KR20100053364A - Hot dipping mild and steel wires - Google Patents
Hot dipping mild and steel wires Download PDFInfo
- Publication number
- KR20100053364A KR20100053364A KR1020080112434A KR20080112434A KR20100053364A KR 20100053364 A KR20100053364 A KR 20100053364A KR 1020080112434 A KR1020080112434 A KR 1020080112434A KR 20080112434 A KR20080112434 A KR 20080112434A KR 20100053364 A KR20100053364 A KR 20100053364A
- Authority
- KR
- South Korea
- Prior art keywords
- molten
- nucleation
- plating
- hot
- plating layer
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title abstract description 32
- 239000010959 steel Substances 0.000 title abstract description 32
- 238000007598 dipping method Methods 0.000 title abstract 4
- 238000007747 plating Methods 0.000 claims abstract description 65
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 20
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 230000006911 nucleation Effects 0.000 claims abstract description 20
- 238000010899 nucleation Methods 0.000 claims abstract description 20
- 239000011701 zinc Substances 0.000 claims abstract description 12
- 229910000611 Zinc aluminium Inorganic materials 0.000 claims abstract description 9
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 claims abstract description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 6
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 6
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910018464 Al—Mg—Si Inorganic materials 0.000 claims description 7
- 230000001737 promoting effect Effects 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 229910001335 Galvanized steel Inorganic materials 0.000 claims 2
- 239000002131 composite material Substances 0.000 claims 2
- 239000008397 galvanized steel Substances 0.000 claims 2
- 230000007797 corrosion Effects 0.000 abstract description 8
- 238000005260 corrosion Methods 0.000 abstract description 8
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 239000010953 base metal Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 4
- 239000002956 ash Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/185—Tubes; Wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/38—Wires; Tubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
본 발명은 옥외의 노출된 장소에 설치되는 용융 도금 철선 및 강선에 관한 것으로서, 특히, 용융 아연, 아연-알루미늄 합금 및 Zn-Al-Mg-Si계 합금 도금에서 핵생성을 촉진시키는 미량의 핵생성 촉진원소들을 단독 또는 복합적으로 첨가하여 도금층의 형성시 이들이 핵생성 사이트로 작용하도록 하여 결정립이 미세하고 균일한 공정조직으로 이루어지도록 하는 용융 도금 철선 및 강선에 관한 것이다.The present invention relates to hot-dip galvanized wires and steel wires installed in outdoor exposed places, and in particular, trace nucleation to promote nucleation in hot-dip zinc, zinc-aluminum alloys and Zn-Al-Mg-Si-based alloy plating The present invention relates to hot-dip iron wires and steel wires in which the promoting elements are added alone or in combination so that they act as nucleation sites when forming the plating layer so that the crystal grains are formed into a fine and uniform process structure.
옥외의 노출된 장소에 설치되는 돌망태(gabion), 휀스, 어망, 가공전선의 지지선 등에 사용되는 철선이나 강선은 그 사용되는 환경에 따라 내구성 및 내부식성, 고강도 등의 특성이 매우 중요하며, 이를 위해 소지 금속에 도금층을 형성하고 있다.Steel wires or steel wires used in gabions, fences, fishing nets, overhead wires, etc. installed in outdoor exposed places are very important in terms of durability, corrosion resistance, high strength, etc. The plating layer is formed in the base metal.
상기 도금층은 금속이 용융된 도금욕 내부에 소지 금속을 침지하여 소지 금속의 표면에 형성시키는 것으로, 상기의 특성을 발휘하기 위해서는 소지 금속과의 밀착성과 두께의 균일성이 우수하여야 하며, 도금층 자체의 강도도 높아야 한다.The plating layer is formed on the surface of the metal by immersing the base metal in the plating bath in which the metal is molten, in order to exhibit the above characteristics, the adhesion to the base metal and uniformity of the thickness should be excellent, and the plating layer itself The intensity should also be high.
일반적으로 상기 소지 금속으로는 철선이나 강선을 사용하며, 상기 도금층이 형성된 철선 및 강선을 용융 도금 철선 및 강선이라고 한다. 이들의 종류로는 용융 아연 도금 철선 및 강선과, 내식성이 더욱 우수한 용융 아연-알루미늄 및 Zn-Al-Mg-Si계 합금 도금 철선 및 강선으로 구분된다. 여기에서는 내식성이 뛰어난 용융 아연-알루미늄 합금 도금 철선 및 강선을 중심으로 기술하고자 한다.Generally, the base metal uses iron wire or steel wire, and the iron wire and the steel wire on which the plating layer is formed are called hot-dip iron wire and steel wire. These types are classified into hot dip galvanized iron wires and steel wires, and hot dip galvanized aluminum and Zn-Al-Mg-Si based alloy plated wires and steel wires having better corrosion resistance. Here, the description will focus on hot-dip galvanized-aluminum alloy plated wire and steel wire having excellent corrosion resistance.
상기 용융 아연-알루미늄 합금 도금 철선 및 강선은 일반적으로 소지 금속을 세정, 탈지 공정에 의해 청정화처리한 후, 플럭스처리를 행한다. 용융 도금 처리는 먼저 아연을 주체로 한 용융도금을 실시한 후, Zn-(4~10wt.%)Al 합금 욕조에서 최종적으로 용융 도금 처리하는 2단계 제조공정과, Zn-(4~10wt.%)Al 합금 욕조에서 한 번의 용융 도금처리로 마무리하는 1단계 제조공정으로 나누어진다. The molten zinc-aluminum alloy plated iron wire and steel wire are generally subjected to flux treatment after the base metal is cleaned and cleaned by a degreasing step. Hot-dip plating is first performed by zinc-based hot dip plating, followed by a two-step manufacturing process of finally hot-dip galvanizing in a Zn- (4-10 wt.%) Al alloy bath and Zn- (4-10 wt.%). It is divided into a one-step manufacturing process which is finished by one hot dip plating in Al alloy bath.
이러한 용융 아연-알루미늄 합금 도금 철선 및 강선은 만족스러운 내식성을 가지지만, 실용상 도금층이 외부로부터의 강한 충격으로 손상을 입어 유실되는 경우에는 아무리 국부적이라 할지라도 설비 전체에 치명적인 결함을 제공할 수 있다.These hot dip galvanized-aluminum alloy wires and steel wires have satisfactory corrosion resistance, but in practical use, if the plated layer is damaged due to a strong impact from the outside and is lost, it may provide a fatal defect to the entire installation, no matter how local. .
예를 들면, 돌망태와 같은 용도에서는 도금층의 내식성뿐만 아니라 도금층과 소지 금속과의 밀착성, 도금층 자체의 경도 및 가공성이 중요한 인자로 고려되어야 한다. 왜냐하면 실용상 도금 강선에 많은 손상을 줄 수밖에 없기 때문이다. 따라서 외부 충격에 의한 저항성을 높이기 위해서는 방법론적으로 도금층의 두께를 두껍게 하는 것과, 도금층 자체에 손상에 대한 저항성을 증가시키는데 요구되는 특성을 부여하거나 강화시키는 두 가지 방안을 강구할 수 있다.For example, in applications such as gabions, not only the corrosion resistance of the plating layer but also the adhesion between the plating layer and the base metal, the hardness and workability of the plating layer itself should be considered as important factors. This is because, in practical use, much damage to the plated steel wire is inevitable. Therefore, in order to increase resistance by external impact, two methods of increasing the thickness of the plating layer methodically and imparting or strengthening the characteristics required to increase the resistance to damage to the plating layer itself can be taken.
먼저, 전자와 같은 방법은 도금 욕조에서 철선 및 강선을 침적시킨 채 빠르게 이송하여 용융 도금액과의 점성을 증가시켜 강선에 부착되는 용융 도금액의 양을 증가시킬 수 있다. 그러나 이 방법은 도금층의 두께가 두껍에 되어 도금층에서 균열이나 박리 현상이 발생하거나, 빠른 선속으로 인하여 도금 철선 및 강선의 세로로 수직한 단면에서 불규칙한 도금 두께가 형성되는 경향이 있어, 도금 설비 상 한계가 있다. 또한, 용융 도금 처리 중 비교적 장시간 도금욕에 머물기 때문에 소지 금속의 계면에 형성되는 Fe-Zn 금속간화합물의 층이 두꺼워져, 취성이 증가하고 연성이 감소하여 제조시 또는 사용 중에 도금층에 균열이 발생하거나 박리가 되는 등 제품 불량이 발생하게 된다.First, the same method as the former may transfer the steel wire and the steel wire in the plating bath while rapidly depositing it, thereby increasing the viscosity with the molten plating liquid to increase the amount of the molten plating liquid attached to the steel wire. However, in this method, the thickness of the plating layer becomes thick and cracking or peeling phenomenon occurs in the plating layer, or due to the rapid flux, irregular plating thickness tends to be formed in the vertically vertical section of the plating iron wire and steel wire. There is. In addition, due to staying in the plating bath for a relatively long time during the hot-dip plating process, the layer of Fe-Zn intermetallic compound formed at the interface of the base metal becomes thick, so that brittleness and ductility decrease, causing cracks in the plating layer during manufacture or use. Product defects such as peeling or peeling.
결과적으로 현재의 용융 도금설비로는 충분한 도금층 두께를 확보할 수 없을 것으로 판단된다. 한편, 일부에서 Mg을 첨가한 Zn-Al-Mg 3원계 합금 도금 성분이 제안되기도 하였지만, 그 실시 결과 얇은 도금층이 형성되면서도 내식성이 어느 정도 향상되는 특징은 발견되었으나, 일반적으로 돌망태 등을 위해 필요한 두꺼운 도금층의 철선 및 강선에 적용될 때에는 도금층에 균열이 발생하였다. 상기의 문제점을 해결하고자, 여러 연구가 진행되고 있으나, 아무래도 도금층의 두께가 증가하면 계면에서 반응생성물인 Fe-Zn 금속간화합물의 층이 두꺼워져, 도금층의 균열 또는 박리와 같은 결함을 극복할 수 없었다.As a result, it is judged that sufficient plating layer thickness cannot be secured with the current hot dip plating equipment. On the other hand, some of the Zn-Al-Mg ternary alloy plating component added Mg has been proposed, but as a result of the formation of a thin plated layer was found to improve the corrosion resistance to some extent, but generally required thick for gabions, etc. When applied to the iron wire and steel wire of the plating layer, cracks occurred in the plating layer. In order to solve the above problems, various studies have been conducted. However, if the thickness of the plating layer is increased, the layer of the Fe-Zn intermetallic compound, which is a reaction product at the interface, may be thickened to overcome defects such as cracking or peeling of the plating layer. There was no.
그러므로, 후자와 같이 도금층 자체에 손상에 대한 저항성을 증가시키는데 요구되는 특성을 부여하거나 강화시키는 것이 효과적인 대안이 될 수 있다. 따라서, 도금층 자체의 강도를 높이는 것과 함께 실용상 문제가 없을 정도의 밀착성, 가공성을 갖추어야 한다.Therefore, it may be an effective alternative to impart or enhance the properties required to increase the resistance to damage to the plating layer itself, as in the latter. Therefore, while increasing the strength of the plating layer itself, it is necessary to have adhesiveness and workability such that there is no problem in practical use.
그러므로 본 발명은 용융 아연, 아연-알루미늄 합금 및 Zn-Al-Mg-Si계 합금 도금에서 핵생성을 촉진시키는 미량의 핵생성 촉진원소들을 단독 또는 복합적으로 첨가하여 도금층의 응고 시 이들 첨가원소들이 핵생성 사이트로 작용하도록 하여 결정립이 미세하고 균일한 공정조직으로 이루어진 도금층이 형성된 용융 도금 철선 및 강선의 제공을 얻는 것을 목적으로 한다. Therefore, the present invention adds a small amount of nucleation promoters that promote nucleation in molten zinc, zinc-aluminum alloy and Zn-Al-Mg-Si alloy plating alone or in combination, so that these additional elements are nucleated upon solidification of the plating layer. It is intended to provide a hot-dip galvanized iron wire and a steel wire in which a plating layer formed of a fine and uniform process structure is formed by acting as a production site.
상기 목적을 달성하기 위해 본 발명은, 용융 아연, 용융 아연-알루미늄 합금 및 용융 Zn-Al-Mg-Si계 합금 중의 어느 하나의 성분으로 이루어진 용융 도금액에 핵생성 촉진원소인 Sc, Y, Zr, Hf 및 Er 중의 어느 하나를 단독 또는 둘 이상 복합 첨가하여, 도금층 형성시 핵생성을 촉진시켜 등방정의 미세결정립이 균일하게 형성된 공정조직으로 이루어진 것을 특징으로 하는 하는 용융 도금 철선 및 강선을 기술적 요지로 한다.In order to achieve the above object, the present invention, the molten zinc, molten zinc-aluminum alloy and molten Zn-Al-Mg-Si-based alloys in the molten plating solution consisting of any one of the components of promoting the nucleation Sc, Y, Zr, Hot-dip iron wires and steel wires are characterized by consisting of a process structure in which any one of Hf and Er is added alone or in combination of two or more, to promote nucleation upon forming a plating layer, and uniformly form isotropic microcrystal grains. .
또한, 상기 핵생성 촉진원소로서, 중량비로, Sc : 0.01-1.0, Y : 0.01-1.0, Zr: 0.01-1.0, Hf : 0.01-1.0, Er : 0.01-1.0를 함유하는 것이 바람직하다.In addition, the nucleation promoting element preferably contains Sc: 0.01-1.0, Y: 0.01-1.0, Zr: 0.01-1.0, Hf: 0.01-1.0, Er: 0.01-1.0 by weight.
상기 과제 해결 수단에 의해 본 발명은, 도금층의 미세조직을 제어함으로서 도금층의 강도가 높으면서도 밀착성과 가공성이 우수한 도금 철선 및 강선의 제조가 가능하다. 이와 같은 도금 철선 및 강선은 본 발명의 필요성에서도 언급한 바와 같이, 실용상 외력이나 충격에 의해 도금층의 손상이 우려되는 용도에 매우 적합하며, 간혹 시공상 부주의로부터 발생할 수 있는 손상사고 또한 방지할 수 있다. 특히 용융 도금 철선 및 강선은 기본적으로 부식 환경으로부터 소지 금속의 부식을 방지하는 것이 주요 목적이기 때문에, 도금층의 안정성 및 신뢰성이 설비 전체의 성능을 좌우하게 된다. 따라서 도금층 자체의 특성 향상은 설비 전체의 성능향상으로 연결되며, 제품의 품질을 높이고, 신뢰성을 향상시키며, 예상치 못하는 안전사고를 미연에 방지하는데 대단히 중요하다고 할 수 있다.By the said subject solving means, this invention can manufacture the plated iron wire and steel wire which are excellent in adhesiveness and workability, while being high in the strength of a plating layer by controlling the microstructure of a plating layer. As mentioned in the necessity of the present invention, such plated wires and steel wires are very suitable for applications in which the plated layer may be damaged due to external force or impact in practical use, and may also prevent damage accidents that may arise from inadvertent construction. have. In particular, since the primary purpose of the hot-dip iron and steel wire is to prevent the corrosion of the base metal from the corrosive environment, the stability and reliability of the plating layer will determine the performance of the entire installation. Therefore, the improvement of the characteristics of the plating layer itself is connected to the improvement of the performance of the entire facility, it can be said that it is very important to improve the quality of the product, improve the reliability, and prevent unexpected safety accidents.
또한, 비록 본 발명이 철선 및 강선에 관한 것이지만, 파이프, 강판 및 기타 구조물에도 적합하게 적용될 수 있는 기술이며, 따라서 산업 전반에 큰 파급효과가 기대된다. In addition, although the present invention relates to steel wires and steel wires, it is a technology that can be suitably applied to pipes, steel sheets and other structures, and therefore a large ripple effect is expected in the entire industry.
본 발명은 용융 아연, 아연-알루미늄 합금 및 Zn-Al-Mg-Si계 합금 도금 성분에 미량의 핵생성 촉진원소들을 첨가하여, 미세한 등방정 결정립을 균일하게 형성시킨 공정조직을 얻어, 이것으로 인해 도금층의 밀착성, 강도 및 가공성이 향상되는 용융 도금 철선 및 강선을 제공하는 것이다.The present invention adds a small amount of nucleation accelerating elements to the molten zinc, zinc-aluminum alloy and Zn-Al-Mg-Si-based alloy plating components to obtain a process structure in which fine isotropic crystal grains are uniformly formed. It is to provide a hot-dip galvanized wire and steel wire to improve the adhesion, strength and workability of the plating layer.
기존의 용융 아연 도금(GI계) 및 아연-알루미늄 합금(Galfan계, Galvalume계) 그리고 Zn-Al-Mg-Si계 합금 도금 성분에, 상기 핵생성 촉진원소로서, Sc : 0.01~1.0중량비, Y : 0.01~1.0중량비, Zr : 0.01~1.0중량비, Hf : 0.01~1.0중량비, Er : 0.01~1.0중량비 중의 어느 하나를 단독 또는 이들을 둘 이상 복합 첨가하는 것이다.In the existing hot dip galvanizing (GI-based) and zinc-aluminum alloy (Galfan-based, Galvalume-based) and Zn-Al-Mg-Si-based alloy plating components, as the nucleation promoting element, Sc: 0.01 ~ 1.0 weight ratio, Y : 0.01 to 1.0 weight ratio, Zr: 0.01 to 1.0 weight ratio, Hf: 0.01 to 1.0 weight ratio, Er: 0.01 to 1.0 weight ratio, any one or a combination of two or more thereof.
상기의 핵생성 촉진원소들을 미량 단독 또는 복합 첨가하게 되면, 용융 도금액의 응고 시 핵생성을 촉진시켜 응고 셀조직이 미세화되고, 나아가 최종적으로 균일하고 미세한 결정립의 공정조직이 얻어진다. 이것으로부터 도금층의 밀착성, 강도 및 가공성을 향상시킬 수 있는 것이다.When a small amount of the nucleation-promoting elements are added alone or in combination, the nucleation is promoted upon solidification of the molten plating solution, thereby miniaturizing the coagulation cell structure, and finally obtaining a uniform and fine grain process structure. From this, the adhesiveness, strength, and workability of the plating layer can be improved.
여기에서, 상기 핵생성 촉진원소 Sc, Y, Zr, Hf, Er들의 성분을 모두 0.01~1.0중량비로 한 것은, 이 원소들을 1.0중량비 이상 첨가할 경우 소지 금속 성분인 Fe 원소 또는 도금 성분인 Zn, Al, Mg 원소와의 반응성이 급격히 증가하여, 소지 금속 성분 및 도금 성분과 반응한 취성이 강한 금속간화합물을 형성하여 도금층에 나쁜 영향을 미치기 때문이다. 또한 0.01% 미만을 첨가한 경우에는 그 효과를 기대할 수 없다.Here, the components of the nucleation-promoting elements Sc, Y, Zr, Hf, and Er are all 0.01 to 1.0 wt. This is because the reactivity with Al and Mg elements increases rapidly, forming a brittle intermetallic compound reacted with the base metal component and the plating component, which adversely affects the plating layer. In addition, when less than 0.01% is added, the effect cannot be expected.
상술된 바에 근거하여 본 발명의 구체적인 실시예에 의해 제조된 시편의 경도치와 권취시험 실시 결과에 대해 각각 표 1과 표 2에 정리하였다.Based on the above, the hardness values and the winding test results of the specimens prepared by the specific examples of the present invention are summarized in Table 1 and Table 2, respectively.
표 1에 나타낸 시료번호 1~8번은 본 발명에서 제안되는 합금 도금 성분이며, 9~14번은 비교재로서 기존에 알려진 것이다. 즉 기존의 여러 용융 도금 성분에 상기의 핵생성 촉진원소인 Sc, Y, Zr, Hf, Er을 각각 최소 0.01%에서 최대 1.0%까지 임의의 조합으로 단독 또는 복합으로 적정량 첨가한 융융 도금액을 제조하여, 강선에 종래의 방법으로 도금 처리한 후, 도금층의 경도특성을 각각 조사하였다.Sample Nos. 1 to 8 shown in Table 1 are alloy plating components proposed in the present invention, and Nos. 9 to 14 are conventionally known as comparative materials. In other words, a molten plating solution is prepared by adding appropriate amounts of the nucleation-promoting elements Sc, Y, Zr, Hf, and Er, alone or in combination, to various existing hot-dip plating components in any combination of at least 0.01% to 1.0%. And the steel wires were plated by a conventional method, and then the hardness characteristics of the plated layers were examined.
이때 도금층은 모든 조건에서 약 20㎛의 두께를 유지하도록 균일하게 제조하였다. 경도 시험편은 도금 강선의 단면을 경면처리하여 준비하였으며, 마이크로 비커스를 이용하여 측정하였다. 경도측정은 주로 응고조직이 잘 발달하는 제타(ξ) 상 영역의 부위를 5회 측정하여 최고치와 최저치를 제거하고, 나머지 측정치의 평균치로 정하였다.At this time, the plating layer was uniformly prepared to maintain the thickness of about 20㎛ in all conditions. The hardness test piece was prepared by mirror-processing the cross section of the plated steel wire, and measured using a micro vickers. Hardness measurement was mainly performed 5 times in the region of the zeta phase area where coagulation tissue is well developed to remove the highest value and the lowest value, and was determined as the average value of the remaining measurements.
표 1에서 알 수 있듯이, 본 발명에 따른 발명재의 경우는 기존의 비교재와 비교해 매우 높은 경도특성을 보임을 알 수 있다. 첨가원소를 최대 1.0%까지 첨가할 경우 약 280Hv의 경도치가 얻어졌으며, 이는 기존 비교재의 일반적인 경도치와 비교할 때 약 50%의 경도 증가를 보였다.As can be seen from Table 1, in the case of the invention according to the present invention it can be seen that it shows a very high hardness characteristics compared to the conventional comparative material. When the added element was added up to 1.0%, hardness value of about 280Hv was obtained, which showed a hardness increase of about 50% compared with the general hardness value of the existing comparative material.
또한 미세조직을 조사한 결과, 발명재의 경우 미세한 등방정 결정립의 공정조직이 관찰되었으나, 비교재의 경우 조대한 주상정의 덴드라이트 조직이 나타났다.In addition, as a result of examining the microstructure, the process material of fine isotropic crystal grains was observed in the invention material, but the coarse columnar dendrite structure was observed in the comparative material.
결론적으로, 발명재와 비교재의 경도특성의 차이는 각각의 응고조직의 차이에서 기인한다고 말할 수 있다. 즉, 본 발명의 제안인 핵생성을 촉진시키는 핵생성 촉진원소를 미량 첨가함에 따라 이들 원소들이 도금액의 응고 시 핵생성 사이트로 작용하여 핵생성을 촉진시킨 결과 결정립이 미세한 공정조직이 얻어졌으며, 이와 같은 공정조직이 경도치 증가에 기여하였다고 판단된다.In conclusion, it can be said that the difference in hardness characteristics of the invention and the comparative material is due to the difference in the respective solidification structures. That is, by adding a small amount of nucleation-promoting elements that promote nucleation, which is the proposal of the present invention, these elements act as nucleation sites during the solidification of the plating solution to promote nucleation, resulting in a fine grain structure. It is believed that the same process organization contributed to the increase in hardness.
< 표 1 ><Table 1>
제타(ξ)층 Hardness (Hv)
Zeta layer
번호sample
number
명
재foot
persons
ashes
교
재ratio
School
ashes
이와 같이 경도가 증가할 때, 밀착성 및 가공성의 변화를 조사하기 위하여 대표적인 권취시험을 실시하여 그 결과를 표 2에 정리하였다. 권취시험은 시험편과 같은 직경의 선재에 도금한 강선을 8회 권취한 후, 도금층에서 일어나는 박리나 균열을 조사하였으며, 각 조건 당 3회 시험하여 재연성을 확인하였다. 경도가 높은 발명재의 경우 기존의 비교재와 비교해서도 균열이나 박리특성에서 매우 우수한 것으로 조사되었다. 그러므로 발명재에서 얻어진 미세한 공정조직은 경도특성뿐만 아니라 도금층의 밀착성 및 가공성의 향상에도 크게 기여하는 것으로 판단된다.As such, when the hardness was increased, a representative winding test was conducted to investigate changes in adhesion and workability, and the results are summarized in Table 2. In the winding test, after winding the steel wire plated on the wire of the same diameter as the test piece eight times, the peeling or cracking occurred in the plated layer was examined. Inventive material with high hardness was found to be very good in cracking and peeling characteristics compared with the conventional comparative materials. Therefore, the fine process structure obtained from the inventive material is considered to contribute greatly to the improvement of adhesion and workability of the plating layer as well as the hardness characteristic.
< 표 2 ><Table 2>
번호sample
number
명
재foot
persons
ashes
교
재ratio
School
ashes
( ◎ : 매우 우수, ○ : 우수, x: 불량 )(◎: very good, ○: excellent, x: poor)
따라서 본 발명의 합금 도금 성분은 도금층 자체의 강도뿐만 아니라 밀착성 및 가공성 향상에도 크게 유효하였다. Therefore, the alloy plating component of the present invention was greatly effective not only in the strength of the plating layer itself but also in improving adhesion and workability.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080112434A KR20100053364A (en) | 2008-11-12 | 2008-11-12 | Hot dipping mild and steel wires |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080112434A KR20100053364A (en) | 2008-11-12 | 2008-11-12 | Hot dipping mild and steel wires |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100053364A true KR20100053364A (en) | 2010-05-20 |
Family
ID=42278499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080112434A KR20100053364A (en) | 2008-11-12 | 2008-11-12 | Hot dipping mild and steel wires |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100053364A (en) |
-
2008
- 2008-11-12 KR KR1020080112434A patent/KR20100053364A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102516012B1 (en) | plated steel | |
JP5754993B2 (en) | Plating steel material and steel pipe having high corrosion resistance and excellent workability, and manufacturing method thereof | |
JP4584179B2 (en) | Method for producing hot-dip Zn-Al alloy-plated steel sheet with excellent corrosion resistance and workability | |
JP5230318B2 (en) | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof | |
US6579615B1 (en) | Plated steel wire with corrosion resistance and excellent workability, and process for its manufacture | |
KR100446789B1 (en) | Plated steel product having high corrosion resistance and excellent formability and method for production thereof | |
JP2021004403A (en) | Plated steel, and method for producing plated steel | |
CN113508186A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
KR20150052376A (en) | HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME | |
JP3212977B2 (en) | Hot-dip galvanized steel with excellent workability | |
KR102544940B1 (en) | plated steel | |
JP2004339530A (en) | Mg-CONTAINING METAL COATED STEEL MATERIAL WITH EXCELLENT WORKABILITY, AND ITS MANUFACTURING METHOD | |
JP7052942B1 (en) | Plated steel | |
KR102557220B1 (en) | plated steel | |
JP3769199B2 (en) | High corrosion resistance plated steel material and method for producing the same | |
KR102305753B1 (en) | Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME | |
JP2021195600A (en) | Plated steel material | |
JP2002047521A (en) | Highly corrosion resistant plated steel and its production method | |
KR20100053364A (en) | Hot dipping mild and steel wires | |
JP3854469B2 (en) | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof | |
JP2018178137A (en) | Plated steel material having excellent anticorrosion property | |
KR20030037249A (en) | Galvanized, Zn-Al alloy and Zn-Al-Mg-Si alloy galvanized mild and hard-drawn steel wire with high adhesive, strength and formability and its production method | |
JP3009262B2 (en) | Hot-dip zinc aluminum alloy plating coating with excellent fatigue properties | |
KR100667140B1 (en) | HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY | |
JP2003328101A (en) | Hot dip coated steel wire and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |