KR20100043654A - Flexible x-ray image sensor - Google Patents

Flexible x-ray image sensor Download PDF

Info

Publication number
KR20100043654A
KR20100043654A KR1020080102756A KR20080102756A KR20100043654A KR 20100043654 A KR20100043654 A KR 20100043654A KR 1020080102756 A KR1020080102756 A KR 1020080102756A KR 20080102756 A KR20080102756 A KR 20080102756A KR 20100043654 A KR20100043654 A KR 20100043654A
Authority
KR
South Korea
Prior art keywords
image sensor
flexible
scintillator
ray image
polymer
Prior art date
Application number
KR1020080102756A
Other languages
Korean (ko)
Other versions
KR101003693B1 (en
Inventor
고종수
정필구
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020080102756A priority Critical patent/KR101003693B1/en
Priority to PCT/KR2009/005934 priority patent/WO2010047494A2/en
Publication of KR20100043654A publication Critical patent/KR20100043654A/en
Application granted granted Critical
Publication of KR101003693B1 publication Critical patent/KR101003693B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE: A flexible X-ray image sensor is provided to improve the availability for the whole medical areas by manufacturing a flexible X-ray image sensor which has a wide area. CONSTITUTION: A flexible X-ray image sensor comprises a flexible polymer flat plate(30), a photo-detection device(10), and a scintillator panel(20). The photo-detection device comprises a substrate and a plurality of photo diode units(13) formed in a single-side of the substrate. The photo diode unit comprises a computation circuit which is an ASIC, a photo diode, and a TFT. The scintillator panel is combined in the single-side of the photo-detection device. The scintillator panel changes the X-rays to the sensible wavelength band of the photo diode unit. The polymer layer is combined in the scintillator.

Description

유연한 엑스선 영상센서{Flexible X-ray Image Sensor}Flexible X-ray Image Sensor

본 발명은 유연한 엑스선 영상센서에 대한 것으로서, 더욱 상세하게는 곡면의 구조를 촬영할 때 유연하게 휘어질 수 있는 엑스선 영상센서에 대한 것이다.The present invention relates to a flexible X-ray image sensor, and more particularly, to an X-ray image sensor that can be flexibly bent when photographing a curved structure.

1895년 독일의 Wilhlem Conrad Reontgen에 의해 엑스선이 발견된 이래로 인체 내부의 투시가 가능해져서 엑스선을 사용하여 뼈의 골절이나 결핵, 폐렴 등을 진단할 수 있었다. 이러한 엑스선은 진단 및 치료분야에 사용되어 인류에게 임상정보를 직접적으로 보여주는 장점이 있었다. 그러나 엑스선은 F/S(Film Screen) 방식이어서 엑스선에 의한 의료영상이 매년 증가할 경우 필름의 보관과 관리에 어려움이 있었으며, 기존 데이터를 활용할 때 불편한 점 등 많은 문제점들이 대두되었다. 선진국들을 중심으로 이러한 문제점들에 대한 해결책을 찾기 시작하였으며, 1971년 영국 EMI의 Godfrey Hunsfield에 의해 CT(컴퓨터 단층촬영기)가 개발되어 인체의 단층촬영이 의료 진단분야에 사용되기 시작하였다. 최근에는 이러한 CT(Computed Tomography), CR(Computed Radiography) 등의 디지털 영상 장치의 출현을 기점으로 디지털 영상의 우수한 장점을 앞세워 의료영상시스템(PACS; Picture Archiving and Communication System)의 개발 및 보급에 대한 주의가 집중되고 있다. 현재 국내에 서는 1994년 삼성서울병원이 PACS를 채용한 이래로 국내 의료계는 F/S 방식의 아날로그 시스템에서 디지털 영상장치로 바뀌어가고 있는 실정이다. 또한 1999년 PACS에 대한 의료보험 수가가 적용되면서 많은 국내 병원들이 경쟁적으로 PACS를 설치하여 왔다.Since X-rays were discovered by Wilhlem Conrad Reontgen in Germany in 1895, they were able to see the inside of the human body, allowing them to diagnose bone fractures, tuberculosis and pneumonia. Such X-rays have been used in the diagnosis and treatment fields to directly show human clinical information. However, since X-ray is a F / S (Film Screen) method, when the medical image by X-ray increases every year, it is difficult to store and manage the film, and many problems such as inconvenience of using existing data have emerged. The developed countries began to find solutions to these problems. In 1971, CT (Computer Tomography) was developed by Godfrey Hunsfield of EMI in the UK, and human tomography began to be used in medical diagnostics. Recently, with the advent of digital imaging devices such as CT (Computed Tomography) and CR (Computed Radiography), attention to the development and dissemination of PACS (Picture Archiving and Communication System) Is concentrated. In Korea, since Samsung Seoul Hospital adopted PACS in 1994, the domestic medical industry is changing from an F / S analog system to a digital imaging device. Also, in 1999, as the number of medical insurance coverage for PACS was applied, many domestic hospitals have competitively installed PACS.

일반적으로 사용빈도가 높은 디지털 엑스선 영상장치는 크게 직접변환방식(Direct Conversion Method)과 간접변환방식(Indirect Conversion Method)이 있다. 상기 직접변환방식은 엑스선에 유도된 광도전체(Photoconductor)의 전기적 신호를 직접 받아 영상을 만들어내는 TFT(Thin Film Transistor)를 기반으로 한다. 그리고 상기 간접변환방식은 엑스선으로 유도된 섬광체의 빛을 수광 소자를 이용하여 전기신호로 변환시켜 영상을 만들어 내는 TFT 기반의 간접변환방식과, 엑스선으로 유도된 섬광체의 빛을 CCD(Charge Couple Device) 또는 CMOS(Complementary Metal Oxide Semiconductor)를 이용하여 영상을 만들어 내는 간접변환방식으로 배분된다. 특히 치과용 의료진단 분야에서는 빠른 검사/진단 및 높은 해상도 등이 필요로 하여 디지털 엑스선 영상장치들이 각광을 받고 있다.In general, high frequency digital X-ray imaging apparatus has a direct conversion method (Direct Conversion Method) and indirect conversion method (Indirect Conversion Method). The direct conversion method is based on a thin film transistor (TFT) that directly generates an image by receiving an electrical signal of a photoconductor induced in X-rays. In addition, the indirect conversion method is a TFT-based indirect conversion method for generating an image by converting light of an X-ray-induced scintillator into an electrical signal using a light receiving element, and converting the light of the X-ray-induced scintillator into a CCD (Charge Couple Device). Or, it is distributed by an indirect conversion method that produces an image using a complementary metal oxide semiconductor (CMOS). In particular, in the field of dental medical diagnosis, digital X-ray imaging apparatuses are in the spotlight due to the need for rapid inspection / diagnosis and high resolution.

종래의 간접변환방식을 응용한 엑스선 영상센서는 광검출소자와 스위치가 공존하는 정질 또는 비정질 실리콘 박막트랜지스터(thin film transistor) 기반의 소자에 섬광체가 결합된 형태로 구성된다. 이러한 종래의 영상센서는 광검출소자가 복층형 평판구조로서 딱딱한 고체패널로 되어 있기 때문에 영상센서가 유연하게 휘어지지 아니하였다. 따라서 치과에서 사용하는 치아 촬영용 디지털 엑스선 영상센서는 딱딱한 고체기판으로 인해 구강 내 촬영시 환자에게 큰 불편을 주었다.The X-ray image sensor using the conventional indirect conversion method is composed of a scintillator coupled to a crystalline or amorphous silicon thin film transistor based device in which a photodetecting device and a switch coexist. In the conventional image sensor, the image sensor does not flex flexibly because the photodetecting device has a rigid solid panel as a multilayer flat plate structure. Therefore, the digital X-ray image sensor for dental imaging used in dentistry caused a great inconvenience to the patient during intraoral imaging due to the rigid solid substrate.

본 발명은 상기의 문제점을 해결하기 위한 것이다. 본 발명은 사용자의 편의성이 뛰어난 유연한 엑스선 영상센서를 제공하는 것을 목적으로 한다.The present invention is to solve the above problems. An object of the present invention is to provide a flexible X-ray image sensor excellent in user convenience.

본 발명에 따른 유연한 엑스선 영상센서는 유연한 폴리머평판과, 유연한 광검출소자와, 유연한 섬광체패널을 포함한다. 상기 광검출소자는 기판과, 복수의 포토다이오드유닛을 구비하며 상기 폴리머평판의 일면에 형성된다. 상기 포토다이오드유닛은 포토다이오드와, TFT와, ASIC화된 연산회로가 형성되며 상기 기판의 일면에 결합된다. 상기 섬광체패널은 섬광체와, 폴리머층을 구비하며 상기 광검출소자의 일면에 결합한다. 상기 섬광체는 상기 포토다이오드유닛에 대응하며 엑스선을 상기 포토다이오드유닛이 감지할 수 있는 파장대로 변환시킬 수 있다The flexible X-ray image sensor according to the present invention includes a flexible polymer plate, a flexible photodetector, and a flexible scintillator panel. The photodetecting device includes a substrate and a plurality of photodiode units and is formed on one surface of the polymer flat plate. The photodiode unit includes a photodiode, a TFT, and an ASIC operation circuit and is coupled to one surface of the substrate. The scintillator panel includes a scintillator and a polymer layer and is coupled to one surface of the photodetecting device. The scintillator may correspond to the photodiode unit and convert X-rays to a wavelength that the photodiode unit can detect.

또한, 상기 엑스선 영상센서에 있어서, 상기 섬광체는 Gd2O2S:Tb, CsI:Na, NaI:Tl, CsBr:Eu, LiI:Eu, CsI:Tl로 이루어진 군으로부터 선택된 것이 바람직하다.In the X-ray image sensor, the scintillator is preferably selected from the group consisting of Gd 2 O 2 S: Tb, CsI: Na, NaI: Tl, CsBr: Eu, LiI: Eu, and CsI: Tl.

또한, 상기 엑스선 영상센서에 있어서, 상기 섬광체패널은 상기 폴리머층과 상기 섬광체 사이에 형성된 반사층을 더 구비하는 것이 바람직하다.In the X-ray image sensor, the scintillator panel may further include a reflective layer formed between the polymer layer and the scintillator.

또한, 상기 엑스선 영상센서에 있어서, 상기 섬광체의 두께는 1 내지 10,000 마이크로미터인 것이 바람직하다.In the X-ray image sensor, the thickness of the scintillator is preferably 1 to 10,000 micrometers.

또한, 상기 엑스선 영상센서에 있어서, 상기 섬광체는 일정한 간격으로 이격된 격자 구조인 것이 바람직하다.In the X-ray image sensor, the scintillator may have a lattice structure spaced at regular intervals.

또한, 상기 엑스선 영상센서는 상기 폴리머평판과, 상기 광검출소자와, 상기 섬광체패널을 감싸는 외부몰더를 더 포함하는 것이 바람직하다.The X-ray image sensor may further include an external molder surrounding the polymer plate, the photodetecting device, and the scintillator panel.

또한, 상기 엑스선 영상센서는 영상센서가 굽혀질 때 상기 폴리머평판과 상기 광검출소자와 상기 섬광체패널의 접합부에 응력이 집중되는 것을 방지하기 위하여 상기 외부몰더에 삽입된 지지체를 더 포함하는 것이 가능하다.In addition, the X-ray image sensor may further include a support inserted into the outer mold to prevent the concentration of stress in the junction between the polymer plate, the photodetecting device and the scintillator panel when the image sensor is bent.

또한, 상기 엑스선 영상센서는 영상센서가 과도하게 굽혀지는 것을 방지하기 위하여 상기 외부몰더에 삽입된 스토퍼를 더 포함하는 것이 바람직하다.The X-ray image sensor may further include a stopper inserted into the external molder to prevent the image sensor from being excessively bent.

또한, 상기 엑스선 영상센서는 영상센서가 굽혀질 때 상기 폴리머평판과 상기 광검출소자와 상기 섬광체패널의 접합부에 응력이 집중되는 것을 방지하기 위하여 상기 폴리머평판에 삽입된 지지체를 더 포함하는 것이 가능하다.In addition, the X-ray image sensor may further include a support inserted into the polymer plate to prevent stress concentration at the junction between the polymer plate, the photodetecting element and the scintillator panel when the image sensor is bent.

또한, 상기 엑스선 영상센서는 영상센서가 과도하게 굽혀지는 것을 방지하기 위하여 상기 폴리머평판에 삽입된 스토퍼를 더 포함하는 것이 바람직하다.The X-ray image sensor may further include a stopper inserted into the polymer plate to prevent the image sensor from being excessively bent.

본 발명에 따르면, 유연한 섬광체패널과 유연한 광검출소자와 유연한 폴리머 평판을 사용하여 유연한 엑스선 영상센서를 제공함으로써, 곡면을 가진 3차원 형상을 정확하게 촬영할 수 있다.According to the present invention, by providing a flexible X-ray image sensor using a flexible scintillator panel, a flexible light detector and a flexible polymer flat plate, it is possible to accurately photograph a three-dimensional shape having a curved surface.

또한, 본 발명에 따르면, 보다 넓은 면적의 유연한 엑스선 영상센서가 제작 가능하며, 응용범위 또한 치과용을 넘어서 의료 전반에 활용가능하며, 동물촬영용 및 산업용으로 응용가능하다. In addition, according to the present invention, a wider area of the flexible X-ray image sensor can be produced, the scope of application is also applicable to the entire medical field beyond the dental, animal applications and industrial applications.

도 1은 본 발명에 따른 유연한 엑스선 영상센서의 일 실시예의 개념도이고, 도 2는 도 1에 도시된 실시예가 휘어진 개념도이며, 도 3은 도 1에 도시된 실시예의 단면도이다. 그리고 도 4는 도 1에 도시된 실시예에서 광검출소자의 개념도이고, 도 5는 도 1에 도시된 실시예에서 섬광체패널의 개념도이며, 도 6은 도 5에 도시된 섬광체패널의 단면도이다. 도 1 내지 도 6을 참조하여 본 발명에 따른 유연한 엑스선 영상센서의 일 실시예에 대하여 설명한다.1 is a conceptual diagram of an embodiment of a flexible X-ray image sensor according to the present invention, FIG. 2 is a conceptual diagram in which the embodiment shown in FIG. 1 is bent, and FIG. 3 is a cross-sectional view of the embodiment shown in FIG. 4 is a conceptual diagram of a photodetector device in the embodiment illustrated in FIG. 1, FIG. 5 is a conceptual diagram of a scintillator panel in the embodiment illustrated in FIG. 1, and FIG. 6 is a cross-sectional view of the scintillator panel illustrated in FIG. 5. An embodiment of a flexible X-ray image sensor according to the present invention will be described with reference to FIGS. 1 to 6.

본 발명에 따른 유연한 엑스선 영상센서는 유연한 광검출소자(10)와, 유연한 섬광체패널(20)과, 유연한 폴리머평판(30)과, 외부몰드(40)를 포함한다.The flexible X-ray image sensor according to the present invention includes a flexible photodetector 10, a flexible scintillator panel 20, a flexible polymer flat plate 30, and an outer mold 40.

광검출소자(10)는 기판(11)과, 포토다이오드유닛(13)을 구비하며, 접착제를 사용하여 섬광체패널(20)의 일면에 결합된다. The photodetector 10 includes a substrate 11 and a photodiode unit 13, and is coupled to one surface of the scintillator panel 20 using an adhesive.

포토다이오드유닛(13)은 포토다이오드와, TFT와, ASIC화된 연산회로를 구비하며, 비정질 실리콘(Amorphous Silicon), 다결정 실리콘(Poly-crystalline Silicon), 단결정 실리콘(Single-crystalline Silicon), 화합물 반도체(Compound Semiconductor) 등의 고체 반도체(Solid Semiconductor) 재료를 기반으로 제작될 수 있다.The photodiode unit 13 includes a photodiode, a TFT, and an ASIC-calculated circuit, and includes amorphous silicon, polycrystalline silicon, single-crystalline silicon, and compound semiconductor ( It may be manufactured based on a solid semiconductor material such as Compound Semiconductor.

또한, 포토다이오드유닛(13)은 유기반도체(Organic Semiconductor)를 이용하여 제작될 수 있다. 유기반도체를 이용하여 포토다이오드유닛(13)을 형성하기 위해서는 광검출을 위한 유기반도체 박막패턴층의 형성이 필요하다. 그리고 상기 유기반도체 박막패턴층은 정공수송층(Hole Transfer Layer)과, 상기 정공수송층의 일면에 결합한 활성층(Active Layer)과, 상기 활성층의 일면에 결합한 전자수송층(Electron Transfer Layer)으로 구성된다. 여기서 광검출 효율향상을 위해 상기 각각의 박막패턴층은 더 부가되거나 제외될 수 있다. 상기 정공수송층으로 사용되는 물질로는 TPD(N,N'-diphenyl-N,N'-bis-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine), PEDOT:PSS(Poly3,4-ethylenedioxythiophene-polystyrenesulfonate), NPB(N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidene), HfOx, TFB(Poly [2,7-(9,9-di-n-octylfluorene)-co-(1,4-phenylene-[(4-sec-butylphenyl)imino] -1,4-phenylene)]) 등이 있다. 상기 활성층으로 사용되는 물질로는 p형 재료와 n형 재료가 있다. 상기 p형 재료로는 Copper Phthalcyanine, Polyacetylene, Merocyanine, Polythiophene, Phthalocyanine, Poly(3-hexythiophene), Poly(3-alkylthiophene), Pentacene, A-sexithiophene, A-dihexyl-sexithiophene, Polythienylenevinylene, Bis(dithienothiophene), Dihexyl-anthradithiophene, Tolyl-substituted Oligothiophene, Poly-3-hexylthiophene, Dioctadecyldithiaanthracene, 2,2'-dihexylbenzodithiophene, Poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) 등이 있다. 상기 n형 재료로는 Pentacene, Phenyl C61-butyric Acid Methylester, Regioregular Poly(3-hexylthiophene), Perylene, Naphthalene, Rose Bengal, C60, Perylene Tetracarboxyllic Anhydride 유도체, Quinodimethane 화합물, Phthalocyanine 유도체, N, N-bis(2,5-di-tert-butylphenyl)3,4,9,10-perylene Dicarboximide, Double-stranded Poly(benzobisimidazophenanthroline) 등이 있다. 상기 활성층은 p형 재료와 n형 재료들을 순차적으로 코팅하는 방식, 혼합하여 코팅하는 방식 및 단일 재료로 사용하는 방식 등으로 형성될 수 있다. 상기 전자수송층으로 사용되는 물질로는 LiF, SeF, Alq3, Ca, Cs, Ba, PDI(N,N'-bis(1-ethylpropyl)-3,4,9,10-perylene Tetracarboxy Diimide) 등이 있다. In addition, the photodiode unit 13 may be fabricated using an organic semiconductor. In order to form the photodiode unit 13 using the organic semiconductor, it is necessary to form an organic semiconductor thin film pattern layer for photodetection. The organic semiconductor thin film pattern layer includes a hole transfer layer, an active layer bonded to one surface of the hole transport layer, and an electron transfer layer bonded to one surface of the active layer. In this case, each of the thin film pattern layers may be further added or excluded to improve photodetection efficiency. The material used as the hole transport layer is TPD (N, N'-diphenyl-N, N'-bis- (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine), PEDOT: PSS ( Poly3,4-ethylenedioxythiophene-polystyrenesulfonate), NPB (N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidene), HfOx, TFB (Poly [2,7- (9,9-di- n-octylfluorene) -co- (1,4-phenylene-[(4-sec-butylphenyl) imino] -1,4-phenylene)]). The material used as the active layer includes a p-type material and an n-type material. The p-type material is copper Phthalcyanine, Polyacetylene, Merocyanine, Polythiophene, Phthalocyanine, Poly (3-hexythiophene), Poly (3-alkylthiophene), Pentacene, A-sexithiophene, A-dihexyl-sexithiophene, Polythienylenevinylene, Bis (dithienothiophene), Dihexyl-anthradithiophene, Tolyl-substituted Oligothiophene, Poly-3-hexylthiophene, Dioctadecyldithiaanthracene, 2,2'-dihexylbenzodithiophene, Poly (2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene). The n-type material is Pentacene, Phenyl C61-butyric Acid Methylester, Regioregular Poly (3-hexylthiophene), Perylene, Naphthalene, Rose Bengal, C60, Perylene Tetracarboxyllic Anhydride Derivative, Quinodimethane Compound, Phthalocyanine Derivative, N, N-bis (2 , 5-di-tert-butylphenyl) 3,4,9,10-perylene Dicarboximide and Double-stranded Poly (benzobisimidazophenanthroline). The active layer may be formed by coating a p-type material and an n-type material in a sequential manner, mixing and coating the same, and using a single material. Examples of the material used for the electron transport layer include LiF, SeF, Alq 3, Ca, Cs, Ba, and PDI (N, N'-bis (1-ethylpropyl) -3,4,9,10-perylene Tetracarboxy Diimide). .

또한, 포토다이오드유닛(13)은 염료(Dye)를 이용하여 제작될 수 있다. 염료를 이용한 광검출소자 형성을 위해서는 광검출을 위한 염료감응형(Dye Sensitized Type) 광검출층의 형성이 필요하다. 상기 염료감응형 광검출층은 나노입자 산화물층(Nano-sized Oxide Layer), 염료, 전해질 용액(Electrolyte), 대향전극(Counter Electrode)을 기본으로 구성된다. 상기 나노입자 산화물층으로 사용되는 재료로는 TiO2, SnO2, ZnO 등이 있다. 상기 염료로 사용되는 재료로는 Ru계 유기금속 화합물(N3, N719, N749), 유기화합물(NKX-2311), InP, CdSe 등의 양자점(Quantum Dot) 무기화합물 등이 있다. 상기 전해질 용액은 요오드계 산화-환원 전해질과, 상기 전해질의 매질로서 Acetonitrile, Polyacrylonitrile(PAN)계 , Poly(vinylidene fluoride-co-hexafluoropropylene)(PVdF) 계, 아크릴-이온성액체 조합, Pyridine 계, Poly(ethyleneoxide)(PEO) 등이 사용될 수 있다. 그리고 상기 전해질의 요오드 이온의 재료로는 Alkalammonium Iodine, Imidazolium Iodine, LiI, NaI 등이 있 다. 대향전극으로 사용되는 재료로는 Pt가 있다. In addition, the photodiode unit 13 may be manufactured using a dye. In order to form a photodetector using a dye, it is necessary to form a dye-sensitized type photodetector layer for photodetection. The dye-sensitized photodetecting layer is composed of a nano-sized oxide layer, a dye, an electrolyte solution, and a counter electrode. Materials used as the nanoparticle oxide layer include TiO 2 , SnO 2 , ZnO and the like. Materials used for the dyes include quantum dot inorganic compounds such as Ru-based organometallic compounds (N3, N719, N749), organic compounds (NKX-2311), InP, and CdSe. The electrolyte solution is an iodine-based redox electrolyte, Acetonitrile, Polyacrylonitrile (PAN), Poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF), acryl-ionic liquid combination, Pyridine, Poly (ethyleneoxide) (PEO) and the like can be used. And the material of the iodine ion of the electrolyte is Alkalammonium Iodine, Imidazolium Iodine, LiI, NaI and the like. Pt is a material used as the counter electrode.

포토다이도드유닛(13)은 효율 향상 및 제작 용이성을 위해 상기의 고체 반도체형 광검출소자, 유기 반도체형 광검출소자, 염료형 광검출소자의 재료 및 특징을 하나의 소자에 모아서 제작될 수도 있다.The photodiode unit 13 may be manufactured by collecting the materials and characteristics of the solid semiconductor photodetector, the organic semiconductor photodetector, and the dye photodetector in a single device to improve efficiency and ease of fabrication.

기판(11)은 상용 웨이퍼 기판(Wafer Substrate), 유리 기판(Glass Substrate), 세라믹 기판(Ceramic Substrate), 금속기판(Metal Substrate), 폴리머 기판(Polymer Substrate) 등 다양하게 제작될 수 있다. 상기 상용 웨이퍼 기판(Wafer Substrate)은 실리콘, 화합물 반도체 등으로 제작될 수 있다. 상기 유리 기판(Glass Substrate)은 석영(Quartz), BSG(Boro-Silicate Glass), BPSG(Boro Phosphor Silicate Glass), Slide Glass 등으로 다양하게 제작될 수 있다. 상기 세라믹 기판(Ceramic Substrate)은 알루미나(Al2O3), 베릴리아(BeO), 스테아타이트(MgO·SiO2), 포스테라이트(2MgO·SiO2) 등으로 다양하게 제작될 수 있다. 상기 금속기판(Metal Substrate)은 구리, 알루미늄, 니켈, 마그네슘, 티타늄, 철, 스테인레스 합금(SUS) 등을 포함한 각종 금속 및 금속합금 등으로 다양하게 제작될 수 있다. 상기 폴리머 기판(Polymer Substrate)은 Polyimide(Kapton), PEN(Polyethylenenaphalate), PEEK(Polyetheretherketone), PES(Polyethersulphone), PEI(Polyetherimide), PET(Polyester) 등으로 다양하게 제작될 수 있다.The substrate 11 may be manufactured in various ways such as a commercial wafer substrate, a glass substrate, a ceramic substrate, a metal substrate, a polymer substrate, and the like. The commercial wafer substrate may be made of silicon, a compound semiconductor, or the like. The glass substrate may be made of quartz, boro-silicate glass (BSG), boro phosphor silicate glass (BPSG), slide glass, or the like. The ceramic substrate may be made of alumina (Al 2 O 3 ), beryllia (BeO), steatite (MgO · SiO 2 ), forsterite (2MgO · SiO 2 ), or the like. The metal substrate may be made of various metals and metal alloys including copper, aluminum, nickel, magnesium, titanium, iron, stainless alloys (SUS), and the like. The polymer substrate may be variously made of Polyimide (Kapton), Polyethylenenaphalate (PEN), Polyetheretherketone (PEEK), Polyethersulphone (PES), Polyetherimide (PEI), or PET (Polyester).

광검출소자(10)는 도 4의 (a)에 도시된 바와 같이 복수의 포토다이오드유 닛(13)이 제작된 기판(11)을 5 나노미터 내지 100 마이크로미터 정도로 매우 얇게 가공하여 제작될 수 있다. 광검출소자(10)에는 포토다이도드유닛(13)에서 검출된 신호를 전송시키기 위한 전선(50)이 결합된다.The photodetector 10 may be fabricated by processing the substrate 11 on which the plurality of photodiode units 13 are fabricated as thin as about 5 nanometers to 100 micrometers, as shown in FIG. . The wire 50 for transmitting the signal detected by the photodiode unit 13 is coupled to the photodetecting device 10.

또는 광검출소자(10_1)는 도 4의 (b)에 도시된 바와 같이 5 나노미터 내지 100 마이크로미터 정도로 매우 얇게 제작된 기판(12) 위에 복수의 포토다이오드유닛(13)을 결합시켜 제작될 수 있다.Alternatively, the photodetector 10_1 may be manufactured by combining the plurality of photodiode units 13 on the substrate 12 that is made very thin as shown in FIG. 4B. .

유연한 섬광체패널(20)은 폴리머층(21)과, 섬광체(23)와, 반사층(25)을 포함한다. 섬광체(23)는 1 내지 10,000 마이크로미터의 두께로서 복수 개가 일정 간격 이격되어 격자 구조를 가지며, 폴리머층(21)에 삽입된다. 폴리머층(21)은 PMMA(Polymethyl Methacrylate), PE(Polyethylene), PA(Polyamide), PET(Polyetylene Terephthalate), PP(Polypropylene), PVC(Polyvinyl Chloride), PC(Poly Carbonate), PI(Polyimide), POM(Polyacetal), PBT(Polybuthylene Terephthalate), PS(Polystyrene), ABS(Acrylonitrile Butadiens Styrene), PPO(Poly Phenylene Oxide), PPS(Polyphenylene Sulfide), PEI(Polyetherimide), PES(Polyether sulfone), PAR(Polyarylate), PEEK(Poly(etheretherketone)), PAI(Polyamideimide), PVdF(Poly Vinylidene Fluoride), PDMS(Polydimethyl Siloxane), COC(Cyclic Olefin Copolymer), 감광제(Photoresist), 테프론, 나일론, 폴리에스테르, 폴리비닐, Kapton, 실리콘 고무 등을 포함한 각종 열가소성 폴리머, 열경화성 폴리머, 광 경화성 폴리머와 더불어 각종 고무류도 사용될 수 있다. The flexible scintillator panel 20 includes a polymer layer 21, a scintillator 23, and a reflective layer 25. The scintillator 23 has a lattice structure having a thickness of 1 to 10,000 micrometers and a plurality of spaced apart from each other at regular intervals, and is inserted into the polymer layer 21. The polymer layer 21 may be made of polymethyl methacrylate (PMMA), polyethylene (PE), polyamide (PA), polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), polycarbonate (PC), polyimide (PI), Polyacetal (POM), Polybuthylene Terephthalate (PBT), Polystyrene (PS), Acrylonitrile Butadiens Styrene (PS), Poly Phenylene Oxide (PPO), Polyphenylene Sulfide (PPS), Polyetherimide (PEI), Polyether sulfone (PES), Polylatelate ), Poly (etheretherketone) (PEEK), Polyamideimide (PAI), Poly Vinylidene Fluoride (PVDF), Polydimethyl Siloxane (PDMS), Cyclic Olefin Copolymer (COC), Photoresist, Teflon, Nylon, Polyester, Polyvinyl, Various rubbers may be used in addition to various thermoplastic polymers including Kapton, silicone rubber, and the like, thermosetting polymers, and photocurable polymers.

반사층(25)은 폴리머층(21)의 일면과 섬광체(23)의 격자 사이에 형성된다. 반사층(25)은 빛의 굴절율 차이를 이용하여 전반사 시킬 수 있는 실리콘 산화막, 석영, 실리콘, 세라믹 등을 포함한 각종 무기재료 및 상기 폴리머층(21)의 재료 등이 사용될 수 있다. 또한, 반사층(25)은 빛의 반사를 통한 방법으로 알루미늄, 금, 은, 크롬, 구리, 니켈, 루테늄, 티타늄, 철, 스테인레스 합금(SUS), 마그네슘 등을 포함한 각종 금속 및 금속합금 등의 다양한 금속재료가 사용될 수 있다. 또한, 폴리머층(21)과 섬광체(23)의 굴절율 차이를 이용할 경우 반사층(25)이 생략될 수 있다. The reflective layer 25 is formed between one surface of the polymer layer 21 and the grating of the scintillator 23. The reflective layer 25 may be formed of various inorganic materials including silicon oxide film, quartz, silicon, ceramic, and the like, and materials of the polymer layer 21, which may be totally reflected by using a difference in refractive index of light. In addition, the reflective layer 25 may be a variety of metals and metal alloys, including aluminum, gold, silver, chromium, copper, nickel, ruthenium, titanium, iron, stainless alloys (SUS), magnesium, and the like, by reflecting light. Metallic materials may be used. In addition, when the refractive index difference between the polymer layer 21 and the scintillator 23 is used, the reflective layer 25 may be omitted.

도 5에 도시된 섬광체패널(20)은 섬광체(23)가 격자구조로 이루어졌으나, 격자구조 없이 섬광체가 필름형태로 이루어질 수 있다. In the scintillator panel 20 illustrated in FIG. 5, the scintillator 23 is formed in a lattice structure, but the scintillator may be formed in a film form without the lattice structure.

폴리머층(30)은 광검출소자(10)의 타면에 결합된다. 폴리머층(30)을 광검출소자(10)에 결합시키기 위한 접착제로는 녹말풀, 변성전분(Modified Starch), 산화전분(Oxidized Starch), 전분유도체(Starch Derivatives) 등을 포함하는 전분(Starch)계 접착제와, 혈단백질(Human Blood Proteins)·사람·소·돼지의 혈청을 포르말린 처리한 것 등과 우유, 콩 등의 단백질(Protein)계 접착제와, 소·돼지 등의 가죽·뼈의 수용물(Water Soluble Material)과 어교(Fish Glue) 등을 포함하는 아교(Glue)·젤라틴(Gelatin)계 접착제와, 알긴산나트륨(Sodium Alginate)과 포해태(Gloioleltis Furcata) 등을 포함하는 해초계 접착제와, 아스팔트(Asphalt), 규산나트륨(Sodium Silicate), 규산칼륨(Potassium Silicate), 실리카졸(Silica Sol) 등을 포함하는 석유계 접착제와, 센다락(Sandarac Gum), 스틱락(Stick Lac), 셀락(Shellac), 담마르(Damar), 송진(Pine Resin), Latex, 아라비아고무(Gum Arabic), 옻(Lacquer Poison) 등을 포함하는 천연수지계 접착제와, 카라야 검(Karaya Gum), 로커스트 빈(Iocust bean gum), 트라가칸스 검(Tragacanth Gum), 구아 검(Guar Gum), 곤약만난(Glucomannan) 등의 복합다당류 및 검(Gum)류 접착제와, 섬유소 에테르(Ether)계, 에스테르(Ester)계 등을 포함하는 셀룰로오스(Cellulose)계 접착제와, 페놀수지(Phenolic Resin), 요소수지(Urea Resin), 멜라민수지(Melamine Resin), 크실렌수지(Xylene Resin), 에폭시수지(Epoxy Resin), 이소시아네이트(Isocyanate)계, 아세트산비닐(Vinyl Acetate)계, 폴리에스테르(Polyester)계, 폴리비닐알코올(Polyvinyl Alcohol)계, 아크릴레이트(Acrylate)계, 시아노아크릴레이트(Cyanoacrylate)계, 합성고무(Synthetic Rubber)계 등을 포함하는 합성고분자(Synthetic Polymer)계 접착제와, 각종 폴리머 등의 열가소성 필름형 접착제(Thermoplastic Adhesives) 등을 사용할 수 있다. The polymer layer 30 is bonded to the other surface of the photodetecting device 10. As an adhesive for bonding the polymer layer 30 to the photodetector device 10, a starch system including starch paste, modified starch, oxidized starch, starch derivatives, and the like Formalin treatment of adhesives, serum of human blood proteins, humans, cattle and pigs; protein-based adhesives such as milk and soybeans; Glue / Gelatin-based adhesives including Soluble Material and Fish Glue, Seaweed-based adhesives including Sodium Alginate and Gloioleltis Furcata, Asphalt Petroleum-based adhesives including asphalt, sodium silicate, potassium silicate, silica sol, sandarac gum, stick lac, shellac , Damar, Pine Resin, Latex, Gum Arabic, Lacquer Poison, etc. Natural resin-based adhesives, including polysaccharides and gums such as Karaya Gum, Iocust bean gum, Tragacanth Gum, Guar Gum, Konjac Mann Glucomannan (Gum) adhesives, cellulose-based adhesives including cellulose ethers, esters, etc., phenolic resins, urea resins, melamine resins ), Xylene Resin, Epoxy Resin, Isocyanate, Vinyl Acetate, Polyester, Polyvinyl Alcohol, Acrylate Synthetic Polymer-based adhesives including) -based, Cyanoacrylate-based, Synthetic Rubber-based, and the like, and thermoplastic film adhesives such as various polymers. .

외부몰드(40)는 섬광체패널(20)과 광검출소자(10) 및 폴리머평판(30)을 보호하도록 감싼다. 외부몰드는 PMMA(Polymethyl Methacrylate), PE(Polyethylene), PA(Polyamide), PET(Polyetylene Terephthalate), PP(Polypropylene), PVC(Polyvinyl Chloride), PC(Poly Carbonate), PI(Polyimide), POM(Polyacetal), PBT(Polybuthylene Terephthalate), PS(Polystyrene), ABS(Acrylonitrile Butadiens Styrene), PPO(Poly Phenylene Oxide), PPS(Polyphenylene Sulfide), PEI(Polyetherimide), PES(Polyether sulfone), PAR(Polyarylate), PEEK(Poly(etheretherketone)), PAI(Polyamideimide), PVdF(Poly Vinylidene Fluoride), PDMS(Polydimethyl Siloxane), COC(Cyclic Olefin Copolymer), 감광 제(Photoresist), 테프론, 나일론, 폴리에스테르, 폴리비닐, Kapton, 실리콘 고무 등을 포함한 각종 열가소성 폴리머, 열경화성 폴리머, 광 경화성 폴리머와 더불어 실리콘(Silicone) 고무류, 클로로프렌 고무(Chloroprene Rubber)류, 에틸렌 프로필렌 고무(Ethylene Propylene Rubber)류 등과 같은 각종 고무류를 단일 또는 복합하여 사용될 수 있다. The outer mold 40 surrounds the scintillator panel 20, the photodetecting device 10, and the polymer flat plate 30. Outer mold is PMMA (Polymethyl Methacrylate), PE (Polyethylene), PA (Polyamide), PET (Polyetylene Terephthalate), PP (Polypropylene), PVC (Polyvinyl Chloride), PC (Poly Carbonate), PI (Polyimide), POM (Polyacetal) ), PBT (Polybuthylene Terephthalate), PS (Polystyrene), ABS (Acrylonitrile Butadiens Styrene), PPO (Poly Phenylene Oxide), PPS (Polyphenylene Sulfide), PEI (Polyetherimide), PES (Polyether sulfone), PAR (Polyarylate), PEEK (Poly (etheretherketone)), PAI (Polyamideimide), PVdF (Poly Vinylidene Fluoride), PDMS (Polydimethyl Siloxane), COC (Cyclic Olefin Copolymer), Photoresist, Teflon, Nylon, Polyester, Polyvinyl, Kapton, In addition to various thermoplastic polymers including silicone rubber, thermosetting polymers and photocurable polymers, various rubbers such as silicone rubbers, chloroprene rubbers and ethylene propylene rubbers can be used. Can be.

도 1에 도시된 영상센서는 유연한 광검출소자(10)와, 유연한 폴리머평판(30)과 유연한 섬광체패널(20)이 결합되어 형성되고, 외부몰드(40)로 감싸져 있으므로 도 2와 같이 유연하게 변형될 수 있다. 따라서 도 2는 치열과 구강구조의 형상에 맞게 적용하여 촬영할 수 있는 유연한 엑스선 영상센서에 적용될 수 있음을 보여준다. The image sensor shown in FIG. 1 is formed by combining the flexible photodetector 10, the flexible polymer flat plate 30, and the flexible scintillator panel 20, and is surrounded by an outer mold 40, thereby flexibly as shown in FIG. 2. It can be modified. Therefore, Figure 2 shows that it can be applied to a flexible X-ray image sensor that can be applied to fit the shape of the oral cavity and oral structure.

도 7은 본 발명에 따른 유연한 엑스선 영상센서의 다른 실시예의 단면도이고, 도 8은 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도이며, 도 9는 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도이다. 그리고 도 10은 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도이고, 도 11은 도 10에 도시된 실시예가 휘어진 개념도이며, 도 12는 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도이다. 도 7 내지 도 12를 참조하여 본 발명에 따른 유연한 엑스선 영상센서의 여러가지 실시예에 대하여 설명한다.7 is a cross-sectional view of another embodiment of a flexible X-ray image sensor according to the present invention, Figure 8 is a cross-sectional view of another embodiment of a flexible X-ray image sensor according to the present invention, Figure 9 is another view of a flexible X-ray image sensor according to the present invention A cross section of another embodiment. 10 is a cross-sectional view of another embodiment of a flexible X-ray image sensor according to the present invention, FIG. 11 is a conceptual diagram in which the embodiment shown in FIG. 10 is bent, and FIG. 12 is a view of another embodiment of the flexible X-ray image sensor according to the present invention. It is a cross section. 7 to 12, various embodiments of the flexible X-ray image sensor according to the present invention will be described.

도 7에 도시된 영상센서는 도 1에 도시된 영상센서와 비교하여 지지체(41, 45)를 더 구비한다. 영상센서는 유연하기 때문에 쉽게 굽혀진다. 영상센서가 굽혀 지면 폴리머평판(30)과, 광검출소자(10)와, 섬광체패널(20)의 결합부가 크게 변형되어 상기 결합부에 응력이 집중된다. 따라서 상기 결합부들이 가장 파손되기 쉽다. 지지체(41, 45)는 영상센서가 굽혀질 때 폴리머평판(30)과, 광검출소자(10)와, 섬광체패널(20)의 접합부에 응력이 집중되는 것을 방지하는 역할을 한다. 이를 위하여 제1지지체(41)는 외부몰드(40)에 삽입되며, 제2지지체(45)는 폴리머평판(30)에 삽입된다. 영상센서가 굽혀지더라도 지지체(41, 45)가 변형되어 상기 결합부들의 과도한 변형을 방지할 수 있다. 지지체(41, 45)의 형상 및 위치는 다양하게 변형될 수 있다.The image sensor shown in FIG. 7 further includes supports 41 and 45 as compared to the image sensor shown in FIG. 1. The image sensor is flexible and easily bent. When the image sensor is bent, the coupling portions of the polymer flat plate 30, the photodetecting device 10, and the scintillator panel 20 are greatly deformed, so that stress is concentrated on the coupling portions. Therefore, the coupling parts are most likely to be broken. The supports 41 and 45 serve to prevent stress from concentrating on the junction between the polymer flat plate 30, the photodetecting device 10, and the scintillator panel 20 when the image sensor is bent. To this end, the first support 41 is inserted into the outer mold 40, and the second support 45 is inserted into the polymer flat plate 30. Even when the image sensor is bent, the supports 41 and 45 may be deformed to prevent excessive deformation of the coupling parts. The shape and position of the supports 41 and 45 may be variously modified.

도 8 및 도 9에 도시된 영상센서는 도 7의 영상센서와 비교하여 지지체(42, 43, 45,46)의 형상 및 위치를 달리한 실시예이다.8 and 9 are embodiments in which the shapes and positions of the supports 42, 43, 45, and 46 are different from those of the image sensor of FIG. 7.

도 10에 도시된 영상센서는 도 7에 도시된 영상센서와 비교하여 스토퍼(51)를 더 구비한다. 영상센서는 유연하기 때문에 과도하게 굽혀질 수 있다. 스토퍼(51)는 영상센서가 과도하게 굽혀지는 것을 방지하는 역할을 한다. 이를 위하여 스토퍼(51)는 외부몰드(40)의 일측에 결합된다. 스토퍼(51)는 일면에 다수의 틈이 형성되도록 절개되어 있다. 따라서 일방향으로 도 11에 도시된 바와 같이 상기 틈만큼만 휘어질 수 있다. 그러므로 상기 틈의 크기를 조절하면 영상센서가 굽혀지는 범위를 제한할 수 있다. 스토퍼(51)의 형상 및 위치는 다양하게 변형될 수 있다.The image sensor illustrated in FIG. 10 further includes a stopper 51 as compared to the image sensor illustrated in FIG. 7. The image sensor is flexible and can be bent excessively. The stopper 51 serves to prevent the image sensor from being excessively bent. To this end, the stopper 51 is coupled to one side of the outer mold 40. The stopper 51 is cut out so that a plurality of gaps may be formed on one surface. Therefore, as shown in FIG. 11, only one gap may be bent in one direction. Therefore, adjusting the size of the gap may limit the range in which the image sensor is bent. The shape and position of the stopper 51 may be variously modified.

도 12에 도시된 영상센서는 도 10의 영상센서와 비교하여 스토퍼(51)의 위치를 달리한 실시예이다. 도 12에서 스토퍼(51)는 폴리머평판(30)에 삽입되어 있다.12 is an embodiment in which the position of the stopper 51 is different from that of the image sensor of FIG. 10. In FIG. 12, the stopper 51 is inserted into the polymer flat plate 30.

상기에서 설명한 본 발명의 일 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.An embodiment of the present invention described above should not be construed as limiting the technical idea of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.

도 1은 본 발명에 따른 유연한 엑스선 영상센서의 일 실시예의 개념도,1 is a conceptual diagram of an embodiment of a flexible X-ray image sensor according to the present invention;

도 2는 도 1에 도시된 실시예가 휘어진 개념도,2 is a conceptual diagram in which the embodiment shown in FIG. 1 is bent;

도 3은 도 1에 도시된 실시예의 단면도,3 is a cross-sectional view of the embodiment shown in FIG.

도 4는 도 1에 도시된 실시예에서 광검출소자의 개념도,4 is a conceptual diagram of a photodetector device in the embodiment shown in FIG. 1;

도 5는 도 1에 도시된 실시예에서 섬광체패널의 개념도,5 is a conceptual diagram of a scintillator panel in the embodiment shown in FIG. 1;

도 6은 도 5에 도시된 섬광체패널의 단면도,6 is a cross-sectional view of the scintillator panel shown in FIG. 5;

도 7은 본 발명에 따른 유연한 엑스선 영상센서의 다른 실시예의 단면도,7 is a cross-sectional view of another embodiment of a flexible x-ray image sensor according to the present invention;

도 8은 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도,8 is a cross-sectional view of another embodiment of a flexible X-ray image sensor according to the present invention;

도 9는 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도,9 is a cross-sectional view of another embodiment of a flexible X-ray image sensor according to the present invention;

도 10은 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도,10 is a cross-sectional view of another embodiment of a flexible x-ray image sensor according to the present invention;

도 11은 도 10에 도시된 실시예가 휘어진 개념도,11 is a conceptual diagram in which the embodiment shown in FIG. 10 is bent;

도 12는 본 발명에 따른 유연한 엑스선 영상센서의 또 다른 실시예의 단면도이다.12 is a cross-sectional view of another embodiment of a flexible X-ray image sensor according to the present invention.

<도면부호의 간단한 설명><Brief Description of Drawings>

10 : 광검출소자 11 : 기판10 photodetector 11 substrate

13 : 포토다이오드유닛 20 : 섬광체패널13: photodiode unit 20: scintillator panel

21 : 폴리머층 23 : 섬광체21 polymer layer 23 scintillator

25 : 반사층 30 : 폴리머평판25 reflection layer 30 polymer plate

40 : 외부몰드 41 : 지지체40: outer mold 41: support

50 : 전선 51 : 스토퍼50: wire 51: stopper

Claims (10)

유연한 폴리머평판과,Flexible polymer plates, 기판과, 포토다이오드와 TFT와 ASIC화된 연산회로가 형성되며 상기 기판의 일면에 형성된 복수의 포토다이오드유닛을 구비하며 상기 폴리머평판의 일면에 결합한 유연한 광검출소자와,A flexible photodetector device having a substrate, a photodiode, a TFT and an ASIC operation circuit, and having a plurality of photodiode units formed on one surface of the substrate and coupled to one surface of the polymer plate; 상기 포토다이오드유닛에 대응하며 엑스선을 상기 포토다이오드유닛이 감지할 수 있는 파장대로 변환시킬 수 있는 섬광체와, 상기 섬광체에 결합한 폴리머층을 구비하며 상기 광검출소자의 일면에 결합한 유연한 섬광체패널을 포함하는 것을 특징으로 하는 유연한 엑스선 영상센서.And a flexible scintillator panel corresponding to the photodiode unit and having a scintillator capable of converting X-rays to a wavelength detectable by the photodiode unit, and a polymer layer bonded to the scintillator and coupled to one surface of the photodetector. Flexible X-ray image sensor. 제1항에 있어서,The method of claim 1, 상기 섬광체는 Gd2O2S:Tb, CsI:Na, NaI:Tl, CsBr:Eu, LiI:Eu, CsI:Tl로 이루어진 군으로부터 선택된 것을 특징으로 하는 유연한 엑스선 영상센서.The scintillator is a flexible X-ray image sensor, characterized in that selected from the group consisting of Gd 2 O 2 S: Tb, CsI: Na, NaI: Tl, CsBr: Eu, LiI: Eu, CsI: Tl. 제2항에 있어서,The method of claim 2, 상기 섬광체패널은 상기 폴리머층과 상기 섬광체 사이에 형성된 반사층을 더 구비하는 것을 특징으로 하는 유연한 엑스선 영상센서.The scintillator panel further comprises a reflective layer formed between the polymer layer and the scintillator. 제3항에 있어서,The method of claim 3, 상기 섬광체의 두께는 1 내지 10,000 마이크로미터인 것을 특징으로 하는 유연한 엑스선 영상센서.Flexible x-ray image sensor, characterized in that the thickness of the scintillator is 1 to 10,000 micrometers. 제4항에 있어서,The method of claim 4, wherein 상기 섬광체는 일정한 간격으로 이격된 격자 구조인 것을 특징으로 하는 유연한 엑스선 영상센서.The scintillator is a flexible X-ray image sensor, characterized in that the grid structure spaced at regular intervals. 제1항 내지 제5항 중 어느 한 항에 있어서,6. The method according to any one of claims 1 to 5, 상기 폴리머평판과, 상기 광검출소자와, 상기 섬광체패널을 감싸는 외부몰더를 더 포함하는 것을 특징으로 하는 유연한 엑스선 영상센서.And an external molder surrounding the polymer flat plate, the photodetecting device, and the scintillator panel. 제6항에 있어서,The method of claim 6, 영상센서가 굽혀질 때 상기 폴리머평판과 상기 광검출소자와 상기 섬광체패널의 접합부에 응력이 집중되는 것을 방지하기 위하여 상기 외부몰더에 삽입된 지지체를 더 포함하는 것을 특징으로 하는 유연한 엑스선 영상센서.And a support inserted into the outer mold to prevent stress from concentrating on the junction between the polymer flat plate, the photodetecting device, and the scintillator panel when the image sensor is bent. 제7항에 있어서,The method of claim 7, wherein 영상센서가 과도하게 굽혀지는 것을 방지하기 위하여 상기 외부몰더에 삽입된 스토퍼를 더 포함하는 것을 특징으로 하는 유연한 엑스선 영상센서.And a stopper inserted into the outer mold to prevent the image sensor from being excessively bent. 제6항에 있어서, The method of claim 6, 영상센서가 굽혀질 때 상기 폴리머평판과 상기 광검출소자와 상기 섬광체패널의 접합부에 응력이 집중되는 것을 방지하기 위하여 상기 폴리머평판에 삽입된 지지체를 더 포함하는 것을 특징으로 하는 유연한 엑스선 영상센서.And a support inserted into the polymer plate to prevent stress from being concentrated at the junction between the polymer plate, the photodetecting device, and the scintillator panel when the image sensor is bent. 제9항에 있어서,10. The method of claim 9, 영상센서가 과도하게 굽혀지는 것을 방지하기 위하여 상기 폴리머평판에 삽입된 스토퍼를 더 포함하는 것을 특징으로 하는 유연한 엑스선 영상센서.And a stopper inserted into the polymer plate to prevent excessive bending of the image sensor.
KR1020080102756A 2008-10-20 2008-10-20 Flexible X-ray Image Sensor KR101003693B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080102756A KR101003693B1 (en) 2008-10-20 2008-10-20 Flexible X-ray Image Sensor
PCT/KR2009/005934 WO2010047494A2 (en) 2008-10-20 2009-10-15 Flexible x-ray image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080102756A KR101003693B1 (en) 2008-10-20 2008-10-20 Flexible X-ray Image Sensor

Publications (2)

Publication Number Publication Date
KR20100043654A true KR20100043654A (en) 2010-04-29
KR101003693B1 KR101003693B1 (en) 2010-12-23

Family

ID=42119809

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080102756A KR101003693B1 (en) 2008-10-20 2008-10-20 Flexible X-ray Image Sensor

Country Status (2)

Country Link
KR (1) KR101003693B1 (en)
WO (1) WO2010047494A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039698A1 (en) * 2012-09-07 2014-03-13 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US8992712B2 (en) 2010-05-21 2015-03-31 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Method for manufacturing electronic devices and electronic devices thereof
US8999778B2 (en) 2008-12-02 2015-04-07 Arizona Board Of Regents Method of providing a flexible semiconductor device at high temperatures and flexible semiconductor device thereof
KR20150073419A (en) * 2013-12-23 2015-07-01 주식회사바텍 Dental x-ray imaging apparatus
US9076822B2 (en) 2010-05-21 2015-07-07 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
KR20170018881A (en) * 2015-08-10 2017-02-20 주식회사 레이언스 Intraoral sensor
US9601530B2 (en) 2008-12-02 2017-03-21 Arizona Board Of Regents, A Body Corporated Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
WO2017123777A1 (en) * 2016-01-13 2017-07-20 mPower Technology, Inc. Fabrication and operation of multi-function flexible radiation detection systems
US9721825B2 (en) 2008-12-02 2017-08-01 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US9741742B2 (en) 2014-12-22 2017-08-22 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Deformable electronic device and methods of providing and using deformable electronic device
US9768107B2 (en) 2014-01-23 2017-09-19 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US9953951B2 (en) 2014-05-13 2018-04-24 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US9991311B2 (en) 2008-12-02 2018-06-05 Arizona Board Of Regents On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US10381224B2 (en) 2014-01-23 2019-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
US10410903B2 (en) 2014-01-23 2019-09-10 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
US10446582B2 (en) 2014-12-22 2019-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an imaging system and imaging system thereof
US10892372B2 (en) 2016-12-09 2021-01-12 mPower Technology, Inc. High performance solar cells, arrays and manufacturing processes therefor
JPWO2021006304A1 (en) * 2019-07-09 2021-01-14
US10914848B1 (en) 2018-07-13 2021-02-09 mPower Technology, Inc. Fabrication, integration and operation of multi-function radiation detection systems
WO2023146205A1 (en) * 2022-01-27 2023-08-03 주식회사 뷰웍스 Variable detector and image-capturing apparatus comprising same
US12009451B2 (en) 2018-07-30 2024-06-11 mPower Technology, Inc. In-situ rapid annealing and operation of solar cells for extreme environment applications

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452688B (en) 2011-12-27 2014-09-11 Ind Tech Res Inst Flexible radiation detectors
KR101961097B1 (en) 2012-09-06 2019-03-25 삼성전자 주식회사 Test apparatus for semiconductor packages
EP2857866B1 (en) * 2013-10-02 2019-06-19 Rayence Co., Ltd. X-ray sensor and method of manufacturing the same
US9268032B2 (en) 2014-05-12 2016-02-23 Industrial Technology Research Institute Electrical radiography imaging system and method thereof
WO2016022007A1 (en) 2014-08-08 2016-02-11 주식회사 레이언스 Intraoral sensor
KR102301941B1 (en) * 2014-08-08 2021-09-16 주식회사 레이언스 Image sensor and intraoral sensor device using the same
KR101748280B1 (en) 2015-08-10 2017-06-16 주식회사 레이언스 Intraoral sensor
US10261213B2 (en) 2017-06-07 2019-04-16 General Electric Company Apparatus and method for flexible gamma ray detectors
EP3499272A1 (en) 2017-12-14 2019-06-19 Koninklijke Philips N.V. Structured surface part for radiation capturing devices, method of manufacturing such a part and x-ray detector
US10649098B2 (en) 2018-01-29 2020-05-12 Samsung Electronics Co., Ltd. Light converting nanoparticle, method of making the light converting nanoparticle, and composition and optical film comprising the same
CN109115817B (en) * 2018-09-26 2019-09-27 中国地质调查局南京地质调查中心 A kind of Wavelength conversion film and curved detector for curved detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483314B1 (en) * 2002-03-23 2005-04-15 학교법인 인제학원 Digital x-ray image detector
JP4669768B2 (en) 2005-09-30 2011-04-13 富士フイルム株式会社 Variable resolution X-ray imaging apparatus and X-ray CT apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991311B2 (en) 2008-12-02 2018-06-05 Arizona Board Of Regents On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US9601530B2 (en) 2008-12-02 2017-03-21 Arizona Board Of Regents, A Body Corporated Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US8999778B2 (en) 2008-12-02 2015-04-07 Arizona Board Of Regents Method of providing a flexible semiconductor device at high temperatures and flexible semiconductor device thereof
US9721825B2 (en) 2008-12-02 2017-08-01 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US8992712B2 (en) 2010-05-21 2015-03-31 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Method for manufacturing electronic devices and electronic devices thereof
US9076822B2 (en) 2010-05-21 2015-07-07 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
WO2014039698A1 (en) * 2012-09-07 2014-03-13 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
KR20150073419A (en) * 2013-12-23 2015-07-01 주식회사바텍 Dental x-ray imaging apparatus
US10381224B2 (en) 2014-01-23 2019-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
US9768107B2 (en) 2014-01-23 2017-09-19 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US10410903B2 (en) 2014-01-23 2019-09-10 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
US9953951B2 (en) 2014-05-13 2018-04-24 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US10446582B2 (en) 2014-12-22 2019-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an imaging system and imaging system thereof
US9741742B2 (en) 2014-12-22 2017-08-22 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Deformable electronic device and methods of providing and using deformable electronic device
US10170407B2 (en) 2014-12-22 2019-01-01 Arizona Board Of Regents On Behalf Of Arizona State University Electronic device and methods of providing and using electronic device
KR20170018881A (en) * 2015-08-10 2017-02-20 주식회사 레이언스 Intraoral sensor
WO2017123777A1 (en) * 2016-01-13 2017-07-20 mPower Technology, Inc. Fabrication and operation of multi-function flexible radiation detection systems
US10483316B2 (en) 2016-01-13 2019-11-19 mPower Technology, Inc. Fabrication and operation of multi-function flexible radiation detection systems
US10892372B2 (en) 2016-12-09 2021-01-12 mPower Technology, Inc. High performance solar cells, arrays and manufacturing processes therefor
US10914848B1 (en) 2018-07-13 2021-02-09 mPower Technology, Inc. Fabrication, integration and operation of multi-function radiation detection systems
US12009451B2 (en) 2018-07-30 2024-06-11 mPower Technology, Inc. In-situ rapid annealing and operation of solar cells for extreme environment applications
JPWO2021006304A1 (en) * 2019-07-09 2021-01-14
EP3998500A4 (en) * 2019-07-09 2022-08-03 FUJIFILM Corporation Radiation detector and radiographic imaging device
JP7230202B2 (en) 2019-07-09 2023-02-28 富士フイルム株式会社 Radiation detector and radiographic imaging device
US11624844B2 (en) 2019-07-09 2023-04-11 Fujifilm Corporation Radiation detector and radiographic imaging apparatus
WO2023146205A1 (en) * 2022-01-27 2023-08-03 주식회사 뷰웍스 Variable detector and image-capturing apparatus comprising same

Also Published As

Publication number Publication date
WO2010047494A3 (en) 2010-07-29
KR101003693B1 (en) 2010-12-23
WO2010047494A2 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
KR101003693B1 (en) Flexible X-ray Image Sensor
JP6697469B2 (en) Method of manufacturing flexible X-ray detector
RU2581721C2 (en) Radiation detector with photodetectors
CN105723243B (en) Two-sided organic photodetector in flexible substrates
US10312292B2 (en) X-ray detector
CN106062956B (en) The method for manufacturing optical diode detector
US11340362B2 (en) Direct conversion radiation detector
Anabestani et al. Advances in flexible organic photodetectors: Materials and applications
CN104412128A (en) Radiation detector with an organic photodiode
Oliveira et al. Indirect X-ray detectors based on inkjet-printed photodetectors with a screen-printed scintillator layer
WO2018131638A1 (en) Photodetector array
JP2012198195A (en) Detector system having anode incident surface, and method for manufacturing the detector system
WO2007129742A1 (en) Radiation detector and method for manufacturing the same
Zafar et al. PFO-DBT: MEH-PPV: PC71BM ternary blend assisted platform as a photodetector
JP2020518805A (en) Multi-layer detector
Bao et al. Active matrix flexible sensory systems: materials, design, fabrication, and integration
JP7309858B2 (en) Dual sensor sub-pixel radiation detector
Liang et al. Transparent electronic skin from the integration of strain sensors and supercapacitors
KR101653440B1 (en) Organic device for detecting x-ray image based on coplanar electrode structure and thereof manufacture method
Corral et al. A low-cost IEEE 802.15. 7 communication system based on organic photodetection for device-to-device connections
KR100992702B1 (en) Flexible Organic Photo Detector for X-ray Imaging Sensor and Fabrication of it
Lee et al. A study on an organic semiconductor-based indirect x-ray detector with Cd-free QDs for sensitivity improvement
CN209071363U (en) Fexible film ray detector
JP2009158798A (en) Photosensor, photosensor array, imaging element, imaging apparatus and manufacturing method for the photosensor
Lee et al. Flexible and Stretchable Three-Dimensional (3D) Devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141208

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee