KR20100035062A - A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease - Google Patents

A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease Download PDF

Info

Publication number
KR20100035062A
KR20100035062A KR1020080094364A KR20080094364A KR20100035062A KR 20100035062 A KR20100035062 A KR 20100035062A KR 1020080094364 A KR1020080094364 A KR 1020080094364A KR 20080094364 A KR20080094364 A KR 20080094364A KR 20100035062 A KR20100035062 A KR 20100035062A
Authority
KR
South Korea
Prior art keywords
cancer
gly
arg
asp
disease
Prior art date
Application number
KR1020080094364A
Other languages
Korean (ko)
Other versions
KR101093549B1 (en
Inventor
권익찬
최귀원
김광명
김인산
이병헌
이계한
박경순
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020080094364A priority Critical patent/KR101093549B1/en
Publication of KR20100035062A publication Critical patent/KR20100035062A/en
Application granted granted Critical
Publication of KR101093549B1 publication Critical patent/KR101093549B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/554Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being a steroid plant sterol, glycyrrhetic acid, enoxolone or bile acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/558Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being a chemiluminescent acceptor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE: A nanoparticle contrast media in which fluorescence and disease target peptide are conjugated to an amphiphilic chitosan derivative is provided to improve targeting efficiency and increase efficiency of preventing and treating diseases. CONSTITUTION: An amphiphilic chitosan nanoparticle contrast media has fluorescence and disease target peptide which are conjugated to bile acid derivative or fatty acid derivative. The disease target peptide is IL-4 receptor target peptide or derivative thereof; a target peptide of apoptotic cell comprising an amino acid of sequence number 2 or derivative thereof; a target peptide of bladder cancer comprising an amino acid of sequence number 3 or derivative thereof; a peptide having a peptide RGD sequence targeting aptamer, folic acid, and integrin; or transferring or derivative thereof. The peptide having a peptide RGD sequence targeting integrin is cyclo (Arg-Gly-Asp-D-Phe-Val), cyclo(Arg-Gly-Asp-D-Phe-Lys), cyclo(Arg-Gly-Asp-D-Phe-Cys), cyclo(Arg-Gly-Asp-D-Phe-Glu), cyclo(Arg-Gly-Asp-D-Tyr-Lys), cyclo(Arg-Gly-Asp-D-Tyr-Glu), Arg-Gly-Asp-Ser or Gly-Arg-Gly-Asp-Ser. A contrast medium contains radioactive isotope, quantum dot or MRI contrast media.

Description

질환의 진단을 위한 표적 펩타이드가 결합된 양친성 키토산 나노입자 조영제 {A DISEASE TARGETED PEPTIDE-CONJUGATED AMPHIPHILIC CHITOSAN BASED NANOPARTICLE IMAGING AGENT FOR DIAGNOSIS OF DISEASE}Amphiphilic chitosan nanoparticle contrast agent bound to target peptide for diagnosis of disease {A DISEASE TARGETED PEPTIDE-CONJUGATED AMPHIPHILIC CHITOSAN BASED NANOPARTICLE IMAGING AGENT FOR DIAGNOSIS OF DISEASE}

본 발명은 염증성 질환에서 유발되는 신생혈관에 높은 선택성을 가진 담즙산-키토산 나노입자에 특정 질환 조직 및 세포에 특이성, 선택성 및 친화도가 높은 질환 표적 펩타이드가 결합하고, 동시에 근적외선 형광체를 결합하여 염증성 질환의 조기 진단, 예방 및 치료를 위하여 유용하게 사용될 수 있는 질환 표적형 나노입자 조영제에 관한 것이다. The present invention binds a disease target peptide having high specificity, selectivity, and affinity to specific disease tissues and cells to bile acid-chitosan nanoparticles having high selectivity for neovascularization induced by inflammatory diseases, and at the same time to bind near-infrared phosphors to inflammatory diseases. The present invention relates to a disease-targeting nanoparticle contrast agent that can be usefully used for the early diagnosis, prevention and treatment of cancer.

현재까지 고분자 나노입자, 마이셀, 리포좀 및 무기 나노입자인 금 나노입자, 양자점 나노입자, 산화철 나노입자 등 다양한 나노입자들이 개발되고 있다. 현재 개발되고 있는 다양한 나노입자를 이용하여, 질병을 치료할 수 있는 약물 전달체, 질병을 진단할 수 있는 조영제를 함유한 나노입자가 질환의 진단 및 예방 등에 사용되고 있다. To date, various nanoparticles such as gold nanoparticles, quantum dot nanoparticles, and iron oxide nanoparticles, which are polymer nanoparticles, micelles, liposomes, and inorganic nanoparticles, have been developed. Using various nanoparticles currently being developed, nanoparticles containing a drug carrier for treating a disease and a contrast agent for diagnosing a disease are used for diagnosis and prevention of a disease.

통상적으로, 나노입자는 질환 부위에서 형성되는 신생혈관의 높은 투과성 때문에 EPR(enhanced permeability and retention) 효과에 의해 질환 조직에 선택적 으로 축적된다. 이러한 성질을 이용하여, 암 진단제 및 치료제로써, 방사선 동위원소, 형광체, 항암제 및 다양한 질환 치료제 등을 함유한 나노입자를 개발하고 있다. 그러나, 이러한 나노입자들은 조영제 및 치료제를 수동적으로 전달하기 때문에 질환 부위에 선택적으로 조영제 및 치료제를 전달하는 능력이 낮다. Typically, nanoparticles are selectively accumulated in diseased tissue by enhanced permeability and retention (EPR) effects because of the high permeability of neovascularization formed at the disease site. Using these properties, nanoparticles containing radioisotopes, phosphors, anticancer agents and various disease therapeutic agents have been developed as cancer diagnosis and therapeutic agents. However, these nanoparticles have a low ability to selectively deliver contrast and therapeutic agents to the disease site because they passively deliver contrast and therapeutic agents.

한편, 질환 조직에 표적성을 갖는 바이오 마커, 일 예로 다양한 항체, 압타머, 엽산 유도체, 질환 표적 펩타이드 등을 탐색 및 발굴되고 있는데, 이러한 질환 표적성 바이오 마커 등이 결합된 나노입자를 사용하여, 다양한 질환 영상 장비, 즉 근적외선 형광 영상장비, PET, CT, MRI 등에 접목하면 기존의 조영제 및 질환 치료제보다 향상된 질환 진단, 예방 및 치료제를 개발할 수 있다. 이에 본 발명자들은 질환 조직에서 신생혈관의 높은 투과율에 의해 질환 조직에 선택적으로 축적되는 지방산 또는 담즙산 유도체-키토산 나노입자에, 파지 디스플레이 기술을 이용하여 발굴된 특정 질환에 특이성, 선택성 및 친화성이 높은 펩타이드를 결합하고 동시에 근적외선 투시가 가능한 Cy5.5를 화학적으로 결합하여 질환의 조기 진단, 예방, 및 치료를 위한 본 발명에 따른 질환 표적형 신규 나노입자 조영제를 개발하였다.Meanwhile, biomarkers having targets for diseased tissues, for example, various antibodies, aptamers, folate derivatives, disease-targeted peptides, and the like, have been searched for and discovered. Using nanoparticles having such disease-targeted biomarkers bound thereto, When combined with a variety of disease imaging equipment, namely near infrared fluorescence imaging equipment, PET, CT, MRI, etc., it is possible to develop improved disease diagnosis, prevention, and treatment than conventional contrast agents and disease treatments. Accordingly, the present inventors have high specificity, selectivity, and affinity for fatty acids or bile acid derivative-chitosan nanoparticles selectively accumulating in diseased tissues by high permeability of neovascularization in diseased tissues. By combining peptides and chemically binding Cy5.5, which is capable of near-infrared vision at the same time, a novel disease-targeting nanoparticle contrast agent according to the present invention has been developed for the early diagnosis, prevention, and treatment of diseases.

본 발명의 목적은 담즙산 유도체 또는 지방산 유도체가 결합된 양친성 키토산 유도체에 형광체 및 질환 표적 펩타이드가 결합된 나노입자 조영제를 제공하는 것이다.It is an object of the present invention to provide a nanoparticle contrast agent in which a phosphor and a disease target peptide are bound to an amphiphilic chitosan derivative to which a bile acid derivative or fatty acid derivative is bound.

또한, 본 발명의 목적은 담즙산 유도체 또는 지방산 유도체가 결합된 양친성 키토산 유도체에 형광체 및 질환 표적 펩타이드가 결합된 나노입자 조영제에 소수성 약물이 봉입된 약물전달체를 제공하는 것이다. It is also an object of the present invention to provide a drug carrier in which a hydrophobic drug is encapsulated in a nanoparticle contrast agent in which a phosphor and a disease target peptide are bound to an amphiphilic chitosan derivative to which a bile acid derivative or a fatty acid derivative is bound.

상기 목적을 달성하기 위하여, 본 발명은 담즙산 유도체 또는 지방산 유도체가 결합된 양친성 키토산 유도체에 형광체 및 질환 표적 펩타이드가 결합된 나노입자 조영제로, 상기 질환표적 펩타이드는 동맥경화 플라크 또는 IL-4 수용체 표적 펩타이드, 사멸세포의 표적 펩타이드, 방광암 세포 표적 펩타이드, 압타머, 엽산, 염증성 질환 조직내 혈관의 혈관내피세포에서 발현하는 인테그린 표적펩타이드인 Arg-Gly-Asp의 서열을 포함하는 펩타이드 유도체, 트렌스페린, 글루코스 및 이들의 유도체로 구성된 군에서 선택되는 것인 나노입자 조영제를 제공한다.In order to achieve the above object, the present invention is a nanoparticle contrast agent in which a fluorescent substance and a target peptide is coupled to an amphiphilic chitosan derivative in which a bile acid derivative or a fatty acid derivative is bound, wherein the disease target peptide is an atherosclerotic plaque or an IL-4 receptor target. Peptides, target peptides of apoptosis cells, bladder cancer cell target peptides, aptamers, folic acid, peptide derivatives comprising the sequence of Arg-Gly-Asp, an integrin target peptide expressed in vascular endothelial cells of blood vessels in inflammatory disease tissues, transferrin, It provides a nanoparticle contrast agent selected from the group consisting of glucose and derivatives thereof.

본 발명의 일 구현예에 있어서, 상기 질환 표적형 펩타이드는 서열번호 1로 구성된 동맥경화 플라크 또는 IL-4 수용체 표적 펩타이드, 서열번호 2로 구성된 사멸 세포 표적 펩타이드 및 서열번호 3으로 구성된 방광암 세포 표적 펩타이드로 구성된 군에서 선택된 아미노산 서열을 가지는 펩타이드일 수 있다. In one embodiment of the present invention, the disease-targeted peptide is an atherosclerotic plaque or IL-4 receptor target peptide consisting of SEQ ID NO: 1, a dead cell target peptide consisting of SEQ ID NO: 2 and bladder cancer cell target peptide consisting of SEQ ID NO: 3 It may be a peptide having an amino acid sequence selected from the group consisting of.

본 발명의 일 구현예에 있어서, 상기 나노입자에 방사선 동위원소, 양자점(quantum dot) 또는 MRI 조영제를 더 포함하는 것일 수 있다.In one embodiment of the present invention, the nanoparticle may further comprise a radioisotope, a quantum dot or an MRI contrast agent.

다른 측면에서, 본 발명은 상기 나노입자 조영제에 소수성 약물이 봉입된 편평상피세포암, 자궁암, 자궁 경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암 및, 담낭암로 구성된 군에서 선택된 암 치료용 약물전달체, 또는, 골 관절염, 류마티스 관절염, 전신성 경피증 (Progressive systemic sclerosis), 췌장세포 항체에 의한 인슐린 의존성 소아기 당뇨병, 만성 갑상선 염, 궤양성 대장염, 다발성 경화증 (multiple sclerosis), 자가면역성 뇌척수염 또는 섬유조직염 (Fibromyalgia syndrome) 및 동맥경화로 구성된 군에서 선택된 염증질환 치료용 약물전달체를 제공한다.In another aspect, the present invention is a squamous cell carcinoma, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, Drug delivery agents for cancer treatment selected from the group consisting of colorectal cancer, rectal cancer, stomach cancer, kidney cancer, bladder cancer, ovarian cancer, cholangiocarcinoma, and gallbladder cancer, or osteoarthritis, rheumatoid arthritis, progressive systemic sclerosis, pancreatic cell antibodies Provided are drug delivery agents for treating inflammatory diseases selected from the group consisting of insulin-dependent childhood diabetes, chronic thyroiditis, ulcerative colitis, multiple sclerosis, autoimmune encephalomyelitis or fibromyalgia syndrome and atherosclerosis.

본 발명의 일 구현예에 있어서, 상기 소수성 약물은 다우노마이신(daunomycin), 도세탁셀(Docetaxel), 시스플라틴 (cis-platin), 캠토세신 (camptothecin), 파클리탁셀(paclitaxel), 타목시펜(Tamoxifen), 아나스테로졸(Anasterozole), 글리벡(Gleevec), 5-플루오로우라실(5-FU), 플록슈리딘(Floxuridine), 류프로리드(Leuprolide), 플로타미드(Flutamide), 졸레드로네이트(Zoledronate), 독소루비신(Doxorubicin), 빈크리스틴(Vincristine), 젬시타빈(Gemcitabine), 스트렙토조토신(Streptozocin), 카보플라틴(Carboplatin), 토포테칸(Topotecan), 벨로테칸(Belotecan), 이리노테칸(Irinotecan), 비노렐빈(Vinorelbine), 히도록시우레아(hydroxyurea), 발루비신(Valrubicin), 레티노익 산 (retinoic acid) 계열, 메소트렉세이트(Methotrexate), 메클로레타민(Meclorethamine), 클로람부실(Chlorambucil), 부술판(Busulfan), 독시플루리딘(Doxifluridine), 빈블라스틴(Vinblastin), 마이토마이신(Mitomycin), 프레드니손(Prednisone), 테스토스테론(Testosterone), 미토산트론(Mitoxantron), 아스피린 (aspirin) 및 살리실레이트 (salicylates), 이부프로펜(ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 시클로포스파미드(cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone), 코르티코스테로이드(corticosteroid) 등이 있다. In one embodiment of the invention, the hydrophobic drug is daunomycin (daunomycin), docetaxel (Docetaxel), cisplatin (cis-platin), camptothecin (camptothecin), paclitaxel (paclitaxel), tamoxifen (tamamoxifen), Anaste Anasterozole, Gleevec, 5-Fluorouracil (5-FU), Fluxuridine, Leuprolide, Flotamide, Zoledronate Doxorubicin, Vincristine, Gemcitabine, Streptozocin, Carboplatin, Topotecan, Belotecan, Irinotecan, Vinote Levin (Vinorelbine), hydroxyurea, Valrubicin, retinoic acid series, Methotrexate, Mechloretamine, Chlorambucil, Bu Busulfan, Doxifluridine, Vinblastin, Itomycin, Prednisone, Testosterone, Mitoxantron, Aspirin and Salicylates, Ibuprofen, Naproxen, Naproxen, Phenopro Fenoprofen, indomethacin, phenyltazone, cyclophosphamide, mechlorethamine, dexamethasone, prednisolone, celecoxib , Valdecoxib, nimesulide, cortisone, corticosteroid, and the like.

상술한 바와 같이, 본 발명에 따른 질환 표적 펩타이드가 결합된 나노입자 조영제는 기존의 나노입자 보다 질환에 대한 표적성이 현저히 향상된 것으로, 세포 뿐만 아니라 생체내에서 특정 질환의 세포 및 조직의 스크리닝 및 질환의 진단, 예방 및 치료의 효율을 현저히 증가시킬 수 있다. 또한, 표적 펩타이드가 결합된 나노입자에 다양한 동위원소, 무기 나노입자 또는 질환 치료제를 등을 결합하거나 봉입할 수가 있어서 질환의 진단과 치료를 동시에 할 수 있는 다기능성 나노입자 개발로의 응용이 가능하다. As described above, the nanoparticle contrast agent to which the disease target peptide is bound according to the present invention is significantly improved in targeting the disease than conventional nanoparticles, and screens and diseases of cells and tissues of specific diseases in vivo as well as cells. Can significantly increase the effectiveness of diagnosis, prevention and treatment. In addition, it is possible to combine or encapsulate various isotopes, inorganic nanoparticles, or disease therapeutic agents to the nanoparticles to which the target peptide is bound, and thus, it is possible to apply them to the development of multifunctional nanoparticles that can simultaneously diagnose and treat diseases. .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 담즙산 유도체 또는 지방산 유도체가 결합된 양친성 키토산 유도체에 형광체 및 질환 표적 펩타이드가 결합된 나노입자 조영제를 제공한다. The present invention provides a nanoparticle contrast agent in which a phosphor and a disease target peptide are bound to an amphipathic chitosan derivative to which a bile acid derivative or a fatty acid derivative is bound.

상기 양친성 키토산 고분자 나노입자는 소수성과 친수성의 균형을 통해 나노크기의 자기조립체 (self-assembly)를 형성시킬 수 있고, 질환 조직에 선택적으로 축척될 수 있다. 또한, 고분자 나노입자에 근적외선 투시가 가능한 근적외선 형광체의 화학적 개질이 용이하고, 근적외선 투시에 질환 조직에 선택적인 강한 근적외선 형광을 나타내어야 한다. The amphiphilic chitosan polymer nanoparticles can form nano-sized self-assemblies through a balance of hydrophobicity and hydrophilicity, and can be selectively accumulated in diseased tissue. In addition, the chemical modification of the near-infrared phosphor which is capable of near-infrared light in the polymer nanoparticles should be easy, and the near-infrared light should show strong near-infrared fluorescence selective to diseased tissue.

상기 키토산 고분자 이외에도, 생체적합성을 갖는 모든 고분자가 사용될 수 있으며, 특히 질환 조직에서 생성되는 신생혈관을 통하여 조직 축적 효율이 높고 항암제의 약물전달체로 사용되는 생체고분자인 덱스트란 (dextran), 키토산 (chitosan), 글라이콜 키토산 (glycol chitosan), 폴리-L-라이신 (poly-L-lysine), 폴리아스파르트산 (poly-aspartic acid) 등이 있으며, 합성 고분자로서는 폴리(N-2-(하이드록시프로필)메타아크릴아마이드)(poly(N-2-(hydroxypropyl)methacrylamide), 폴리(디비닐 에테르-코-말레익 언하이드라이드)(poly(divinyl ehter-co-maleic anhydride)), 폴리(스틸렌-코-말레익 언하이드라이드)(poly(styrene-co-maleic anhydride)), 폴리(에틸렌 글라이콜)(poly(ethylene glycol)) 등이 있다. 상기의 고분자 나노입자는 생체 내에서 생체적합성/생분해성이 우수해야 하며, 생체내의 안정성이 우수하여 혈액 내에서의 생체분포도가 높아서 충분한 시간동안 암 조직에 계속적으로 축적되는 특성이 필요하다. 특히, 글라이콜 키토산은 고분자 사슬 내에 양전자를 많이 함유하고 있어 나 노입자 제조시 암 조직 축척 효율이 매우 높으며, 고분자의 아민기는 소수성 물질 및 근적외선 형광체의 화학적 개질을 유도할 수 있다. In addition to the chitosan polymers, all polymers having biocompatibility may be used, particularly dextran and chitosan, which are biopolymers having high tissue accumulation efficiency through neovascularization generated in diseased tissues and used as drug carriers for anticancer drugs. ), Glycol chitosan, poly-L-lysine, poly-aspartic acid, and the like, and synthetic polymers include poly (N-2- (hydroxypropyl). ) (Methacrylamide) (poly (N-2- (hydroxypropyl) methacrylamide), poly (divinyl ehter-co-maleic anhydride), poly (styrene-co) -Maleic anhydride (poly), poly (ethylene glycol), etc. The polymer nanoparticles are biocompatible / biodegradable in vivo. It should be excellent in stability and excellent in vivo stability. The high degree of biodistribution in the blood is required to accumulate continuously in cancer tissues for a sufficient time, in particular, the glycol chitosan contains a lot of positrons in the polymer chains, resulting in a high efficiency of cancer tissue accumulation when producing nanoparticles. Very high, the amine groups of the polymer can induce chemical modification of hydrophobic materials and near-infrared phosphors.

본 발명에서, "질환 특이적 표적 펩타이드"란 파지디스플레이 기법을 이용하여 특이질환 세포 및 조직에서 특이적으로 결합하는 파지의 탐색을 3-4회 반복 시행하여 펩타이드가 삽입된 파지클론들을 특이 표적성, 특이성 및 선택성을 측정함으로써 발굴되는 펩타이드를 의미한다.In the present invention, a "disease specific target peptide" refers to phage clones into which peptides are inserted by repeatedly searching for phages that specifically bind to specific disease cells and tissues using a phage display technique. By peptide, it refers to a peptide to be discovered by measuring specificity and selectivity.

상기 고분자 나노입자에 결합이 되는 질환 표적형 펩타이드로는, 파지 디스플레이 방법을 이용하여 탐색 및 발굴된, 동맥경화 플라크 또는 IL-4 수용체 표적 펩타이드 (서열번호 1: CRKRLDRNC) 및 이의 유도체, 사멸(apoptotic) 세포에 표적 펩타이드 (서열번호 2: CQRPPR) 및 이의 유도체, 방광암 세포 표적펩타이드 (서열번호 3: CSNRDARRC) 및 이들의 펩타이드 서열을 포함하는 펩타이드 유도체 등이 결합될 수 있다. As disease-targeted peptides that are bound to the polymer nanoparticles, arteriosclerosis plaques or IL-4 receptor target peptides (SEQ ID NO: 1: CRKRLDRNC) and derivatives thereof, which are detected and discovered using phage display method, are killed (apoptotic). ) A target peptide (SEQ ID NO: 2: CQRPPR) and a derivative thereof, a bladder cancer cell target peptide (SEQ ID NO: 3: CSNRDARRC), and a peptide derivative including a peptide sequence thereof may be bound to the cell.

여기서, 동맥경화 플라크란, 동맥경화와 같은 관상동맥 질환은 콜레스테롤과 같은 지방성분이 체내에 축적되면서 발생하는데, 이 지방성분이 혈관내에 침착될 경우 혈관벽이 두꺼워지고 혈전(핏덩어리)이 끼어서 혈관은 자연히 좁아져 원활한 혈액순환에 지장을 받게 되며, 이러한 지방분의 축적을 동맥경화 병변, 일명 플라크(plaque)라고도 한다. Here, coronary artery disease such as atherosclerosis plaque and atherosclerosis occurs when fat components such as cholesterol accumulate in the body, and when these fat components are deposited in blood vessels, blood vessel walls become thick and blood clots (blood clots) are caught. It narrows and interferes with smooth blood circulation, and the accumulation of these fats is called atherosclerotic lesions, also called plaques.

이 외에도, 기존에 다양한 문헌(Jae Hyung Park et al, Progress in polymer science, 33, 113-137, 2008; Peptides International. Inc.)통하여 알려진 암 표적에 사용될 수 있는 물질로 염증성 질환에서 혈관 내피세포 표면에서 발현하는 인 테그린을 표적할 수 있는 RGD 펩타이드 및 그의 유도체로서, 예를 들면 cyclic RGDfV (cyclo(Arg-Gly-Asp-D-Phe-Val)), cyclic RGDfK (cyclo(Arg-Gly-Asp-D-Phe-Lys)), cyclic RGDfC (cyclo(Arg-Gly-Asp-D-Phe-Cys)), cyclic RGDfE (cyclo(Arg-Gly-Asp-D-Phe-Glu)), cyclic RGDyK (cyclo(Arg-Gly-Asp-D-Tyr-Lys)), cyclic RGDyE (cyclo(Arg-Gly-Asp-D-Tyr-Glu)), RGDS (Arg-Gly-Asp-Ser), GRGDS (Gly-Arg-Gly-Asp-Ser) 등이 있다. 상기 RGD 펩타이드들에 관한 자세한 내용은 하기 표 1과 같다.In addition, it is a substance that can be used for cancer targets known through various literatures (Jae Hyung Park et al, Progress in polymer science, 33, 113-137, 2008; Peptides International. Inc.) and the surface of vascular endothelial cells in inflammatory diseases. As RGD peptides and derivatives thereof capable of targeting integrins expressed in cyclic RGDfV (cyclo (Arg-Gly-Asp-D-Phe-Val)), cyclic RGDfK (cyclo (Arg-Gly-Asp) -D-Phe-Lys)), cyclic RGDfC (cyclo (Arg-Gly-Asp-D-Phe-Cys)), cyclic RGDfE (cyclo (Arg-Gly-Asp-D-Phe-Glu)), cyclic RGDyK ( cyclo (Arg-Gly-Asp-D-Tyr-Lys)), cyclic RGDyE (cyclo (Arg-Gly-Asp-D-Tyr-Glu)), RGDS (Arg-Gly-Asp-Ser), GRGDS (Gly- Arg-Gly-Asp-Ser). Details of the RGD peptides are shown in Table 1 below.

[표 1]TABLE 1

Figure 112008067566754-PAT00001
Figure 112008067566754-PAT00001

Figure 112008067566754-PAT00002
Figure 112008067566754-PAT00002

Figure 112008067566754-PAT00003
Figure 112008067566754-PAT00003

(출처: Peptides International, Inc.)(Source: Peptides International, Inc.)

또한, 전립선 암에 표적성이 높은 RNA 또는 DNA 구조를 갖는 압타머 (Aptamer)가 결합될 수 있으며, 직장, 폐, 전립선, 자궁, 뇌 등 다양한 암 세포 및 암 조직에서 과다 발현되는 엽산 수용체 (Folate receptor)와 표적친화력 및 선택성이 높은 엽산 (Folic acid)도 결합이 될 수 있다. In addition, aptamers having a highly targeted RNA or DNA structure may be coupled to prostate cancer, and folate receptors overexpressed in various cancer cells and cancer tissues, such as the rectum, lung, prostate, uterus, and brain. receptors and folic acid with high affinity and selectivity can be combined.

또한, 트랜스페린 (Transferrin)은 간에서 합성되고 혈장내로 분비가 되는 단백질로서 체내에 존재하는 철(iron)에 결합하여 철-트랜스페린 킬레이드를 형성하며, 세포에 철분을 공급해 주는 중요한 요인이다. 트랜스페린 수용체는 악성종양 세포 표면에서 과발현 되며, 철-트랜스페린 킬레이트를 인지하여 엔도사이토시스에 의해 세포내로 흡수되며, 암 치료에 적용이 된다. 트랜스페린 단백질도 암 표적성을 갖고 있어 나노입자에 결합이 될 수 있다. 그 외에도 특이질환에 사용되는 각종 바이오마커가 결합가능하다.In addition, transferrin is a protein synthesized in the liver and secreted into the plasma, and binds to iron in the body to form iron-transferin chelate and is an important factor for supplying iron to cells. Transferrin receptors are overexpressed on the surface of malignant tumor cells and are recognized by iron-transferin chelate and are taken up intracellularly by endocytosis and applied to cancer therapy. Transferrin proteins are also cancer-targeting and can bind to nanoparticles. In addition, various biomarkers used for specific diseases can be combined.

생체 내 광학 투시를 위해서 상기 양친성 고분자에 시아닌, 알로피코시아닌, 플루오레신, 테트라메틸로드아민, 보디피, 알렉사 등과 같은 형광체가 화학적으로 도입된다. 상기 형광체는 양친성 고분자 내의 소수성 물질에 결합하게 된다. 형광체 중에서 시아닌계는 근적외선 빛을 방출 및 흡수하므로 세포, 혈액 및 생체 조직 등과 간섭이 낮아 가장 바람직하며, 좋은 예는 Cy5.5이다. 근적외선 형광체로 개질된 고분자 나노입자는 근적외선 조사를 이용하여 생체 내 자가면역질환 조직의 영상화가 가능하며, 방사선 동위원소, 양자점(quantum dot), MRI 조영제를 동시에 도입할 경우 다양한 복합 분자영상이 가능하다. Phosphors such as cyanine, allophycocyanine, fluorescein, tetramethylrodamine, bodiphy, alexa, and the like are chemically introduced into the amphiphilic polymer for in vivo optical viewing. The phosphor binds to a hydrophobic material in the amphiphilic polymer. Among the phosphors, cyanine emits and absorbs near-infrared light, and thus, interference with cells, blood, biological tissues, and the like is most preferable, and a good example is Cy5.5. Polymeric nanoparticles modified with near-infrared phosphors can be used to image autoimmune disease tissues in vivo using near-infrared irradiation, and various complex molecular images can be obtained when radioisotopes, quantum dots, and MRI contrast agents are simultaneously introduced. .

본 발명에서 제조한 근적외선 형광체가 결합된 고분자 나노입자는 수계에서 안정한 나노입자 구조를 가지며, 질환 조직 축척 효율이 높은 것이 바람직하다. 또, 근적외선 투시가 질환 조직 표적성을 갖는 높은 근적외선 형광세기를 나타내는 것이 바람직하다. The polymer nanoparticles in which the near-infrared phosphors prepared in the present invention are bonded have a stable nanoparticle structure in water and preferably have high disease tissue accumulation efficiency. Moreover, it is preferable that near-infrared perspective shows high near-infrared fluorescence intensity which has disease tissue targeting.

특히, 본 발명의 일 예로써, 친수성의 글라이콜 키토산 사슬과 소수성인 담즙산 유도체로 이루어진 고분자 나노입자는, 다양한 질환 치료제 등이 나노입자 내에 봉입될 수 있어 사용가능하다. 글라이콜 키토산은 고분자 사슬 내에 양전자를 많이 함유하고 있어 나노 입자를 제조할 경우, 염증성 질환 조직에 축척 효율이 현저히 탁월하며, 글라이콜 키토산의 아민기는 소수성 물질 및 근적외선 형광체의 화학적 개질 유도에 가장 적합하다.In particular, as an example of the present invention, the polymer nanoparticles composed of hydrophilic glycol chitosan chains and hydrophobic bile acid derivatives can be used because various disease therapeutic agents can be encapsulated in the nanoparticles. Glycol chitosan contains a lot of positrons in the polymer chain, so when the nanoparticles are prepared, the accumulation efficiency is remarkably excellent in inflammatory disease tissues, and the amine group of the glycol chitosan is most effective for inducing chemical modification of hydrophobic substances and near-infrared phosphors. Suitable.

구체적으로, 본 발명에서는 먼저, 키토산 고분자인 친수성 글라이콜 키토산에 소수성 물질을 도입함으로써, 양친성 키토산 유도체를 제조한다. 상기 친수성 고분자에 결합되는 소수성 물질은 담즙산 및 디옥시콜릭산 (deoxycholic acid), 리소콜릭산 (lithocholic acid), 타우로디옥시콜릭산(taurodeoxycholic acid), 타우로콜릭산 (taurocholic acid), 글리코케노디옥시콜릭산 (glycochenodeoxyhoclic acid) 등의 담즙산 유도체; 스테아릭산(stearic acid), 콜레스테롤 (cholesterol), 팔미틱산 (palmitic acid), 올레익산(olelic acid) 등의 지방산 유도체가 사용될 수 있으며, 담즙산을 사용하는 것이 바람직하다. Specifically, in the present invention, amphiphilic chitosan derivatives are prepared by first introducing a hydrophobic substance into the hydrophilic glycol chitosan, which is a chitosan polymer. The hydrophobic material bound to the hydrophilic polymer is bile acid and deoxycholic acid (deoxycholic acid), lithocholic acid (lithocholic acid), taurodeoxycholic acid (taurodeoxycholic acid), taurocholic acid (taurocholic acid), glycokenodidi Bile acid derivatives, such as glycochenodeoxyhoclic acid; Fatty acid derivatives such as stearic acid, cholesterol (cholesterol), palmitic acid and olelic acid may be used, and bile acids are preferred.

여기서 양친성 키토산이란, 친수성인 키토산에 상기와 같이 소수성 물질을 도입함으로써 친수성과 소수성의 성질을 함께 가지는 키토산 유도체를 말한다. 상기의 양친성 키토산은 수용액 상태에서 쉽게 나노입자를 형성하며, 고분자 나노입자의 특성에 따라서 질환 조직 주변에서 높은 축적 효율이 나타난다. 경우에 따라 서, 조기진단을 위해서는, 소수성 키토산 복합체에 근적외선 형광체인 Cy5.5을 화학적으로 결합시켜, 근적외선 투시시 생체내에서의 나노입자의 위치 및 정량적 분석이 가능해진다. 또 양친성 키토산 나노입자는 약물전달체로서 사용이 가능하며, 소수성 항암제를 물리/화학적으로 쉽게 봉입이 가능하므로 암 조기진단 뿐만 아니라 암 치료제의 새로운 약물전달 시스템으로 활용이 가능하다. 또한, 질환에 특이성, 선택성 및 친화성이 높은 펩타이드를 결합하여 질환에 표적 효율을 향상시킴으로써, 질환 진단, 예방, 및 치료 효능을 탁월하게 증진 시킬 수 있다. Amphiphilic chitosan refers to a chitosan derivative having both hydrophilicity and hydrophobic properties by introducing a hydrophobic substance into hydrophilic chitosan as described above. The amphiphilic chitosan easily forms nanoparticles in an aqueous solution, and high accumulation efficiency appears around diseased tissues according to the characteristics of the polymer nanoparticles. In some cases, for early diagnosis, Cy5.5, a near-infrared phosphor, is chemically bound to the hydrophobic chitosan complex, thereby enabling the location and quantitative analysis of nanoparticles in vivo during near-infrared vision. In addition, amphipathic chitosan nanoparticles can be used as drug carriers, and since hydrophobic anticancer drugs can be easily encapsulated physically and chemically, they can be used as a new drug delivery system for cancer treatment as well as for early diagnosis of cancer. In addition, by combining a peptide with high specificity, selectivity and affinity to the disease, thereby improving the target efficiency to the disease, the disease diagnosis, prevention, and treatment efficacy can be excellently enhanced.

상기와 같은 고분자 나노입자를 형성하는 표적펩타이드가 결합된 담즙산-키토산-Cy5.5 복합체를 제조하기 위한 바람직한 예를 하기의 화학식 1로 나타낼 수 있다. A preferred example for preparing a bile acid-chitosan-Cy5.5 complex in which the target peptide forming the polymer nanoparticles as described above is bound may be represented by the following Chemical Formula 1.

Figure 112008067566754-PAT00004
Figure 112008067566754-PAT00004

상기 식에서 A와 B는 글라이콜 키토산 고분자의 반복구조인 N-aceylglucosamine과 N-glucosamine 유도체로서 이루어지며, C는 친수성 글라이콜 키토산에 소수성기를 도입하기 위하여 N-glucosamine 유도체 아민의 소수성 담즙산, 지방산 등의 소수성 물질이 화학적으로 결합된 유도체이며, D는 N-glucosamine 유도체 아민에 질환 특이적, 선택적 또는 친화적 표적 펩타이드가 결합된 것이며, E는 N-glucosamine 유도체 아민에 생체내 영상을 위하여 N-glucosamine 유도체의 아민에 근적외선 형광체, 방사성 동위원소, 양자점(quantum dot) 등이 화학적으로 결합된 유도체이다. 또한, a와 b는 글라이콜 키토산의 분자량에 따라서 수 각 단량체의 조성은 10-50%의 조성을 가지며, c는 글라이콜 키토산의 나노입자를 제조하기 위하여 소수성의 비율이 10-40%의 조성을 갖는다. 표적 펩타이드를 포함하는 D의 조성 d는 5-20%의 조성을 갖으며, 영상을 위한 E의 조성 e는 0.1-2%의 조성을 갖는다. 다만, 상기 화학식 1은 본 발명에 따른 나노입자 조영제의 구조를 설명하기 위해 대략적인 구조식으로 나타낸 것으로, 상기 화학식 1처럼, A, B, C, D, E의 각 요소가 서로 직렬적으로 결합되는 것은 아니며, 도 1에 나타난 바와 같이, 입체적인 구조로써, 글라이콜 키토산에 담즙산, 형광체, 표적펩타이드가 함께 결합되어 있는 구조를 가진다.Wherein A and B are composed of N-aceylglucosamine and N-glucosamine derivatives, which are repeat structures of glycol chitosan polymers, and C is hydrophobic bile acids and fatty acids of N-glucosamine derivative amines for introducing hydrophobic groups into hydrophilic glycol chitosan. A hydrophobic substance is chemically bound to a derivative, D is a N-glucosamine derivative amine is a disease-specific, selective or friendly target peptide is bound, E is N-glucosamine derivative amine N-glucosamine for in vivo imaging Near-infrared phosphors, radioisotopes, quantum dots and the like are chemically bound to amines of derivatives. In addition, a and b have a composition of 10-50% of each monomer according to the molecular weight of glycol chitosan, and c has a hydrophobic ratio of 10-40% to prepare nanoparticles of glycol chitosan. Has a composition. Composition d of D comprising the target peptide has a composition of 5-20%, and composition e of E for imaging has a composition of 0.1-2%. However, Formula 1 is represented by a rough structural formula to explain the structure of the nanoparticle contrast agent according to the present invention, as shown in Formula 1, each element of A, B, C, D, E is connected in series with each other As shown in FIG. 1, as a three-dimensional structure, bile acids, phosphors, and target peptides are coupled to glycol chitosan.

구체적으로, 도 1에 나타난 바와 같이, 글라이콜 키토산 고분자 유도체는 고분자의 반복구조인 N-aceylglucosamine과 N-glucosamine 유도체로서 이루어지며, 이러한 친수성 글라이콜 키토산에 소수성기를 도입하기 위하여, 상기 글라이콜 키토산에 담즙산, 지방산 등의 소수성 물질이 화학적으로 결합되고, 또한, 상기 글라이콜 키토산에 질환 특이적, 선택적 또는 친화적 표적 펩타이드가 결합된 것이며, 여기에 나노입자의 생체내 영상을 위하여 근적외선 형광체, 방사성 동위원소, 양자점(quantum dot) 등이 화학적으로 결합된 유도체이다. Specifically, as shown in Figure 1, the glycol chitosan polymer derivative is composed of N-aceylglucosamine and N-glucosamine derivatives of the repeating structure of the polymer, in order to introduce a hydrophobic group to the hydrophilic glycol chitosan, Hydrophobic substances such as bile acids and fatty acids are chemically bound to colchitosan, and disease-specific, selective or friendly target peptides are coupled to the glycol chitosan, and near-infrared phosphors for in vivo imaging of nanoparticles. , Radioisotopes, quantum dots, etc. are chemically bound derivatives.

글라이콜 키토산의 분자량에 따라서, N-aceylglucosamine과 N-glucosamine의 각각의 단량체의 조성의 몰수는 100에서 수 10,000의 값을 가지며, 소수성 물질의 몰수는 글라이콜 키토산의 나노입자를 제조하기 위하여 20-100의 값을 가지며, C는 10-30이다.Depending on the molecular weight of glycol chitosan, the number of moles of the composition of each monomer of N-aceylglucosamine and N-glucosamine has a value of 100 to 10,000, and the number of moles of hydrophobic material is used to prepare nanoparticles of glycol chitosan. Has a value of 20-100, C is 10-30.

상기의 담즙산-키토산-Cy5.5 복합체는 자기조립형 자기응집된 형태의 나노입자로 제조되며 그 크기는 100에서 800 nm 크기를 갖는다. 제조된 고분자 나노입자는 생체적합성이 우수하고 암 조직내 축적효율이 우수하며, 근적외선, PET/SPECT, 및 CCD 카메라에 의해서 생체내에서 영상이 가능하다. 상기의 나노입자에서 Cy5.5를 대신하여 결합가능한 형광체로는 Cy3, TAMRA, Texas Red, ROX, Cy5, Cy5.5, Rhodamine, Alexa Fluor  568, Alexa Fluor  594, Alexa Fluor  610, Alexa Fluor  647, Alexa Fluor  660, Alexa Fluor  680, Alexa Fluor  700, BODIPY  493/503, BODIPY  530/550, BODIPY  558/568, BODIPY  581/591, Cy7, Cy7.5 등이 있다. The bile acid-chitosan-Cy5.5 complex is made of nanoparticles of self-assembled self-aggregated form and has a size of 100 to 800 nm. The prepared polymer nanoparticles have excellent biocompatibility and excellent accumulation efficiency in cancer tissues, and can be imaged in vivo by near-infrared, PET / SPECT, and CCD cameras. Phosphors that can bind in place of Cy5.5 in the nanoparticles include Cy3, TAMRA, Texas Red, ROX, Cy5, Cy5.5, Rhodamine, Alexa Fluor   568, Alexa Fluor   594, Alexa Fluor   610, Alexa Fluor   647, Alexa Fluor   660, Alexa Fluor   680, Alexa Fluor   700, BODIPY   493/503, BODIPY   530/550, BODIPY   558/568, BODIPY   581/591, Cy7, Cy7.5 and the like.

또한, 담즙산-키토산-Cy5.5복합체는 표면은 친수성 고분자에 내부는 소수성 부분으로 이루어진 양친성을 띄는 나노입자로, 나노입자 내부에 소수성을 띄는 질환 치료제로, 항류마티스제, 항염증제 등의 도입이 가능하며, 특히, 다우노마이신(daunomycin), 도세탁셀(Docetaxel), 시스플라틴 (cis-platin), 캠토세신 (camptothecin), 파클리탁셀(paclitaxel), 타목시펜(Tamoxifen), 아나스테로졸(Anasterozole), 글리벡(Gleevec), 5-플루오로우라실(5-FU), 플록슈리딘(Floxuridine), 류프로리드(Leuprolide), 플로타미드(Flutamide), 졸레드로네이트(Zoledronate), 독소루비신(Doxorubicin), 빈크리스틴(Vincristine), 젬시타빈(Gemcitabine), 스트렙토조토신(Streptozocin), 카보플라틴(Carboplatin), 토포 테칸(Topotecan), 벨로테칸(Belotecan), 이리노테칸(Irinotecan), 비노렐빈(Vinorelbine), 히도록시우레아(hydroxyurea), 발루비신(Valrubicin), 레티노익산 (retinoic acid) 계열, 메소트렉세이트(Methotrexate), 메클로레타민(Meclorethamine), 클로람부실(Chlorambucil), 부술판(Busulfan), 독시플루리딘(Doxifluridine), 빈블라스틴(Vinblastin), 마이토마이신(Mitomycin), 프레드니손(Prednisone), 테스토스테론(Testosterone), 미토산트론(Mitoxantron), 아스피린 (aspirin) 및 살리실레이트 (salicylates), 이부프로펜(ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 시클로포스파미드(cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone), 코르티코스테로이드(corticosteroid) 등의 약물 봉입이 가능하며, 골 관절염, 류마티스 관절염, 전신성 경피증 (Progressive systemic sclerosis), 췌장세포 항체에 의한 인슐린 의존성 소아기 당뇨병, 만성 갑상선 염, 궤양성 대장염, 다발성 경화증 (multiple sclerosis), 자가면역성 뇌척수염 또는 섬유조직염 (Fibromyalgia syndrome) 및 동맥경화 또는 각종 암 등 다양한 질환 치료제로서 사용이 가능하다. In addition, the bile acid-chitosan-Cy5.5 complex is a nanoparticle having an amphipathic surface composed of a hydrophobic portion inside a hydrophilic polymer and a hydrophobic portion in a nanoparticle, and anti-rheumatic agents, anti-inflammatory agents, etc. Possible, in particular, daunomycin, docetaxel, cis-platin, camptothecin, paclitaxel, tamoxifen, tamoxifen, anasterozole, gleevec Gleevec, 5-Fluorouracil (5-FU), Floxuridine, Leuprolide, Flotamide, Zoledronate, Doxorubicin, Vincristine (Vincristine), gemcitabine, streptozocin, carboplatin, topotecan, belotecan, irinotecan, vinorelbine, and hirohileurea (hydroxyurea), Valrubicin, Retinoic acid series, Mesotrexate, Mechlorethamine, Chlorambucil, Busulfan, Doxifluridine, Vinblastin , Mitomycin, prednisone, testosterone, testosterone, mitoxantron, aspirin and salicylates, ibuprofen, naproxen, napexen Fenoprofen, indomethacin, phenyltazone, cyclophosphamide, mechlorethamine, dexamethasone, prednisolone, celecoxib Drugs such as celecoxib, valdecoxib, nimesulide, cortisone and corticosteroids can be encapsulated, osteoarthritis, rheumatoid arthritis, progressive systemic sclerosis, and pancreas. three Childhood insulin dependent diabetes, thyroid chronic salt by antibodies, ulcerative colitis, multiple sclerosis (multiple sclerosis), the self-use is possible for a variety of disease treatment such as immune encephalomyelitis or fibromyalgia (Fibromyalgia syndrome) and arteriosclerosis or various cancers.

또한, 본 발명에서 제조한 근적외선 형광체가 결합된 고분자 나노입자는 수계에서 안정한 나노입자 구조를 가지기 때문에, 소수성을 띄며 입자의 크기가 1 내지 20 nm이하의 크기를 갖는 무기 나노입자, 예로 금 나노입자, 산화철 나노입자, 양자점 등을 봉입할 수 있으며, 이들을 이용하여 광학영상 조영제, CT 조영제 및 MRI 조영제로 응용이 가능하다.In addition, the polymer nanoparticles bonded to the near-infrared fluorescent substance prepared in the present invention have a nanoparticle structure that is stable in the water system, and thus exhibits hydrophobicity and inorganic nanoparticles having a size of 1 to 20 nm or less, for example, gold nanoparticles. , Iron oxide nanoparticles, quantum dots can be encapsulated, and can be used as optical imaging contrast agents, CT contrast agents, and MRI contrast agents.

상기 나노입자 조영제에서, 친수성 고분자는 키토산으로, 소수성 물질은 담즙산으로, 근적외선 형광체는 Cy5.5으로 하여 제조된 담즙산-키토산-Cy5.5 복합체는 자기조립형 또는 자기응집된 형태의 나노 입자로 제조되며 그 크기는 수십에서 수백 나노미터의 크기를 갖는다. 상기 고분자 나노입자의 복합체는 생체적합성이 우수하고 자가면역질환, 암 조직 내의 축적 효율이 우수하며, 근적외선, PET/SPECT 및 CCD 카메라에 의해서 생체 내에서 영상이 가능하다. In the nanoparticle contrast agent, the bile acid-chitosan-Cy5.5 complex prepared by using a hydrophilic polymer as chitosan, a hydrophobic material as bile acid, and a near-infrared phosphor as Cy5.5 is prepared as nanoparticles in self-assembled or self-aggregated form. Its size ranges from tens to hundreds of nanometers. The composite of the polymer nanoparticles is excellent in biocompatibility and excellent in the efficiency of accumulation in autoimmune diseases and cancer tissues, and can be imaged in vivo by near-infrared, PET / SPECT and CCD cameras.

또한, 상기 담즙산-키토산-Cy5.5 복합체는 일반 저분자량의 조영제에 비하여 염증 조직의 EPR 효과에 의해 염증 조직에 대한 선택성이 높아 염증성 질환 조직의 축적 효율이 현저히 탁월하며, 생체 내의 체류 기간이 저분자량의 조영제보다 크게 증가되어 다양한 염증성 질환 조직 및 암 조직의 장기적인 영상이 가능하다. In addition, the bile acid-chitosan-Cy5.5 complex has a high selectivity to the inflammatory tissues due to the EPR effect of the inflammatory tissues compared to the general low molecular weight contrast agent, and the accumulation efficiency of the inflammatory disease tissues is remarkably excellent, and the retention period in vivo is low. Significant increases over molecular weight contrast agents allow long-term imaging of various inflammatory and cancerous tissues.

본 발명에서 개발된 질환 표적펩타이드가 결합된 나노입자는 다양한 염증성 질환의 진단, 예방 치료에 응용이 가능하며, 다양한 염증성 질환의 예로, 골 관절염, 류마티스 관절염 및 그 외 자가 면역질환 질병, 및 편평상피세포암, 자궁암, 자궁 경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암, 담낭암 등을 포함하는 암, 또는 치매, 뇌졸중 등을 포함하는 난치성 질환의 진단, 예방 및 치료에 응용이 가능하다. 상기 고분자 나노 입자는 소수성과 친수성의 균형을 통해 나노 크기의 자기조립체 (self-assembly)를 형성할 수 있으며, 염증성 질환 조직에 선택적으로 축적될 수 있다. 또한, 본 발명의 고분자 나노 입자는 근적외선 투시가 가능한 근적외선 형광체의 화학적 개질에 용이하며, 근적외선 투시에 의해 염증성 질환 조직의 선택적인 강한 근적외선 형광을 나타낼 수 있다.The nanoparticles conjugated to the disease target peptide developed in the present invention can be applied to diagnosis and prophylactic treatment of various inflammatory diseases, and examples of various inflammatory diseases include osteoarthritis, rheumatoid arthritis and other autoimmune diseases, and squamous epithelium. Cell cancer, cervical cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, stomach cancer, kidney cancer, bladder cancer, ovarian cancer, bile duct cancer, gallbladder cancer It is possible to apply to the diagnosis, prevention and treatment of cancer, or intractable diseases including dementia, stroke and the like. The polymer nanoparticles may form nano-sized self-assemblies through the balance of hydrophobicity and hydrophilicity, and may be selectively accumulated in inflammatory disease tissues. In addition, the polymer nanoparticles of the present invention are easy for chemical modification of near-infrared phosphors capable of near-infrared light, and may exhibit selective strong near-infrared fluorescence of inflammatory disease tissues by near-infrared light.

상기 고분자 나노 입자는 생체 내에서 생체적합성/생분해성이 우수하며, 생체내의 안정성이 우수하여 혈액 내에서의 생체 분포도가 높아서 충분한 시간 동안 염증성 질환 조직 부위에 축적이 되는 특성이 있다.The polymer nanoparticles are excellent in biocompatibility / biodegradability in vivo, and have excellent stability in vivo, and thus have high biodistribution in blood and accumulate in inflammatory disease tissues for a sufficient time.

이하, 본 발명을 하기의 실시예 및 실험예에 의하여 더욱 상세히 설명한다. 하기의 실시예 및 실험예는 본 발명의 예시일 뿐, 본 발명의 권리범위가 이에 의하여 제한되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. The following examples and experimental examples are only examples of the present invention, and the scope of the present invention is not limited thereto.

실시예 1. 본 발명에 따른 나노입자 조영제의 제조Example 1 Preparation of Nanoparticle Contrast Agents According to the Present Invention

1-1. 담즙산-글라이콜키토산-Cy5.5 복합체의 제조 1-1. Preparation of Bile Acid-Glycol Chitosan-Cy5.5 Complex

500mg의 글라이콜 키토산을 60㎖의 물에 용해시키고 90㎖의 메탄올을 가한 후, 100㎖의 메탄올에 담즙산(5-β-cholanic acid) 260mg을 용해시켜 글리콜 키토산 용액에 천천히 적하하였고, 280mg의 1-에틸-3-(3-디메틸-아미노프로필) 카보디이미드(1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide; EDC)와 420mg의 N-하이드로숙신이미드(N-hydrosuccinimide;NHS)를 50㎖의 메탄올에 녹여 반응액에 가한 다음 상온에서 24시간 동안 교반하였다. 그 후 상기 반응액을 2일 동안 투석하여 미반응 담즙산을 제거한 후 동결 건조하여, 담즙산-글라이콜 키토산 복합체를 제조 하였다.500 mg of glycol chitosan was dissolved in 60 ml of water and 90 ml of methanol was added. Then, 260 mg of bile acid (5-β-cholanic acid) was dissolved in 100 ml of methanol and slowly added dropwise to the glycol chitosan solution. 1-ethyl-3- (3-dimethyl-aminopropyl) carbodiimide (1-ethyl-3- (3-dimethyl-aminopropyl) carbodiimide (EDC) and 420 mg of N-hydrosuccinimide (NHS) ) Was dissolved in 50 ml of methanol, added to the reaction solution, and stirred at room temperature for 24 hours. Thereafter, the reaction solution was dialyzed for 2 days to remove unreacted bile acid, and then freeze-dried to prepare a bile acid-glycol chitosan complex.

상기에서 제조된 담즙산-글라이콜 키토산 복합체 100mg를 20㎖의 물에 녹이고 20㎖의 DMSO을 가한 후, 2mg의 근적외선 형광체 Cy-5.5-NHS(monoreactive hydroxysuccimimide ester of Cy5.5)를 첨가하여 6시간 동안 반응시킨 후, 용액을 2일 동안 투석하여 미반응 Cy5.5를 제거하고, 동결 건조하여, 담즙산-글라이콜 키토산-Cy5.5 복합체를 제조하였으며, 이의 제조과정은 하기 반응식 1에서 보는 바와 같다.100 mg of the bile acid-glycol chitosan complex prepared above was dissolved in 20 ml of water and 20 ml of DMSO was added, followed by addition of 2 mg of near-infrared phosphor Cy-5.5-NHS (monoreactive hydroxysuccimimide ester of Cy5.5) for 6 hours. After reacting for 2 days, the solution was dialyzed for 2 days to remove unreacted Cy5.5 and freeze-dried to prepare a bile acid-glycol chitosan-Cy5.5 complex, the preparation process of which is shown in Scheme 1 below. same.

Figure 112008067566754-PAT00005
Figure 112008067566754-PAT00005

1-2. 질환 표적펩타이드가 결합된 담즙산-글라이콜 키토산-Cy5.5 유도체 합성 1-2. Synthesis of Bile Acid-Glycol Chitosan-Cy5.5 Derivatives Bound to Disease Target Peptides

담즙산, 키토산 및 Cy5.5로 구성된 복합체 80 mg를 pH가 8.0인 증류수 32 ml 에 분산을 시킨 후, 1 ml의 dimethyl sulfoxide에 7 mg의 N-succinimidyl 4-(maleimidomethyl) cyclohexane carboxylate (SMCC)가 녹여진 용액을 첨가한다. 그 후, 혼합용액을 pH 6.7로 맞춘 후, 1 ml의 증류수에 표적 펩타이드를 녹인 용액을 첨가하여 2시간 동안 반응한 후, 투석 및 동결건조 한다. 담즙산-키토산 유도체 1몰에 결합된 표적 펩타이드의 몰수는 다음 표 2와 같다. 80 mg of a complex consisting of bile acid, chitosan and Cy5.5 was dispersed in 32 ml of distilled water having a pH of 8.0, and then 7 mg of N-succinimidyl 4- (maleimidomethyl) cyclohexane carboxylate (SMCC) was dissolved in 1 ml of dimethyl sulfoxide. Add gin solution. Thereafter, the mixed solution is adjusted to pH 6.7, and then reacted for 2 hours by adding a solution of target peptide in 1 ml of distilled water, followed by dialysis and lyophilization. The number of moles of the target peptide bound to 1 mole of the bile acid-chitosan derivative is shown in Table 2 below.

[표 2]TABLE 2

샘플 Sample 입자크기 (nm)Particle Size (nm) 담즙산-키토산 유도체 1몰에 결합된 표적 펩타이드 몰수 Number of moles of target peptide bound to 1 mole of bile acid-chitosan derivative CRKRLDRNC-HGC-Cy5.5CRKRLDRNC-HGC-Cy5.5 298298 5.55.5 CQRPPR-HGC-Cy5.5CQRPPR-HGC-Cy5.5 305305 4.54.5 CSNRDARRC-HGC-Cy5.5CSNRDARRC-HGC-Cy5.5 310310 4.24.2

실험예 1. 동맥경화 플라크 표적펩타이드가 결합된 CRKRLDRNC-HGC-Cy5.5 나노입자의 혈관 내피세포에서의 세포 친화도 분석 Experimental Example 1. Analysis of cell affinity of vascular endothelial cells of CRKRLDRNC-HGC-Cy5.5 nanoparticles to which atherosclerotic plaque target peptide was bound

동맥경화 플라크 표적 펩타이드는 IL-4 수용체에 결합력이 뛰어나고, 동맥경화 플라크에서는 사이토카인 TNF-alpha가 분비가 되며, TNF-alpha에 의해 혈관 내피세포는 활성화가 되며 세포 표면에서 IL-4R를 과다 발현한다. Atherosclerotic plaque target peptides have excellent binding ability to IL-4 receptors, and atherosclerotic plaques secrete cytokine TNF-alpha, activating vascular endothelial cells by TNF-alpha and overexpressing IL-4R at the cell surface do.

CRKRLDRNC-HGC-Cy5.5가 IL-4R이 과다 발현되는 세포에서의 결합력을 확인하기 위하여, laminar flow chamber에 104개의 Bovine aortic endothelial cell (BAEC)을 넣고 세포가 chamber에서 약 80% 정도 찰 때까지 배양하였다. 그 후, TNF-alpha를 10 ng/ml의 농도처리하여 1시간 처리하여 BAEC를 활성화시켜 준 후, CRKRLDRNC-HGC-Cy5.5 또는 HGC-Cy5.5 나노입자를 100 μg/ml 농도를 함유하는 배양 액을 펌프를 사용하여 flow chamber에 약 2시간 정도 흘려주었다. 2시간 후, 세포를 배양액으로 세척한 후 고정액을 사용하여 세포를 고정한 후 형광현미경을 통하여 나노입자의 결합력을 분석하였다. To determine the binding capacity of CRKRLDRNC-HGC-Cy5.5 in cells expressing IL-4R overexpression, 10 4 Bovine aortic endothelial cells (BAEC) were placed in the laminar flow chamber and the cells were about 80% filled in the chamber. Incubated until. Thereafter, TNF-alpha was treated with a concentration of 10 ng / ml for 1 hour to activate BAEC, and then 100 μg / ml of CRKRLDRNC-HGC-Cy5.5 or HGC-Cy5.5 nanoparticles were contained. The culture solution was flowed into the flow chamber for about 2 hours using a pump. After 2 hours, the cells were washed with the culture solution, and the cells were fixed with the fixed solution, and then analyzed for binding of the nanoparticles through a fluorescence microscope.

도 2에 나타난 바와 같이 HGC-Cy5.5 나노입자는 TNF-alpha가 처리되지 않거나 또는 처리된 세포에 결합하지 않았다. 한편, CRKRLDRNC-HGC-Cy5.5입자는 TNF-alpha가 처리되지 않은 비활성화된 BAEC 세포에서 결합이 되지 않았으나, TNF-alpha가 처리된 활성화된 BAEC에서는 잘 결합되는 것을 확인하였다. 이는, 사이토카인 TNF-alpha에 의해 IL-4R을 과다 발현하는 활성화된 BAEC에 CRKRLDRNC-HGC-Cy5.5 나노입자가 선택적으로 결합함을 의미하며, 따라서, 세포에서 질환 진단 스크리닝에도 적용이 가능할 것이다. As shown in FIG. 2, HGC-Cy5.5 nanoparticles were not treated with TNF-alpha or did not bind to treated cells. On the other hand, CRKRLDRNC-HGC-Cy5.5 particles did not bind to inactivated BAEC cells that were not treated with TNF-alpha, but were well bound to activated BAEC treated with TNF-alpha. This means that CRKRLDRNC-HGC-Cy5.5 nanoparticles selectively bind to activated BAEC overexpressing IL-4R by cytokine TNF-alpha, and thus may be applicable to disease diagnostic screening in cells. .

실험예 2. 동맥경화 쥐에서의 동맥경화 플라크 영상화 Experimental Example 2. Atherosclerotic plaque imaging in atherosclerotic rats

동맥경화 쥐 (LDLr-/-)와 정상 쥐의 죽상동맥에서 CRKRLDRNC-HGC-Cy5.5 나노입자의 동맥경화 플라크 영상을 관찰하였다. 동맥경화 쥐 및 정상 쥐에 CRKRLDRNC-HGC-Cy5.5 나노입자를 5 mg/kg로 하여 꼬리 정맥주사를 하였으며, 6 시간 후에 동맥경화 쥐 및 정상 쥐의 죽상동맥이 드러나게 한 후 eXplore Optix를 이용하여 영상화하였다. Atherosclerotic plaque images of CRKRLDRNC-HGC-Cy5.5 nanoparticles were observed in atherosclerotic rat (LDLr-/-) and normal atherosclerotic arteries. Atherosclerotic rats and normal rats were treated with tail vein with 5 mg / kg of CRKRLDRNC-HGC-Cy5.5 nanoparticles. After 6 hours, the atherosclerotic arteries of atherosclerotic rats and normal rats were revealed and eXplore Optix was used. Imaging.

그 결과, 도 3a와 같이 동맥경화 쥐 (3a-1)의 죽상동맥에서는 정상 쥐 (3a-2) 죽상동맥에서 형광이 강하게 나타남을 확인하였다. 도 3b는 정상쥐와 비교하여 동맥경화 죽상동맥에서 플라크가 형성되어 있음을 Oil red-O 염색법으로 확인하였 으며, 도 3c는 정상 쥐와는 달리 동맥경화쥐의 죽상동맥에서 형성된 플라크에 CRKRLDRNC-HGC-Cy5.5 나노입자가 현저히 결합력이 높음을 확인할 수 있었다. As a result, as shown in Fig. 3a, in the atherosclerotic artery of the atherosclerotic rat (3a-1), the fluorescence was strongly observed in the atherosclerotic artery of the normal rat (3a-2). 3b was confirmed by Oil red-O staining that plaques were formed in atherosclerotic atherosclerosis as compared to normal rats. FIG. 3c shows CRKRLDRNC-HGC on plaques formed in atherosclerotic arteries of atherosclerotic rats. -Cy5.5 nanoparticles were found to be significantly higher binding force.

상기 결과로 볼 때, CRKRLDRNC-HGC-Cy5.5 나노입자가 동맥경화 진단 조영제로서 이용 가능할 것이다. In view of the above results, CRKRLDRNC-HGC-Cy5.5 nanoparticles will be available as atherosclerosis diagnostic contrast agents.

실험예 3. IL-4R이 과다발현하는 암에서의 표적성 평가Experimental Example 3 Targeting Evaluation in Cancers Overexpressing IL-4R

동맥경화 표적 나노입자 조영제인 CRKRLDRNC-HGC-Cy7.5가 다른 염증성 질환에서도 표적 효율 높음을 증명하기 위하여, IL-4R이 과다 발현하는 암세포인 H226를 이용하여 동물 모델을 확립하였다. H226세포 (3 × 106개)를 마우스 옆구리 부분에 피하로 이식하여, 암 크기가 약 5-7 mm의 크기가 되었을 때 CRKRLDRNC-HGC-Cy7.5를 5 mg/kg로 꼬리 정맥을 통하여 주사하였다. 대조군으로는 HGC-Cy7.5를 투여하였다. To demonstrate that atherosclerosis target nanoparticle contrast agent, CRKRLDRNC-HGC-Cy7.5, has high target efficiency in other inflammatory diseases, an animal model was established using H226, a cancer cell overexpressing IL-4R. H226 cells (3 × 10 6 cells) were implanted subcutaneously in the flank of the mouse, and CRKRLDRNC-HGC-Cy7.5 was injected at 5 mg / kg through the tail vein when the cancer was about 5-7 mm in size. It was. HGC-Cy7.5 was administered as a control.

도 4에 나타난 바와 같이 펩타이드가 결합되지 않는 나노입자보다 CRKRLDRNC-HGC-Cy7.5를 투여한 그룹에서 암 표적성이 증가함을 알 수 있었다. 이는, 표적 펩타이드를 결합할 경우, 기존의 나노입자 보다 질환 표적 효율을 현저히 증가시킬 수 있으며, 이로 인하여 다양한 염증성 질환의 진단, 예방, 및 치료 효능을 향상시킬 수 있을 것이다.As shown in FIG. 4, cancer targeting was increased in the group administered with CRKRLDRNC-HGC-Cy7.5 than the nanoparticles to which the peptide was not bound. This, when combined with the target peptide can significantly increase the disease target efficiency than conventional nanoparticles, thereby improving the efficacy of the diagnosis, prevention, and treatment of various inflammatory diseases.

도 1은 본 발명에서 제조된 질환 표적 펩타이드와 결합되고, 형광체와도 결합되어 있는 글라이콜키토산-담즙산 고분자 복합체 나노입자 및 그 제조방법을 나타낸 것이다. Figure 1 shows a glycol chitosan-bile acid polymer composite nanoparticles coupled to a disease target peptide prepared in the present invention, and also bonded to a phosphor and a method for producing the same.

도 2은 동맥경화플라크 표적펩타이드가 결합된 글라이콜 키토산-담즙산-Cy5.5 나노입자 (2 b) 와 펩타이드가 결합되지 않은 글라이콜 키토산-담즙산 나노입자 (2 a) 가 사이토카인인 TNF-alpha 처리 유무에 따라 관상동맥혈관내피세포에 결합력을 관찰한 세포 이미지를 나타낸 것이다. FIG. 2 shows TNF in which glycol chitosan-bile acid-Cy5.5 nanoparticles (2b) bound to atherosclerotic plaque target peptides and glycol chitosan-bile acid nanoparticles (2a) in which peptides are not bound are cytokines. Cell images showing the binding force to coronary vascular endothelial cells according to the presence or absence of -alpha treatment.

도 3는 동맥경화를 유발한 쥐 (LDLr-/-) (3a-1)와 정상 쥐 (3a-2)에서 동맥경화플라크 표적펩타이드가 결합된 글라이콜 키토산-담즙산-Cy5.5 나노입자의 죽상동맥에서의 플라크에 대한 표적성 및 근적외선 영상을 나타낸 것이며, 3b는 동맥경화 유발 쥐와 정상쥐에서 적출한 죽상동맥을 Oil red-O 염색을 하여 플라크 형성을 관찰한 사진이며, 3c는 동맥경화 유발 쥐와 정상쥐에서 적출한 죽상동맥을 조직 절편을 만들어 형광현미경을 이용하여 나노입자의 존재 유무를 확인한 그림이다. FIG. 3 shows glycol chitosan-bile acid-Cy5.5 nanoparticles combined with atherosclerotic plaque target peptides in arteriosclerosis-induced rats (LDLr − / − ) (3a-1) and normal mice (3a-2). Target and near-infrared images of plaque in atherosclerosis are shown. 3b is an oil red-O staining of atherosclerosis-induced and normal atherosclerosis, and 3c is atherosclerosis. Tissue sections of the atherosclerotic artery extracted from induced and normal rats were made and confirmed by the presence of nanoparticles using a fluorescence microscope.

도 4는 인터루킨 4-수용체 (IL-4R)가 다량으로 발현하는 암 조직에서의 동맥경화플라크 표적펩타이드가 결합된 글라이콜 키토산-담즙산-Cy7.5 나노입자와 펩타이드가 결합되지 않은 나노입자의 암 표적성을 비교한 근적외선 영상을 나타낸 것이다.4 shows glycol chitosan-bile acid-Cy7.5 nanoparticles to which atherosclerotic plaque target peptides are bound in cancer tissues expressing a large amount of interleukin 4-receptor (IL-4R) and nanoparticles to which peptides are not bound. NIR images comparing cancer targets are shown.

<110> KIST <120> A DISEASE TARGETED PEPTIDE-CONJUGATED AMPHIPHILIC CHITOSAN BASED <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> atheroscleroti plaque-homing peptide <400> 1 Cys Arg Lys Arg Leu Asp Arg Asn Cys 1 5 <210> 2 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> apoptotic cell target peptide <400> 2 Cys Gln Arg Pro Pro Arg 1 5 <210> 3 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> bladder cancer target peptide <400> 3 Cys Ser Asn Arg Asp Ala Arg Arg Cys 1 5 <110> KIST <120> A DISEASE TARGETED PEPTIDE-CONJUGATED AMPHIPHILIC CHITOSAN BASED <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> atheroscleroti plaque-homing peptide <400> 1 Cys Arg Lys Arg Leu Asp Arg Asn Cys   1 5 <210> 2 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> apoptotic cell target peptide <400> 2 Cys Gln Arg Pro Pro Arg   1 5 <210> 3 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> bladder cancer target peptide <400> 3 Cys Ser Asn Arg Asp Ala Arg Arg Cys   1 5  

Claims (5)

담즙산 유도체 또는 지방산 유도체가 결합된 양친성 키토산 유도체에 형광체 및 질환 표적 펩타이드가 결합된 나노입자 조영제로, As nanoparticle contrast agent in which phosphor and disease target peptide are bound to amphiphilic chitosan derivatives bound to bile acid derivatives or fatty acid derivatives, 상기 질환표적 펩타이드는 서열번호 1의 아미노산 서열로 구성된 동맥경화 플라크 또는 IL-4 수용체 표적 펩타이드 또는 그 유도체, 서열번호 2의 아미노산 서열로 구성된 사멸세포의 표적 펩타이드 또는 그 유도체, 서열번호 3의 아미노산 서열로 구성된 방광암 세포 표적 펩타이드 또는 그 유도체, 압타머, 엽산, 인테그린을 표적하는 펩타이드 RGD 서열을 갖는 펩타이드로 cyclo (Arg-Gly-Asp-D-Phe-Val), cyclo(Arg-Gly-Asp-D-Phe-Lys), cyclo(Arg-Gly-Asp-D-Phe-Cys), cyclo(Arg-Gly-Asp-D-Phe-Glu), cyclo(Arg-Gly-Asp-D-Tyr-Lys), cyclo(Arg-Gly-Asp-D-Tyr-Glu), Arg-Gly-Asp-Ser 또는 Gly-Arg-Gly-Asp-Ser, 및 트렌스페린 또는 그 유도체로 구성된 군에서 선택되는 것인 나노입자 조영제.The disease-target peptide is an atherosclerotic plaque or an IL-4 receptor target peptide or derivative thereof consisting of the amino acid sequence of SEQ ID NO: 1, a target peptide or a derivative thereof of the dead cell consisting of the amino acid sequence of SEQ ID NO: 2, an amino acid sequence of SEQ ID NO: 3 Bladder cancer cell target peptide or derivatives thereof, peptides targeting aptamers, folic acid, integrin, peptides having a RGD sequence cyclo (Arg-Gly-Asp-D-Phe-Val), cyclo (Arg-Gly-Asp-D -Phe-Lys), cyclo (Arg-Gly-Asp-D-Phe-Cys), cyclo (Arg-Gly-Asp-D-Phe-Glu), cyclo (Arg-Gly-Asp-D-Tyr-Lys) , nanoparticles selected from the group consisting of cyclo (Arg-Gly-Asp-D-Tyr-Glu), Arg-Gly-Asp-Ser or Gly-Arg-Gly-Asp-Ser, and transferrin or derivatives thereof Contrast agent. 제1항에 있어서, 상기 나노입자에 방사선 동위원소, 양자점(quantum dot) 또는 MRI 조영제를 더 포함하는 것인 나노입자 조영제.The nanoparticle contrast agent of claim 1, further comprising a radioisotope, quantum dot, or MRI contrast medium in the nanoparticle. 제1항에 따른 나노입자 조영제에 소수성 약물이 봉입된, 골 관절염, 류마티 스 관절염, 전신성 경피증 (Progressive systemic sclerosis), 췌장세포 항체에 의한 인슐린 의존성 소아기 당뇨병, 만성 갑상선 염, 궤양성 대장염, 다발성 경화증 (multiple sclerosis), 자가면역성 뇌척수염 또는 섬유조직염 (Fibromyalgia syndrome) 및 동맥경화로 구성된 군에서 선택되는 염증질환 치료용 약물전달체.Osteoarthritis, rheumatoid arthritis, progressive systemic sclerosis, insulin dependent childhood diabetes mellitus, chronic thyroiditis, ulcerative colitis, multiple Drug delivery drug for the treatment of inflammatory diseases selected from the group consisting of multiple sclerosis, autoimmune encephalomyelitis or fibromyalgia syndrome and atherosclerosis. 제1항에 따른 나노입자 조영제에 소수성 약물이 봉입된, 편평상피세포암, 자궁암, 자궁 경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암 및, 담낭암로 구성된 군에서 선택된 암 치료용 약물전달체.Squamous cell carcinoma, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, and colon cancer with hydrophobic drugs embedded in the nanoparticle contrast agent according to claim 1 Drug delivery agent for cancer treatment selected from the group consisting of, rectal cancer, stomach cancer, kidney cancer, bladder cancer, ovarian cancer, cholangiocarcinoma, and gallbladder cancer. 제3항 또는 제4항에 있어서, 상기 소수성 약물은, 프레드니손(Prednisone), 테스토스테론(Testosterone), 미토산트론(Mitoxantron), 아스피린 (aspirin) 및 살리실레이트 (salicylates), 이부프로펜(ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 시클로포스파미드(cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone), 코르티코스테로이드(corticosteroid), 다우노마이신(daunomycin), 도세탁셀(Docetaxel), 시스플라 틴 (cis-platin), 캠토세신 (camptothecin), 파클리탁셀(paclitaxel), 타목시펜(Tamoxifen), 아나스테로졸(Anasterozole), 글리벡(Gleevec), 5-플루오로우라실(5-FU), 플록슈리딘(Floxuridine), 류프로리드(Leuprolide), 플로타미드(Flutamide), 졸레드로네이트(Zoledronate), 독소루비신(Doxorubicin), 빈크리스틴(Vincristine), 젬시타빈(Gemcitabine), 스트렙토조토신(Streptozocin), 카보플라틴(Carboplatin), 토포테칸(Topotecan), 벨로테칸(Belotecan), 이리노테칸(Irinotecan), 비노렐빈(Vinorelbine), 히도록시우레아(hydroxyurea), 발루비신(Valrubicin), 레티노익산 (retinoic acid) 계열, 메소트렉세이트(Methotrexate), 메클로레타민(Meclorethamine), 클로람부실(Chlorambucil), 부술판(Busulfan), 독시플루리딘(Doxifluridine), 빈블라스틴(Vinblastin), 또는 마이토마이신(Mitomycin)인 것인 치료용 약물전달체. According to claim 3 or 4, wherein the hydrophobic drug, Prednisone (Testredone), Testosterone (Testosterone), Mitoxantron (Mitoxantron), Aspirin (salicylates), Ibuprofen (ibuprofen), B Naproxen, fenoprofen, indomethacin, phenyltazone, cyclophosphamide, mechlorethamine, dexamethasone, prednisolone (prednisolone) prednisolone, celecoxib, valdecoxib, valdecoxib, nimesulide, cortisone, corticosteroid, daunomycin, docetaxel, docetaxel, cisplatin (cis-platin), camptothecin, paclitaxel, tamoxifen, anastozole, anasterozole, Gleevec, 5-fluorouracil (5-FU), phloxuridine Floxuridine, Leuprolide, Flotamide amide, Zoledronate, Doxorubicin, Vincristine, Gemcitabine, Streptozocin, Carboplatin, Topotecan, Velotecan (Belotecan), Irinotecan, Vinorelbine, Hyrogyurea, hydroxyurea, Valrubicin, Retinoic acid series, Methotrexate, Meclorethamine , Chlorambucil, Chulrambucil, Busulfan, Doxifluridine, Doxifluridine, Vinblastin, or mitomycin.
KR1020080094364A 2008-09-25 2008-09-25 A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease KR101093549B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080094364A KR101093549B1 (en) 2008-09-25 2008-09-25 A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080094364A KR101093549B1 (en) 2008-09-25 2008-09-25 A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease

Publications (2)

Publication Number Publication Date
KR20100035062A true KR20100035062A (en) 2010-04-02
KR101093549B1 KR101093549B1 (en) 2011-12-14

Family

ID=42213052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080094364A KR101093549B1 (en) 2008-09-25 2008-09-25 A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease

Country Status (1)

Country Link
KR (1) KR101093549B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056105A (en) * 2012-10-31 2014-05-09 고려대학교 산학협력단 Fluorescent protein nanopaticles for in vivo imaging
US20160000938A1 (en) * 2013-10-17 2016-01-07 Je Yong CHOI Reagent for diagnosis of osteoarthritis comprising peptide probe of apopep-1
US10086077B2 (en) 2016-05-03 2018-10-02 Korea University Research And Business Foundation Activated macrophage targetable drug carrier for treatment of atherosclerosis and methods of preparing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101474063B1 (en) 2012-05-23 2014-12-19 동국대학교 산학협력단 CT contrast agent comprising glycol chitosan-gold nano particle conjugated fibrin target peptide sequence
KR20190081963A (en) * 2017-12-29 2019-07-09 광주과학기술원 Biocompatible polymer complex for contrast agent and contrast agent comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503293B1 (en) * 2003-07-15 2005-07-25 주식회사 자광 Chitosan complex having hydrophobic moiety and preparation method thereof
KR100704548B1 (en) * 2005-10-31 2007-04-09 한국과학기술연구원 Inflammatory region-specific polymer derivative and use thereof
KR100825939B1 (en) * 2006-08-28 2008-04-29 한국과학기술연구원 A constrast medium comprising nanoparticles formed with amphiphilic polymer binding a near-infrared fluorochrome for diagnosing tumor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056105A (en) * 2012-10-31 2014-05-09 고려대학교 산학협력단 Fluorescent protein nanopaticles for in vivo imaging
KR20150126581A (en) * 2012-10-31 2015-11-12 고려대학교 산학협력단 Fluorescent protein nanopaticles for in vivo imaging
US20160000938A1 (en) * 2013-10-17 2016-01-07 Je Yong CHOI Reagent for diagnosis of osteoarthritis comprising peptide probe of apopep-1
US10086077B2 (en) 2016-05-03 2018-10-02 Korea University Research And Business Foundation Activated macrophage targetable drug carrier for treatment of atherosclerosis and methods of preparing the same

Also Published As

Publication number Publication date
KR101093549B1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Gao et al. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges
Dréau et al. Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic murine mouse model
David Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment
Nam et al. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging
Sharifi et al. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging
Lee et al. Targeted multimodal imaging modalities
Chen et al. In vivo tumor vasculature targeted PET/NIRF imaging with TRC105 (Fab)-conjugated, dual-labeled mesoporous silica nanoparticles
Huang et al. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery
Yhee et al. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics
Oh et al. Electrostatic charge conversion processes in engineered tumor-identifying polypeptides for targeted chemotherapy
Zhu et al. Quantum dot-based nanoprobes for in vivo targeted imaging
Li et al. In vivo near infrared fluorescence imaging and dynamic quantification of pancreatic metastatic tumors using folic acid conjugated biodegradable mesoporous silica nanoparticles
JP2007169261A (en) Fluorescent magnetic nano particle having specific target function
JP2008024816A (en) New amphiphilic substance, and drug delivery system and molecule imaging system to use the same
Li et al. Cancer nanomedicine based on polyethylenimine-mediated multifunctional nanosystems
US20100209353A1 (en) Tumor targeting protein conjugate and a method for preparing the same
Yang et al. Magainin II modified polydiacetylene micelles for cancer therapy
KR101093549B1 (en) A disease targeted peptide-conjugated amphiphilic chitosan based nanoparticle imaging agent for diagnosis of disease
Yao et al. Facile peptides functionalization of lanthanide-based nanocrystals through phosphorylation tethering for efficient in vivo NIR-to-NIR bioimaging
Choi et al. Hyaluronate dots for highly efficient photodynamic therapy
Kim et al. Target-switchable Gd (III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T1 contrast agents for high-field MRI
Tao et al. A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis more effectively
Zhang et al. Recent advances in improving tumor-targeted delivery of imaging nanoprobes
Khoshnood et al. N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications
Pung et al. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee