KR20100039554A - Oxidation method of benzylic alcohols with urea-hydrogen peroxide and catalytic magnesium bromide - Google Patents

Oxidation method of benzylic alcohols with urea-hydrogen peroxide and catalytic magnesium bromide Download PDF

Info

Publication number
KR20100039554A
KR20100039554A KR1020080098570A KR20080098570A KR20100039554A KR 20100039554 A KR20100039554 A KR 20100039554A KR 1020080098570 A KR1020080098570 A KR 1020080098570A KR 20080098570 A KR20080098570 A KR 20080098570A KR 20100039554 A KR20100039554 A KR 20100039554A
Authority
KR
South Korea
Prior art keywords
benzyl
phch
hydrogen peroxide
urea
alcohol
Prior art date
Application number
KR1020080098570A
Other languages
Korean (ko)
Other versions
KR101012201B1 (en
Inventor
이종찬
박희중
Original Assignee
서울대학교산학협력단
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 중앙대학교 산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020080098570A priority Critical patent/KR101012201B1/en
Publication of KR20100039554A publication Critical patent/KR20100039554A/en
Application granted granted Critical
Publication of KR101012201B1 publication Critical patent/KR101012201B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/54Benzaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/138Compounds comprising a halogen and an alkaline earth metal, magnesium, beryllium, zinc, cadmium or mercury

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A method for manufacturing benzaldehyde or benzyl ketone is provided to prepare benzaldehyde or benzyl ketone at a high yield using environment-friendly urea-hydrogen peroxide and a reaction instead of conventional toxic organic solvent and oxidizer. CONSTITUTION: A method for manufacturing benzaldehyde or benzyl ketone comprises a step for oxidizing a first benzyl alcohol or a second benzyl alcohol with urea-hydrogen peroxide catalytically using magnesium bromide (MgBr2) under an ionic liquid. The first benzyl alcohol is selected from PhCH2OH, p-CH3C6H4CH2OH, p-FC6H4CH2OH, p-ClC6H4CH2OH, p-BrC6H4CH2OH, p-H3COC6H4CH2OH, p-NO2C6H4CH2OH, p-CF3C6H4CH2OH, 1-naphthalenemethanol, p-HOC6H4CH2OH, and p-CNC6H4CH2OH.

Description

요소-과산화수소 및 브롬화 마그네슘 촉매를 이용한 벤질 알콜의 산화방법{Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide}Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide

본 발명은 1차 벤질 알콜 또는 2차 벤질 알콜을 산화시켜 벤질 알데히드 또는 벤질 케톤을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing benzyl aldehyde or benzyl ketone by oxidizing primary benzyl alcohol or secondary benzyl alcohol.

알콜의 상응하는 알데히드 및 케톤으로의 산화는 유기 합성에서 가장 기본적인 변환중의 하나이다. 대개 벤질 알콜의 산화는 삼산화크롬(Ⅵ)(Hajipour, A. R.; Mallakpour, S. E.; Khoee, S. Synlett 2000, 740), 질산(Strazzolini, P.; Runcio, A, Eur. J. Org. Chem. 2003, 526), 디메틸설폭시드/HBr(Li, C.; Xu, Y.; Lu, M.; Zhao, Z.; Liu, L.;, Zhao Z.; Cui, Y. Zheng, P.; Ji, X.; Gao, G . Synlett 2002, 2041), 및 고원자가의(hypervalent) 요오드 화합물(Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68, 2058)과 같은 산화제를 사용하여 수행되어 왔다.Oxidation of alcohols to the corresponding aldehydes and ketones is one of the most basic conversions in organic synthesis. Usually, the oxidation of benzyl alcohol is known as chromium trioxide (VI) (Hajipour, AR; Mallakpour, SE; Khoee, S. Synlett 2000 , 740), nitric acid (Strazzolini, P .; Runcio, A, Eur. J. Org. Chem. 2003 526), Dimethylsulfoxide / HBr (Li, C .; Xu, Y .; Lu, M .; Zhao, Z .; Liu, L.;, Zhao Z .; Cui, Y. Zheng, P .; Ji ., X .; Gao, G Synlett 2002, 2041), and (hypervalent) compounds of hypervalent iodine (Surendra, K .; Krishnaveni, NS ; Reddy, MA; Nageswar, YVD;. Rao, KR J. Org Chem. 2003 , 68 , 2058).

최근 몇 년간, 유기 반응에서 종래의 독성의 산화제를 보다 친환경적인 화학물로 대체하려는 매우 커다란 요구가 있어 왔다. 기타 시약에 비하여, 과산화수소는 값이 싸고 쉽게 이용가능한 산화제이므로, 그것은 환경적 측면에서 가장 바람직한 산화제로 여겨진다. 과산화수소가 벤질 알콜의 산화를 증진시키기 위한 다양한 방법이 보고되었다. 대표적인 예는 텅스텐산 나트륨(Chhikara, B. S.; Chandra, R.; Tandon, V. Synlett 2005, 872) 또는 강산인 HBr(Jiang, N.; Ragauskas, A. J. Tetrahedron Lett. 2005, 46, 3323)과 같은 활성제(activator)와 함께 과산화수소를 이용하여 벤질 알콜을 산화시키는 것이다. 그러나, 액체 과산화수소의 불안정한 성질이 실질적인 산화반응에서 이용을 제한하였다. 최근 몇 년간, 불안정한 농축된 과산화수소 대신에, 요소-과산화수소(urea-hydrogen peroxide ; UHP)가 높은 안정성, 높은 과산화수소 함량 및 용이한 접근성과 같은 그것의 실질적 특성 때문에 안정한 대체물로 떠올랐다(Gonsalves, A. M. R.; Johnstone, R. A. W.; Pereira, M. M.; Shaw, J. J. Chem Res., Synop. 1991, 208). 요소-과산화수소는 올레핀의 에폭시화(Fan, C. L.; Lee, W. D.; Teng, N. W.; Sun, Y. C.; Chen, K. J. Org. Chem. 2003, 68, 9816), 설파이드(sulfide)의 설폰(sulfone)으로의 전환(Balicki, R. Synth Commun. 1999, 29, 2235), 방향족 알데히드의 벤조산(benzoic acid)으로의 산화(Heaney, H.; Newbold, A. J. Tetrahedron Lett. 2001, 42, 6607), 및 아렌(arene)의 산화적 할로겐화(Zienlinska, A.; Skulski, L. Tetrahedron Lett. 2004, 45, 1087)를 포함하는 다양한 유기반응에 이용되어 왔다. 그러나, 오히려 UHP의 높은 안정성 때문에, 산화반응은 헥사플루오로-2-프로판 올(hexafluoro-2-propanol)(Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue, J-P. Eur. J. Org. Chem. 2002, 3290), 메틸 트리옥소레니움(methyl trioxorhenium ; MTO)(Adam, W.; Mitchell, C. M.; Angew. Chem. Int. Ed. Engl. 1996, 35, 533) 및 포름산과 같은 강한 활성제의 존재하에서 수행되어야 했다. 추가하여, 상기 반응들은 대개 커다란 과량의 UHP 몰농도의 사용을 필요로 한다. 또한, 몇 가지 경우에는, 이례적인 전자파 조사 및 무용매 반응 기법을 필요로 하였다(Paul, S.; Nanda, P.; Gupta, R. Synlett, 2004, 531 ; (15) Varma, R. S.; Naicker, K. P. Org. Lett. 1999, 1, 189).In recent years, there has been a great need to replace conventional toxic oxidants with more environmentally friendly chemicals in organic reactions. Compared to other reagents, hydrogen peroxide is an inexpensive and readily available oxidizing agent, so it is regarded as the most preferable oxidizing agent in terms of the environment. Various methods have been reported for hydrogen peroxide to enhance the oxidation of benzyl alcohol. Representative examples include active agents such as sodium tungstate (Chhikara, BS; Chandra, R .; Tandon, V. Synlett 2005 , 872) or the strong acid HBr (Jiang, N .; Ragauskas, AJ Tetrahedron Lett. 2005 , 46 , 3323) . Hydrogen peroxide with activator is used to oxidize benzyl alcohol. However, the unstable nature of liquid hydrogen peroxide has limited its use in substantial oxidation reactions. In recent years, instead of unstable concentrated hydrogen peroxide, urea-hydrogen peroxide (UHP) has emerged as a stable substitute because of its practical properties such as high stability, high hydrogen peroxide content and easy accessibility (Gonsalves, AMR; Johnstone). , RAW; Pereira, MM; Shaw, J. J. Chem Res., Synop. 1991 , 208). Urea-hydrogen peroxide is the epoxidation of olefins (Fan, CL; Lee, WD; Teng, NW; Sun, YC; Chen, K. J. Org. Chem. 2003 , 68 , 9816), sulfide sulfide ) (Balicki, R. Synth Commun. 1999 , 29 , 2235), oxidation of aromatic aldehydes to benzoic acid (Heaney, H .; Newbold, AJ Tetrahedron Lett. 2001 , 42 , 6607), and It has been used in various organic reactions, including oxidative halogenation of arene (Zienlinska, A .; Skulski, L. Tetrahedron Lett. 2004 , 45 , 1087). But, rather, because of the high stability of the UHP, the oxidation reaction is hexafluoro-2-propanol (hexafluoro-2-propanol) ( Legros, J .; Crousse, B .; Bonnet-Delpon, D .; Begue, JP. Eur J. Org. Chem. 2002 , 3290), methyl trioxorhenium (MTO) (Adam, W .; Mitchell, CM; Angew. Chem. Int. Ed. Engl. 1996 , 35 , 533) and It had to be carried out in the presence of a strong active agent such as formic acid. In addition, these reactions usually require the use of large excess UHP molarity. In addition, in some cases, unusual electromagnetic radiation and solvent-free reaction techniques were required (Paul, S .; Nanda, P .; Gupta, R. Synlett , 2004 , 531; (15) Varma, RS; Naicker, KP). Org. Lett. 1999 , 1 , 189).

비록 UHP 증진을 이용한 막대한 수의 변환이 이미 보고되었지만, 본 발명자들의 현재의 지식으로는, 벤질 알콜의 알데히드 또는 케톤으로의 산화는 현재까지 Amberlite IRA-120 산성 레진(acidic resin)의 존재하에서 이루어진 단지 하나의 예만 보고 되었다(Bhati, N.; Sarma, K.; Goswami, A. Chem. Lett. 2008, 37, 496). 그러나, 상기 방법은 단지 산화된 카르보닐기 화합물을 17~32% 범위에 걸친 소수 산물로서만 생성하고, 기본적으로 주요한 산물로 페놀을 생성하였다.Although a huge number of conversions have already been reported using UHP enhancement, in our present knowledge, oxidation of benzyl alcohol to aldehydes or ketones has only been made so far in the presence of Amberlite IRA-120 acidic resins. Only one example has been reported (Bhati, N .; Sarma, K .; Goswami, A. Chem. Lett. 2008 , 37 , 496). However, the process produced only oxidized carbonyl group compounds as a minor product over the range of 17-32% and basically produced phenol as the major product.

한편, 지난 수십년 동안, 이온성 액체는 이들의 뛰어난 용매 특성 및 고가의 용매적 특성뿐만 아니라 친환경적 성질 때문에 많은 주목을 받아왔다. 이온성 액체는 독성의 휘발성 유기 용매를 대신하는 매력적인 친환경 물질이다.On the other hand, over the past decades, ionic liquids have attracted much attention because of their excellent solvent properties and expensive solvent properties as well as environmentally friendly properties. Ionic liquids are attractive environmentally friendly materials that replace toxic volatile organic solvents.

이에, 본 발명자들은 보다 친환경 물질을 이용한 알콜의 산화방법을 연구하 던 중, 이온성 액체내에서 브롬화 마그네슘의 촉매적 양을 이용하고, 산화제로 요소-과산화수소를 이용하면 다양한 벤질 알콜을 효과적으로 산화시킬 수 있음을 확인함으로써 본 발명을 완성하였다.Therefore, while the present inventors are studying the oxidation method of alcohol using more environmentally friendly materials, by using the catalytic amount of magnesium bromide in the ionic liquid, and using urea-hydrogen peroxide as the oxidizing agent, various benzyl alcohols can be effectively oxidized. The present invention has been completed by confirming that it can.

본 발명의 목적은 친환경적 물질을 이용한 벤질 알콜의 산화방법을 제공하는 것이다.It is an object of the present invention to provide a method for oxidizing benzyl alcohol using environmentally friendly materials.

상기 과제를 해결하기 위하여 본 발명은 이온성 액체(ionic liquid)하에 브롬화 마그네슘(MgBr2)을 촉매적으로 이용하여 요소-과산화수소(urea-hydrogen peroxide ; UHP)로 1차 벤질 알콜 또는 2차 벤질 알콜을 산화시켜 벤질 알데히드 또는 벤질 케톤을 제조하는 방법을 제공한다.In order to solve the above problems, the present invention uses magnesium bromide (MgBr 2 ) under an ionic liquid as a primary benzyl alcohol or secondary benzyl alcohol as urea-hydrogen peroxide (UHP). To oxidize to provide benzyl aldehyde or benzyl ketone.

이하에서 본 발명을 보다 구체적으로 치환된 벤질 알콜의 산화반응에 UHP의 일반적 이용을 제시한다.In the following, the present invention more specifically presents the general use of UHP in the oxidation of substituted benzyl alcohols.

본 발명은 브롬화 마그네슘의 촉매적 양의 존재하에서 요소-과산화수소를 이용하여, 1차 및 2차 벤질 알콜을 상응하는 방향족 알데히드 및 케톤으로 효율적으 로 산화시킨다. 본 발명의 반응 기작은 도 1과 같은 도식으로 나타낼 수 있다.The present invention utilizes urea-hydrogen peroxide in the presence of a catalytic amount of magnesium bromide to efficiently oxidize primary and secondary benzyl alcohols to the corresponding aromatic aldehydes and ketones. The reaction mechanism of the present invention can be represented by the scheme shown in FIG.

본 발명의 벤질 알데히드 또는 벤질 케톤의 제조방법에 있어서, 상기 1차 벤질 알콜은 PhCH2OH, p-CH3C6H4CH2OH, p-FC6H4CH2OH, p-ClC6H4CH2OH, p-BrC6H4CH2OH, p-H3COC6H4CH2OH, p-NO2C6H4CH2OH, p-CF3C6H4CH2OH, 1-naphthalenemethanol, p-HOC6H4CH2OH 및 p-CNC6H4CH2OH로 이루어진 군중에서 선택된 알콜인 것이 바람직하고, 상기 2차 벤질 알콜은 PhCH(OH)CH3, p-CH3C6H4CH(OH)CH3, p-FC6H4CH(OH)CH3, p-ClC6H4CH(OH)CH3, p-BrC6H4CH(OH)CH3, PhCH(OH)Et, PhCH(OH)Ph, PhCH(OH)COPh, PhCH(OH)COOMe, PhCH(OH)COOEt, p-NO2C6H4CH(OH)CH3, p-HOC6H4CH(OH)CH3 p-CNC6H4CH(OH)CH3로 이루어진 군중에서 선택된 알콜인 것이 바람직하다.In the method for preparing benzyl aldehyde or benzyl ketone of the present invention, the primary benzyl alcohol is PhCH 2 OH, p -CH 3 C 6 H 4 CH 2 OH, p -FC 6 H 4 CH 2 OH, p -ClC 6 H 4 CH 2 OH, p -BrC 6 H 4 CH 2 OH, p -H 3 COC 6 H 4 CH 2 OH, p -NO 2 C 6 H 4 CH 2 OH, p -CF 3 C 6 H 4 CH 2 Preferred is an alcohol selected from the group consisting of OH, 1-naphthalenemethanol, p- HOC 6 H 4 CH 2 OH and p- CNC 6 H 4 CH 2 OH, wherein the secondary benzyl alcohol is PhCH (OH) CH 3 , p -CH 3 C 6 H 4 CH (OH) CH 3 , p -FC 6 H 4 CH (OH) CH 3 , p -ClC 6 H 4 CH (OH) CH 3 , p -BrC 6 H 4 CH (OH) CH 3 , PhCH (OH) Et, PhCH (OH) Ph, PhCH (OH) COPh, PhCH (OH) COOMe, PhCH (OH) COOEt, p- NO 2 C 6 H 4 CH (OH) CH 3 , is p -HOC 6 H 4 CH (OH ) CH 3 and p -CNC 6 H 4 CH (OH ) of an alcohol selected from the group of CH 3 are preferred.

본 발명의 벤질 알데히드 또는 벤질 케톤의 제조방법에 있어서, 상기 이온성 액체는 1-butyl-3-methylimidazolium tetrafluoroborate([bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate([emim]BF4), 1-ethyl-3-methylimidazolium methylsulfate([emim]MS), 1-butyl-3-methylimidazolium hexafluorophosphate([bmim]PF6), 1-butyl-3-methylimidazolium methylsulfate([bmim]MS) 및 1-hexyl-3-methylimidazolium hexafluorophosphate([hmim]PF6)로 이루어진 군중에서 선택된 이온성 액체인 것이 바람직하다.In the method for preparing benzyl aldehyde or benzyl ketone of the present invention, the ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim] BF 4 ), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim] BF 4 ) , 1-ethyl-3-methylimidazolium methylsulfate ([emim] MS), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] PF 6 ), 1-butyl-3-methylimidazolium methylsulfate ([bmim] MS) and 1-hexyl It is preferred that it is an ionic liquid selected from the group consisting of -3-methylimidazolium hexafluorophosphate ([hmim] PF 6 ).

본 발명의 벤질 알데히드 또는 벤질 케톤의 제조방법에 있어서, 상기 요소-과산화수소는 요소 100 중량부에 대하여 과산화수소 20 내지 100 중량부인 것이 바람직하고, 상기 UHP 1 당량을 기준으로 상기 브롬화 마그네슘은 0.01 내지 0.2 당량이고, 벤질 알콜은 0.1 내지 5 당량인 것이 바람직하다.In the method for preparing benzyl aldehyde or benzyl ketone of the present invention, the urea-hydrogen peroxide is preferably 20 to 100 parts by weight of hydrogen peroxide relative to 100 parts by weight of urea, and the magnesium bromide is 0.01 to 0.2 equivalents based on 1 equivalent of UHP. And benzyl alcohol is preferably 0.1 to 5 equivalents.

본 발명의 벤질 알데히드 또는 벤질 케톤의 제조방법에 있어서, 상기 벤질 알콜의 산화 반응은 40~80℃에서 1~4시간 동안 반응되는 것이 바람직하다.In the method for producing benzyl aldehyde or benzyl ketone of the present invention, the oxidation reaction of the benzyl alcohol is preferably reacted for 1 to 4 hours at 40 ~ 80 ℃.

본 발명의 벤질 알데히드 또는 벤질 케톤의 제조방법에 있어서, 상기 산화반응 종료 이후에 유기추출 및 분리정제 과정을 통해 순수한 벤질 알데히드 또는 벤질 케톤을 제조하는 단계를 거치는 것이 바람직하다.In the method for producing benzyl aldehyde or benzyl ketone of the present invention, it is preferable to go through the step of producing pure benzyl aldehyde or benzyl ketone through the organic extraction and separation and purification process after the oxidation reaction.

본 발명자들은 1-부틸-3-메틸이미다졸리움 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate ; [bmim]BF4) 내에서 2~3시간 동안 60℃에서 브롬화 마그네슘(0.1 당량)의 존재하에 UHP(1.2 당량)와 벤질 알콜의 반응으로 모든 경우에 유일한 관찰가능한 산물로 상응하는 알데히드 또는 케톤을 제공함을 확인하였다. 구조적으로 다양한 1차 및 2차 벤질 알콜의 넓은 범위에 걸쳐 상기 절차에 의하여 성공적으로 산화 반응을 진행하였고, 그 결과 상응하는 카르보닐기 화합물을 제공하였다(표 1 참조).The present inventors found that magnesium bromide (0.1 equivalent) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim] BF 4 ) at 60 ° C. for 2-3 hours. The reaction of UHP (1.2 equiv) and benzyl alcohol in the presence confirmed that the only observable product in all cases provided the corresponding aldehyde or ketone. The oxidation was successfully carried out by the above procedure over a wide range of structurally diverse primary and secondary benzyl alcohols, giving the corresponding carbonyl group compounds (see Table 1).

본 발명의 벤질 알콜의 산화에 있어서, 0.1 당량의 브롬화 마그네슘의 사용으로 충분히 높은 수율로 원하는 산화 산물을 생성시킨다. 브롬화 마그네슘의 결여시에는 어떠한 산화반응도 관찰되지 않는다. 예를 들어, 본 발명자들은 MgBr2 대신에 염화 마그네슘, 요오드화 마그네슘, 브롬화 제2구리, 브롬화 나트륨와 같은 다른 금속 할로겐화물을 사용한 경우는 브롬화 마그네슘에 비하여 훨씬 낮은 수율의 산물을 얻었다.In the oxidation of the benzyl alcohol of the present invention, the use of 0.1 equivalents of magnesium bromide yields the desired oxidation product in sufficiently high yields. In the absence of magnesium bromide no oxidation reaction is observed. For example, the inventors obtained much lower yields of magnesium bromide when using other metal halides such as magnesium chloride, magnesium iodide, cupric bromide, sodium bromide instead of MgBr 2 .

방향족 고리위에 전자를 주고 전자를 빼앗는 치환체는 상기 반응의 효율에 커다란 영향을 미치지 못했다. 그러나, 니트로 그룹과 같은 강한 전자를 빼앗는 그룹은 다소 낮은 수율을 주었다(표 1의 7번 참조). 1차 벤질 알콜은 본 반응 조건에서 과산화를 진행하지 않았다. 산에 민감한 메톡시 및 에스테르 작용기(표 1의 6번, 18번 및 19번 참조)는 본 반응 조건에서 적은 정도로 잔존함을 나타내었다. 디페닐메탄올, 벤조인, 및 α-하이드록시 에스테르의 산화는 용이하게 각각 벤조페논, 벤질, 및 α-케토 에스테르를 생성시켰다(표 1의 16번, 17번, 18번, 및 19번 참조). 그러나, 지방족 알콜에 본 발명의 적용은 복잡한 반응 혼합물을 제공하였다. 상기 반응은 아마도 기존에 알려진 UHP와 Amberlite IR-120 레진을 사용하여 알콜에서 페놀을 생성하는 작용 기전(Bhati, N.; Sarma, K.; Goswami, A. Chem. Lett. 2008, 37, 496)과 유사하게 organo hydroperoxide 반응 중간체 형성 한 후 이 중간체의 탈수반응을 경유하여 카르보닐기 화합물을 생성했을 것으로 추 측된다.Substituents which deplete electrons on the aromatic ring did not significantly affect the efficiency of the reaction. However, strong electron depriving groups such as nitro groups gave somewhat lower yields (see number 7 in Table 1). Primary benzyl alcohol did not undergo peroxidation under the present reaction conditions. Acid-sensitive methoxy and ester functional groups (see Nos. 6, 18 and 19 in Table 1) remained to a lesser extent at present reaction conditions. Oxidation of diphenylmethanol, benzoin, and α-hydroxy esters readily produced benzophenone, benzyl, and α-keto esters, respectively (see numbers 16, 17, 18, and 19 of Table 1). . However, the application of the present invention to aliphatic alcohols provided a complex reaction mixture. This reaction is probably due to the mechanism of action for the production of phenols in alcohol using previously known UHP and Amberlite IR-120 resins (Bhati, N .; Sarma, K .; Goswami, A. Chem. Lett. 2008 , 37 , 496). Similarly, after organo hydroperoxide reaction intermediate formation, it is estimated that carbonyl compounds were produced via dehydration of this intermediate.

요약하면, 이온성 액체내 브롬화 마그네슘의 존재하에 UHP를 사용한 본 발명은 벤질 알콜의 카르보닐기 화합물로의 산화를 위한 신규하고 효율적인 프로토콜임을 입증한다. 상기 반응 동안에 독성의 시약 및 해로운 유기용매의 사용을 회피하는 친환경적인 절차를 통하여 벤질 알콜의 산화를 위한 종래의 방법에 대한 유용하고 실질적인 대안이며 보다 넓은 응용이 가능하다.In summary, the present invention using UHP in the presence of magnesium bromide in ionic liquids demonstrates a novel and efficient protocol for the oxidation of benzyl alcohol to carbonyl group compounds. Environmentally friendly procedures that avoid the use of toxic reagents and harmful organic solvents during this reaction are useful and practical alternatives to conventional methods for the oxidation of benzyl alcohol and enable wider applications.

상기와 같이 본 발명은 종래의 독성 유기용매 및 산화제 대신에 친환경적인 요소-과산화수소와 반응 조건을 이용하면서도 높은 수율로 벤질 알데히드 또는 벤질 케톤을 제조할 수 있으므로, 벤질 알콜의 산화를 위한 종래의 방법에 대한 유용하고 실질적인 대안이며 보다 넓은 응용이 가능하다.As described above, the present invention can produce benzyl aldehyde or benzyl ketone in high yield while using environmentally friendly urea-hydrogen peroxide and reaction conditions instead of the conventional toxic organic solvent and oxidizing agent, and thus, in the conventional method for the oxidation of benzyl alcohol. It is a useful and practical alternative to this and broader applications are possible.

이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.

<실시예 1> 일반적 절차Example 1 General Procedure

벤질 알콜의 산화를 위한 일반적인 실험 절차는 다음과 같다.The general experimental procedure for the oxidation of benzyl alcohol is as follows.

실온에서 1 ㎖의 이온성 액체인 1-부틸-3-메틸이미다졸리움 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate ; [bmim]BF4 ; C-TRI Co. 구입)내 벤질 알콜(1.0 m㏖, Sigma-Aldrich Co. 구입) 및 UHP(0.113 g, 1.2 m㏖, 과산화수소 36.2%, Sigma-Aldrich Co. 구입)의 용액에 MgBr2(0.018 g, 0.1 m㏖, Sigma-Aldrich Co. 구입)를 첨가하였다. 상기 반응 혼합액을 2~3시간 동안 60℃에서 혼합하고, 반응 혼합액을 디클로로메탄(dichloromethane)(2 x 5 ㎖)로 추출하였다. 결합된 디클로메탄을 포화된 생리 식염수(2 x 5 ㎖)로 세척하고 무수 마그네슘 설페이트로 건조시켰다. 용매를 증발시킨 후에, 상기 잔류물을 플래시 컬럼 크로마토그래피(flash column chromatography(SiO2, hexane:ethyl acetate = 3:1)로 정제하여 순수한 카르보닐기 화합물을 생성하였다.Benzyl alcohol in 1 ml ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim] BF 4 ; purchased from C-TRI Co.), at room temperature. MgBr 2 (0.018 g, 0.1 mmol, Sigma-Aldrich Co.) in a solution of 1.0 mmol, Sigma-Aldrich Co.) and UHP (0.113 g, 1.2 mmol, hydrogen peroxide 36.2%, Sigma-Aldrich Co.). Purchase). The reaction mixture was mixed at 60 ° C. for 2-3 hours, and the reaction mixture was extracted with dichloromethane (2 × 5 mL). The bound dichloromethane was washed with saturated physiological saline (2 × 5 mL) and dried over anhydrous magnesium sulfate. After evaporation of the solvent, the residue was purified by flash column chromatography (SiO 2 , hexane: ethyl acetate = 3: 1) to give pure carbonyl compound.

<실시예 2 내지 실시예 20> <Examples 2 to 20>

상기 실시예 1의 벤질 알콜로 하기 표 1의 기질로 기재된 각 알콜을 이용하였다. 그 결과, 구조적으로 다양한 1차 및 2차 벤질 알콜의 넓은 범위에서 상기 절차에 의하여 성공적으로 산화 반응을 진행하여 상응하는 카르보닐기 화합물을 제공하였다(표 1). 또한, 모든 경우에, 0.1 당량의 브롬화 마그네슘의 사용으로 바 람직한 산화 산물을 충분히 높은 수율로 달성한다. 브롬화 마그네슘의 결여시에는 어떠한 산화 반응도 관찰되지 않는다. 염화 마그네슘, 요오드화 마그네슘, 브롬화 제2구리, 브롬화 나트륨와 같은 다른 금속 할로겐화물에 의한 MgBr2의 치환은 훨씬 낮은 효율의 결과를 가져왔다.As the benzyl alcohol of Example 1, each alcohol described as the substrate of Table 1 was used. As a result, oxidation was successfully carried out by the above procedure over a wide range of structurally diverse primary and secondary benzyl alcohols to provide the corresponding carbonyl group compounds (Table 1). In addition, in all cases, the use of 0.1 equivalents of magnesium bromide achieves the desired oxidation product in sufficiently high yields. In the absence of magnesium bromide no oxidation reaction is observed. Substitution of MgBr 2 by other metal halides such as magnesium chloride, magnesium iodide, cupric bromide, sodium bromide has resulted in much lower efficiency.

UHP/MgBr2을 이용한 벤질 알콜의 산화Oxidation of Benzyl Alcohol with UHP / MgBr 2 entryentry 기질temperament 산물product 시간time 수율(%)a Yield (%) a 1One PhCH2OHPhCH 2 OH PhCOHPhCOH 22 9494 22 p-CH3C6H4CH2OH p -CH 3 C 6 H 4 CH 2 OH p-CH3C6H4COH p -CH 3 C 6 H 4 COH 22 9292 33 p-FC6H4CH2OH p -FC 6 H 4 CH 2 OH p-FC6H4COH p -FC 6 H 4 COH 22 8888 44 p-ClC6H4CH2OH p -ClC 6 H 4 CH 2 OH p-ClC6H4COH p -ClC 6 H 4 COH 22 8787 55 p-BrC6H4CH2OH p -BrC 6 H 4 CH 2 OH p-BrC6H4COH p -BrC 6 H 4 COH 22 8585 66 p-H3COC6H4CH2OH p -H 3 COC 6 H 4 CH 2 OH p-H3COC6H4COH p -H 3 COC 6 H 4 COH 22 9191 77 p-NO2C6H4CH2OH p -NO 2 C 6 H 4 CH 2 OH p-NO2C6H4COH p -NO 2 C 6 H 4 COH 22 7777 88 p-CF3C6H4CH2OH p -CF 3 C 6 H 4 CH 2 OH p-CF3C6H4COH p -CF 3 C 6 H 4 COH 22 7676 99 1-naphthalenemethanol1-naphthalenemethanol 1-naphthaldehyde1-naphthaldehyde 22 7575 1010 PhCH(OH)CH3 PhCH (OH) CH 3 PhCOCH3 PhCOCH 3 22 9191 1111 p-CH3C6H4CH(OH)CH3 p -CH 3 C 6 H 4 CH (OH) CH 3 p-CH3C6H4COCH3 p -CH 3 C 6 H 4 COCH 3 22 9090 1212 p-FC6H4CH(OH)CH3 p -FC 6 H 4 CH (OH) CH 3 p-FC6H4COCH3 p -FC 6 H 4 COCH 3 33 8585 1313 p-ClC6H4CH(OH)CH3 p -ClC 6 H 4 CH (OH) CH 3 p-ClC6H4COCH3 p -ClC 6 H 4 COCH 3 33 8484 1414 p-BrC6H4CH(OH)CH3 p -BrC 6 H 4 CH (OH) CH 3 p-BrC6H4COCH3 p -BrC 6 H 4 COCH 3 33 8484 1515 PhCH(OH)EtPhCH (OH) Et PhCOEtPhCOEt 22 8686 1616 PhCH(OH)PhPhCH (OH) Ph PhCOPhPhCOPh 22 8787 1717 PhCH(OH)COPhPhCH (OH) COPh PhCOCOPhPhCOCOPh 33 8787 1818 PhCH(OH)COOMePhCH (OH) COOMe PhCOCOOMePhCOCOOMe 22 7878 1919 PhCH(OH)COOEtPhCH (OH) COOEt PhCOCOOEtPhCOCOOEt 22 7878

a isolated Yield a isolated Yield

도 1은 본 발명의 벤질 알콜의 산화에 의하여 카르보닐기 화합물의 제조과정을 나타낸 도식이다. 1 is a schematic diagram showing a process for preparing a carbonyl group compound by oxidation of benzyl alcohol of the present invention.

Claims (8)

이온성 액체(ionic liquid)하에 브롬화 마그네슘(MgBr2)을 촉매적으로 이용하여 요소-과산화수소(urea-hydrogen peroxide ; UHP)로 1차 벤질 알콜 또는 2차 벤질 알콜을 산화시켜 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.Benzyl aldehyde or benzyl ketone was formed by oxidizing primary benzyl alcohol or secondary benzyl alcohol with urea-hydrogen peroxide (UHP), catalytically using magnesium bromide (MgBr 2 ) under an ionic liquid. How to make. 제 1항에 있어서, 상기 1차 벤질 알콜은 PhCH2OH, p-CH3C6H4CH2OH, p-FC6H4CH2OH, p-ClC6H4CH2OH, p-BrC6H4CH2OH, p-H3COC6H4CH2OH, p-NO2C6H4CH2OH, p-CF3C6H4CH2OH, 1-naphthalenemethanol, p-HOC6H4CH2OH 및 p-CNC6H4CH2OH로 이루어진 군중에서 선택된 알콜인 것을 특징으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method of claim 1, wherein the primary benzyl alcohol is PhCH 2 OH, p -CH 3 C 6 H 4 CH 2 OH, p -FC 6 H 4 CH 2 OH, p -ClC 6 H 4 CH 2 OH, p- BrC 6 H 4 CH 2 OH, p -H 3 COC 6 H 4 CH 2 OH, p -NO 2 C 6 H 4 CH 2 OH, p -CF 3 C 6 H 4 CH 2 OH, 1-naphthalenemethanol, p- A process for producing benzyl aldehyde or benzyl ketone, characterized in that the alcohol is selected from the group consisting of HOC 6 H 4 CH 2 OH and p -CNC 6 H 4 CH 2 OH. 제 1항에 있어서, 상기 2차 벤질 알콜은 PhCH(OH)CH3, p-CH3C6H4CH(OH)CH3, p-FC6H4CH(OH)CH3, p-ClC6H4CH(OH)CH3, p-BrC6H4CH(OH)CH3, PhCH(OH)Et, PhCH(OH)Ph, PhCH(OH)COPh, PhCH(OH)COOMe, PhCH(OH)COOEt, p-NO2C6H4CH(OH)CH3, p-HOC6H4CH(OH)CH3 p-CNC6H4CH(OH)CH3로 이루어진 군중에서 선택된 알콜인 것을 특징 으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method of claim 1, wherein the secondary benzyl alcohol is PhCH (OH) CH 3 , p -CH 3 C 6 H 4 CH (OH) CH 3 , p -FC 6 H 4 CH (OH) CH 3 , p -ClC 6 H 4 CH (OH) CH 3 , p -BrC 6 H 4 CH (OH) CH 3 , PhCH (OH) Et, PhCH (OH) Ph, PhCH (OH) COPh, PhCH (OH) COOMe, PhCH (OH ) COOEt, p -NO 2 C 6 H 4 CH (OH) CH 3 , p -HOC 6 H 4 CH (OH ) CH 3 and p -CNC 6 H 4 CH (OH ) method for producing a benzyl aldehyde or ketone benzyl, characterized in that the alcohol is selected from the group of CH 3. 제 1항에 있어서, 상기 이온성 액체는 1-butyl-3-methylimidazolium tetrafluoroborate([bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate([emim]BF4), 1-ethyl-3-methylimidazolium methylsulfate([emim]MS), 1-butyl-3-methylimidazolium hexafluorophosphate([bmim]PF6), 1-butyl-3-methylimidazolium methylsulfate([bmim]MS) 및 1-hexyl-3-methylimidazolium hexafluorophosphate([hmim]PF6)로 이루어진 군중에서 선택된 이온성 액체인 것을 특징으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method of claim 1, wherein the ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim] BF 4 ), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim] BF 4 ), 1-ethyl-3-methylimidazolium methylsulfate ([emim] MS), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] PF 6 ), 1-butyl-3-methylimidazolium methylsulfate ([bmim] MS) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim ] PF 6 ) A method for producing benzyl aldehyde or benzyl ketone, characterized in that the ionic liquid selected from the group consisting of. 제 1항에 있어서, 상기 요소-과산화수소는 요소 100 중량부에 대하여 과산화수소 20 내지 100 중량부인 것을 특징으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method of claim 1, wherein the urea-hydrogen peroxide is 20 to 100 parts by weight of hydrogen peroxide relative to 100 parts by weight of urea. 제 1항에 있어서, 상기 UHP 1 당량을 기준으로 상기 브롬화 마그네슘은 0.01 내지 0.2 당량이고, 벤질 알콜은 0.1 내지 5 당량인 것을 특징으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method of claim 1, wherein the magnesium bromide is 0.01 to 0.2 equivalents and the benzyl alcohol is 0.1 to 5 equivalents based on 1 equivalent of UHP. 제 1항에 있어서, 상기 벤질 알콜의 산화 반응은 40~80℃에서 1~4시간 동안 반응되는 것을 특징으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method of claim 1, wherein the benzyl alcohol is oxidized at 40 to 80 ° C. for 1 to 4 hours. 제 1항에 있어서, 상기 산화반응 종료 이후에 유기추출 및 분리정제 과정을 통해 순수한 벤질 알데히드 또는 벤질 케톤을 제조하는 단계를 거치는 것을 특징으로 하는 벤질 알데히드 또는 벤질 케톤을 제조하는 방법.The method for preparing benzyl aldehyde or benzyl ketone according to claim 1, wherein the step of preparing pure benzyl aldehyde or benzyl ketone through organic extraction and separation and purification after the oxidation is completed.
KR1020080098570A 2008-10-08 2008-10-08 Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide KR101012201B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080098570A KR101012201B1 (en) 2008-10-08 2008-10-08 Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080098570A KR101012201B1 (en) 2008-10-08 2008-10-08 Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide

Publications (2)

Publication Number Publication Date
KR20100039554A true KR20100039554A (en) 2010-04-16
KR101012201B1 KR101012201B1 (en) 2011-02-08

Family

ID=42215936

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080098570A KR101012201B1 (en) 2008-10-08 2008-10-08 Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide

Country Status (1)

Country Link
KR (1) KR101012201B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013101335A1 (en) * 2011-12-29 2013-07-04 Uop Llc Process for oxidizing alkyl-aromatic compounds
WO2013101324A1 (en) * 2011-12-29 2013-07-04 Uop Llc Process for oxidizing alkyl aromatic compounds
WO2013101322A1 (en) * 2011-12-29 2013-07-04 Uop Llc Process for oxidizing an alkyl-aromatic compound
US8927764B2 (en) 2011-12-29 2015-01-06 Uop Llc Process for producing terephthalic acid
US9024059B2 (en) 2011-12-29 2015-05-05 Uop Llc Process for producing terephthalic acid
US9085522B2 (en) 2011-12-29 2015-07-21 Uop Llc Process for producing terephthalic acid
CN109265326A (en) * 2018-09-29 2019-01-25 武汉工程大学 A kind of low-carbon alcohols promotion Fe3O4Method of the catalytic phenylmethanol oxidation preparation without chlorobenzaldehyde

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350612A (en) * 1981-01-13 1982-09-21 Stauffer Chemical Company Method for preparing a magnesium halide support for catalysts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013101335A1 (en) * 2011-12-29 2013-07-04 Uop Llc Process for oxidizing alkyl-aromatic compounds
WO2013101324A1 (en) * 2011-12-29 2013-07-04 Uop Llc Process for oxidizing alkyl aromatic compounds
WO2013101322A1 (en) * 2011-12-29 2013-07-04 Uop Llc Process for oxidizing an alkyl-aromatic compound
US8927764B2 (en) 2011-12-29 2015-01-06 Uop Llc Process for producing terephthalic acid
US9024059B2 (en) 2011-12-29 2015-05-05 Uop Llc Process for producing terephthalic acid
US9085522B2 (en) 2011-12-29 2015-07-21 Uop Llc Process for producing terephthalic acid
US9156765B2 (en) 2011-12-29 2015-10-13 Uop Llc Process for oxidizing alkyl-aromatic compounds
CN109265326A (en) * 2018-09-29 2019-01-25 武汉工程大学 A kind of low-carbon alcohols promotion Fe3O4Method of the catalytic phenylmethanol oxidation preparation without chlorobenzaldehyde

Also Published As

Publication number Publication date
KR101012201B1 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
KR101012201B1 (en) Oxidation Method of Benzylic Alcohols with Urea-Hydrogen Peroxide and Catalytic Magnesium Bromide
Uyanik et al. Hypervalent iodine-mediated oxidation of alcohols
Krylov et al. Cross-dehydrogenative coupling for the intermolecular C–O bond formation
Liu et al. Oxidative radical ring-opening/cyclization of cyclopropane derivatives
Danishefsky et al. The use of trans-methyl. beta.-nitroacrylate in Diels-Alder reactions
CN101148400A (en) Method for preparing aldehydes and ketones by using oxygen gas to oxidize alcohols
Nakayama et al. Aerobic oxidation of benzyl-and allylic alcohols under visible light irradiation of a fluorescent lamp in the presence of catalytic iodine
Yakura et al. An Efficient Catalytic Oxidation of p-Alkoxypenols to p-Quinones Using Tetrabutylammonium Bromide and Oxone®
Sivamurugan et al. Selective and clean oxidation of alcohols with benzimidazolium fluorochromate (BIFC) under solvent free conditions
Yakura et al. Catalytic hypervalent iodine oxidation of p-dialkoxybenzenes to p-quinones using 4-iodophenoxyacetic acid and Oxone®
CN104119212B (en) A kind of catalyzed oxidation 3,3-dimethyl-1-butanol prepares the method for 3,3-dimethyl-1-butyraldehyde
Luo et al. Oxidation of alcohols to carbonyl compounds with molecular iodine in the presence of potassium tert-butoxide
KR20150026729A (en) Method for oxidizing alcohols
WO2007031286A1 (en) Process for the preparation of an epoxy compound and an aldehyde
Kumar et al. Metal-free activation of H 2 O 2 by synergic effect of ionic liquid and microwave: chemoselective oxidation of benzylic alcohols to carbonyls and unexpected formation of anthraquinone in aqueous condition
CN113292518B (en) Method for preparing epoxybutane by organic micromolecule green and efficient catalysis of butylene
Ai et al. Tetrabutylammonium iodide catalyzed epoxidation of naphthoquinone derivatives with tert-butyl hydroperoxide as an oxidant
CN112079789A (en) Method for preparing isoxaflutole
CN112028774B (en) Synthetic method of benzoate ketone compound
Segrestaa et al. Improvement of a biomimetic porphyrin catalytic system by addition of acids
CN115650837B (en) Method for preparing ketone compound by 1,4 addition reaction of alpha, beta unsaturated ketene
CN115246769B (en) Oxidation method of benzaldehyde derivative
CN102653504A (en) Method for preparing carbonyl compounds by alcohol catalytic oxidation through oxygen without transition metal
Chan Lee et al. Efficient α‐Chlorination of Aryl Ketones Using Aluminum Chloride/Urea–Hydrogen Peroxide in Ionic Liquid
CN108484504A (en) A kind of method that bionic catalysis is broken C-N keys in aryl nitrogenous compound

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140214

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150417

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee