KR20100045282A - Method of recycling crosslinked waste foams of low-density polyethylene - Google Patents

Method of recycling crosslinked waste foams of low-density polyethylene Download PDF

Info

Publication number
KR20100045282A
KR20100045282A KR20080104395A KR20080104395A KR20100045282A KR 20100045282 A KR20100045282 A KR 20100045282A KR 20080104395 A KR20080104395 A KR 20080104395A KR 20080104395 A KR20080104395 A KR 20080104395A KR 20100045282 A KR20100045282 A KR 20100045282A
Authority
KR
South Korea
Prior art keywords
density polyethylene
low density
waste
reaction
low
Prior art date
Application number
KR20080104395A
Other languages
Korean (ko)
Other versions
KR101125703B1 (en
Inventor
홍순만
조항규
이윤우
이홍식
박완용
구종민
이장훈
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR20080104395A priority Critical patent/KR101125703B1/en
Publication of KR20100045282A publication Critical patent/KR20100045282A/en
Application granted granted Critical
Publication of KR101125703B1 publication Critical patent/KR101125703B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PURPOSE: A method of recycling a waste foam agent based on low-density polyethylene is provided is provided to remarkably reduce the amount of buried or burned waste low-density polyethylene. CONSTITUTION: A method of recycling a waste foam agent based on low-density polyethylene comprises the following steps: de-crosslinking the waste foam agent at 350~500 deg C with a reaction condition of the pressure of 5~30 mega pascals for 2~30 minutes using supercritical ethanol; and converting the waste foam agent based on the low-density polyethylene into a recycling low density polyethylene class resin. The waste foam agent based on the low-density polyethylene is the waste foam agent using either an organic peroxide cross-linking method or an electron beam cross-linking method.

Description

폐 저밀도 폴리에틸렌계 발포체의 재생방법{METHOD OF RECYCLING CROSSLINKED WASTE FOAMS OF LOW-DENSITY POLYETHYLENE}Recycling method of waste low density polyethylene foam {METHOD OF RECYCLING CROSSLINKED WASTE FOAMS OF LOW-DENSITY POLYETHYLENE}

본 발명은 폐 저밀도 폴리에틸렌계 발포체의 가교결합을 초임계 에탄올을 이용하여 탈가교화 함으로써 재성형 가능한 저밀도 폴리에틸렌계 수지로 재생시키는 방법에 관한 것이다.The present invention relates to a method for regenerating crosslinking of waste low density polyethylene foams into low density polyethylene resins that can be reshaped by decrosslinking with supercritical ethanol.

자원보호, 환경오염 방지 차원에서 최근 혼합 폐플라스틱의 재활용을 위한 기술개발이 중요한 사회적 문제로 대두되고 있다. 일반 가정에서 사용되고 있는 폐 포장 필름류 등에 대해서는 「생산자 책임 재활용 제도」의 시행으로 재활용 효율성이 점차 향상되고 있으나, 에폭시 수지, 페놀 수지, 요소 수지, 멜라민 수지, 불포화 폴리에스테르 수지 등의 폐 열경화성 수지의 재활용에 대해서는 미국, 일본 등의 선진국에서만 일부 연구 개발 및 상용화가 진행되고 있을 뿐, 국내에서는 대부분 소각 또는 매립되고 있는 실정이다. Recently, technology development for recycling mixed waste plastics has emerged as an important social issue in terms of resource protection and environmental pollution prevention. The recycling efficiency of waste packaging films used in homes has been gradually improved by implementing the “Responsibility for Recycling of Producers”, but recycling of waste thermosetting resins such as epoxy resins, phenol resins, urea resins, melamine resins and unsaturated polyester resins The research and development and commercialization are only conducted in advanced countries such as the US and Japan, and most of them are incinerated or landfilled in Korea.

열경화성 수지는 스포츠 용품, 전기·전자 기기, 소형 선박 소재, 건축자재, 가구, 사무기기, 자동차 등과 같이 실생활과 밀접한 관련이 있는 다양한 분야에서 광범위하게 사용되고 차지하고 있다. 그러나 열경화성 수지는 분자 내 가교 구조 화(crosslinked network)된 고분자 사슬의 불용성(insoluble) 및 불융성(infusible) 특성으로 인해 아직까지 적절한 처리나 재생방법이 제대로 개발되어 있지 않아 단순 파쇄 및 분쇄되어 폐기될 뿐, 효과적인 재활용이 이루어지지 않고 있으며, 이는 환경적으로 많은 문제점들을 야기하고 있다. Thermosetting resins are widely used and occupied in various fields that are closely related to real life, such as sporting goods, electric and electronic devices, small ship materials, building materials, furniture, office equipment, automobiles, and the like. However, due to the insoluble and infusible properties of the intramolecular crosslinked network polymer chains, thermosetting resins have not yet been properly developed for proper treatment or regeneration. In addition, effective recycling is not achieved, which causes many environmental problems.

대부분 매립 또는 소각되는 폐 열경화성 수지를 재활용하기 위해서는 열경화성 수지의 가교 구조를 탈가교화시키고, 탈가교화된 반응 생성물을 유/무기화시키는 복합적인 시스템을 필요로 한다. 이처럼 폐 열경화성 수지의 재활용은 폐기물 자원 재활용 측면과 자원 효율화 측면에서 매우 절실히 요구되고 있는 실정이다.The recycling of waste thermoset resins, which are mostly embedded or incinerated, requires a complex system of decrosslinking the crosslinked structure of the thermosetting resin and organic / inorganicizing the decrosslinked reaction product. As such, the recycling of waste thermosetting resins is very urgently required in terms of waste resource recycling and resource efficiency.

일반적으로 폐 열경화성 수지 복합체의 일종인 폐 저밀도 폴리에틸렌계 발포체는 저렴한 가격에 비하여 우수한 물성을 가짐에 따라 범용 플라스틱 중에서 가장 많이 사용되는 고분자이지만, 열경화성이기 때문에 열을 가해도 용융되지 않아 재성형해 사용하기가 불가능하다. 따라서 저밀도 폴리에틸렌계 발포체는 대부분 매립하거나 소각 처리되는데, 이는 심각한 환경오염의 주원인으로 간주되고 있다. Generally, waste low density polyethylene foam, which is a kind of waste thermosetting resin composite, is the most used polymer among general-purpose plastics because it has excellent physical properties compared to low price, but because it is thermosetting, it is not melted even when heated and re-molded. Is impossible. Therefore, most low density polyethylene foams are landfilled or incinerated, which is considered to be a major cause of serious environmental pollution.

폐 열경화성 수지의 재활용과 관련하여, 대한민국 특허 제10-0733941호에는 상용화제와 기능성 수지를 이용하여 알루미늄이 증착된 다층 폐 포장 필름을 재생하는 방법이 개시되어 있고, 대한민국 특허 제10-0728087호에는 과산화물 가교제를 이용하여 반응압출(reactive extrusion)에 의해 폐 고밀도 폴리에틸렌을 재활용하는 방법이 개시되어 있다. 또한 유럽 특허 제0897783A2호에는 이축 압출기를 이용하여 고온에서 전단응력을 크게 함으로써 폐 저밀도 폴리에틸렌계 발포체를 일부 탈가교화시키는 방법이 개시되어 있다.Regarding the recycling of waste thermosetting resin, Korean Patent No. 10-0733941 discloses a method of regenerating a multilayer waste packaging film in which aluminum is deposited using a compatibilizer and a functional resin, and Korean Patent No. 10-0728087 A method for recycling waste high density polyethylene by reactive extrusion using a peroxide crosslinking agent is disclosed. European Patent No. 0897783A2 also discloses a method for partially decrosslinking waste low density polyethylene foams by increasing shear stress at high temperatures using a twin screw extruder.

그 외에도, 일본 공개특허 공보 제2005-281429호, 제2004-161983호, 제2003-96233호, 제2001-253968호 및 제2001-98107호에는 초임계수를 이용하여 가교 폴리올레핀의 가교결합을 선택적으로 제거하는 방법이 일부 시도되고 있으나, 물의 임계온도와 임계압력이 너무 높기 때문에 고가의 반응기가 필요하여 경제적인 측면에서 상용화에 걸림돌이 되고 있다. In addition, Japanese Laid-Open Patent Publication Nos. 2005-281429, 2004-161983, 2003-96233, 2001-253968 and 2001-98107 use supercritical water to selectively crosslink the crosslinked polyolefin. Although some attempts have been made, the critical temperature and critical pressure of the water are so high that an expensive reactor is required, making it economically difficult to commercialize.

이에 본 발명자들은 대부분 매립 또는 소각되는 폐 저밀도 폴리올레핀계 발포체를 효과적으로 재활용할 수 있는 경제적인 방법을 개발하고자 예의 연구 노력한 결과, 환경친화적인 반응용매로서 초임계 에탄올을 이용하여 폐 저밀도 폴리올레핀계 발포체를 탈가교화하여 재성형 가능한 저밀도 폴리에틸렌계 수지로 재생시키는 방법을 개발함으로써 본 발명을 완성하였다.Accordingly, the present inventors have diligently researched to develop an economical method for effectively recycling waste low density polyolefin foams mostly buried or incinerated. As a result, environmentally friendly reaction solvents were used to remove waste low density polyolefin foams using supercritical ethanol. The present invention has been completed by developing a method of regenerating a low-density polyethylene resin that can be reformed and remolded.

따라서 본 발명의 목적은 폐 저밀도 폴리에틸렌계 발포체를 재활용할 수 있도록 이를 환경친화적이고 경제적인 방법으로 탈가교화시켜 재생하는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for decrosslinking and recycling waste low-density polyethylene foams in an environmentally friendly and economic manner.

상기 목적을 달성하기 위하여, 본 발명은 폐 저밀도 폴리에틸렌계 발포체를 350 내지 500℃의 반응온도 및 5 내지 30 ㎫의 반응압력 조건 하에서 2 내지 30분간 초임계 에탄올을 반응용매로 사용하는 탈가교화 반응에 의해 재성형 가능한 저밀도 폴리에틸렌계 수지로 전환시키는 단계를 포함하는, 폐 저밀도 폴리에틸렌계 발포체를 재생하는 방법을 제공한다.In order to achieve the above object, the present invention is a waste low density polyethylene foam in the decrosslinking reaction using supercritical ethanol as a reaction solvent for 2 to 30 minutes under the reaction temperature of 350 to 500 ℃ and reaction pressure of 5 to 30 MPa. Provided is a method for regenerating waste low density polyethylene based foams, the method comprising the step of converting to low density polyethylene based resins capable of remolding.

또한 본 발명은 상기 방법에 따라 재생된 재생 저밀도 폴리에틸렌 수지를 제공한다.The present invention also provides a regenerated low density polyethylene resin recycled according to the above method.

아울러 본 발명은 상기 재생 폴리에틸렌 수지를 이용하여 제조된 성형품을 제공한다. In addition, the present invention provides a molded article manufactured using the recycled polyethylene resin.

본 발명에 따른 폐 저밀도 폴리에틸렌계 발포체의 재생방법은 반응용매로 독성이 없는 친환경적 용매인 초임계 에탄올을 이용하기 때문에 초임계수 보다 낮은 반응압력에서 탈가교화 반응을 수행할 수 있어 상용화 반응이 저렴하여 환경친화적이고 경제적인 방법이다. 따라서 본 발명에 따르면 매립되거나 소각되는 폐 저밀 도 폴리에틸렌의 양을 현저히 감소시킬 수 있어 이의 매립과 소각으로 인한 2차 환경오염을 방지할 수 있고, 이로부터 재생된 재생 저밀도 폴리에틸렌은 신재 저밀도 폴리에틸렌에 상응하는 우수한 기계적 물성을 가지고 있어 포장재, 단열재, 흡음재, 케이블 절연체 등의 다양한 성형품으로 유용하게 재활용될 수 있다. The method for regenerating the waste low density polyethylene foam according to the present invention uses supercritical ethanol, which is an environmentally friendly solvent with no toxicity as a reaction solvent, so that the crosslinking reaction can be carried out at a lower reaction pressure than the supercritical water, so that the commercialization reaction is cheap. It is a friendly and economic way. Therefore, according to the present invention, the amount of waste low density polyethylene that is buried or incinerated can be significantly reduced, thereby preventing secondary environmental pollution due to its landfill and incineration, and the regenerated low density polyethylene recycled therefrom corresponds to new low density polyethylene. It has excellent mechanical properties, and can be usefully recycled into various molded products such as packaging materials, heat insulating materials, sound absorbing materials, and cable insulators.

본 발명은 폐 저밀도 폴리에틸렌계 발포체를 350 내지 500℃의 반응온도 및 5 내지 30 ㎫의 반응압력 조건 하에서 2 내지 30분간 초임계 에탄올을 반응용매로 사용하는 탈가교화 반응에 의해 재성형 가능한 저밀도 폴리에틸렌계 수지로 전환시키는 단계를 포함하는, 폐 저밀도 폴리에틸렌계 발포체를 재생하는 방법에 관한 것이다.The present invention is a low-density polyethylene system that can be reformed by decrosslinking the waste low-density polyethylene foam using a supercritical ethanol as a reaction solvent for 2 to 30 minutes under a reaction temperature of 350 to 500 ° C. and a reaction pressure of 5 to 30 MPa. It relates to a method for regenerating waste low density polyethylene foam comprising the step of converting to a resin.

본 발명에 따른 폐 저밀도 폴리에틸렌계 발포체의 재생방법의 특징은 폐 열경화성 수지의 재활용(recycling)에 환경친화적인 초임계유체 공정을 적용한 것으로, 독성이 없어 친환경적이며 임계온도 및 임계압력이 초임계수에 비해 상대적으로 온화하여 설비화가 용이한 초임계 에탄올을 반응용매로 이용하는 탈가교화 반응에 의해 열경화성 수지인 폐 저밀도 폴리에틸렌계 발포체를 재성형 가능한 저밀도 폴리에틸렌계 수지로 전환시키는 것을 특징으로 한다.The regeneration method of the waste low density polyethylene foam according to the present invention is characterized by applying an environmentally friendly supercritical fluid process to recycling waste thermosetting resins, which is environmentally friendly due to no toxicity, and the critical temperature and the critical pressure are higher than those of the supercritical water. It is characterized by converting a waste low density polyethylene foam, which is a thermosetting resin, into a low density polyethylene resin that can be reshaped by a decrosslinking reaction using supercritical ethanol, which is relatively mild and easy to equip, as a reaction solvent.

초임계유체(supercritical fluid)는 일반적인 액체나 기체 상태의 물질이 임계점(supercritical point)이라 불리는 일정한 고온·고압의 한계를 넘으면 기체와 액체의 구별을 할 수 없는 ‘임계상태’에 이른 물질을 일컫는다. 초임계 유체 분자의 밀도는 액체에 가깝지만 점성도는 낮아 기체에 가깝고, 확산이 빨라 열전도성 이 물만큼이나 높다. 이에 따라 초임계 유체를 용매로 사용하면 녹아 있는 분자, 즉 용질 주변의 용매 농도가 극히 높아진다. 이런 특징으로 인해 초임계 유체는 혼합물에서 특정 성분을 추출·분리하는 공정에 주로 사용된다. Supercritical fluid refers to a substance that is in a "critical state" that cannot distinguish between gas and liquid when a normal liquid or gaseous substance exceeds a certain high temperature and high pressure limit called a supercritical point. The density of supercritical fluid molecules is close to liquid, but the viscosity is low, close to gas, and the diffusion is so high that the thermal conductivity is as high as water. Accordingly, the use of a supercritical fluid as a solvent results in extremely high concentrations of dissolved molecules, i.e., the solvent around the solute. Because of this feature, supercritical fluids are mainly used in the process of extracting and separating certain components from a mixture.

본 발명에서는 기체의 낮은 표면 장력, 저점도, 높은 확산속도와 액체의 뛰어난 용해력 등의 장점을 모두 갖는 초임계유체로서 임계점 이상의 고온·고압 상태에서 고분자 사슬을 절단할 수 있는 초임계 에탄올을 반응용매로 선택하였다. 초임계 에탄올은 분자량이 46.07 g/㏖인 무독성 초임계유체로서, 513.9℃의 임계온도 및 6.14 ㎫의 임계압력을 가져 647.3℃의 임계온도 및 7.38 ㎫의 임계압력을 갖는 초임계수보다 상대적으로 임계점이 낮아 상용화 시 설비구축 비용이 저렴하기 때문에 탈가교화 반응에 의해 열경화성 수지인 폐 저밀도 폴리에틸렌계 발포체를 저밀도 폴리에틸렌계 수지로 전환시키는데 효과적으로 사용될 수 있다.In the present invention, a supercritical fluid having all of the advantages of low surface tension, low viscosity, high diffusion rate, and excellent dissolving ability of a liquid is a supercritical ethanol which can cut a polymer chain at a high temperature and high pressure above a critical point. Was selected. Supercritical ethanol is a non-toxic supercritical fluid with a molecular weight of 46.07 g / mol, which has a critical temperature of 513.9 ° C and a critical pressure of 6.14 MPa, which has a critical point relative to that of a critical temperature of 647.3 ° C and a critical pressure of 7.38 MPa. It can be effectively used to convert the waste low density polyethylene foam, which is a thermosetting resin, into a low density polyethylene resin by a decrosslinking reaction because of low cost of equipment construction during commercialization.

이하에서는 본 발명에 따른 폐 저밀도 폴리에틸렌계 발포체의 재생방법을 상세히 설명하고자 한다.Hereinafter will be described in detail the recycling method of the waste low density polyethylene foam according to the present invention.

본 발명에서는 도 1에 나타낸 바와 같은 고압용 회분식 반응기와 초임계 에탄올을 반응용매로 이용하는 초임계유체 공정에 의해 폐 저밀도 폴리에틸렌계 발포체를 재활용할 수 있는 방법을 구현하였다. In the present invention, a method for recycling waste low-density polyethylene foams by a supercritical fluid process using a high pressure batch reactor and a supercritical ethanol as a reaction solvent is illustrated.

본 발명에 따른 재생방법에는 가교화된 고분자 사슬의 불용성 및 불융성으로 인해 재활용되지 못하고 단순히 매립 또는 소각에 의해 폐기되는 모든 폐 저밀도 폴리에틸렌계 발포체가 적용될 수 있다. 바람직하게는, 유기과산화물 가교방식 및 전자선 가교방식의 폐 저밀도 폴리에틸렌계 발포체일 수 있으며, 45 내지 65%의 겔 분율을 갖는 폐 저밀도 폴리에틸렌계 발포체가 유리하게 적용될 수 있다. In the regeneration method according to the present invention, all waste low density polyethylene foams which are not recycled due to insolubility and incompatibility of crosslinked polymer chains and simply discarded by landfilling or incineration may be applied. Preferably, it may be a waste low density polyethylene foam of organic peroxide crosslinking and electron beam crosslinking, and waste low density polyethylene foam having a gel fraction of 45 to 65% may be advantageously applied.

또한 본 발명에 따르면 폐 저밀도 폴리에틸렌계 발포체의 형태와 크기에 관계없이 모든 종류의 폐기물을 재활용할 수 있으며, 폐 저밀도 폴리에틸렌계 발포체를 원형 그대로, 또는 분쇄하거나 압축한 형태로 적용하더라도 동일한 결과를 달성할 수 있다. In addition, according to the present invention, all kinds of wastes can be recycled regardless of the shape and size of the waste low density polyethylene foam, and the same result can be achieved even if the waste low density polyethylene foam is applied as it is, or in a crushed or compressed form. Can be.

도 1에 예시된 고압용 회분식 반응기는 스테인리스강, 하스텔로이강, 인코넬강 등을 사용하여 제조될 수 있으나, 에탄올이 초임계 상태에서 부식성이 거의 없기 때문에 단가가 낮은 스테인리스강을 사용하는 것이 경제적으로 유리하다. The high pressure batch reactor illustrated in FIG. 1 may be manufactured using stainless steel, Hastelloy steel, Inconel steel, etc., but since ethanol has little corrosiveness in a supercritical state, it is economical to use stainless steel having a low cost. It is advantageous.

본 발명의 바람직한 실시형태에서는, 상기한 고압용 회분식 반응기에 잘게 분쇄한 폐 저밀도 폴리에틸렌계 발포체와 초임계 에탄올을 넣은 후 360 내지 380℃의 반응온도 및 10 내지 15 ㎫의 반응압력 조건 하에서 5 내지 10분간 탈가교화 반응을 수행하여 폐 저밀도 폴리에틸렌계 발포체를 저밀도 폴리에틸렌 수지로 전환시킨다. In a preferred embodiment of the present invention, after the finely pulverized waste low density polyethylene foam and supercritical ethanol are put into the above-described high-pressure batch reactor, 5 to 10 under a reaction temperature of 360 to 380 ° C and a reaction pressure of 10 to 15 MPa A minute decrosslinking reaction is performed to convert the waste low density polyethylene foam into a low density polyethylene resin.

상기에서 반응용매로 사용된 초임계 에탄올은 재생하고자 하는 폐 저밀도 폴리에틸렌계 발포체의 100 중량부를 기준으로 100 내지 700 중량부의 양으로 사용되는 것이 바람직하다. 초임계 에탄올의 사용량이 100 중량부 미만일 경우에는 초임계 조건이 아니어서 탈가교화 반응이 이루어지지 않는 문제점이 발생할 수 있고, 700 중량부를 초과하는 경우에는 높은 증기압에 의한 폭발 위험성으로 인해 반응기를 더 두껍게 제조해야 하는 문제점이 발생할 수 있다. The supercritical ethanol used as the reaction solvent is preferably used in an amount of 100 to 700 parts by weight based on 100 parts by weight of the waste low density polyethylene foam to be recycled. If the amount of supercritical ethanol is less than 100 parts by weight, it is not a supercritical condition, which may cause a problem of decrosslinking reaction. If it exceeds 700 parts by weight, the reactor may be thicker due to explosion risk due to high vapor pressure. Problems that must be produced can arise.

반응압력은 상기 범위 내에서 반응기에 주입되는 폐 저밀도 폴리에틸렌계 발 포체와 초임계 에탄올의 양에 따라 조절하고, 반응온도는 반응기 외부에 설치된 전기로를 이용하여 조절한다. 탈가교화 반응이 종결된 후, 반응기 내 반응물의 체류시간을 줄이기 위해 냉각기를 반응기 내부와 플랜지 부분에 내장하여 냉각속도를 30분 이내로 조절하는 것이 바람직하다. 만약 냉각속도가 30분을 초과하게 되면 반응 체류시간의 증가로 고분자의 열화에 의한 물성이 감소하는 문제점이 발생할 수 있다.The reaction pressure is adjusted according to the amount of waste low density polyethylene foam and supercritical ethanol injected into the reactor within the above range, and the reaction temperature is controlled by using an electric furnace installed outside the reactor. After the decrosslinking reaction is completed, it is preferable to adjust the cooling rate within 30 minutes by embedding a cooler in the reactor and the flange portion in order to reduce the residence time of the reactants in the reactor. If the cooling rate exceeds 30 minutes may cause a problem that the physical properties due to degradation of the polymer decreases due to the increase in the reaction residence time.

상기 방법을 통해 재생된 저밀도 폴리에틸렌 수지를 회수한 후 가교도를 분석한 결과, 65%의 겔분율을 갖는 폐 저밀도 폴리에틸렌계 발포체가 초임계 에탄올을 이용한 탈가교화 반응에 의해 1% 이하의 겔분율을 갖는 재생 가능한 저밀도 폴리에틸렌 수지로 전환됨을 확인하였다.After recovering the low density polyethylene resin recovered through the above method, the degree of crosslinking was analyzed. As a result, the waste low density polyethylene foam having a gel fraction of 65% had a gel fraction of 1% or less by decrosslinking reaction using supercritical ethanol. It was found to be converted to a renewable low density polyethylene resin.

결론적으로, 본 발명에 따른 폐 저밀도 폴리에틸렌계 발포체의 재생방법은 반응용매로 독성이 없는 친환경적 용매인 초임계 에탄올을 이용하기 때문에 초임계수 보다 낮은 반응압력에서 탈가교화 반응을 수행할 수 있어 상용화가 경제적이고 환경친화적인 방법이다. 따라서 본 발명에 따르면 매립되거나 소각되는 폐 저밀도 폴리에틸렌의 양을 현저히 감소시킬 수 있어 이의 매립과 소각으로 인한 2차 환경오염을 방지할 수 있고, 이로부터 재생된 재생 저밀도 폴리에틸렌은 0.2% 이하의 겔분율을 갖고 신재 저밀도 폴리에틸렌에 상응하는 우수한 기계적 물성을 나타내어 포장재, 단열재, 흡음재, 케이블 절연체 등의 다양한 성형품으로 유용하게 재활용될 수 있다. In conclusion, the recycling method of the waste low density polyethylene foam according to the present invention uses supercritical ethanol, which is an environmentally friendly solvent with no toxicity as a reaction solvent, so that the decrosslinking reaction can be carried out at a lower reaction pressure than the supercritical water. It is an environmentally friendly way. Therefore, according to the present invention, the amount of waste low-density polyethylene that is buried or incinerated can be significantly reduced, thereby preventing secondary environmental pollution due to its landfill and incineration, and the regenerated low-density polyethylene recycled therefrom has a gel fraction of 0.2% or less. It has excellent mechanical properties corresponding to new low density polyethylene, and can be usefully recycled into various molded products such as packaging materials, heat insulating materials, sound absorbing materials, and cable insulators.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention.

실시예 1Example 1

500 ㎖ 부피의 스테인리스강 회분식 반응기(SUS316)를 사용하여 폐 저밀도 폴리에틸렌계 발포체(XLPE)를 0.6 내지 1.0 ㎜ 정도의 크기로 분쇄한 후, 이 분쇄물과, 분쇄물 100 중량부에 대해 에탄올 500 중량부를 상기 반응기에 첨가하였다. 반응기 반응조건을 375℃의 반응온도 및 10 ㎫의 반응압력과, 380℃의 반응온도 및 15 ㎫의 반응압력으로 달리하여 각각 5분간 탈가교화 반응을 수행하였다. 탈가교화 반응이 종결된 후, 냉각기를 이용하여 반응물의 온도를 상온까지 급속히 냉각시켜 재생된 저밀도 폴리에틸렌 수지를 회수하였다Using a 500 ml stainless steel batch reactor (SUS316), the waste low density polyethylene foam (XLPE) was pulverized to a size of about 0.6 to 1.0 mm, and then the pulverized product and 500 parts of ethanol were added to 100 parts by weight of the pulverized product. Part was added to the reactor. The reactor crosslinking reaction was performed for 5 minutes by varying the reaction temperature of the reaction temperature of 375 ° C. and the reaction pressure of 10 MPa, the reaction temperature of 380 ° C. and the reaction pressure of 15 MPa. After the decrosslinking reaction was terminated, the reactant was rapidly cooled to room temperature using a cooler to recover the regenerated low density polyethylene resin.

각각의 반응 후에 회수된 저밀도 폴리에틸렌 수지의 가교도를 ASTM D2765에 따라 측정하였다. 간략히 설명하면, 30 내지 60 메쉬의 분쇄된 시료를 120 메쉬의 철망 주머니에 넣고 응축기와 연결된 둥근 플라스크에 담긴 자일렌(xylene)을 이용하여 1기압(0.1 ㎫), 110℃에서 12시간 동안 끓여 추출하였다(도 2). 추출 후 철망 주머니에 남은 시료의 양(㎎)을 측정하고, 이를 이용하여 겔분율(%)을 계산하였고, 그 결과를 하기 표 1에 나타내었다.The crosslinking degree of the low density polyethylene resin recovered after each reaction was measured according to ASTM D2765. Briefly, the pulverized sample of 30 to 60 mesh was put into a 120 mesh wire mesh bag and boiled at 1 atmosphere (0.1 MPa) at 110 ° C. for 12 hours using xylene contained in a round flask connected to a condenser. (FIG. 2). After extraction, the amount of the sample remaining in the wire mesh bag (mg) was measured, and the gel fraction (%) was calculated using this, and the results are shown in Table 1 below.

반응온도(℃)Reaction temperature (℃) 반응압력(㎫)Reaction pressure (MPa) XLPE:에탄올XLPE: Ethanol 반응시간(분)Response time (minutes) 겔분율(%)Gel fraction (%) 380380 1515 1:51: 5 55 0.40.4 375375 1010 1:51: 5 55 2.52.5

표 1에 나타난 바와 같이, 65% 겔분율을 가진 폐 저밀도 폴리에틸렌계 발포체는 375℃ 및 10 ㎫의 탈가교화 반응에 의해서 겔분율이 2.5%로 감소하였고, 380℃ 및 15 ㎫의 탈가교화 반응에 의해서 겔분율이 0.40%로 감소하였다. As shown in Table 1, the waste low-density polyethylene foam with 65% gel fraction was reduced to 2.5% by 375 ° C and 10 MPa decrosslinking reaction, and by decrosslinking reaction of 380 ° C and 15 MPa. The gel fraction was reduced to 0.40%.

상기 결과로부터 본 발명에 따라 초임계 에탄올을 이용하여 폐 저밀도 폴리에틸렌계 발포체를 탈가교화시키면 겔분율이 현저히 감소하여 폐 저밀도 폴리에틸렌계 발포체를 저밀도 폴리에틸렌 수지로 효과적으로 재생할 수 있음을 확인하였다.From the above results, it was confirmed that decrosslinking the waste low density polyethylene foam using supercritical ethanol according to the present invention significantly reduced the gel fraction, thereby effectively recycling the waste low density polyethylene foam into a low density polyethylene resin.

이상으로 본 발명 내용의 특정 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따른 탈가교화 반응에 이용될 수 있는 고압용 회분식 반응기의 모식도를 나타낸 것이고,Figure 1 shows a schematic diagram of a high pressure batch reactor that can be used in the decrosslinking reaction according to the present invention,

도 2는 저밀도 폴리에틸렌 수지의 겔분율 측정을 위한 추출 장비의 모식도를 나타낸 것이다. Figure 2 shows a schematic diagram of the extraction equipment for measuring the gel fraction of the low density polyethylene resin.

*도면의 부호에 대한 간단한 설명** Brief description of the symbols in the drawings *

1: 압력 게이지, 2: 질소 유입구1: pressure gauge, 2: nitrogen inlet

3: 플랜지, 4: 반응기3: flange, 4: reactor

5: 냉각수 유입구, 6: 온도 게이지5: coolant inlet, 6: temperature gauge

7: 질소 유출구, 8: 냉각수 유출구7: nitrogen outlet, 8: cooling water outlet

9: 번호표, 10: 응축기9: number plate, 10: condenser

11: 클램프, 12: 냉각수 유입구11: clamp, 12: coolant inlet

13: 코르크 마개, 14: 둥근 플라스크13: cork stopper, 14: round flask

15: 전압조절기, 16: 냉각수 유출구15: voltage regulator, 16: coolant outlet

17: 스탠드, 18: 크실렌17: stand, 18: xylene

19: 가열로, 20: 시료 주머니19: heating furnace, 20: sample bag

Claims (8)

폐 저밀도 폴리에틸렌계 발포체를 350 내지 500℃의 반응온도 및 5 내지 30 ㎫의 반응압력 조건 하에서 2 내지 30분간 초임계 에탄올을 반응용매로 사용하는 탈가교화 반응에 의해 재성형 가능한 저밀도 폴리에틸렌계 수지로 전환시키는 단계를 포함하는, 폐 저밀도 폴리에틸렌계 발포체를 재생하는 방법.The waste low density polyethylene foam is converted into a low density polyethylene resin that can be reshaped by a decrosslinking reaction using supercritical ethanol as a reaction solvent for 2 to 30 minutes under a reaction temperature of 350 to 500 ° C. and a reaction pressure of 5 to 30 MPa. A method for regenerating waste low density polyethylene-based foam, the method comprising: 제1항 있어서, The method of claim 1, 상기 폐 저밀도 폴리에틸렌계 발포체가 유기과산화물 가교방식 또는 전자선 가교방식의 폐 저밀도 폴리에틸렌계 발포체인 것을 특징으로 하는 방법.And said waste low density polyethylene foam is a waste low density polyethylene foam of organic peroxide crosslinking or electron beam crosslinking. 제2항 있어서, The method of claim 2, 상기 폐 저밀도 폴리에틸렌계 발포체가 45 내지 65%의 겔분율을 갖는 것을 특징으로 하는 방법.Wherein said waste low density polyethylene foam has a gel fraction of 45 to 65%. 제1항 있어서, The method of claim 1, 상기 폐 저밀도 폴리에틸렌계 발포체 100 중량부에 대해 초임계 에탄올이 100 내지 700 중량부의 양으로 사용되는 것을 특징으로 하는 방법.Supercritical ethanol is used in an amount of 100 to 700 parts by weight based on 100 parts by weight of the waste low density polyethylene foam. 제1항 있어서, The method of claim 1, 상기 탈가교화 반응이 360 내지 380℃의 반응온도 및 10 내지 15 ㎫의 반응압력 조건 하에서 5 내지 10분간 수행되는 것을 특징으로 하는 방법.The decrosslinking reaction is characterized in that it is carried out for 5 to 10 minutes under a reaction temperature of 360 to 380 ℃ and a reaction pressure of 10 to 15 MPa. 제1항의 방법에 따라 재생된 재생 저밀도 폴리에틸렌 수지. Regenerated low density polyethylene resin recycled according to the method of claim 1. 제6항에 있어서,The method of claim 6, 상기 재생 저밀도 폴리에틸렌 수지가 0.2% 이하의 겔분율을 갖는 것을 특징으로 하는 재생 저밀도 폴리에틸렌 수지.The regenerated low density polyethylene resin has a gel fraction of 0.2% or less. 제6항에 따른 재생 저밀도 폴리에틸렌 수지를 이용하여 제조된 성형품. A molded article manufactured using the recycled low density polyethylene resin according to claim 6.
KR20080104395A 2008-10-23 2008-10-23 Method of recycling crosslinked waste foams of low-density polyethylene KR101125703B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20080104395A KR101125703B1 (en) 2008-10-23 2008-10-23 Method of recycling crosslinked waste foams of low-density polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080104395A KR101125703B1 (en) 2008-10-23 2008-10-23 Method of recycling crosslinked waste foams of low-density polyethylene

Publications (2)

Publication Number Publication Date
KR20100045282A true KR20100045282A (en) 2010-05-03
KR101125703B1 KR101125703B1 (en) 2012-03-23

Family

ID=42273051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080104395A KR101125703B1 (en) 2008-10-23 2008-10-23 Method of recycling crosslinked waste foams of low-density polyethylene

Country Status (1)

Country Link
KR (1) KR101125703B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482749B1 (en) * 2013-12-30 2015-01-14 한국과학기술연구원 Method of foaming recycled crosslinked polymeric resins via supercritical decrosslinking reaction and form materials manufactured by the same
WO2016163765A1 (en) * 2015-04-09 2016-10-13 엘에스전선 주식회사 Decrosslinked polyolefin resin and resin composition containing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006525B1 (en) * 2016-10-07 2019-08-01 엘에스전선 주식회사 Decrosslinked polyolefine resin and resin composition comprising the same
KR102151360B1 (en) * 2019-10-28 2020-09-02 엘에스전선 주식회사 Decrosslinked polyolefine resin for cable filler and resin composition comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192495A (en) 2000-01-06 2001-07-17 Chubu Electric Power Co Inc Method for reprocessing cross-linked polyolefin
JP4534395B2 (en) * 2001-07-23 2010-09-01 日立電線株式会社 Method for producing material recycled from cross-linked polymer
JP3731825B2 (en) * 2003-11-10 2006-01-05 日立電線株式会社 Supercritical fluid processing equipment
JP4720463B2 (en) 2005-11-30 2011-07-13 パナソニック株式会社 Decomposition treatment method for cured resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482749B1 (en) * 2013-12-30 2015-01-14 한국과학기술연구원 Method of foaming recycled crosslinked polymeric resins via supercritical decrosslinking reaction and form materials manufactured by the same
WO2016163765A1 (en) * 2015-04-09 2016-10-13 엘에스전선 주식회사 Decrosslinked polyolefin resin and resin composition containing same
KR20160121658A (en) * 2015-04-09 2016-10-20 엘에스전선 주식회사 Decrosslinked polyolefine resin and resin composition comprising the same

Also Published As

Publication number Publication date
KR101125703B1 (en) 2012-03-23

Similar Documents

Publication Publication Date Title
Achilias et al. Aminolytic depolymerization of poly (ethylene terephthalate) waste in a microwave reactor
Oliveux et al. Degradation of a model epoxy resin by solvolysis routes
EP1731557B1 (en) Method of decomposing plastic
KR101125703B1 (en) Method of recycling crosslinked waste foams of low-density polyethylene
Yan et al. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites
CN109320762B (en) Method for recovering waste thermosetting resin by using microwaves
Xu et al. Fast‐Reprocessing, Postadjustable, Self‐Healing Covalent Adaptable Networks with Schiff Base and Diels–Alder Adduct
CN108912389B (en) Method for recovering carbon fiber in carbon fiber/bismaleimide resin composite material
Ma et al. Recovery and reuse of acid digested amine/epoxy-based composite matrices
Lejeail et al. Development of a completely recyclable glass fiber‐reinforced epoxy thermoset composite
Baek et al. Continuous supercritical decrosslinking extrusion process for recycling of crosslinked polyethylene waste
Sun et al. Selective decomposition process and mechanism of Si–O–Si cross-linking bonds in silane cross-linked polyethylene by solid-state shear milling
Xie et al. A thermadapt epoxy based on borate ester crosslinking and its carbon fiber composite as rapidly processable prepreg
Baek et al. A kinetic study on the supercritical decrosslinking reaction of silane-crosslinked polyethylene in a continuous process
Cunha et al. Reaction and thermal behavior of vitrimer‐like polyhydroxy esters based on polyethylene glycol diglycidyl ether
Gong et al. Activation of inert triethylene tetramine-cured epoxy by sub-critical water decomposition
KR101139475B1 (en) Method of recycling crosslinked waste pipes of high density polyethylene
Huang Perspective on emerging materials for high voltage applications
Zhou et al. Unraveling a path for multi-cycle recycling of tailored fiber-reinforced vitrimer composites
Bicer et al. Crosslinked low-density polyethylene/polyhedral oligomeric silsesquioxanes composites: Effects of crosslinker concentration on the mechanical, thermal, rheological, and shape memory properties
JP4720463B2 (en) Decomposition treatment method for cured resin
CA2341651A1 (en) Recycling of thermosetting materials
Ramakrishna et al. Recycling of carbon fiber/peek composites
US20220363863A1 (en) Recovery and reuse of acid digested amine/epoxy-based composite matrices
Carfagna et al. Liquid crystalline epoxy resins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160302

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee