 제조 공정의 문제점을 해결하기 위하여 초임계 유체와 고체산을 사용하는 공정 기술 원리를 제시하고 있으며, 구체적으로는 초임계 이산화탄소와 황산화된 고체산 촉매를 병용함으로써 고전환율 영역에서 고수율로 퍼퓨랄을 합성하는 방법을 제시하고 있다. Republic of Korea Patent No. 10-0295738 proposes a process technology principle using a supercritical fluid and a solid acid to solve the problem of the perfural manufacturing process, specifically using a supercritical carbon dioxide and a sulfated solid acid catalyst in combination Thus, a method of synthesizing perfural in high yield in the high conversion region is proposed.

고체산을 사용하여 자일로오즈로부터 퍼퓨랄을 합성할 때, 자일로오즈로부터 일련의 단위 반응들을 통하여 원하는 합성 반응이 완결되며, 여기에는 상대적으로 느린 평형 반응들도 포함되어 있어 반응속도를 저하시키는 문제가 있다. 또한, 생성된 퍼퓨랄은 열분해 반응과 축중합 반응에 의하여 분자량이 큰 부반응물들을 발생시키는 문제가 있다. When a solid acid is used to synthesize perfural from xylose, the desired synthesis reaction is completed through a series of unit reactions from xylose, which also includes relatively slow equilibrium reactions, which slows down the reaction rate. there is a problem. In addition, the produced perfural has a problem of generating large molecular weight side reactions by pyrolysis and polycondensation.

상기 문제를 해결하기 위해서는, 자일로오즈의 고전환율과 퍼퓨랄의 고선택성 또는 고수율 반응의 목적을 달성하기 위해서는 반응이 진행되는 매질 안에서 생성물인 퍼퓨랄의 잔류 농도가 낮게 유지되도록 하여 부반응들의 진행을 억제시키는 것이 바람직하다.In order to solve the above problem, in order to achieve the purpose of high conversion of xylose and high selectivity or high yield of perfural, the residual concentration of perfural as a product in the medium in which the reaction proceeds is kept low so as to proceed with side reactions. It is desirable to suppress.

한편, 수용액 중의 산 촉매와 같이 반응물질과 촉매가 균일한 상(相)에 있는 균일계 산 촉매를 사용할 때와 달리, 불균일계 촉매인 고체산을 활용하여 상기 반 응을 진행할 때에는 반응물, 중간 생성물들, 최종생성물 그리고 부반응물들이 사용되는 촉매 내부의 세공 구조 내에 잔류하게 된다. 그러므로 세공 내부의 촉매 활성 영역을 포함한 확산 전달 영역에 확산성이 나쁜 분자량이 큰 부반응물들이 축적되어 촉매 세공 구조를 막고 또 활성점을 차폐함으로써 촉매의 성능을 저하시키게 된다. 이러한 현상은 촉매를 고온 반응 조건에서 장시간 사용할 때 더욱 심하게 발생하며, 세공 구조가 잘 발달한 촉매의 경우에 더 심각해질 수 있다. 그러므로 고체산 촉매를 상기 합성 반응에 사용함에 있어 일정한 반응시간 동안 사용 후 촉매를 열적으로 재 활성화하는 주기적인 재생과 재사용의 방법을 적용하는 것이 필수적이다.On the other hand, unlike the case of using a homogeneous acid catalyst in which the reactants and the catalyst are in a uniform phase, such as an acid catalyst in an aqueous solution, the reaction product and the intermediate product may be used when the reaction is performed using a solid acid that is a heterogeneous catalyst. Field, end product and side reactions remain in the pore structure inside the catalyst used. Therefore, the low-molecular weight side reactions accumulate in the diffusion transfer region including the catalytically active region inside the pores, thereby preventing the catalyst pore structure and shielding the active site, thereby degrading the performance of the catalyst. This phenomenon occurs more severely when the catalyst is used for a long time in high temperature reaction conditions, and may be more severe in the case of a catalyst having a well-developed pore structure. Therefore, in using the solid acid catalyst in the synthesis reaction, it is essential to apply a method of periodic regeneration and reuse to thermally reactivate the catalyst after use for a certain reaction time.

상기 대한민국등록특허 10-0295738에서 제시하는 퍼퓨랄의 제조 방법에 사용된 황산화된 고체산 촉매체들은 위와 같이 주기적인 재생을 위한 열처리에 매우 불리한 촉매의 특징을 나타낸다. 구체적으로는 재생을 위하여 코킹된 물질을 촉매 세공체 내부와 표면으로부터 제거하기 위하여 고온으로 열처리하여야 하는 데, 이때 황산화된 고체산 촉매체들은 특징적으로 활성점의 역할을 하는 황산화된 구조가 휘발성이 큰 황 화합물 형태로 변화되어 손실되므로 황산화된 구조가 지속적으로 훼손된다. 그러므로 높은 온도에서 촉매를 재생시키기 어렵고, 반드시 350 ℃ 미만의 낮은 온도에서 재생시켜야 하며, 바람직하게는 300 ℃ 이하의 조건이 재생 조건으로 선호되고 있으나, 실제로 이러한 낮은 온도에서는 재생이 매우 느리고 불완전하다는 단점이 있다.    The sulfated solid acid catalysts used in the method for preparing perfural disclosed in the Republic of Korea Patent No. 10-0295738 show characteristics of a catalyst that is very disadvantageous for heat treatment for periodic regeneration as described above. Specifically, the coked material must be heat-treated at high temperature to remove the caulk material from the inside and the surface of the catalyst pore for regeneration, wherein the sulfated solid acid catalysts are characterized by volatile volatilization of the sulfated structure, The sulfated structure is continuously damaged since it is changed and lost in the form of this large sulfur compound. Therefore, it is difficult to regenerate the catalyst at high temperatures, and must be regenerated at a low temperature of less than 350 ° C., and preferably 300 ° C. or less is preferred as the regeneration condition. However, the regeneration is very slow and incomplete at such low temperatures. There is this.

또한, 재생 과정에서 피착 탄화수소 화합물의 연소 제거 반응은 발열량이 매우 큰 발열 반응으로서 국부적으로 고온 환경 즉 핫스팟(hot spot)이 형성될 수 있는 데, 특히 높은 촉매 활성을 나타내는 표면에 가까운 산점 부근에서 심각한 핫스팟이 형성될 수 있다. 그 결과로 황산화된 촉매의 황산화된 구조의 소실이 진행되므로, 표면 근방의 촉매 활성점의 화학 구조를 안정적으로 유지하면서 촉매를 재생하기 매우 어렵게 된다.In addition, in the regeneration process, the combustion removal reaction of the deposited hydrocarbon compound is an exothermic reaction having a very high calorific value, so that a local high temperature environment, that is, a hot spot can be formed, especially in the vicinity of an acid point close to the surface showing high catalytic activity. Hot spots may be formed. As a result, the loss of the sulfated structure of the sulfated catalyst proceeds, making the catalyst very difficult to regenerate while maintaining the chemical structure of the catalytically active point near the surface.

상기와 같은 이유로, 불균일계 촉매를 고온의 수용액상 매질과 접촉시켜 반응을 진행할 때, 촉매 공정의 실질적 운영 측면에서 촉매의 형태적 안정성의 유지가 매우 중요하며, 또 촉매 활성점으로 작용하는 촉매 화학 구조의 안정성이 장기간에 걸쳐 유지되는 것이 필요하다. For this reason, when the heterogeneous catalyst is brought into contact with a high temperature aqueous solution medium, it is very important to maintain the morphological stability of the catalyst in terms of the practical operation of the catalyst process, and also to act as a catalyst active site. It is necessary for the stability of the structure to be maintained for a long time.

선행 기술인 대한민국등록특허 10-0295738에서 사용한 황산화된 고체산 촉매의 경우에는 수용액상과 접촉하여 촉매 역할을 수행하는 경우 황산화된 부분이 촉매체로부터 사라지는 유실 현상과 이로부터 발생하는 촉매 활성의 저하가 문제가 될 수 있고, 실제로 고온의 수용액과 접촉하면서 우리가 원하는 퍼퓨랄 제조 반응을 진행할 경우, 장시간 사용에 의한 유실 현상과 이로 인한 촉매 활성이 저하되는 문제가 있다.In the case of the sulfated solid acid catalyst used in the prior art Korea Patent No. 10-0295738, the loss of the sulfated portion from the catalyst body when the catalytic role in contact with the aqueous solution phase and the reduction of the catalytic activity resulting therefrom This may be a problem, and when we actually proceed with the desired perfural manufacturing reaction in contact with a high temperature aqueous solution, there is a problem that the loss phenomenon caused by long time use and the resulting catalytic activity is lowered.

한편, 스피넬형 결정 격자구조를 갖는 감마알루미나는 열에 의한 구조변성이 적으며, 기공이 매우 미세하고 다공도가 높으며 비표면적이 넓어 분리막, 촉매, 촉매담체 및 흡착제 등의 사용도가 높고, 고온에서 장시간 처리를 하여도 열적안정성이 우수하다. 또한 저렴한 전구체들을 사용하여 촉매 지지체를 경제적으로 저렴하게 제조할 수 있는 장점이 있다.On the other hand, gamma alumina having a spinel crystal lattice structure has little structural change due to heat, very fine pores, high porosity, and a large specific surface area, so that it is highly usable for separation membranes, catalysts, catalyst carriers and adsorbents, and for a long time at high temperatures. Excellent thermal stability even after treatment. In addition, there is an advantage that the catalyst support can be economically inexpensively prepared using inexpensive precursors.

이에 본 발명자들은 열적안정성이 우수한 감마알루미나 지지체에 담지된 텅스텐계 촉매를 이용하여 수용액상에서 촉매의 장기적 활성 저하를 극복하여 장기 사용에 의한 특징적인 촉매 활성 유실 현상과 재생/재활용 사이클의 유지를 위해 요구되는 고온 안정성을 개선한 퍼퓨랄 제조방법을 개발하였다. Therefore, the present inventors overcome the long-term deterioration of the catalyst in an aqueous solution using a tungsten-based catalyst supported on a gamma alumina support having excellent thermal stability, and are required to maintain a characteristic catalyst activity loss and maintenance of a recycling / recycling cycle by long-term use. A method for producing perfural has been developed to improve the high temperature stability.

본 발명의 목적은 경제적으로 저렴하며 열안정성 및 촉매활성이 우수하고, 재활성화 및 재활용성이 탁월한 감마알루미나 지지체에 담지된 텅스텐계 촉매를 이용하여 고수율로 퍼퓨랄을 제조하는 방법을 제공하는데 있다.An object of the present invention is to provide a method for producing perfural with high yield using a tungsten-based catalyst supported on a gamma alumina support that is economically inexpensive, has excellent thermal stability and catalytic activity, and has excellent reactivation and recyclability. .

상기 목적을 달성하기 위하여, 본 발명은 감마알루미나 지지체에 담지된 텅스텐계 촉매를 이용하여 고수율로 퍼퓨랄을 제조하는 방법을 제공한다. In order to achieve the above object, the present invention provides a method for producing perfural in high yield using a tungsten-based catalyst supported on a gamma alumina support.

본 발명에 따른 퍼퓨랄 제조방법은 열적 안정성과 화학적 안정성이 우수한 텅스텐계 고체산 촉매체를 이용하여 퍼퓨랄을 제조하여, 수율이 우수하면서도, 촉매손실율이 적어 퍼퓨랄의 제조단가를 감소시켜 퍼퓨랄 제조에 유용하게 사용할 수 있다. The method for producing perfural according to the present invention is to produce perfural using a tungsten-based solid acid catalyst having excellent thermal and chemical stability, while having excellent yield and low catalyst loss rate, thereby reducing the production cost of perfural. It can be usefully used for production.

이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 자일로오즈 또는 헤미셀룰로오즈를 원료로 사용하여 퍼퓨랄을 제조하는 방법에 있어서, 초임계 유체를 포함하는 반응 매질 내에서 지르코니아 지지체에 이소폴리텅스테이트(isopolytungstate)를 담지시킨 고체산 촉매체를 이용하여 원료를 퍼퓨랄로 전환시키는 단계(단계 1) 및 상기 반응 매질에 초임계 유체를 분사하여 퍼퓨랄을 추출 및 분리 시키는 단계(단계 2)를 포함하는 고수율로 퍼퓨랄을 제조하는 방법을 제공한다. The present invention relates to a method for producing perfural using xylose or hemicellulose as a raw material, the solid acid catalyst having an isopolytungstate supported on a zirconia support in a reaction medium containing a supercritical fluid. Converting the raw material to perfural using step (step 1) and extracting and separating the perfural by injecting a supercritical fluid into the reaction medium (step 2). To provide.

상기 단계 1은 바이오매스인 헤미셀룰로오즈 또는 이로부터 유래된 자일로오즈를 퍼퓨랄의 저분자 상태로 전환시키는 단계이고, 상기 단계 2는 반응 매질 내에 생성물인 퍼퓨랄의 잔류 농도를 낮게 유지시켜 부반응들의 진행을 억제하기 위하여 퍼퓨랄을 추출 및 분리시키는 단계이다. Step 1 is a step of converting the biomass hemicellulose or xylose derived therefrom to the low molecular state of perfural, and step 2 is to maintain the residual concentration of the product furfural in the reaction medium to proceed with the side reactions. Extracting and separating the perfural to inhibit the.

이때, 상기 단계 1과 상기 단계 2는 동시에 수행하는 것이 바람직하다.At this time, the step 1 and the step 2 is preferably performed at the same time.

상기 이소폴리텅스테이트를 담지한 고체산 촉매체는 강한 산성의 고체산 촉매체이고, 900 ℃ 이상의 고온에서 안정하며 촉매의 재생이 쉽고 촉매의 활성이 잘 변하지 않아 촉매의 수명이 긴 특징이 있다. The solid acid catalyst carrying the isopolytungstate is a strong acid solid acid catalyst, stable at a high temperature of 900 ° C. or higher, easy to regenerate the catalyst, and does not change the activity of the catalyst well.

반면, 상기 이소폴리텅스테이트를 담지한 고체산 촉매체는 올레핀과 방향족 탄화수소의 산화 반응과 중합 반응등의 반응공정에 유용하게 사용될 수 있으나, 저온에서도 원치 않는 부반응 생성물을 생성하는 등의 반응 촉진성이 과다한 문제가 있다. On the other hand, the isopolytungstate-carrying solid acid catalyst body may be usefully used in the reaction process such as the oxidation reaction and polymerization reaction of olefin and aromatic hydrocarbon, but the reaction promoting properties such as generating unwanted side reaction products even at low temperature There is a redundant problem.

상기와 같은 문제를 해결하기 위하여, 본 발명에 따른 제조방법은 제조된 퍼퓨랄을 초임계 유체를 이용하여 추출 분리가 동시에 일어나는 반응 환경을 제공함으로써 퍼퓨랄이 생성되는 즉시 추출 분리한다. 이와 같이 고분자량의 부반응물들을 형성하는 부반응들을 최소로 억제시키고, 상기 촉매체가 갖는 과격한 반응성과 이로 인한 부반응들이 촉진되는 문제를 극복하였다. In order to solve the above problems, the production method according to the present invention by using a supercritical fluid to provide a reaction environment in which the extraction separation occurs at the same time by extracting separation as soon as perfural is produced. In this way, the side reactions forming the high molecular weight side reactions are suppressed to a minimum, and the radical reactivity of the catalyst body and the side reactions thereof are overcome.

본 발명에 따른 고수율로 퍼퓨랄을 제조하는 방법에 있어서, 상기 고체산 촉매체는 지르코니아 지지체에 이소폴리텅스테이트 촉매를 담지시킨 후, 500 ~ 700 ℃에서 소성하여 제조한 이소폴리텅스테이트를 포함한 고체산 촉매인 것이 바람직 하다. In the method for producing perfural in high yield according to the present invention, the solid acid catalyst includes an isopolytungstate prepared by supporting an isopolytungstate catalyst on a zirconia support and calcining at 500 to 700 ° C. It is preferred that it is a solid acid catalyst.

상기 감마알루미나 지지체를 제조하기 위한, 알루미나 전구체로는 여러 가지의 알루미나수화물(alumina hydrate)이 있으며, 알루미나수화물에는 삼수화물(trihydrate: Al(OH)3 또는 Al2O3 3H2O)인 깁사이트(Gibbsite)와 베이어라이트(Bayerite)가 있으며 일수화물(monohydrate: AlOOH 또는 Al2O3 H2O)에는 보헤마이트(Boehmite)와 다이어스포어(Diaspore)의 전구체로부터 얻어지는 통상의 방법을 사용하여 제조될 수 있다. In order to prepare the gamma alumina support, alumina precursors include various alumina hydrates, and alumina hydrates include trihydrate (trihydrate: Al (OH) 3 or Al 2 O 3 3H 2 O). (Gibbsite) and Bayerrite (monohydrate: AlOOH or Al 2 O 3 H 2 O) to be prepared using conventional methods obtained from precursors of Boehmite and Diaspore Can be.

알루미나 지지체의 제조를 기재하고 있는 미국 특허로서는 미국 등록특허 제3,222,129호, 제3,223,483호 및 제3,226,191호 등이 있다. 고도의 다공성 알루미나 제조 방법은 등록미국 특허 제3,804,781호, 제3,856,708호, 3,907,512호 및 제3,907,982호에 개시되어 있다. 촉매 담체의 기타의 제조 방법은 미국 특허 제3,987,155호 제3,997,476호, 제4,001,144호, 제4,022,715호, 제4,039,481호 제4,098,874호 및 제4,242,234호에 논의되어 있다. US patents describing the preparation of alumina supports include US Pat. Nos. 3,222,129, 3,223,483, 3,226,191, and the like. Methods of making highly porous alumina are disclosed in registered US Pat. Nos. 3,804,781, 3,856,708, 3,907,512 and 3,907,982. Other methods of making catalyst carriers are discussed in US Pat. Nos. 3,987,155 3,997,476, 4,001,144, 4,022,715, 4,039,481 4,098,874, and 4,242,234.

본 발명에서 사용하는 고체산 촉매체는 컴포지션(composition) 방법 또는 공침(coprecipitation) 방법 또는 솔-젤(sol-gel) 합성 방법 또는 침지(impregnation) 방법 또는 현탁분산(suspension) 방법으로 이소폴리텅스테이트 촉매를 담지 시킬 수 있다. The solid acid catalyst used in the present invention is isopolytungstate by composition method, coprecipitation method, sol-gel synthesis method, impregnation method or suspension dispersion method. The catalyst can be supported.

이때, 이소폴리텅스테이트(isopolytungstate, WOx, x=1~3)의 원료로는 헤테 로폴리산의 일종인 포스포텅스틱산 수화물들을 이용하거나, 또는 텅스텐 염화물들, 암모늄메타텅스테이트 또는 이들의 혼합물을 사용하는 것이 바람직하다. In this case, as a raw material of isopolytungstate (WO x , x = 1 to 3), phosphotungstic acid hydrates, which are a kind of heteropolyacid, or tungsten chlorides, ammonium metatungstate or theirs are used. Preference is given to using mixtures.

한편, 상기 소성은 헤테로폴리산에 포함된 인(P) 성분을 촉매체로부터 분리 및 제거시키는 역할을 하여 촉매효율을 증가시키는 역할을 하며, 이는 500 ~ 700 ℃에서 수행되는 것이 바람직하다. On the other hand, the calcination serves to separate and remove the phosphorus (P) component contained in the heteropolyacid from the catalyst body to increase the catalytic efficiency, which is preferably performed at 500 ~ 700 ℃.

상기와 같이 제조된 텅스텐 산화물을 포함하는 감마알루미나 촉매체는 황산화된 지르코니아 촉매체에 비하여 원재료의 가격이 저렴하고 촉매체의 제조 방법이 더 용이하며, 촉매 불활성화 속도가 더 느리고, 산화와 환원 등의 격심한 반응 조건 또는 재생 조건에서 촉매의 안정성이 더 뛰어나다. 이러한 장점으로 인해, 텅스텐 산화물을 포함하는 감마알루미나 촉매체는 알킬화 반응(alkylation), 구조 선택성이 높은 브롬화 반응(bromination), 산화성 브롬화 반응(oxidative bromination), 벤조일화 반응(benzoylation) 등에 활용될 수 있다.The gamma alumina catalyst body including the tungsten oxide prepared as described above is cheaper than the sulfated zirconia catalyst body, the method of preparing the catalyst body is easier, the catalyst deactivation rate is slower, oxidation and reduction The catalyst is more stable under severe reaction conditions or regeneration conditions. Due to these advantages, gamma alumina catalyst containing tungsten oxide can be utilized for alkylation reaction, bromination reaction with high structure selectivity, oxidative bromination reaction, benzoylation reaction and the like. .

이때, 상기 초임계 유체는 초임계 이산화탄소 또는 초임계 프로판인 것이 바람직하다.In this case, the supercritical fluid is preferably supercritical carbon dioxide or supercritical propane.

상기 초임계 유체는 퍼퓨랄 전환반응에 있어서, 반응 매질에 분사되어 전환된 퍼퓨랄을 분리, 운반하는 역할을 한다.The supercritical fluid serves to separate and transport the converted perfural by being injected into the reaction medium in the perfural conversion reaction.

또한, 단계 1 및 단계 2는 100 ~ 200 ℃의 온도와 100 ~ 300 atm의 압력 하에서 수행되는 것이 바람직하다. In addition, steps 1 and 2 are preferably carried out under a temperature of 100 ~ 200 ℃ and a pressure of 100 ~ 300 atm.

이산화탄소는 31.1 ℃, 72.8 atm에서 임계점을 갖고, 상기 프로판은 96.7℃, 41.9 atm에서 임계점을 갖고 있어, 초임계 유체로 이산화탄소 또는 프로판을 사용하기 위해서는 100 ~ 200 ℃의 온도와 100 ~ 300 atm의 압력 하에서 수행되는 것이 바람직하다. Carbon dioxide has a critical point at 31.1 ° C. and 72.8 atm, and propane has a critical point at 96.7 ° C. and 41.9 atm. In order to use carbon dioxide or propane as a supercritical fluid, a temperature of 100 to 200 ° C. and a pressure of 100 to 300 atm are required. It is preferably carried out under.

앞에서 열거한 촉매의 구체적인 제조 과정에 대한 특별한 제한이 없이, 감마알루미나에 담지된 이소폴리텅스테이트류(γ-alumina-supported isopolytungstates)를 합성 촉매체의 주성분으로 하여 초임계 유체 추출 조건에서 퍼퓨랄을 제조하는 합성 반응에 사용할 수 있으며, 고전환율 조건에서 고수율로 퍼퓨랄을 제조하는 우수한 효과를 나타낼 수 있다. Without particular limitation on the specific process for the preparation of the catalysts listed above, perfural was extracted under supercritical fluid extraction conditions using gamma-alumina-supported isopolytungstates as the main component of the synthetic catalyst. It can be used in the synthesis reaction to prepare, can exhibit an excellent effect of producing perfural in high yield at high conversion conditions.

이하, 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

<실시예 1> 고수율 퍼퓨랄의 합성 1 Example 1 Synthesis of High Yield Perfural 1

단계 1. 감마알루미나 지지체의 제조Step 1. Preparation of Gamma Alumina Support

지지체는 100 g의 보헤마이트분말을 400 g의 증류수에 교반 하에 첨가했다. 서서히 3g의 포름산(VWR로부터 98%)을 격렬한 교반 하에 상기 보체마이트 슬러리에 첨가했다. 산성화된 슬러리를 95℃로 가열하고 상기 온도를 교반 하에 2 시간 동안 유지했다. 슬러리를 여과하고 고온의 증류수로 3회 세정하고, 120℃에서 12시간 동안 건조하여 미세 분쇄한 후 120℃에서 12시간 동안 더 건조하여 제조하였다.The support was added 100 g of boehmite powder to 400 g of distilled water under stirring. 3 g of formic acid (98% from VWR) were slowly added to the complementite slurry under vigorous stirring. The acidified slurry was heated to 95 ° C. and maintained at that temperature for 2 hours with stirring. The slurry was filtered, washed three times with hot distilled water, dried at 120 ° C. for 12 hours, finely ground and further dried at 120 ° C. for 12 hours.

단계 2. 이소폴리텅스테이트 촉매담지Step 2. Support Isopolytungstate Catalyst

이소폴리텅스테이트 촉매는 주입법을 적용시켜 제조하였는데, 구체적으로는 상기 단계 1에서 제조된 지르코니아 지지체 분말 100 g에 포스포텅스틱산 수화물(phosphotugstic acid, H3PW12O40 21H2O) 4.96 g을 50 ㎖ 메탄올 수용액에 현탁시켜 지르코니아 분말에 대하여 5 중량%의 텅스테이트 함량을 갖는 현탁액을 제조한 후, 이를 10시간 동안 교반시켜 제조하였다.The isopolytungstate catalyst was prepared by applying injection method. Specifically, 4.96 g of phosphotugstic acid (H 3 PW 12 O 40 21H 2 O) was added to 100 g of the zirconia support powder prepared in Step 1 above. It was prepared by suspending in a 50 ml aqueous methanol solution to prepare a suspension having a tungstate content of 5% by weight relative to the zirconia powder, which was then stirred for 10 hours.

단계 3. 건조 및 소성 Step 3. Drying and Firing

상기 단계 2에서 제조된 이소폴리텅스테이트 고체산 촉매체를 120℃에서 12시간 동안 건조시키고, 500℃에서 6시간 동안 소성시켜 최종 이소폴리텅스테이트를 담지한 고체산 촉매를 제조하였다.The isopolytungstate solid acid catalyst body prepared in step 2 was dried at 120 ° C. for 12 hours, and calcined at 500 ° C. for 6 hours to prepare a solid acid catalyst supporting the final isopolytungstate.

단계 4. 퍼퓨랄 합성 및 추출Step 4. Perfural Synthesis and Extraction

1.5ℓ용량의 고압반응기에 원료 수용액 1ℓ당 상기 단계 3에서 제조된 고체산 촉매체 10 g을 넣고 이산화탄소를 초임계 유체로 사용하여 200 atm, 180℃를 유지한 후, 1 ℓ당 20 g의 자일로오즈를 투입하여 퍼퓨랄을 고수율로 합성 및 추출하 였다. 이때, 표준 조건에서의 유량으로 분당 5 ℓ의 이산화탄소를 반응기 하부에 유입, 반응 매질에 분사시켜 2시간 동안 반응을 진행하였다. 10 g of the solid acid catalyst prepared in Step 3 per 1.5 L of a high pressure reactor in a 1.5 L capacity was maintained at 200 atm and 180 ° C. using carbon dioxide as a supercritical fluid, followed by 20 g of xyl per liter. Rhodes was added to synthesize and extract perfural in high yield. At this time, 5 L of carbon dioxide per minute was introduced into the lower portion of the reactor at a flow rate under standard conditions, and the reaction medium was injected for 2 hours.

<실시예 2> 고수율 퍼퓨랄의 합성 2Example 2 Synthesis of High Yield Perfural 2

상기 실시예 1의 단계 2의 현탁액내 텅스테이트의 함량이 10%인 것을 제외하고는 실시예 1과 동일하게 실시하였다. Example 1 except that the content of the tungstate in the suspension of step 2 of Example 1 was 10%.

<실시예 3> 고수율 퍼퓨랄의 합성 3Example 3 Synthesis of High Yield Perfural 3

상기 실시예 1의 단계 2의 현탁액 내 텅스테이트의 함량이 20%인 것을 제외하고는 실시예 1과 동일하게 실시하였다. Example 1 was carried out in the same manner as in Example 1 except that the content of the tungstate in the suspension of Step 2 of Example 1 was 20%.

<실시예 4> 고수율 퍼퓨랄의 합성 4Example 4 Synthesis of High Yield Perfural 4

상기 실시예 1의 단계 4에서 초임계 유체로 프로판을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다. Except for using propane as a supercritical fluid in step 4 of Example 1 was carried out in the same manner as in Example 1.

<비교예 1> 황산화된 지르코니아 촉매을 이용한 퍼퓨랄의 합성Comparative Example 1 Synthesis of Perfural Using Sulfated Zirconia Catalysts

상기 실시예 1의 단계 3에서 1.5 ℓ의 고압반응기의 원료 수용액 1 ℓ당 염화지르코닐 8수화물로부터 제조된 황산화된 지르코니아 촉매 10 g을 넣고 이산화탄소를 이용하여 200 atm, 180℃를 유지한 후, 1 ℓ당 20 g의 자일로오즈를 투입하여 퍼퓨랄 합성 및 추출하였다. In step 3 of Example 1, 10 g of a sulfated zirconia catalyst prepared from zirconyl chloride octahydrate per 1 liter of an aqueous solution of 1.5 L of a high pressure reactor was added thereto, and then maintained at 200 atm and 180 ° C. using carbon dioxide. 20 g of xylose per 1 L was added to perfural synthesis and extraction.

<실험예 1> 퍼퓨랄 수율을 통한 촉매 성능 비교Experimental Example 1 Comparison of Catalyst Performance through Perfural Yield

본 발명에 따른 퍼퓨랑 수율을 측정하기 위해서, 액체크로마토그라프(HPLC) 분석 결과로부터 계산하였다. 상기 실시예 2, 실시예 3, 실시예 4 및 비교예 1을 통하여 제조된 퍼퓨랄의 초기 수율을 측정하고, 상기 방법을 수 회 반복하고, 수 회 반복하여 사용한 실시예 2, 실시예 3 및 실시예 4는 500 ~ 550℃의 공기분위기에서 가열하고, 비교예 1은 500℃의 공기분위기에서 6시간 가열하여 상기와 같이 재생된 촉매를 이용한 공정으로 제조된 퍼퓨랄의 수율을 측정하고, 촉매 재생을 수 회 반복한 후의 수율을 측정하여 표 1에 나타내었다. In order to measure the Perfuran yield according to the present invention, it was calculated from the liquid chromatograph (HPLC) analysis results. Example 2, Example 3 and used to measure the initial yield of the perfural prepared through Example 2, Example 3, Example 4 and Comparative Example 1, the method was repeated several times, repeated several times Example 4 is heated in an air atmosphere of 500 ~ 550 ℃, Comparative Example 1 is heated for 6 hours in an air atmosphere of 500 ℃ to measure the yield of perfural prepared by the process using the regenerated catalyst as described above, the catalyst The yield after repeated regeneration was measured and shown in Table 1.

실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 초기 퍼퓨랄 수율Initial Perfural Yield 53%53% 58%58% 56%56% 51%51% 코킹 발생시점When caulking occurs 6회6th 6회6th 8회8th 5회5 times 1차 촉매재생시점1st catalyst regeneration time 10회10th 10회10th 10회10th 7회7th 1차 촉매재생후 수율Yield after 1st catalyst regeneration 53%53% 58%58% 56%56% 24% 24% 1회 촉매재생 후,
촉매손실률
After one catalyst regeneration,
Catalyst loss rate
거의 없음Almost none 0.3%미만Less than 0.3%
3회 촉매재생 후,
촉매손실률
After 3 catalyst regenerations,
Catalyst loss rate
1%미만Less than 1%

상기 표 1에 나타낸 바와같이, 실시예 2의 퍼퓨랄 합성 수율을 확인한 결과 53%로 계산되었다. 촉매 활성의 큰 변화 없이 5회 반복 사용할 수 있었으며, 10회 사용 후 코킹 오염된 촉매체를 재생하고, 재생된 촉매체를 이용하여 퍼퓨랄 합성 반응을 진행하여 수율을 확인한 결과 53%로 오차 범위 내에서 촉매 활성에 손실이 거의 없는 것을 확인하였다. 나아가, 2차, 3차 반복하여 재생한 결과 촉매 활성의 손실이 없는 것을 확인하였으며, 3회 재생 처리 후의 촉매체 중량의 손실도 1% 미만으로 측정되었다.  As shown in Table 1 above, the yield of perfural synthesis in Example 2 was determined to be 53%. It was able to use 5 times without changing the catalytic activity. After 10 times, the caking-contaminated catalyst body was regenerated and the perfural synthesis reaction was carried out using the regenerated catalyst to confirm the yield. It was confirmed that there was little loss in catalyst activity at. Further, it was confirmed that there was no loss of catalyst activity as a result of repeated regeneration of the second and third times, and the loss of the weight of the catalyst body after the third regeneration treatment was also measured to be less than 1%.

실시예 3의 퍼퓨랄 합성 수율을 확인한 결과 58%로 계산되었다. 촉매 활성의 큰 변화 없이 5회 반복 사용할 수 있었으며, 10회 사용 후 코킹 오염된 촉매체를 재생하고, 재생된 촉매체를 이용하여 퍼퓨랄 합성 반응을 진행하여 수율을 확인한 결과 약 58%로 오차 범위 내에서 촉매 활성에 손실이 거의 없는 것을 확인하였다. 1회 재생 처리 후의 촉매체의 중량 손실은 0.3% 미만으로 나타났다. The furfural synthesis yield of Example 3 was confirmed and calculated as 58%. It was able to use 5 times repeatedly without significant change in catalyst activity. After 10 times, the caking contaminated catalyst body was regenerated and the perfural synthesis reaction was carried out using the regenerated catalyst to confirm the yield. It was confirmed that there was almost no loss in catalyst activity within. The weight loss of the catalyst body after one regeneration treatment was found to be less than 0.3%.

실시예 4의 퍼퓨랄 합성 수율을 확인한 결과 56%로 계산되었다. 촉매 활성의 큰 변화 없이 7회 반복 사용할 수 있었으며, 10회 사용 후 코킹 오염된 촉매체를 재생하고, 재생된 촉매체를 이용하여 퍼퓨랄 합성 반응을 진행하여 수율을 확인한 결과 약 56%로 오차 범위 내에서 촉매 활성에 손실이 거의 없는 것을 확인하였다. As a result of confirming the perfural synthesis yield of Example 4, it was calculated as 56%. It was able to use 7 times without changing the catalyst activity. After 10 times, the caking-contaminated catalyst body was regenerated and the perfural synthesis reaction was carried out using the regenerated catalyst to confirm the yield. It was confirmed that there was almost no loss in catalyst activity within.

반면, 비교예 1의 퍼퓨랄 합성은 퍼퓨랄의 잔류 농도는 0.28중량%로 분석되었고 퍼퓨랄의 수율은 51%로 계산되었다. 반응 종료후 사용된 촉매는 촉매 활성의 큰 변화 없이 4회 재사용하였다. 그러나 7회 재사용 결과에 의하여 표면에 심각한 탄소 침적과 코킹이 일어나 촉매 활성이 저하되었으며, 1차 재생된 촉매를 이용하여 퍼퓨랄 반응을 진행한 결과, 퍼퓨랄의 수율이 24%로 낮아지는 등 촉매 활성의 현격한 저하가 관찰되었다. On the other hand, in the perfural synthesis of Comparative Example 1, the residual concentration of perfural was analyzed to be 0.28% by weight, and the yield of perfural was calculated to be 51%. The catalyst used after the end of the reaction was reused four times without significant change in catalyst activity. However, as a result of seven reuses, severe carbon deposition and caulking occurred on the surface, which lowered the catalytic activity. As a result of the perfural reaction using the first regenerated catalyst, the yield of the perfural was reduced to 24%. A marked drop in activity was observed.

Claims (6)

자일로오즈 또는 헤미셀룰로오즈를 원료로 사용하여 퍼퓨랄을 제조하는 방법에 있어서, 초임계 유체를 포함하는 반응 매질 내에서 감마알루미나 지지체에 이소폴리텅스테이트(isopolytungstate)를 담지시킨 고체산 촉매체를 이용하여 원료를 퍼퓨랄로 전환시키는 단계(단계 1) 및 상기 반응 매질에 초임계 유체를 분사하여 퍼퓨랄을 추출 및 분리 시키는 단계(단계 2)를 포함하는 고수율로 퍼퓨랄을 제조하는 방법.In the method for producing perfural using xylose or hemicellulose as a raw material, a solid acid catalyst body in which isopolytungstate is supported on a gamma alumina support in a reaction medium containing a supercritical fluid Converting the raw material into perfural (step 1) and extracting and separating the perfural by spraying a supercritical fluid on the reaction medium (step 2). 제1항에 있어서, 상기 단계 1과 상기 단계 2는 동시에 수행하는 것을 특징으로 하는 고수율로 퍼퓨랄을 제조하는 방법.The method of claim 1, wherein the step 1 and the step 2 is carried out at the same time, the method of producing perfural in high yield. 제1항 또는 제2항에 있어서, 상기 고체산 촉매체는 감마알루미나 지지체에 이소폴리텅스테이트 전구체를 담지시킨 후, 500 ~ 700 ℃에서 소성하여 제조한 고체산 촉매체인 것을 특징으로 하는 고수율로 퍼퓨랄을 제조하는 방법.According to claim 1 or claim 2, wherein the solid acid catalyst body is a solid acid catalyst body prepared by supporting the isopolytungstate precursor on the gamma alumina support, and then calcined at 500 ~ 700 ℃ in a high yield, characterized in that Method of making perfural. 제3항에 있어서, 상기 이소폴리텅스테이트 촉매의 원료로는 텅스텐을 함유한 헤테로폴리텅스틱산의 수화물 또는 그 염 및 암모늄 메타텅스테이트로 이루어진 군으로부터 선택되는 어느 하나 또는 2종 이상의 화합물인 것을 특징으로 하는 고수율로 퍼퓨랄을 제조하는 방법.The raw material of the isopolytungstate catalyst is any one or two or more compounds selected from the group consisting of hydrates of tungsten-containing heteropolytungstic acid or salts thereof and ammonium metatungstate. Method for producing perfural in high yield. 제1항 또는 제2항에 있어서, 상기 초임계 유체는 초임계 이산화탄소 또는 초임계 프로판인 것을 특징으로 하는 고수율로 퍼퓨랄을 제조하는 방법. The method of claim 1 or 2, wherein the supercritical fluid is supercritical carbon dioxide or supercritical propane. 제1항 또는 제2항에 있어서, 상기 단계 1 및 단계 2는 100 ~ 200 ℃의 온도와 100 ~ 300 atm의 압력 하에서 수행되는 것을 특징으로 하는 고수율로 퍼퓨랄을 제조하는 방법.The method of claim 1 or 2, wherein the step 1 and step 2 is a method for producing perfural in a high yield, characterized in that carried out under a temperature of 100 ~ 200 ℃ and pressure of 100 ~ 300 atm.
KR1020080113537A 2008-11-14 2008-11-14 Methods for high yield synthesis of furfural using tungstate/?-alumina catalyst KR101039362B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080113537A KR101039362B1 (en) 2008-11-14 2008-11-14 Methods for high yield synthesis of furfural using tungstate/?-alumina catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080113537A KR101039362B1 (en) 2008-11-14 2008-11-14 Methods for high yield synthesis of furfural using tungstate/?-alumina catalyst

Publications (2)

Publication Number Publication Date
KR20100054571A true KR20100054571A (en) 2010-05-25
KR101039362B1 KR101039362B1 (en) 2011-06-08

Family

ID=42279285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080113537A KR101039362B1 (en) 2008-11-14 2008-11-14 Methods for high yield synthesis of furfural using tungstate/?-alumina catalyst

Country Status (1)

Country Link
KR (1) KR101039362B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130755A (en) * 2013-01-23 2013-06-05 华南理工大学 Method for preparing furfural through catalytic conversion of xylose by acid photocatalyst under ultraviolet light
CN114768828A (en) * 2022-05-31 2022-07-22 陕西科技大学 Carbon-based solid acid catalyst CS-SO3H, preparation method and application in preparation of furfural by biomass raw material conversion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100295738B1 (en) * 1998-11-05 2002-01-09 김충섭 Preparation and Purification of Purpural Using Solid Acid Catalyst and Supercritical Fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130755A (en) * 2013-01-23 2013-06-05 华南理工大学 Method for preparing furfural through catalytic conversion of xylose by acid photocatalyst under ultraviolet light
CN103130755B (en) * 2013-01-23 2014-12-31 华南理工大学 Method for preparing furfural through catalytic conversion of xylose by acid photocatalyst under ultraviolet light
CN114768828A (en) * 2022-05-31 2022-07-22 陕西科技大学 Carbon-based solid acid catalyst CS-SO3H, preparation method and application in preparation of furfural by biomass raw material conversion
CN114768828B (en) * 2022-05-31 2023-11-17 陕西科技大学 Carbon-based solid acid catalyst CS-SO 3 H, preparation method and application thereof in preparing furfural by converting biomass raw materials

Also Published As

Publication number Publication date
KR101039362B1 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US6670303B1 (en) Catalyst having a bimodal pore radius distribution
JP5784609B2 (en) Catalyst and method for producing acrolein and / or acrylic acid by dehydration reaction of glycerin
EP2089156B1 (en) Process for producing alkenes from oxygenates by using supported heteropolyacid catalysts
JP5385972B2 (en) Olefin production method
EP3102554B1 (en) Conversion of 2,3-butanediol to butadiene
US20040260135A1 (en) Activated metathesis catalysts
JP6332913B2 (en) Solid phosphoric acid catalyst and method for producing trioxane using the same
JP2007137785A (en) Method for dehydration of polyhydridic alcohol
Tang et al. Phosphoric acid modified Nb 2 O 5: a selective and reusable catalyst for dehydration of sorbitol to isosorbide
KR101039362B1 (en) Methods for high yield synthesis of furfural using tungstate/?-alumina catalyst
KR101064664B1 (en) Methods for high yield synthesis of furfural using tungstate catalyst on titania
KR100679001B1 (en) Catalyst with bimodal pore radius distribution
KR101298688B1 (en) Novel metal catalyst supported on activated carbon aerogel bearing cation-exchanged heteropolyacid and decomposition method of lignin compounds using said catalyst
JP2007516078A (en) Hydrocarbon cracking catalyst and method for producing the same
KR101039359B1 (en) Methods for high yield synthesis of furfural using tungstate catalyst
KR102113122B1 (en) Method of preparing dehydrogenation catalysts
KR101652467B1 (en) A Noble Catalyst Of Aqueous Phase Reforming Reaction, Using Mesoporous Alumina Carrier And Platinum, And Manufacturing Method Of The Same
KR101899136B1 (en) Process for producing ispbutylene from tert-butanol
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
JP7060994B2 (en) Manufacturing method of p-xylene
JP7060993B2 (en) Manufacturing method of p-xylene
Javad Kalbasi et al. Highly Selective Vapor‐Phase Acylation of Veratrole over H3PO4/TiO2‐ZrO2: Using Ethyl Acetate as a Green and Efficient Acylating Agent
WO2017052190A1 (en) Method for preparing isobutylene from tert-butanol
JP2644336B2 (en) Method for producing dimethyl ether
CN117377529A (en) Use of a catalyst system for the production of 1, 3-butadiene from ethanol in a two-stage process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee