KR20100027831A - Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof - Google Patents

Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof Download PDF

Info

Publication number
KR20100027831A
KR20100027831A KR1020080086900A KR20080086900A KR20100027831A KR 20100027831 A KR20100027831 A KR 20100027831A KR 1020080086900 A KR1020080086900 A KR 1020080086900A KR 20080086900 A KR20080086900 A KR 20080086900A KR 20100027831 A KR20100027831 A KR 20100027831A
Authority
KR
South Korea
Prior art keywords
biosensor
probe
biomolecule
dna
dendrimer
Prior art date
Application number
KR1020080086900A
Other languages
Korean (ko)
Inventor
심윤보
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020080086900A priority Critical patent/KR20100027831A/en
Publication of KR20100027831A publication Critical patent/KR20100027831A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE: A biosensor for detecting biomolecule using screen print electrode based on hydrazine catalytic activity is provided to reproducibly and sensitively detect biomolecule. CONSTITUTION: A biosensor for detecting biomolecule comprises: a screen print electrode in which surface is coated with electrical conductivity polymer; a dendrimer layer in which the electrical conductivity polymer and amide are bound; a probe fixed on an Au nanoparticle layer; a biotin target probe conjugated with biomolecule; and an avidin target hydrazine conjugated with the biotin.

Description

하이드라진의 촉매활성을 근거로 한 스크린인쇄전극을 이용한 생체분자 검출용 바이오센서 및 이의 제조방법{Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof}Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method according to hydrazine catalytic activity

본 발명은 하이드라진의 촉매활성을 근거로 한 스크린인쇄전극을 이용하여 DNA 및 단백질과 같은 생체분자를 쉽고, 민감하면서도 재현성 있게 검출할 수 있는 생체분자 검출용 바이오센서 및 이의 제조방법에 관한 것이다.The present invention relates to a biosensor for detecting biomolecules and a method of manufacturing the same, which can detect biomolecules such as DNA and protein easily, sensitively and reproducibly using screen printing electrodes based on the catalytic activity of hydrazine.

DNA 및 단백질을 매우 민감하게 검출하는 방법이 생물학적 에세이에서 중요한 관건이다. 이를 위해 DNA 및 단백질 인식 이벤트(event)의 형질도입에 관한 관심이 증대되었다. DNA 검출의 민감성을 증대하기 위하여, 페로센-기능성 양이온 폴리티오펜, 기능성-리포좀, 나노입자, 변형 두가닥 DNA의 구조변형 등을 이용한 다양한 방법들이 알려져 있다. Methods of very sensitive detection of DNA and proteins are important in biological assays. To this end, interest in transduction of DNA and protein recognition events has increased. In order to increase the sensitivity of DNA detection, various methods are known using ferrocene-functional cationic polythiophene, functional-liposomes, nanoparticles, structural modification of modified double-stranded DNA, and the like.

한편, 단백질 검출의 민감성을 증대하기 위하여, 증폭 물질로서 DNA 및 효소 표식을 사용한 다수의 면역센서 시스템이 개발되어 있다. 여기에는 바이오 바코드, 면역-PCR, 리포좀-PCR, 카본나노튜브-유도 증폭, 파라마그네틱 비드, 금 표식 및 폴리머 비드를 근거로 이용한 에세이를 포함한다.On the other hand, in order to increase the sensitivity of protein detection, a number of immunosensor systems using DNA and enzyme markers as amplification materials have been developed. This includes assays based on bio barcodes, immuno-PCR, liposome-PCR, carbon nanotube-induced amplification, paramagnetic beads, gold markers and polymer beads.

대부분의 이러한 방법들은 초민감하게 DNA 및 단백질을 검출할 수 있을지라도 제작의 복잡성, 다단계 반응, 검출절차 등의 문제로 인하여 실용적인 활용에 다소 한계가 있다. Although most of these methods can detect DNA and protein in a very sensitive manner, there are some limitations in practical use due to problems of manufacturing complexity, multi-step reactions, detection procedures, and the like.

예를들어, 바이오 바코드, 면역 PCR 및 리포좀 PCR을 이용한 단백질의 특이적이고 민감한 검출방법은 PCR과 같은 복잡한 실험 기술을 이용해야 하는 문제가 있다. 따라서, 간단하고 신뢰할 수 있으며 민감도가 높은 검출방법의 개발이 요구되는 실정이다.For example, specific and sensitive detection methods of proteins using bio barcodes, immuno PCR and liposome PCR have a problem of using complex experimental techniques such as PCR. Therefore, the development of a simple, reliable and high sensitivity detection method is required.

상기 종래기술의 문제점을 해결하기 위하여, 본 발명자는 스크린인쇄전극 표면 상에 전기전도성 고분자를 코팅하며, 하이드라진 표식 단위용 전달체를 이용하여전극을 개질함으로써 하이드라진의 촉매활성에 근거한 간단하고 민감한 DNA 및 단백질 검출을 위한 새로운 바이오센서를 제작하였다. In order to solve the problems of the prior art, the inventors coat an electrically conductive polymer on the surface of the screen printed electrode, and modify the electrode by using a carrier for a hydrazine-labeled unit, thereby simplifying and sensitive DNA and protein based on the catalytic activity of hydrazine. A new biosensor for the detection was produced.

상기 목적을 달성하기 위하여, 본 발명은 전기전도성 고분자로 표면 코팅된 스크린인쇄전극; 상기 전기전도성 고분자와 아미드 결합한 덴드리머층; 상기 덴드리머층의 미반응 아민기를 흡착한 Au 나노입자층; 상기 Au 나노입자층에 고정된 탐침; 상기 탐침과 결합된 생체분자; 상기 생체분자와 결합된 비오틴 표식 탐침; 및 상기 비오틴과 결합되는 아비딘 표식 하이드라진으로 구성되는 것을 특징으로 하는 생체분자 검출용 바이오센서를 제공한다.In order to achieve the above object, the present invention is a screen printed electrode surface-coated with an electrically conductive polymer; A dendrimer layer having an amide bond with the electrically conductive polymer; Au nanoparticle layer adsorbed unreacted amine group of the dendrimer layer; A probe fixed to the Au nanoparticle layer; A biomolecule coupled to the probe; A biotin marker probe bound to the biomolecule; And it provides a biosensor for detecting biomolecules, characterized in that consisting of avidin-labeled hydrazine coupled to the biotin.

본 발명의 바이오센서에서 이용하는 전기전도성 고분자는 카보디이미드 또는 N-히드록시숙신이미드로 카르복실기 또는 아민기가 활성화된 폴리-5,2':5',2"-터티오펜-3'-카르복실산이 바람직하다.The electrically conductive polymer used in the biosensor of the present invention is a poly-5,2 ': 5', 2 "-terthiophene-3'-carboxyl having a carboxyl group or an amine group activated with carbodiimide or N-hydroxysuccinimide. Acids are preferred.

또한, 상기 덴드리머는 아민-말단화된 덴드리머로서, 표면 기능성을 지닌 이러한 덴드리머는 다수의 분지를 지닌 구형 나노구조로서 대칭적으로 많은 양의 Au 나노입자를 고정화할 수 있도록 하며, 덴드리머의 구형 형상으로 인하여 선상의 폴리아민과는 달리 덴드리머의 중심 및 주변부에서 전혀 다른 환경을 제공하며, 선상 폴리아민과 비교하여 밀집된 기능성 덴드리머의 많은 수의 아민기에 의해 바이오센서 표면에 Au 나노입자의 고정을 안정하게 도모할 수 있다.In addition, the dendrimer is an amine-terminated dendrimer, and the dendrimer having surface functionality is a spherical nanostructure having a large number of branches, which can immobilize a large amount of Au nanoparticles symmetrically, and have a spherical shape of the dendrimer. Due to the linear amine, unlike the linear polyamine, it provides a completely different environment at the center and periphery of the dendrimer, and compared to the linear polyamine, a large number of amine groups of the densified functional dendrimer can stably fix the Au nanoparticles on the surface of the biosensor. have.

본 발명의 바이오센서에서 이용하는 탐침은 티올기를 지닌 DNA 탐침 또는 항체 탐침에서 선택된 어느 하나이며, 생체분자는 비오틴으로 표식된 DNA 또는 비오틴으로 표식된 단백질이다. The probe used in the biosensor of the present invention is any one selected from a DNA probe having a thiol group or an antibody probe, and the biomolecule is a protein labeled with biotin or a DNA labeled with biotin.

이하, 도면을 참조하여 본 발명에 따른 바이오센서를 보다 상세하게 설명한다.Hereinafter, with reference to the drawings will be described in more detail the biosensor according to the present invention.

도 1은 본 발명에 따른 DNA 검출용 바이오센서의 개념도를 나타낸 것으로, 먼저 전기전도성 고분자 예를들어 폴리-5,2':5',2"-터티오펜-3'-카르복실산 (이하, pTTCA라 약칭함)를 전위순환법에 의해 스크린인쇄전극(SPE)에 형성시킨 후, 상기 pTTCA의 카르복실산 기를 활성화제로 예를들어, 1-에틸-3-(3-디메틸아미노프로필)카보디이미드 또는 N-히드록시숙신이미드로 활성화한다. 1 is a conceptual diagram of a biosensor for detecting DNA according to the present invention. First, an electrically conductive polymer, for example, poly-5,2 ': 5', 2 "-terthiophene-3'-carboxylic acid (hereinafter, pTTCA) is formed on the screen printed electrode (SPE) by the potential cycle method, and then the carboxylic acid group of the pTTCA is used as an activator, for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodi Activate with mid or N-hydroxysuccinimide.

활성화된 pTTCA 표면의 카르복실기와 아민-말단화된 덴드리머(DEN)의 아민기 간의 아미드 결합에 의해 pTTCA 표면에 아민-말단화된 덴드리머를 고정하여 pTTCA/DEN 변형 전극을 제조한다.A pTTCA / DEN modified electrode is prepared by immobilizing an amine-terminated dendrimer on the pTTCA surface by an amide bond between the carboxyl group on the activated pTTCA surface and the amine group of the amine-terminated dendrimer (DEN).

이렇게 안정하게 덴드리머를 고정한 후, Au 나노입자(AuNP) 용액에 pTTCA/DEN 변형 전극을 담구어 덴드리머의 미반응 아민기 부위를 AuNP로 흡착시켜 pTTCA/DEN/AuNP 전극 조합체를 제조한다.After stably fixing the dendrimer, the pTTCA / DEN modified electrode was immersed in the Au nanoparticle (AuNP) solution to adsorb the unreacted amine group site of the dendrimer with AuNP to prepare a pTTCA / DEN / AuNP electrode combination.

상기 표면개질한 pTTCA/DEN/AuNP 전극 조합체의 AuNP층에 티올기를 지닌 탐침을 흡착시킨 후, 각각 1-데칸티올 용액으로 처리하여 나머지 노출된 AuNP 표면을 차단함으로써 비특이적인 흡착을 방지한다.After adsorbing a probe having a thiol group to the AuNP layer of the surface-modified pTTCA / DEN / AuNP electrode combination, each treated with 1-decanethiol solution to block the remaining exposed AuNP surface to prevent nonspecific adsorption.

상기 pTTCA/DEN/AuNP 전극 조합체에 흡착된 티올기를 지닌 탐침에 순차적으로 목적 DNA 및 비오틴 표식된 탐침을 가하여 혼성화하거나 결합시킨다. The target DNA and biotin-labeled probe are sequentially added to the probe having the thiol group adsorbed to the pTTCA / DEN / AuNP electrode combination to hybridize or bind.

그 결과 얻어진 전극을 하이드라진 표식물과 반응시키고, H2O2의 전기촉매적 환원 전위를 100 내지 -350mV(Ag/AgCl 대응)의 전위 범위에서 펄스차이 전압전류법(differential pulse voltammetry; DPV)에 의해 측정한다.The resulting electrode is reacted with a hydrazine label and the electrocatalytic reduction potential of H 2 O 2 is varied by a differential pulse voltammetry (DPV) in the potential range of 100 to -350 mV (Ag / AgCl equivalent). Measure

도 2에 도시된 바와 같이, 50pM 목적 DNA 존재 하에서 10mM H2O2에 관한 환원피크가 ∼-150mV에서 관찰되며, 이는 Av-Hyd 표식이 상보적 이중체에 결합하여 H2O2의 전기촉매적 환원을 유도하는 것으로 확인된다(2c). 상기 준비된 pTTCA/DEN/AuNP 전극 조합체를 이용하여 효소를 사용하지 않고 매우 민감하게 DNA를 검출할 수 있다.As shown in FIG. 2, a reduction peak with respect to 10 mM H 2 O 2 in the presence of 50 pM target DNA was observed at ˜-150 mV, which is indicated by the Av-Hyd marker binding to the complementary duplex and the electrocatalyst of H 2 O 2 . It is found to induce redox (2c). The prepared pTTCA / DEN / AuNP electrode combination can be used to detect DNA very sensitively without using an enzyme.

한편, 100배 과량의 비상보적 DNA(5nM, 2b) 존재 또는 목적 DNA 미처리(2a) 시에는 바이오센서에서 유의성있는 촉매 전위가 나타나지 않는다. 그러나, 100배 과량의 상보적 DNA(5nM, 2d) 존재 하에서는 -150mV에서 뚜렷한 환원전위가 나타난다.On the other hand, in the presence of a 100-fold excess of non-complementary DNA (5nM, 2b) or untreated DNA (2a), no significant catalytic potential appears in the biosensor. However, in the presence of a 100-fold excess of complementary DNA (5 nM, 2d), a distinct reduction potential appears at -150 mV.

또한, 도 3a에 도시된 바와 같이 단일 염기 잘못 결합 DNA 존재 하에서는 4.6%의 상대표준편차를 지닌 10.5±0.7nA의 피크전위를 나타내어 목적 DNA 존재 하의 피크전위인 58.5±0.9nA보다 6배 낮은 피크전위를 나타냄으로써 소량의 단일 염기 잘못 결합 DNA가 티올기를 지닌 탐침 및 비오틴 표식 탐침과 혼성화되어 Av-Hyd 과의 결합력을 약화시킨다.In addition, as shown in FIG. 3A, the peak potential of 10.5 ± 0.7nA with a relative standard deviation of 4.6% in the presence of single-base fault-binding DNA is 6 times lower than that of 58.5 ± 0.9nA, which is the peak potential in the presence of the target DNA. A small amount of single base misbinding DNA hybridizes with a thiol group and a biotin-labeled probe to weaken binding to Av-Hyd.

또한, AuNP에 의한 H2O2의 촉매적 환원 효과를 검토한 결과, 목적 DNA와 혼성화 전, 티올기를 지닌 탐침-변형 전극을 1-데칸티올로 처리하여 AuNP의 노출 표면을 차단하거나(도 3b에서 점선) 또는 차단하지 않더라도(도 3b에서 실선) 어떠한 의미있는 피크의 변화는 관찰되지 않는다.In addition, as a result of examining the catalytic reduction effect of H 2 O 2 by AuNP, the probe-modified electrode having a thiol group was treated with 1-decanethiol before hybridization with the target DNA to block the exposed surface of AuNP (FIG. 3B). No significant change in peak is observed even if not blocked (solid line in FIG. 3B).

도 4는 목적 DNA 용액의 농도에 따른 전기촉매적 환원 전류의 의존성에 관한 것으로, 50fM 내지 7.5nM에 이르는 매우 저농도의 목적 DNA에 관한 전압전류적 혼성반응을 나타낸다.Figure 4 relates to the dependence of the electrocatalyst reduction current with the concentration of the target DNA solution, showing a voltammetric hybridization reaction for very low concentrations of target DNA ranging from 50 fM to 7.5 nM.

50fM 내지 7.5nM 사이의 넓은 동적 범위가 관찰되었고, 이는 6배 농도를 커버하는 것이다. 목적 DNA의 검출한계는 30fM이며, 이는 이전에 사용되던 효소 프리 방법과 비교하여 10배 더 낮은 검출한계를 나타내는 것이다. A wide dynamic range was observed between 50 fM and 7.5 nM, which covers a 6-fold concentration. The detection limit of the target DNA is 30 fM, indicating a 10-fold lower detection limit compared to the enzyme free method used previously.

또한, 도 5는 본 발명에 따른 단백질 검출용 바이오센서의 개념도를 나타낸 것으로, 이러한 단백질 검출용 바이오센서를 이용하여 매우 민감하게 단백질인 항원을 검출할 수 있다.In addition, Figure 5 shows a conceptual diagram of the protein detection biosensor according to the present invention, by using such a protein detection biosensor can be detected very sensitive antigen antigen.

DNA 검출용 바이오센서와 동일하게 준비된 스크린인쇄전극을 표면개질한 pTTCA/DEN/AuNP 전극의 AuNP층에 항-인간 IgG 항체를 흡착시킨 후, 소혈청알부민(BSA)으로 처리하여 나머지 노출된 AuNP 표면을 차단함으로써 비특이적인 흡착을 방지한다.The anti-human IgG antibody was adsorbed onto the AuNP layer of the pTTCA / DEN / AuNP electrode with the screen-modified electrode prepared in the same manner as the biosensor for DNA detection, and then treated with bovine serum albumin (BSA) to expose the remaining AuNP surface. Blocking prevents nonspecific adsorption.

상기 pTTCA/DEN/AuNP 전극 조합체에 흡착된 항-인간 IgG 항체에 순차적으로 목적 단백질 및 비오틴 표식된 탐침을 가하여 혼성화하거나 결합시킨다. Anti-human IgG antibodies adsorbed to the pTTCA / DEN / AuNP electrode combinations are subsequently hybridized or bound by adding the desired protein and biotin-labeled probe.

그 결과 얻어진 전극을 하이드라진 표식물과 반응시키고, H2O2의 전기촉매적 환원 전위를 100 내지 -350mV(Ag/AgCl 대응)의 전위 범위에서 펄스차이 전압전류법(differential pulse voltammetry; DPV)에 의해 측정한다.The resulting electrode is reacted with a hydrazine label and the electrocatalytic reduction potential of H 2 O 2 is varied by a differential pulse voltammetry (DPV) in the potential range of 100 to -350 mV (Ag / AgCl equivalent). Measure

도 6a는 5pg/ml 인간 IgG를 함유한 용액 및 대조군 실험에서 얻어진 것에 관해 측정된 DPV 시그널에 관한 것이다. 5pg/ml 인간 IgG로부터 얻어진 약 -200mV에서의 분명한 전기촉매적 환원 피크는 면역센서층(곡선 b)에 대한 Av-Hyd 표식의 성공적인 결합을 나타낸다.6A relates to DPV signals measured for solutions containing 5 pg / ml human IgG and those obtained in control experiments. The clear electrocatalytic reduction peak at about -200 mV obtained from 5 pg / ml human IgG indicates successful binding of the Av-Hyd marker to the immunosensor layer (curve b).

인간 IgG의 농도가 0인 경우에는 50 내지 -450mV 사이에서 어떠한 배경 피크도 관찰되지 않아(곡선 a), 비특이적인 결합은 무시할 수 있는 정도이다.If the concentration of human IgG is zero, no background peak is observed between 50 and -450 mV (curve a), so nonspecific binding is negligible.

비특이적 결합을 조사하기 위한 대조군으로서 인간 IgG 대신 트롬빈을 사용하여 그 효과를 검토하였다. 그 결과, 도 6b에 도시된 바와 같이 5pg/ml 인간 IgG 대신 500pg/ml 트롬빈을 사용한 경우, 어떠한 촉매적인 전류도 관찰되지 않아(곡선 i), 트롬빈의 비특이적 결합은 무시할 만한 것으로 확인되었다.The effect was examined using thrombin instead of human IgG as a control to investigate nonspecific binding. As a result, when 500 pg / ml thrombin was used instead of 5 pg / ml human IgG as shown in FIG. 6B, no catalytic current was observed (curve i), indicating that nonspecific binding of thrombin was negligible.

또한, 항-IgG는 폴리머의 카르복실기와 항체의 아민기 간의 아미드 결합 형성에 의해 DNE/AuNP층이 없는 pTTCA 층에 공유적으로 결합될 수 있다. 따라서, 변형 전극의 민감도에 있어서 DEN/AuNP층의 효과를 검토하였다. In addition, anti-IgG can be covalently bound to the pTTCA layer without the DNE / AuNP layer by forming an amide bond between the carboxyl group of the polymer and the amine group of the antibody. Therefore, the effect of the DEN / AuNP layer on the sensitivity of the strained electrode was examined.

도 6b에 도시된 바와 같이, 항-IgG 고정된 pTTCA층(곡선 ii) 대신 pTTCA/DEN/AuNP 전극 조합체(곡선 iii)를 사용한 결과, 50배가 넘는 민감도의 향상 이 관찰되었다. 이러한 시그널의 향상은 pTTCA/DEN층에 의해 제공된 많은 양의 AuNP 로딩에 의한 것으로, 따라서 많은 양의 단백질 결합 Av-Hyd가 AuNP와 결합되어 결국, 향상된 전류가 발생되는 것이다.As shown in FIG. 6B, the use of pTTCA / DEN / AuNP electrode combinations (curve iii) instead of the anti-IgG immobilized pTTCA layer (curve ii) resulted in over 50-fold improvement in sensitivity. The improvement of this signal is due to the large amount of AuNP loading provided by the pTTCA / DEN layer, so that a large amount of protein binding Av-Hyd is combined with AuNP, resulting in an improved current.

도 7a 및 도 7b는 인간 IgG의 농도에 따른 전기촉매적인 환원전류의 의존성에 관한 것으로, 환원피크는 목적 인간 IgG의 농도에 따라 비록 선형은 아니지만 빠르게 증가한다. 40fg/ml 내지 2.5ng/ml에서 선형 동적 범위를 관찰할 수 있고, 검출한계는 25fg/ml이었다. 7A and 7B relate to the dependence of the electrocatalytic reduction current on the concentration of human IgG, wherein the reduction peak increases rapidly, although not linearly, with the concentration of the desired human IgG. A linear dynamic range can be observed at 40 fg / ml to 2.5 ng / ml, with a detection limit of 25 fg / ml.

검출한계는 AuNP 트레이서를 근거로 한 종래 방법 또는 전기활성 산물의 회수에 근거한 종래방법에 근거한 가장 민감한 단백질 검출방법에서 얻어진 것과 비교하여 3배 이상 더 낮은 검출한계를 나타내었다. The detection limit was at least three times lower than that obtained with the conventional method based on AuNP tracer or the most sensitive protein detection method based on conventional methods based on recovery of electroactive products.

또한, 본 발명은 스크린인쇄전극 표면에 카르복실기 또는 아민기가 활성화된 전기전도성 고분자를 코팅하는 단계; 상기 전기전도성 고분자 표면에 아민-말단화된 덴드리머를 고정하는 단계; 상기 덴드리머의 미반응 아민에 Au 나노입자를 흡착하는 단계; 상기 Au 나노입자 표면에 티올기를 지닌 탐침을 흡착하는 단계; 상기 탐침에 생체분자와 비오틴 표식 탐침을 순차적으로 결합하여 3성분계 결합체를 제조하는 단계; 상기 3성분계 결합체와 아비딘 표식 하이드라진을 반응시키는 단계; 및 상기 하이드라진에 의한 과산화수소의 전기촉매적 환원전위를 측정하는 단계를 포함하여 구성되는 생체분자 검출용 바이오센서의 제조방법을 제공한다.In addition, the present invention comprises the steps of coating an electrically conductive polymer having a carboxyl group or an amine group activated on the surface of the screen printed electrode; Fixing an amine-terminated dendrimer to the surface of the electrically conductive polymer; Adsorbing Au nanoparticles to the unreacted amine of the dendrimer; Adsorbing a probe having a thiol group on the surface of the Au nanoparticles; Sequentially combining a biomolecule and a biotin-labeled probe with the probe to prepare a three-component conjugate; Reacting the three-component conjugate with avidin-labeled hydrazine; And it provides a method for producing a biosensor for detecting biomolecules comprising the step of measuring the electrocatalytic reduction potential of hydrogen peroxide by the hydrazine.

본 발명에 따른 생체분자 검출용 바이오센서는 DNA 및 단백질과 같은 생체분 자를 쉽고, 민감하면서도 재현성 있게 검출할 수 있고 바이오센서 제조도 간단하여 감염진단, 유전자 변형확인, 법의학 조사 등 실용적인 기기의 개발에 매우 유용하게 사용될 수 있다.The biosensor for detecting biomolecules according to the present invention can detect biomolecules such as DNA and protein easily, sensitively and reproducibly, and the production of biosensors is simple for the development of practical devices such as infection diagnosis, genetic modification confirmation, and forensic investigation. It can be very useful.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> AuNP 및 Av-Hyd 접합체 준비Example 1 AuNP and Av-Hyd Conjugate Preparation

AuNP는 종래 알려진 방법(Anal.Chem., 79, 3724, 2007)에 의해 합성되었다. 즉, 2.5X10-4M HAuCl4 및 2.5X10-4M 트리소듐 시트레이트를 함유한 20ml 수용액을 삼각플라스크에 준비한 후, 0.1M 신선한 NaBH4(ice-cold) 0.6ml를 교반하면서 가하였다. 이러한 용액은 핑크색의 입자를 형성하였다.AuNPs were synthesized by known methods ( Anal. Chem. , 79, 3724, 2007). In other words, were added while 2.5X10 -4 M HAuCl 4 and 2.5X10 -4 M tree after a 20ml aqueous solution containing sodium citrate prepared in an Erlenmeyer flask, stirring the fresh 0.1M NaBH 4 (ice-cold) 0.6ml . This solution formed pink particles.

UV-가시부 스펙트럼 및 TEM 이미지에서 ∼521nm에서의 흡수밴드로 상기 입자 크기가 ∼3.5nm(농도, ∼188nM)인 것을 확인할 수 있었다.In the UV-visible spectrum and TEM image, the absorption band at 521 nm confirmed that the particle size was ˜3.5 nm (concentration, ˜188 nM).

하이드라진은 글루타르알데히드 가교에 의해 아비딘으로 표식되었다. 하이드라진-아비딘(Av-Hyd) 접합체는 다음과 같이 준비되었다. 하이드라진 설페이트[100mM PBS(pH 7.4)의 200㎕ 중 4mg] 및 글루타르알데히드 용액(25%, 200㎕)의 혼합용액을 25℃에서 18시간 동안 배양하였다. Hydrazine was labeled with avidin by glutaraldehyde crosslinking. Hydrazine-avidin (Av-Hyd) conjugates were prepared as follows. A mixed solution of hydrazine sulfate [4 mg in 200 μl of 100 mM PBS pH 7.4] and glutaraldehyde solution (25%, 200 μl) was incubated at 25 ° C. for 18 hours.

이때, 과량의 글루타르알데히드를 제거하기 위하여 0.9% NaCl로 평형을 유지하는 세파덱스G-25 컬럼을 통과시켰다. 그 후 아비딘(from egg white) 4mg을 0.5M 소듐 카보네이트 완충액(pH 9.5) 400㎕에 용해하여 얻어진 용액을 상기 혼합용액에 가하였다.At this time, the Sephadex G-25 column was equilibrated with 0.9% NaCl to remove excess glutaraldehyde. Then, a solution obtained by dissolving 4 mg of avidin (from egg white) in 400 µl of 0.5 M sodium carbonate buffer (pH 9.5) was added to the mixed solution.

이렇게 얻어진 혼합용액을 4℃에서 24시간 동안 배양하고 1.0M 라이신(pH 7.4로 중화) 0.1ml를 처리하여 남아있는 활성기를 차단한 후, PBS(pH 7.4)로 밤새도록 투석하였다. 마지막으로, 상기 접합체를 멸균 밀리포어 막(0.2㎛)을 이용하여 여과한 후, 여과액을 -20℃에 저장하여 사용하였다.The mixed solution thus obtained was incubated at 4 ° C. for 24 hours, treated with 0.1 ml of 1.0M lysine (neutralized to pH 7.4) to block the remaining active groups, and then dialyzed overnight with PBS (pH 7.4). Finally, the conjugate was filtered using a sterile millipore membrane (0.2 μm), and then the filtrate was stored and used at -20 ° C.

<실시예 2> pTTCA/DEN/AuNP-전극 조합체 준비Example 2 pTTCA / DEN / AuNP-electrode assembly preparation

먼저, 본 발명에서 사용하는 스크린인쇄전극(SPE)의 제작 과정은 다음과 같다. 폴리에틸렌 베이스 필름상(10mm X 30mm)에 은 전도성 층(Ag conducting layer)을 인쇄시켰다. 각 필름은 20 스트립으로 구성되며, 각 스트립은 개별 전극에 의해 정의되었다.First, the manufacturing process of the screen printed electrode (SPE) used in the present invention is as follows. An Ag conducting layer was printed on a polyethylene base film (10 mm × 30 mm). Each film consisted of 20 strips, each strip defined by an individual electrode.

은 전도성 층이 인쇄된 후, 60℃에서 20분 동안 경화시켰다. 그 후, 은 전도성 층을 인쇄시킨 베이스 필름상에 스크린 인쇄기로 혼합 카본 잉크 및 셀룰로오스-dsDNA 작동전극층(대조군에서는 단지 카본 잉크층만 필름에 인쇄됨)을 인쇄시켰다. The silver conductive layer was printed and then cured at 60 ° C. for 20 minutes. Thereafter, the mixed carbon ink and the cellulose-dsDNA working electrode layer (in the control group, only the carbon ink layer was printed on the film) were printed on the base film on which the silver conductive layer was printed.

이때, 카본 잉크를 인쇄하는 방법은 스텐실(Patterned stencils) 인쇄기법을 사용하였고, 인쇄된 카본 잉크는 직경이 1.25 mm로 은 전도성 층 위에 인쇄되었다. 카본 잉크가 인쇄된 후, 60℃에서 20분 동안 경화시켰다. At this time, the method of printing the carbon ink using a patterned stencils printing technique, the printed carbon ink was printed on the silver conductive layer with a diameter of 1.25 mm. After the carbon ink was printed, it was cured at 60 ° C. for 20 minutes.

상기 준비된 스크린인쇄전극 표면에 pTTCA(폴리 5,2':5',2"-터티오펜-3'-카르복시산), 덴드리머 및 AuNP층을 다음과 같이 형성하였다. PTTCA (poly 5,2 ': 5', 2 "-terthiophene-3'-carboxylic acid), a dendrimer, and an AuNP layer were formed on the prepared screen printed electrode surface as follows.

전도성 고분자(pTTCA)로 표면이 코팅되는 과정을 살펴보면, 디(프로필렌 글리콜)메틸 에테르(di(propylene glycol)methyl ether)와 트리(프로필렌 글리콜)메틸 에테르(tri(propylene glycol)methyl ether)가 1:1의 비율로 혼합된 용매를 포함하는 1 mM TTCA 단량체 용액을 준비하고, 스크린인쇄전극 표면에 TTCA 단량체 용액을 떨어뜨려 전극의 표면에서 중합반응이 일어나 코팅되었다. In the process of surface coating with conductive polymer (pTTCA), di (propylene glycol) methyl ether and tri (propylene glycol) methyl ether are 1: A 1 mM TTCA monomer solution including a solvent mixed at a ratio of 1 was prepared, and the TTCA monomer solution was dropped on the surface of the screen printed electrode, thereby polymerizing and coating the surface of the electrode.

이때, 사용된 TTCA 단량체는 이전에 알려진 방법에 따라 합성하였다(Synth. Met., 126, 105, 2002).At this time, the TTCA monomer used was synthesized according to a previously known method ( Synth. Met. , 126 , 105, 2002).

pTTCA로 코팅된 전극을 6시간 동안 10.0mM 1-에틸-3-(3-디메틸아미노프로필)카보디이미드[EDC] 및 10mM NHS(N-hydroxysuccinimide)의 혼합용액을 함유한 0.1M 인산완충액(pH 7.0)에 담구어 pTTCA의 카르복실산 기를 활성화하였다. The electrode coated with pTTCA was treated with 0.1M phosphate buffer (pH) containing a mixed solution of 10.0 mM 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide [EDC] and 10 mM NHS (N-hydroxysuccinimide) for 6 hours. 7.0) to activate the carboxylic acid group of pTTCA.

그후, 메탄올에 용해된 20%(w/w) 덴드리머 용액(1:1) 500㎕에서 4℃, 12시간 동안 배양되었다. 이때, 상기 덴드리머로는 아민 말단화 G3 폴리(아미도아민) 덴드리머[dendri PAMAM (NH2)32]를 사용하였다.Thereafter, incubated in 500 µl of 20% (w / w) dendrimer solution (1: 1) dissolved in methanol at 4 ° C for 12 hours. In this case, an amine-terminated G3 poly (amidoamine) dendrimer [dendri PAMAM (NH 2 ) 32 ] was used as the dendrimer.

그 다음, 실온에서 12시간 동안 AuNP 용액(1:10 in PBS) 500㎕에서 배양하여 전극에 pTTCA/DEN/AuNP 층을 형성하였다. 그 후, 0.1M 인산완충액 용액(pH 7.0)으로 전극을 깨끗이 세정하고 질소 하에서 건조하였다.Then, incubated in 500 μl AuNP solution (1:10 in PBS) for 12 hours at room temperature to form a pTTCA / DEN / AuNP layer on the electrode. Thereafter, the electrode was thoroughly washed with 0.1 M phosphate buffer solution (pH 7.0) and dried under nitrogen.

<실시예 3> DNA 검출용 바이오센서의 제작Example 3 Fabrication of DNA Sensor Biosensor

DNA 검출을 위하여, 앞서 제작한 pTTCA/DEN/AuNP-전극 조합체를 10mM PBS에 준비된 1.0μM 티올기를 지닌 DNA 탐침(5'-HS(CH2)6-서열번호 1로 구성된 염기서열) 에 12시간 동안 담구었다. AuNP로 처리되지 않은 전극 표면을 차단하기 위하여, 티올기를 지닌 탐침 변형 전극을 1-데칸티올 용액으로 처리하였다.For DNA detection, the previously prepared pTTCA / DEN / AuNP-electrode combination was subjected to a DNA probe (base sequence consisting of 5′-HS (CH 2 ) 6 -SEQ ID NO: 1) having 1.0 μM thiol group prepared in 10 mM PBS. Soaked. In order to block the electrode surface that was not treated with AuNP, the probe modified electrode with thiol group was treated with 1-decanethiol solution.

그 후, 상기 DNA 탐침이 고정된 pTTCA/DEN/AuNP 전극 조합체를 서열번호 2로 표시되는 목적 DNA, 서열번호 3으로 표시되는 하나의 염기가 잘못결합된 DNA, 서열번호 4로 표시되는 비상보적 DNA를 포함하는 각 DNA의 적절한 농도(50fM 내지 100nM)의 용액에서 28℃, 4시간 동안 담구어 티올기를 지닌 DNA 탐침과 각 DNA 간의 혼성화를 수행한 후, PBS로 3회 세정하였다.Then, the pTTCA / DEN / AuNP electrode combination in which the DNA probe is immobilized is a target DNA represented by SEQ ID NO: 2, a DNA mismatched by one base represented by SEQ ID NO: 3, and a non-complementary DNA represented by SEQ ID NO: 4 After soaking at 28 ° C. for 4 hours in a solution of an appropriate concentration of each DNA including 50 ° C. and a DNA probe having a thiol group, hybridization was performed with each DNA, and then washed three times with PBS.

세정된 전극을 비오틴으로 표식된 탐침 용액(서열번호 5로 구성된 염기서열-(CH2)6-biotin-3'; 1.0μM)에서 28℃, 4시간 동안 추가로 담구어 얻어진 3성분 조합전극을 앞서 준비된 Av-Hyd 용액(500㎕)에서 실온, 30분 동안 담구었다. PBS 용액으로 3회 세정 후, 만들어진 바이오센서를 4℃에서 보관하였다. 질소 하 전극 표면 건조는 각 단계 사이마다 수행되었다.The probe solution was labeled with biotin for the cleaning electrode (base sequence consisting of SEQ ID NO: 5 - (CH 2) 6 -biotin -3 '; 1.0μM) a three-component combination electrode obtained soaked for a further 28 ℃, 4 hours at It was soaked for 30 minutes at room temperature in the Av-Hyd solution (500 μl) prepared previously. After washing three times with PBS solution, the resulting biosensor was stored at 4 ° C. Electrode surface drying under nitrogen was performed between each step.

상기 실험의 세정 및 배양 단계에서 사용된 완충액은 10mM NaH2PO4, 10mM Na2HPO4 및 275 mM NaCl(10 mM PBS, pH 7.4)로 이루어진 용액을 사용하였다.The buffer used in the washing and culturing step of the experiment was a solution consisting of 10 mM NaH 2 PO 4 , 10 mM Na 2 HPO 4 and 275 mM NaCl (10 mM PBS, pH 7.4).

상기 제작한 바이오센서, Ag/AgCl 표준전극 및 백금-철사 반대전극을 포함하는 5.0ml 셀에서 목적 DNA을 검출하였다. 5mV/s의 주사속도로 Ag/AgCl과 비교하여 100 내지 -350mV의 전위로 주사하여 DPV를 수행하였다. 그밖의 다른 조건은 다음과 같다: 펄스 진폭 100mV; 시료 너비 2ms; 펄스 너비 50ms; 및 펄스 주기 1000ms. 모든 전기화학적 실험은 40분 동안 질소 가스를 제거하여 탈기된 10mM PBS에서 수 행되었다. 이때, 사용된 PBS는 10mM H2O2를 포함하였다.The target DNA was detected in a 5.0 ml cell containing the prepared biosensor, Ag / AgCl standard electrode and platinum-wire counter electrode. DPV was performed by scanning at a potential of 100 to -350 mV compared to Ag / AgCl at a scanning rate of 5 mV / s. Other conditions were as follows: pulse amplitude 100 mV; Sample width 2 ms; Pulse width 50 ms; And pulse period 1000 ms. All electrochemical experiments were performed in degassed 10 mM PBS for 40 minutes by removing nitrogen gas. At this time, the PBS used contained 10 mM H 2 O 2 .

그 결과, 도 4a 및 도 4b에 도시된 바와 같이 목적 DNA의 검출한계가 30fM(S/N=3)으로 확인되었다.As a result, as shown in Figs. 4A and 4B, the detection limit of the target DNA was found to be 30 fM (S / N = 3).

<실시예 4> 단백질 검출용 바이오센서의 제작Example 4 Fabrication of Protein Detection Biosensor

단백질 검출을 위하여, pTTCA/DEN/AuNP-전극 조합체를 3.5mg/ml의 항-인간 IgG 용액(produced in mouse)에서 4℃, 12시간 동안 배양하고, PBS로 세정한 후, 그 표면을 0.1% 소혈청알부민(BSA) 용액 450㎕에서 4℃, 30분 동안 담구어 비특이적 흡착을 최소화하였다. BSA 처리된 전극을 다양한 농도(40fg/ml 내지 2.5ng/ml)의 인간 IgG 용액(450㎕)에서 4℃, 1시간 동안 배양하였다.For protein detection, the pTTCA / DEN / AuNP-electrode combinations were incubated for 12 hours at 4 ° C. in an anti-human IgG solution (produced in mouse) at 3.5 mg / ml, washed with PBS, and then the surface was washed with 0.1%. Soak in bovine serum albumin (BSA) solution was soaked at 4 ° C. for 30 minutes to minimize nonspecific adsorption. BSA treated electrodes were incubated for 1 hour at 4 ° C. in human IgG solution (450 μl) at various concentrations (40 fg / ml to 2.5 ng / ml).

세정된 전극을 비오틴으로 표식된 항-인간 IgG(produced in goat) 용액(3.5mg/ml)에서 4℃, 12시간 동안 담구어 얻어진 3성분 조합전극을 앞서 준비된 Av-Hyd 용액(500㎕)에서 실온, 30분 동안 담구었다. PBS 용액으로 3회 세정 후, 만들어진 바이오센서를 4℃에서 보관하였다. 질소 하 전극 표면 건조는 각 단계 사이마다 수행되었다.The washed electrode was immersed in a biotin-labeled anti-human IgG in solution (3.5 mg / ml) at 4 ° C. for 12 hours, and the three-component combination electrode was prepared in the previously prepared Av-Hyd solution (500 μl). Soak for 30 minutes at room temperature. After washing three times with PBS solution, the resulting biosensor was stored at 4 ° C. Electrode surface drying under nitrogen was performed between each step.

상기 실험의 세정 및 배양 단계에서 사용된 완충액은 10mM NaH2PO4, 10mM Na2HPO4 및 275 mM NaCl(10 mM PBS, pH 7.4)로 이루어진 용액을 사용하였다.The buffer used in the washing and culturing step of the experiment was a solution consisting of 10 mM NaH 2 PO 4 , 10 mM Na 2 HPO 4 and 275 mM NaCl (10 mM PBS, pH 7.4).

상기 제작한 바이오센서, Ag/AgCl 표준전극 및 백금-철사 반대전극을 포함하는 5.0ml 셀에서 목적 단백질을 검출하였다. 5mV/s의 주사속도로 Ag/AgCl과 비교하여 0 내지 -250mV의 전위로 주사하여 DPV를 수행하였다. 그밖의 다른 조건은 다 음과 같다: 펄스 진폭 100mV; 시료 너비 2ms; 펄스 너비 50ms; 및 펄스 주기 1000ms. 모든 전기화학적 실험은 40분 동안 질소 가스를 제거하여 탈기된 10mM PBS에서 수행되었다. 이때, 사용된 PBS는 10mM H2O2를 포함한다.The target protein was detected in a 5.0 ml cell containing the biosensor, Ag / AgCl standard electrode and platinum-wire counter electrode. DPV was performed by scanning at a potential of 0 to -250 mV compared to Ag / AgCl at a scanning rate of 5 mV / s. Other conditions were as follows: pulse amplitude 100 mV; Sample width 2 ms; Pulse width 50 ms; And pulse period 1000 ms. All electrochemical experiments were performed in degassed 10 mM PBS for 40 minutes by removing nitrogen gas. In this case, the PBS used includes 10 mM H 2 O 2 .

그 결과, 도 7a 및 도 7b에 도시된 바와 같이 목적 단백질의 검출한계가 25fg/ml(S/N=3)로 확인되었다.As a result, as shown in Figs. 7A and 7B, the detection limit of the target protein was found to be 25fg / ml (S / N = 3).

비교를 위하여, 5pg/ml의 인간 IgG 대신 500ng/ml의 트롬빈을 사용한 결과, 도 6a에 도시된 바와 같이 트롬빈의 비특이적인 결합에 의해 본 발명의 바이오센서의 민감도가 영향을 받지 않는 것으로 확인되었다.For comparison, the use of 500 ng / ml of thrombin instead of 5 pg / ml of human IgG confirmed that the sensitivity of the biosensor of the present invention was not affected by nonspecific binding of thrombin as shown in FIG. 6A.

한편, 목적 생체물질의 전기화학적 특성에 관한 pTTCA/IgG/Hyd 전극 및 pTTCA/DEN/AuNP/IgG/Hyd 전극의 민감도를 비교하기 위하여, pTTCA-코팅 전극을 10.0mM EDC 및 10mM NHS의 혼합용액을 함유한 0.1M 인산완충액(pH 7.0)에서 6시간 동안 담구어 카르복실산 기를 활성화하였다.On the other hand, in order to compare the sensitivity of the pTTCA / IgG / Hyd electrode and pTTCA / DEN / AuNP / IgG / Hyd electrode on the electrochemical properties of the target biological material, a mixed solution of 10.0 mM EDC and 10 mM NHS The carboxylic acid group was activated by soaking in 0.1 M phosphate buffer (pH 7.0) for 6 hours.

그 후, EDC-처리 pTTCA-코팅 전극을 PBS로 세정한 후, 3.5mg/ml 항-IgG를 함유하는 10mM 인산완충액 용액(pH 7.4)에서 4℃, 12시간 동안 배양하였다. 이러한 단계 동안, 항-IgG의 아민기와 pTTCA의 카르복실기 간의 아미드 결합 형성에 의해 항-IgG가 pTTCA와 공유결합하게 된다. 그후, 500㎕의 Av-Hyd 용액을 실온에서 30분 동안 처리하였다.Thereafter, the EDC-treated pTTCA-coated electrode was washed with PBS, and then incubated in 10 mM phosphate buffer solution (pH 7.4) containing 3.5 mg / ml anti-IgG at 4 ° C. for 12 hours. During this step, the amide bond formation between the amine group of the anti-IgG and the carboxyl group of pTTCA causes the anti-IgG to covalently bond with pTTCA. Then 500 μl of Av-Hyd solution was treated for 30 minutes at room temperature.

그 결과, 항-IgG 고정된 pTTCA/IgG/Hyd 전극(도 6b의 ii 참조) 대신 pTTCA/DEN/AuNP/IgG/Hyd 전극(도 6b의 iii 참조)을 사용한 결과, 50배가 넘는 민감 도의 향상이 관찰되었다. As a result, using a pTTCA / DEN / AuNP / IgG / Hyd electrode (see iii of FIG. 6B) instead of an anti-IgG fixed pTTCA / IgG / Hyd electrode (see ii of FIG. 6B) resulted in a 50-fold improvement in sensitivity. Was observed.

도 1은 본 발명에 따른 DNA 검출용 바이오센서의 개념도를 나타낸 것이고,1 shows a conceptual diagram of a biosensor for detecting DNA according to the present invention,

도 2는 목적 DNA와 일련의 대조군 실험을 분석하여 얻어진 DPV를 나타낸 것이고(a: 목적 DNA 미처리, b: 5nM 비상보적 DNA 처리, c: 50pM 목적 DNA 처리, d: 5nM 목적 DNA 처리),Figure 2 shows the DPV obtained by analyzing the target DNA and a series of control experiments (a: target DNA untreated, b: 5nM non-complementary DNA treatment, c: 50pM target DNA treatment, d: 5nM target DNA treatment),

도 3a는 단일 염기 잘못 결합 DNA 존재 유무에 따라 5nM 목적 DNA을 분석하여 얻어진 DPV를 나타낸 것이고(i: 목적 DNA 미처리, ii: 단일 염기 잘못 결합 DNA 존재; iii: 단일 염기 잘못 결합 DNA 부존재),Figure 3a shows the DPV obtained by analyzing 5nM target DNA in the presence or absence of single base misbinding DNA (i: untreated DNA, ii: presence of single base misbinding DNA; iii: absence of single base misbinding DNA),

도 3b는 1-데칸티올 흡착공정을 거친 DNA 바이오센서(점선) 및 이러한 흡착공정을 거치지 않은 DNA 바이오센서(실선)를 각각 이용한 10pM 목적 DNA 분석 DPV를 나타낸 것이고,Figure 3b shows a 10pM target DNA analysis DPV using a DNA biosensor (dotted line) after the 1-decanthiol adsorption process (dotted line) and a DNA biosensor (solid line) without the adsorption process, respectively,

도 4는 본 발명에 따른 DNA 검출용 바이오센서를 이용하여 다양한 농도의 목적 DNA를 분석한 DPV를 나타낸 것이고(a: 50fM, b: 200fM, c: 750fM, d: 10pM, e: 100pM, f: 1nM, g: 7.5nM 및 h: 100nM), 삽입도는 50fM 목적 DNA의 검출을 나타낸 것이고,Figure 4 shows the DPV analysis of the target DNA of various concentrations using the biosensor for DNA detection according to the present invention (a: 50fM, b: 200fM, c: 750fM, d: 10pM, e: 100pM, f: 1 nM, g: 7.5 nM and h: 100 nM), inset shows detection of 50 fM target DNA,

도 5는 본 발명에 따른 단백질 검출용 바이오센서의 개념도를 나타낸 것이고,5 shows a conceptual diagram of a biosensor for protein detection according to the present invention,

도 6a는 pTTCA/DEN/AuNP/IgG/Hyd 전극에서 인간 IgG 미처리(a) 및 5pg/ml 인간 IgG 처리(b)에 따른 DPV를 나타낸 것이고,6A shows DPV following human IgG untreated (a) and 5 pg / ml human IgG treated (b) on pTTCA / DEN / AuNP / IgG / Hyd electrodes,

도 6b는 인간 IgG 대신 500pg/ml 트롬빈 처리(i), pTTCA/IgG/Hyd 전극을 이 용한 분석(ii), pTTCA/DEN/AuNP/IgG/Hyd 전극을 이용한 분석(iii)에 따른 DPV를 나타낸 것이고,6B shows DPV according to 500 pg / ml thrombin treatment (i) instead of human IgG (i), assay using pTTCA / IgG / Hyd electrodes (ii), assay using pTTCA / DEN / AuNP / IgG / Hyd electrodes (iii) Will,

도 7a는 본 발명에 따른 단백질 검출용 바이오센서를 이용하여 다양한 농도의 인간 IgG를 분석한 DPV를 나타낸 것이고(a: 0, b: 40fg/ml, c: 250fg/ml, d: 750fg/ml, e: 5pg/ml, f: 750pg/ml, g: 2.5ng/ml, h: 50ng/ml), Figure 7a shows a DPV analysis of human IgG at various concentrations using a biosensor for protein detection according to the present invention (a: 0, b: 40fg / ml, c: 250fg / ml, d: 750fg / ml, e: 5 pg / ml, f: 750 pg / ml, g: 2.5 ng / ml, h: 50 ng / ml),

도 7b는 인간 IgG 농도에 따른 피크전류의 의존성을 나타낸 것이다.7b shows the dependence of peak current on human IgG concentration.

<110> Institute for research & industry cooperation, Pusan National University <120> Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof <130> sp-2008-0027 <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> capture probe having thiol group <400> 1 gcgcgaaccg tata 14 <210> 2 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> target DNA <400> 2 agcgtaggat agatatagat atacggttcg cgc 33 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> one-base mismatch DNA <400> 3 agcgtaggat agatatagat ataccgttcg cgc 33 <210> 4 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> noncomplementary DNA <400> 4 ttgagcatgc gcattatctg agccagtacc gaatcg 36 <210> 5 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> biotinylated probe <400> 5 tctatcctac gc 12 <110> Institute for research & industry cooperation, Pusan National University <120> Biosensor having screen-printed electrode based on catalytic          activity of hydrazine for detecting biomolecule and preparation          method <130> sp-2008-0027 <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> capture probe having thiol group <400> 1 gcgcgaaccg tata 14 <210> 2 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> target DNA <400> 2 agcgtaggat agatatagat atacggttcg cgc 33 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> one-base mismatch DNA <400> 3 agcgtaggat agatatagat ataccgttcg cgc 33 <210> 4 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> noncomplementary DNA <400> 4 ttgagcatgc gcattatctg agccagtacc gaatcg 36 <210> 5 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> biotinylated probe <400> 5 tctatcctac gc 12  

Claims (6)

전기전도성 고분자로 표면 코팅된 스크린인쇄전극; 상기 전기전도성 고분자와 아미드 결합한 덴드리머층; 상기 덴드리머층의 미반응 아민기를 흡착한 Au 나노입자층; 상기 Au 나노입자층에 고정된 탐침; 상기 탐침과 결합된 생체분자; 상기 생체분자와 결합된 비오틴 표식 탐침; 및 상기 비오틴과 결합되는 아비딘 표식 하이드라진으로 구성되는 것을 특징으로 하는 생체분자 검출용 바이오센서.Screen printed electrodes surface-coated with an electrically conductive polymer; A dendrimer layer having an amide bond with the electrically conductive polymer; Au nanoparticle layer adsorbed unreacted amine group of the dendrimer layer; A probe fixed to the Au nanoparticle layer; A biomolecule coupled to the probe; A biotin marker probe bound to the biomolecule; And an avidin-labeled hydrazine coupled to the biotin. 제 1항에 있어서, 상기 전기전도성 고분자가 카보디이미드 또는 N-히드록시숙신이미드로 카르복실기 또는 아민기가 활성화된 폴리-5,2':5',2"-터티오펜-3'-카르복실산인 것을 특징으로 하는 생체분자 검출용 바이오센서.The poly-5,2 ': 5', 2 "-terthiophene-3'-carboxyl according to claim 1, wherein the electrically conductive polymer is a carbodiimide or an N-hydroxysuccinimide. Biosensor for detecting biomolecules, characterized in that the acid. 제 1항 또는 제 2항에 있어서, 상기 덴드리머가 아민-말단화된 덴드리머인 것을 특징으로 하는 생체분자 검출용 바이오센서.The biosensor for detecting biomolecules according to claim 1 or 2, wherein the dendrimer is an amine-terminated dendrimer. 제 1항 또는 제 2항에 있어서, 상기 탐침이 티올기를 지닌 DNA 탐침 또는 항체 탐침에서 선택된 어느 하나인 것을 특징으로 하는 생체분자 검출용 바이오센서.The biosensor for detecting a biomolecule according to claim 1 or 2, wherein the probe is any one selected from a DNA probe having a thiol group or an antibody probe. 제 1항 또는 제 2항에 있어서, 상기 생체분자가 DNA 또는 단백질인 것을 특징으로 하는 생체분자 검출용 바이오센서.The biosensor for detecting a biomolecule according to claim 1 or 2, wherein the biomolecule is DNA or protein. 스크린인쇄전극 표면에 카르복실기 또는 아민기가 활성화된 전기전도성 고분자를 코팅하는 단계;Coating an electrically conductive polymer having a carboxyl group or an amine group activated on the surface of the screen printed electrode; 상기 전기전도성 고분자 표면에 아민-말단화된 덴드리머를 고정하는 단계;Fixing an amine-terminated dendrimer to the surface of the electrically conductive polymer; 상기 덴드리머의 미반응 아민에 Au 나노입자를 흡착하는 단계;Adsorbing Au nanoparticles to the unreacted amine of the dendrimer; 상기 Au 나노입자 표면에 티올기를 지닌 탐침을 흡착하는 단계;Adsorbing a probe having a thiol group on the surface of the Au nanoparticles; 상기 탐침에 생체분자와 비오틴 표식 탐침을 순차적으로 결합하여 3성분계 결합체를 제조하는 단계;Sequentially combining a biomolecule and a biotin-labeled probe with the probe to prepare a three-component conjugate; 상기 3성분계 결합체와 아비딘 표식 하이드라진을 반응시키는 단계; 및 Reacting the three-component conjugate with avidin-labeled hydrazine; And 상기 하이드라진에 의한 과산화수소의 전기촉매적 환원전위를 측정하는 단계를 포함하여 구성되는 것을 특징으로 하는 생체분자 검출용 바이오센서의 제조방법.Method for producing a biosensor for detecting biomolecules, characterized in that comprising the step of measuring the electrocatalytic reduction potential of hydrogen peroxide by the hydrazine.
KR1020080086900A 2008-09-03 2008-09-03 Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof KR20100027831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080086900A KR20100027831A (en) 2008-09-03 2008-09-03 Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080086900A KR20100027831A (en) 2008-09-03 2008-09-03 Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20100027831A true KR20100027831A (en) 2010-03-11

Family

ID=42178747

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080086900A KR20100027831A (en) 2008-09-03 2008-09-03 Biosensor having screen-printed electrode based on catalytic activity of hydrazine for detecting biomolecule and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20100027831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626512A (en) * 2018-10-22 2019-04-16 北京交通大学 A kind of porous metals aeration electrode and preparation method producing hydrogen peroxide based on electro-catalysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626512A (en) * 2018-10-22 2019-04-16 北京交通大学 A kind of porous metals aeration electrode and preparation method producing hydrogen peroxide based on electro-catalysis
CN109626512B (en) * 2018-10-22 2020-12-08 北京交通大学 Porous metal aeration electrode for producing hydrogen peroxide based on electrocatalysis and preparation method thereof

Similar Documents

Publication Publication Date Title
Kumar et al. Engineered nanomaterial assisted signal‐amplification strategies for enhancing analytical performance of electrochemical biosensors
Kaya et al. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives
Tertiş et al. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection
Li et al. Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles
Aydın et al. A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6
Liu et al. Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam
Pingarrón et al. Gold nanoparticle-based electrochemical biosensors
Mercante et al. Nanofibers interfaces for biosensing: Design and applications
Pumera et al. Electrochemical nanobiosensors
Pei et al. Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy
Yin et al. Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres
Vashist et al. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications
Chen et al. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly (o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag
Qiu et al. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix
Li et al. An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles
Chen et al. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification
Liu et al. Fabrication of an ultrasensitive electrochemical immunosensor for CEA based on conducting long-chain polythiols
Yoon et al. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode
WO2009032901A1 (en) Biosensors and related methods
EP1839046A1 (en) Enzymatic electrochemical detection assay using protective monolayer and device therefor
Han et al. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag
Yang et al. Sandwich-type amperometric immunosensor for cancer biomarker based on signal amplification strategy of multiple enzyme-linked antibodies as probes modified with carbon nanotubes and concanavalin A
Polsky et al. Multifunctional electrode arrays: towards a universal detection platform
Roushani et al. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample
Alizadeh et al. Ultrasensitive bioaffinity electrochemical sensors: advances and new perspectives

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application