KR20100026474A - Synthetic method of red emitting gallate phosphors with high color purity - Google Patents

Synthetic method of red emitting gallate phosphors with high color purity Download PDF

Info

Publication number
KR20100026474A
KR20100026474A KR1020080085493A KR20080085493A KR20100026474A KR 20100026474 A KR20100026474 A KR 20100026474A KR 1020080085493 A KR1020080085493 A KR 1020080085493A KR 20080085493 A KR20080085493 A KR 20080085493A KR 20100026474 A KR20100026474 A KR 20100026474A
Authority
KR
South Korea
Prior art keywords
phosphor
spray pyrolysis
precursor solution
prepared
phosphor powder
Prior art date
Application number
KR1020080085493A
Other languages
Korean (ko)
Other versions
KR101109123B1 (en
Inventor
김경운
정하균
최성호
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020080085493A priority Critical patent/KR101109123B1/en
Publication of KR20100026474A publication Critical patent/KR20100026474A/en
Application granted granted Critical
Publication of KR101109123B1 publication Critical patent/KR101109123B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Abstract

PURPOSE: A synthetic method of red emitting gallate phosphors is provided to prepare red-emitting gallate phosphor powder with improved luminous efficiency and color purity in ultraviolet excitation conditions. CONSTITUTION: A synthetic method of red emitting gallate phosphors represented by chemical formula 1: Ln_(3-x)GaO_6:Eu_x comprises the steps of: preparing a precursor solution of 0.02-2 M concentration by adding a base material and a dopant doping the base material in a phosphor composition represented by chemical formula 1; and preparing phosphor powder by spraying the precursor solution inside a tubular reactor of a pyrolysis atomizer in which a temperature is maintained at 200-1500 °C.

Description

고색순도 특성을 가지는 적색 발광 갈륨산화물계 형광체의 제조방법{Synthetic method of red emitting gallate phosphors with high color purity}Synthetic method of red emitting gallate phosphors with high color purity

본 발명은 고색순도 적색 발광 특성을 가지는 갈륨산화물계 형광체 분말의 제조방법에 관한 것으로서, 더욱 상세하게는 모체로 갈륨(Ga) 산화물과 가돌리늄(Gd) 또는 이트륨(Y)의 산화물을 사용하고, 활성제로 유로퓸(Eu)을 사용하며, 더 이상의 융제(Flux)를 첨가하지 않고서 분무열분해법을 통하여 제조하는 입자 크기가 균일한 갈륨산화물계 형광체 분말의 제조방법에 관한 것이다.The present invention relates to a method for producing a gallium oxide-based phosphor powder having high color purity red light emission characteristics, and more specifically, using a gallium (Ga) oxide and an oxide of gadolinium (Gd) or yttrium (Y) as a matrix, The present invention relates to a method for producing a gallium oxide-based phosphor powder having a uniform particle size produced by spray pyrolysis without using europium (Eu) and further adding flux.

적색 형광체로 대표되는 갈륨산화물계 형광체는 이트륨산화물계 형광체보다 심적색 발광이 가능하지만, 휘도 효율이 상대적으로 낮아서 실제 제품화가 이루어지지 않고 있다. [P. Guo, G. Li, F. Zhao, F. Liao, S. Tian and X. Jing, Journal of The Electrochemical Society, 150(9) (2003) H201-H204] The gallium oxide-based phosphors represented by red phosphors can emit deep red light than the yttrium oxide-based phosphors, but the luminance efficiency is relatively low, so that actual commercialization is not achieved. [P. Guo, G. Li, F. Zhao, F. Liao, S. Tian and X. Jing, Journal of The Electrochemical Society , 150 (9) (2003) H201-H204].

최근 소비자들이 넓은 색 재현성과 슬림화된 전자 제품을 선호함에 따라 고품위 디스플레이 개발이 절실히 요구되면서, 이에 필요한 발광물질들이 새롭게 주 목받고 있다.Recently, as consumers prefer wider color reproducibility and slimmer electronic products, the development of high quality displays is urgently required, and thus, light emitting materials are newly attracting attention.

냉음극 형광램프(Cold Cathode fluorescent lamp, CCFL)는 정량 수은 가스가 혼입된 유리관의 양끝 전극에 유기된 고전압에 의해 관내에 존재하는 전자가 전극(양극)에 이끌리어 고속으로 이동하고 전극에 충돌하여, 2차 전자가 방출되어 방전이 개시된다. 방전에 의해 유동하는 전자는 관내의 수은 원자와 충돌하여 자외선 (254 ㎚)을 발생하고, 이 자외선이 유리관 내벽에 도포된 형광물질을 여기 시켜 가시광선을 발광한다. 종래의 형광체를 이용한 CCFL을 광원으로서 이용하는 액정 표시장치에서는 색 재현성이 낮고 색 균형 등의 문제가 있었는데, 청색 형광체는 비교적 색순도가 좋은 것으로 알려져 있지만, 녹색과 적색 형광체는 색순도가 낮은 경향이 있다. 예컨대, 적색 형광체인 Y2O3:Eu는 최대 발광 파장이 611 ㎚이기 때문에 색순도에서 문제가 있다. 적색 성분의 연색지수를 향상시키기 위해서는, 적색 형광체의 발광 파장은 620 내지 630 ㎚가 가장 유효한 것으로 알려져 있다. 620 내지 630 ㎚ 파장영역에서 최대 발광하는 형광체로서는 Gd2O3:Eu가 알려져 있다. 하지만, Gd2O3:Eu 형광체는 결정구조에 따라서 발광 특성이 변화하는 경향이 있는데, 입방정계 Gd2O3:Eu 형광체는 발광 중심 파장이 611 ㎚이고, 단사결정 Gd2O3:Eu 형광체는 발광 중심 파장이 623 ㎚이다. 즉, 단사결정 Gd2O3:Eu 형광체는 적색 성분의 연색지수의 향상에 유효한 발광 스펙트럼 분포를 갖지만, 단사결정 Gd2O3:Eu 형광체는 발광 효율이 Y2O3:Eu 형광체의 20% 정도에 불과하다. 따라서 연색성 및 발광 효율의 증가를 기대할 수 있는 적색 형광체의 개발이 요구되고 있다. Cold Cathode fluorescent lamp (CCFL) is a high voltage induced at both ends of the glass tube in which the quantitative mercury gas is mixed, the electrons present in the tube are attracted to the electrode (anode) to move at high speed and collide with the electrode, Secondary electrons are emitted to initiate discharge. Electrons flowing by the discharge collide with mercury atoms in the tube to generate ultraviolet rays (254 nm), and the ultraviolet rays excite the fluorescent material applied to the inner wall of the glass tube to emit visible light. In a liquid crystal display device using a CCFL using a conventional phosphor as a light source, there is a problem of low color reproducibility and color balance. Although blue phosphors are known to have relatively good color purity, green and red phosphors tend to have low color purity. For example, Y 2 O 3 : Eu, which is a red phosphor, has a problem in color purity because the maximum emission wavelength is 611 nm. In order to improve the color rendering index of the red component, it is known that the emission wavelength of the red phosphor is most effective at 620 to 630 nm. Gd 2 O 3 : Eu is known as a phosphor that emits maximum light at a wavelength range of 620 to 630 nm. However, Gd 2 O 3: Eu phosphors tend to the light-emitting characteristics change depending on the crystal structure of cubic system Gd 2 O 3: Eu phosphor and a 611 ㎚ emission center wavelength, monoclinic Gd 2 O 3: Eu phosphor Luminescence center wavelength is 623 nm. That is, the monoclinic Gd 2 O 3 : Eu phosphor has a luminescence spectrum distribution effective for improving the color rendering index of the red component, but the monocrystalline Gd 2 O 3 : Eu phosphor has a luminous efficiency of 20% of the Y 2 O 3 : Eu phosphor. It is only about. Therefore, there is a demand for the development of red phosphors which can be expected to increase color rendering and luminous efficiency.

한편, 일반적인 형광체의 합성법으로서 유로퓸(Eu)을 활성제로 첨가한 가돌륨산화물계 형광체는 일정 비율의 고상 원료들을 혼합하여, 고온에서 장시간 열처리를 거치는 고상합성법이 사용되어 왔다. 고상합성법은 최종 하소 과정이 1450℃ 이상의 고온에서 24시간 이상의 장시간 열처리가 적용되기 때문에 형광체 입자들의 응집을 초래하게 되므로, 후처리 과정으로서 필수적으로 분쇄과정을 수행하게 된다. 그러나, 후처리 과정으로서 수행하는 분쇄과정에서 형광체의 표면에 손상을 입히거나 불순물이 혼입되어 결과적으로 발광강도의 손실을 가져오게 된다. 또한, 고상합성법에서는 미반응상이나 부가적인 2차상이 존재하지 않는 순수한 단일상 형태의 형광체를 수득하기 위하여, 고 활성원소의 반응성을 촉진하는 알카리계 염화물, 알카리계 불화물 등을 융제(flux)로서 반드시 첨가하여야 한다. 따라서, 유로퓸(Eu)을 활성제로 사용하는 갈륨산화물계 형광체의 제조방법으로서 고상합성법은 개선의 여지가 있다. On the other hand, the gadolium oxide-based phosphor in which europium (Eu) is added as an activator has been used as a synthesis method of a general phosphor, and a solid phase synthesis method has been used in which a certain proportion of solid phase materials are mixed and subjected to a long heat treatment at a high temperature. In the solid phase synthesis method, since the final calcination process is applied at a high temperature of 1450 ° C. or more for a long time of 24 hours or more, the aggregation of the phosphor particles is caused, and thus, the pulverization process is essentially performed as a post-treatment process. However, in the milling process performed as a post-treatment process, the surface of the phosphor is damaged or impurities are mixed, resulting in a loss of luminescence intensity. In addition, in the solid phase synthesis method, in order to obtain a pure single phase phosphor in which an unreacted phase or an additional secondary phase does not exist, alkali chlorides and alkali fluorides that promote the reactivity of high active elements must be used as fluxes. Must be added. Therefore, there is room for improvement in the solid phase synthesis method as a method for producing a gallium oxide-based phosphor using europium (Eu) as an activator.

본 발명은 자외선 여기 조건에서의 발광 효율 및 색순도가 개선된 갈륨산화물계 적색 형광체 분말을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a gallium oxide-based red phosphor powder with improved luminous efficiency and color purity under ultraviolet excitation conditions.

본 발명은 종래 고상합성법에 비교하여 상대적으로 저온 조건에서 융제 첨가 없이 고효율 형광체를 제조하는 방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a method for producing a high-efficiency phosphor without the addition of a flux in a relatively low temperature conditions compared to the conventional solid phase synthesis method.

본 발명은 수 ㎛ 사이즈의 균일한 입도분포와 균일한 입자형상을 가지는 적색 발광용 형광체의 제조방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a method for producing a red light-emitting phosphor having a uniform particle size distribution and a uniform particle shape of several μm size.

본 발명은 하기 화학식 1로 표시되는 형광체 조성비로 모체와, 모체를 도핑하는 활성제를 첨가하여 0.02 M 내지 2 M 농도의 전구체 용액을 제조하는 공정; 및 상기 전구체 용액을 200℃ 내지 1500℃ 온도가 유지되는 분무열분해장치의 관형 반응기 내부로 분무시켜 형광체 분말을 제조하는 공정;을 포함하여 이루어지는 하기 화학식 1로 표시되는 갈륨산화물계 형광체 분말의 제조방법을 제공함으로써, 상기 과제를 해결한다.The present invention comprises the steps of preparing a precursor solution of 0.02 M to 2 M concentration by adding the mother and the active agent doping the mother in the phosphor composition ratio represented by the following formula (1); And spraying the precursor solution into a tubular reactor of a spray pyrolysis apparatus maintained at a temperature of 200 ° C. to 1500 ° C. to produce a phosphor powder. The method of preparing a gallium oxide-based phosphor powder represented by the following Chemical Formula 1 includes By providing it, the said subject is solved.

Ln3 - xGaO6:Eux Ln 3 - x GaO 6 : Eu x

상기 화학식 1에서, Ln은 Y 또는 Gd이며, 0< x ≤1이다.In Formula 1, Ln is Y or Gd, and 0 <x ≦ 1.

본 발명에 따른 분무열분해법에 의한 형광체 제조방법은 종래 고상합성법과는 달리 상대적으로 저온 조건에서 열처리를 수행하며, 추가적인 융제(Flux) 첨가 없이도 고효율 형광체 합성이 가능한 효과를 갖고 있다.Unlike the conventional solid phase synthesis method, the phosphor manufacturing method by spray pyrolysis according to the present invention performs heat treatment at a relatively low temperature condition, and has the effect of synthesizing a highly efficient phosphor without adding an additional flux.

본 발명에 따른 분무열분해법에 의한 형광체 제조방법은 균일한 입자형상 및 입도 분포를 갖는 형광체 분말의 제조가 가능한 효과를 갖고 있다. The phosphor production method by spray pyrolysis according to the present invention has the effect that the production of phosphor powder having a uniform particle shape and particle size distribution is possible.

본 발명은 종래 고상합성법을 이용하여 제조된 동일한 조성의 형광체에 비하여 자외선 여기조건 하에서 발광 효율 및 색좌표가 우수한 적색 형광체의 합성이 가능한 효과를 갖고 있다.The present invention has the effect of synthesizing a red phosphor having excellent luminous efficiency and color coordinates under ultraviolet excitation conditions, compared to a phosphor of the same composition prepared using a conventional solid phase synthesis method.

본 발명에 따른 분무열분해법으로 제조된 형광체는 냉음극 형광램프(CCFL) 등 적색 발광용 형광체로의 적용이 기대되는 효과를 갖고 있다.The phosphor produced by the spray pyrolysis method according to the present invention has an effect that application to a red light-emitting phosphor such as a cold cathode fluorescent lamp (CCFL) is expected.

본 발명에 따른 분무열분해법에 의한 상기 화학식 1로 표시되는 갈륨산화물계 형광체의 제조방법을 공정별로 세분화하여 보다 구체적으로 설명하면 하기와 같다.The method for preparing a gallium oxide-based phosphor represented by Chemical Formula 1 by spray pyrolysis according to the present invention will be described in more detail by the process.

제 1과정은, 모체를 구성하는 가돌리늄(Gd) 또는 이트륨(Y) 전구체, 갈륨(Ga) 전구체 및 상기 모체를 도핑하는 활성제로서 유로퓸(Eu) 전구체가 포함된 전구체 용액을 제조한다.In the first process, a precursor solution including a gadolinium (Gd) or yttrium (Y) precursor, a gallium (Ga) precursor, and an europium (Eu) precursor as an activator for doping the parent is prepared.

상기 전구체는 수용성이고 알코올에 용해도가 우수하므로, 증류수나 탄소수 1 내지 6의 알코올을 용매로 사용하여 전구체 용액을 제조할 수 있다. 상기 전구체 용액에 포함된 각 전구체의 함량은 상기 화학식 1의 형광체 조성비를 만족시키는 범위내에서 다양한 조합을 통하여 최적의 조성비를 도출한다. 특히 활성제로서 포함되는 유로퓸(Eu)의 함량(x)에 따라 발광휘도가 달라질 수 있으므로, 유 로퓸(Eu)의 함량(x)은 0< x ≤1, 바람직하기로는 0.01≤ x ≤0.4를 유지하도록 한다.Since the precursor is water-soluble and excellent in solubility in alcohol, a precursor solution may be prepared using distilled water or an alcohol having 1 to 6 carbon atoms as a solvent. The content of each precursor included in the precursor solution is derived from the optimum composition ratio through various combinations within the range to satisfy the phosphor composition ratio of the formula (1). In particular, since the luminance of light emission may vary depending on the content (x) of europium (Eu) included as an active agent, the content (x) of europium (Eu) is maintained at 0 <x ≤ 1, preferably 0.01 ≤ x ≤ 0.4. Do it.

또한, 전구체 용액의 농도에 따라 제조되는 형광체 입자의 크기가 결정되기 때문에 원하는 크기의 입자를 제조하기 위해서는 전구체 용액의 농도가 적절해야 한다. 본 발명에서는 전구체 용액의 농도를 0.02 M 내지 2 M 범위로, 바람직하기로는 0.1 M 내지 2 M 범위로 조절하는 것을 제안한다. 상기에서 언급한 바대로, 전구체 용액의 농도가 0.02 M 미만으로 낮으면 분말의 생산성이 떨어지는 문제점이 있고, 2 M을 초과하여 고농도를 유지하면 전구체의 용해도가 떨어져서 만족하는 분무용액을 얻을 수 없다.In addition, since the size of the phosphor particles to be produced is determined according to the concentration of the precursor solution, the concentration of the precursor solution must be appropriate to produce particles of a desired size. In the present invention, it is proposed to adjust the concentration of the precursor solution in the range of 0.02 M to 2 M, preferably in the range of 0.1 M to 2 M. As mentioned above, when the concentration of the precursor solution is lower than 0.02 M, there is a problem that the productivity of the powder is lowered, and when maintaining a high concentration of more than 2 M, the solubility of the precursor is lowered to obtain a satisfactory spray solution.

제 2과정는 상기 전구체 용액을 200℃ 내지 1500℃ 온도가 유지되는 분무열분해장치의 관형 반응기 내부로 분무시켜 형광체 분말을 제조한다.In the second process, the precursor solution is sprayed into a tubular reactor of a spray pyrolysis apparatus maintained at a temperature of 200 ° C. to 1500 ° C. to prepare a phosphor powder.

전구체를 액적으로 분무시키기 위한 분무장치로는 초음파 분무장치, 공기노즐 분무장치 등이 사용될 수 있다. 분무된 액적의 직경은 0.1 ㎛ 내지 100 ㎛가 되도록 하는 것이 좋은데, 액적의 직경이 0.1 ㎛에 이르지 못하는 경우에는 생성되는 분말입자의 크기가 너무 작게 되는 문제점이 있고, 액적의 직경이 100 ㎛를 초과하는 경우에는 반대로 생성되는 입자의 크기가 너무 크다는 문제가 발생한다. 특히, 얻어지는 분말의 형태를 조절하기 위해서는 수 마이크론 크기의 미세한 액적을 발생시키는 장치가 필요하다. 본 발명에서는 분무장치로서 초음파 분무장치를 이용하였으며, 액적을 발생시키는 부위인 진동자를 12개 사용하여 액적을 대량으로 발생시켜 시간당 수십 ℓ의 액적을 발생하도록 하여 분무열분해법에 의해 형광체 분말의 대량 생산이 가능하도록 하였다. As a spray apparatus for spraying the precursor droplets, an ultrasonic spray apparatus, an air nozzle spray apparatus, or the like may be used. It is preferable that the diameter of the sprayed droplets is 0.1 μm to 100 μm, but when the diameter of the droplets does not reach 0.1 μm, there is a problem that the size of the resulting powder particles is too small, and the diameter of the droplets exceeds 100 μm. In contrast, a problem arises in that the size of particles produced is too large. In particular, in order to control the shape of the powder obtained, a device for generating fine droplets of several microns in size is required. In the present invention, the ultrasonic spraying apparatus was used as a spraying apparatus, and a large amount of the phosphors was generated by spray pyrolysis to generate a large amount of droplets per hour by using 12 vibrators, which generate droplets, to generate several tens of droplets per hour. This made it possible.

상기 액적은 200℃ 내지 1500℃, 바람직하기로는 800℃ 내지 1200℃의 온도가 유지되는 관형 반응기 내부로 분무시켜 열처리에 의해 형광체 분말을 형성한다. Gd2O3:Eu 형광체 분말들은 일반적인 고상합성법에서 1,450℃ 이상의 고온에서 24시간 이상 반응시켜야만 결정이 얻어지는 물질이기 때문에, 수초의 체류시간을 가지는 분무열분해 공정에서는 원하는 결정상이 얻어지지 않을 수 있다. 이에 본 발명에서는 결정을 성장시키기 위하여 700℃ 내지 1300℃, 바람직하기로는 900℃ 내지 1200℃ 온도에서 8 내지 12시간 열처리하는 과정을 추가로 수행할 수 있다.The droplets are sprayed into a tubular reactor maintained at a temperature of 200 ° C. to 1500 ° C., preferably 800 ° C. to 1200 ° C. to form a phosphor powder by heat treatment. Since Gd 2 O 3 : Eu phosphor powders are crystals obtained by reacting at a high temperature of 1,450 ° C. or more for 24 hours or more in a general solid phase synthesis method, a desired crystal phase may not be obtained in a spray pyrolysis process having a residence time of several seconds. Therefore, in the present invention, the process of heat treatment for 8 to 12 hours at 700 ℃ to 1300 ℃, preferably 900 ℃ to 1200 ℃ temperature in order to grow the crystal may be performed.

종래 고상합성법에서는 단일 결정상을 얻기 위해 융제(Flux)를 반드시 첨가하고, 1450℃ 이상의 고온 조건에서 결정 성장과정을 수행하고 있다. 그러나, 본 발명에서는 분무열분해법을 채택함으로써 융제(Flux)를 첨가하지 않고도 단일상을 얻을 수 있었으며, 결정성장 과정 역시 700℃ 내지 1300℃의 상대적으로 낮은 온도에서 5 내지 12시간의 비교적 짧은 동안 수행하더라도 목적하는 단일 결정상으로서 형광체 분말을 얻을 수 있다.In the conventional solid phase synthesis method, a flux (Flux) is necessarily added to obtain a single crystal phase, and the crystal growth process is performed at a high temperature of 1450 ° C or higher. However, in the present invention, by adopting the spray pyrolysis method, a single phase can be obtained without adding flux, and the crystal growth process is also performed for a relatively short period of 5 to 12 hours at a relatively low temperature of 700 ° C to 1300 ° C. Even if it is possible to obtain the phosphor powder as the desired single crystal phase.

이상의 제조방법을 통해서 제조된 갈륨산화물계 형광체 분말들은 CCFL용 램프에의 적용 특성을 알아보기 위하여 UV 영역(254 nm)에서의 발광 특성을 비교 분석하였다. 그 결과는 첨부도면 도 3과 도 4로서 첨부하였 바, 본 발명의 제조방법으로 제조된 갈륨산화물계 형광체는 자외선 여기조건에서 발광 특성이 우수하므로 고 색순도용 적색 표시소자에 적용되기에 적합하다.Gallium oxide-based phosphor powders prepared by the above manufacturing method were analyzed for the emission characteristics in the UV region (254 nm) in order to determine the application characteristics to the lamp for CCFL. As a result of the accompanying drawings, as shown in FIGS. 3 and 4, the gallium oxide-based phosphor prepared by the manufacturing method of the present invention is excellent in luminescence properties under ultraviolet excitation conditions, and thus is suitable for application to a red display device for high color purity.

이하, 본 발명을 다음의 실시예에 의거하여 더욱 구체화하여 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited by the examples.

[실시예]EXAMPLE

실시예 1. 분무열분해법에 의한 Gd2 .6GaO6:Eu0 .4 형광체 분말의 제조Example 1. Gd 2 .6 by spray pyrolysis GaO 6: Eu 0 .4 produce a phosphor powder

Gd2.6GaO6:Eu0.4의 형광체 분말을 본 발명이 제안한 분무열분해법으로 제조하기 위해 다음과 같이 실시하였다.Phosphor powder of Gd 2.6 GaO 6 : Eu 0.4 was prepared as follows to prepare the spray pyrolysis method proposed by the present invention.

모체를 구성하기 위해 당량비에 맞게 가돌리늄(Gd), 갈륨(Ga), 유로퓸(Eu)을 녹인 전구체를 사용하였다. 전구체 용액의 총농도는 0.5 M이었다. 제조되어진 전구체 용액들은 액적을 대량으로 발생시키는 초음파 분무장치를 이용하여 수 ㎛ 크기의 액적으로 발생시켰으며 반응로에서 건조와 열분해시켜 분말을 얻었다. 이때, 반응기의 온도는 900℃로 유지하였다. 초음파 분무 장치는 액적을 대량으로 발생시킬 수 있는 장치로서 1.7 MHz의 주파수를 가지는 진동자 12개를 사용하였다. 초음파 액적 발생장치에 의해 생성된 액적은 운반기체에 의해 고온의 관형 반응기로 운반되는데, 운반기체로는 압축공기를 이용하였다. 12개의 초음파 진동자에 의해 발생된 다량의 액적이 반응기 내부에서 원활하게 운반시키기 위해 운반기체의 유량을 40 L/min로 조절하였다. 반응기로는 내부 길이가 1200 mm이고, 외경이 55 mm인 석영관을 사용하였다. 초음파 분무 장치에 의해 발생된 다 량의 액적이 건조, 석출, 열분해 및 치밀화가 원활하게 일어나도록 반응부의 온도는 900℃로 유지하였다. 반응부를 통과하여 얻어진 입자들은 다공성의 테플론 필터(Teflon filter)에 의해 포집하였다. 이렇게 하여 분무열분해법에 의해 얻어진 분말들은 Gd3GaO6의 결정성을 가지고 있으며, 충분히 결정화가 이루어지도록 하기 위해서 1100℃에서 10시간 동안 열처리 과정을 수행하였다.In order to form a parent, a precursor in which gadolinium (Gd), gallium (Ga) and europium (Eu) were dissolved was used in an equivalent ratio. The total concentration of the precursor solution was 0.5 M. The prepared precursor solutions were generated as droplets having a size of several μm using an ultrasonic atomizer which generates a large amount of droplets, and dried and pyrolyzed in a reactor to obtain a powder. At this time, the temperature of the reactor was maintained at 900 ℃. The ultrasonic atomizer used twelve vibrators with a frequency of 1.7 MHz as a device capable of generating a large amount of droplets. The droplets generated by the ultrasonic droplet generator are transported by a carrier gas to a high temperature tubular reactor, using compressed air as the carrier gas. The flow rate of the carrier gas was adjusted to 40 L / min to smoothly transport a large amount of droplets generated by the 12 ultrasonic vibrators. As the reactor, a quartz tube having an internal length of 1200 mm and an outer diameter of 55 mm was used. The temperature of the reaction part was maintained at 900 ° C. so that a large amount of droplets generated by the ultrasonic atomizer smoothly dried, precipitated, pyrolyzed and densified. Particles obtained through the reaction part were collected by a porous Teflon filter. Thus, the powders obtained by spray pyrolysis had a crystallinity of Gd 3 GaO 6 , and a heat treatment was performed at 1100 ° C. for 10 hours to sufficiently crystallize.

비교예 1. 고상합성법에 의한 Gd2 .6GaO6:Eu0 .4 형광체 분말의 제조Preparation of Eu phosphor powder 0 .4: Comparative Example 1. Gd 2 .6 GaO 6 by solid phase synthesis

Gd2.6GaO6:Eu0.4 형광체 분말을 종래 고상합성법으로 제조하였으며, 열처리는 1100℃에서 24시간 실시하였다.Gd 2.6 GaO 6 : Eu 0.4 phosphor powder was prepared by the conventional solid-phase synthesis method, heat treatment was carried out at 1100 ℃ 24 hours.

도 1에 나타낸 X-선 회절 분석결과에 의하면, 본 발명에 따른 분무열분해법으로 제조된 형광체(실시예 1)는 1100℃의 열처리 온도에서 단일 결정상을 형성함을 알 수 있었다. 이에 반하여, 고상합성법으로 제조된 형광체(비교예 1)는 1100℃에서 단일상을 형성하지 못하고 순수한(Gd3GaO6)상과 불순물(Gd2O3)상이 함께 존재함을 확인할 수 있었으며, 1450℃ 이상의 고온에서 열처리를 수행하였을 때 비로서 단일 결정상이 형성됨을 추가로 확인할 수 있었다. According to the X-ray diffraction analysis results shown in FIG. 1, it was found that the phosphor (Example 1) prepared by spray pyrolysis according to the present invention forms a single crystal phase at a heat treatment temperature of 1100 ° C. On the contrary, the phosphor prepared by the solid-phase synthesis method (Comparative Example 1) was unable to form a single phase at 1100 ℃, it was confirmed that the pure (Gd 3 GaO 6 ) phase and impurity (Gd 2 O 3 ) phase present together, 1450 It was further confirmed that a single crystal phase was formed as a ratio when the heat treatment was performed at a high temperature of ℃ or more.

도 3에 나타낸 발광스펙트럼에 의하면, 254 nm의 자외선으로 여기시켰을 때 분무열분해법으로 제조된 형광체(실시예 1)가 고상합성법으로 제조된 형광체(비교예 1) 보다 우수한 발광 특성을 나타내는 것을 확인 할 수 있었다. According to the emission spectrum shown in Fig. 3, it was confirmed that the phosphor prepared by spray pyrolysis (Example 1) exhibited better luminescence properties than the phosphor prepared by solid phase synthesis (Comparative Example 1) when excited with ultraviolet rays of 254 nm. Could.

도 5에 나타낸 전자현미경 사진을 보더라도, 분무열분해법으로 제조된 형광체(실시예 1)가 고상합성법으로 제조된 형광체(비교예 1)에 비교하여 입도분포가 균일했으며, 입자사이즈는 3 ㎛ 내지 5 ㎛를 유지하였다. 5, the particle size distribution of the phosphor prepared by the spray pyrolysis method (Example 1) was uniform compared to the phosphor prepared by the solid phase synthesis method (Comparative Example 1), and the particle size was 3 μm to 5 Μm was maintained.

실시예 2. 분무열분해법에 의한 Y3GaO6:Eu0 .4 형광체 분말의 제조Example 2. Y 3 GaO 6 by Spray Pyrolysis: Preparation of Eu phosphor powder 0 .4

Y3GaO6:Eu0.4 형광체 분말을 상기 실시예 1의 분무열분해법으로 제조하였으며, 결정성장을 위한 열처리는 1200℃에서 9시간동안 실시하였다.Y 3 GaO 6 : Eu 0.4 phosphor powder was prepared by the spray pyrolysis method of Example 1, and heat treatment for crystal growth was performed at 1200 ° C. for 9 hours.

비교예 2. 분무열분해법에 의한 Y3GaO6:Eu0 .4 형광체 분말의 제조Preparation of Eu phosphor powder 0 .4: Comparative Example 2. Y 3 GaO 6 by Spray Pyrolysis

Y3GaO6:Eu0.4 형광체 분말을 종래 고상합성법으로 제조하였으며, 열처리는 1,200℃에서 24시간 실시하였다.Y 3 GaO 6 : Eu 0.4 phosphor powder was prepared by the conventional solid-phase synthesis method, heat treatment was carried out at 1,200 ℃ 24 hours.

도 2에 나타낸 X-선 회절 분석결과에 의하면, 본 발명에 따른 분무열분해법으로 제조된 형광체(실시예 2)는 1200℃의 열처리 온도에서 단일 결정상을 형성함을 알 수 있었다. 이에 반하여, 고상합성법으로 제조된 형광체(비교예 2)는 1200℃에서 단일상을 형성하지 못하고 순수한(Y3GaO6)상과 불순물(Y2O3)상이 함께 존재함을 확인할 수 있었으며, 1450℃ 이상의 고온에서 열처리를 수행하였을 때 비로서 단일 결정상이 형성됨을 추가로 확인할 수 있었다. According to the X-ray diffraction analysis results shown in FIG. 2, it was found that the phosphor (Example 2) prepared by spray pyrolysis according to the present invention forms a single crystal phase at a heat treatment temperature of 1200 ° C. On the contrary, the phosphor prepared by the solid-phase synthesis method (Comparative Example 2) was unable to form a single phase at 1200 ℃, it was confirmed that a pure (Y 3 GaO 6 ) phase and an impurity (Y 2 O 3 ) phase together, 1450 It was further confirmed that a single crystal phase was formed as a ratio when the heat treatment was performed at a high temperature of ℃ or more.

도 4에 나타낸 발광스펙트럼에 의하면, 254 nm의 자외선으로 여기시켰을 때 분무열분해법으로 제조된 형광체(실시예 2)가 고상합성법으로 제조된 형광체(비교예 2) 보다 우수한 발광 특성을 나타내는 것을 확인 할 수 있었다. According to the emission spectrum shown in Fig. 4, it was confirmed that the phosphor prepared by spray pyrolysis (Example 2) exhibited better luminescence properties than the phosphor prepared by solid phase synthesis (Comparative Example 2) when excited with ultraviolet rays of 254 nm. Could.

도 6에 나타낸 전자현미경 사진을 보더라도, 분무열분해법으로 제조된 형광체(실시예 2)가 고상합성법으로 제조된 형광체(비교예 2)에 비교하여 입도분포가 균일했으며, 입자사이즈는 3 ㎛ 내지 5 ㎛를 유지하였다. 6, the particle size distribution of the phosphor prepared by the spray pyrolysis method (Example 2) was uniform compared to the phosphor prepared by the solid phase synthesis method (Comparative Example 2), and the particle size was 3 μm to 5 Μm was maintained.

상기 실시예 1, 2 및 비교예 1, 2에서 제조된 형광체 분말에 대한 상대휘도 및 색좌표 값을 정리하여 표로 나타내면 하기 표 1과 같다.The relative luminance and color coordinate values of the phosphor powders prepared in Examples 1 and 2 and Comparative Examples 1 and 2 are collectively shown in Table 1 below.

구 분 division 상대휘도(%) (254㎚ 여기)Relative luminance (%) (254 nm excitation) 색좌표(x, y)Color coordinates (x, y) 합성조건Synthesis condition 실시예 1Example 1 8080 (0.657, 0.334)(0.657, 0.334) 분무열분해법 (1100℃, 24h)Spray Pyrolysis (1100 ℃, 24h) 실시예 2Example 2 6565 (0.658, 0.333)(0.658, 0.333) 분무열분해법 (1200℃, 24h)Spray Pyrolysis (1200 ℃, 24h) 비교예 1Comparative Example 1 4848 (0.643, 0.341)(0.643, 0.341) 고상합성법 (1100℃, 24h)Solid Phase Synthesis (1100 ℃, 24h) 비교예 2Comparative Example 2 5454 (0.647, 0.338) (0.647, 0.338) 고상합성법 (1200℃, 24h)Solid Phase Synthesis (1200 ℃, 24h) 상용품Commodity 100100 (0.647, 0.344)(0.647, 0.344) --

본 발명에 따른 분무열분해법은 종래 고상합성법과 비교하여 추가적인 융제 첨가제 없이 상대적으로 저온 열처리를 통하여 형광체 합성이 가능하며, 균일한 입도 분포 특성을 나타내고 있다. 그리고 수은 방전 조건인 254㎚ 여기조건 하에 서 발광 효율 및 색좌표 특성이 고상합성법을 이용하여 제조된 동일한 조성의 형광체에 비하여 우수함을 확인하였다. 그리고, 본 발명에 따른 분무열분해법으로 제조된 형광체는 냉음극 형광램프(CCFL) 등의 적색 발광용 형광체로의 적용이 기대된다.Spray pyrolysis according to the present invention can be synthesized by a relatively low temperature heat treatment without additional flux additives compared to the conventional solid phase synthesis method, and exhibits a uniform particle size distribution characteristics. It was also confirmed that under 254 nm excitation conditions, which are mercury discharge conditions, the luminous efficiency and color coordinate characteristics were superior to the phosphors of the same composition prepared by the solid phase synthesis method. In addition, the phosphor prepared by the spray pyrolysis method according to the present invention is expected to be applied to a red light-emitting phosphor such as a cold cathode fluorescent lamp (CCFL).

도 1은 분무열분해법(실시예 1)과 고상합성법(비교예 1)으로 각각 제조된 갈륨산화물계 형광체 분말에 대한 X-선 회절 분석결과이다.1 is an X-ray diffraction analysis of the gallium oxide-based phosphor powder prepared by spray pyrolysis (Example 1) and solid phase synthesis (Comparative Example 1), respectively.

도 2는 분무열분해법(실시예 2)과 고상합성법(비교예 2)으로 각각 제조된 갈륨산화물계 형광체 분말에 대한 X-선 회절 분석결과이다.2 is an X-ray diffraction analysis of the gallium oxide-based phosphor powder prepared by spray pyrolysis (Example 2) and solid phase synthesis (Comparative Example 2), respectively.

도 3은 분무열분해법(실시예 1)과 고상합성법(비교예 1)으로 각각 제조된 갈륨산화물계 형광체 분말에 대한 발광스펙트럼(여기파장 254 ㎚) 분석결과이다.3 is a light emission spectrum (excitation wavelength 254 nm) analysis results of the gallium oxide-based phosphor powder prepared by spray pyrolysis (Example 1) and solid phase synthesis (Comparative Example 1), respectively.

도 4는 분무열분해법(실시예 2)과 고상합성법(비교예 2)으로 각각 제조된 갈륨산화물계 형광체 분말에 대한 발광스펙트럼(여기파장 254 ㎚) 분석결과이다.4 is a light emission spectrum (excitation wavelength 254 nm) of the gallium oxide-based phosphor powder prepared by spray pyrolysis (Example 2) and solid phase synthesis (Comparative Example 2), respectively.

도 5은 분무열분해법(실시예 1)과 고상합성법(비교예 1)으로 각각 제조된 갈륨산화물계 형광체 분말에 대한 주사 전자 현미경(Scanning Electron Microscope, SEM)사진이다. 5 is a scanning electron microscope (Scanning Electron Microscope, SEM) photograph of the gallium oxide-based phosphor powder prepared by the spray pyrolysis method (Example 1) and the solid-phase synthesis method (Comparative Example 1), respectively.

도 6은 분무열분해법(실시예 2)과 고상합성법(비교예 2)으로 각각 제조된 갈륨산화물계 형광체 분말에 대한 주사 전자 현미경(Scanning Electron Microscope, SEM)사진이다. 6 is a scanning electron microscope (Scanning Electron Microscope, SEM) photograph of the gallium oxide-based phosphor powder prepared by spray pyrolysis (Example 2) and solid-phase synthesis (Comparative Example 2), respectively.

Claims (5)

하기 화학식 1로 표시되는 형광체 조성비로 모체와 모체를 도핑하는 활성제를 첨가하여 0.02 M 내지 2 M 농도의 전구체 용액을 제조하는 공정; 및Preparing a precursor solution having a concentration of 0.02 M to 2 M by adding an active agent to dope the mother and the mother at a phosphor composition ratio represented by Formula 1 below; And 상기 전구체 용액을 200℃ 내지 1500℃ 온도가 유지되는 분무열분해장치의 관형 반응기 내부로 분무시켜 형광체 분말을 제조하는 공정;Preparing a phosphor powder by spraying the precursor solution into a tubular reactor of a spray pyrolysis apparatus maintained at a temperature of 200 ° C. to 1500 ° C .; 을 포함하여 이루어진 것을 특징으로 하는 하기 화학식 1로 표시되는 갈륨산화물계 형광체 분말의 제조방법.Method for producing a gallium oxide-based phosphor powder represented by the formula (1) characterized in that it comprises a. [화학식 1][Formula 1] Ln3 - xGaO6:Eux Ln 3 - x GaO 6 : Eu x 상기 화학식 1에서, Ln은 Y 또는 Gd이며, 0< x ≤1이다.In Formula 1, Ln is Y or Gd, and 0 <x ≦ 1. 제 1항에 있어서, 상기 모체와 활성제는 증류수나 탄소수 1 내지 6의 알코올에 용해시켜 전구체 용액을 제조하는 것을 특징으로 하는 형광체 분말의 제조방법.The method of claim 1, wherein the parent and active agent are dissolved in distilled water or an alcohol having 1 to 6 carbon atoms to prepare a precursor solution. 제 1항에 있어서, 상기 분무하여 생성된 액적의 직경이 0.1 ㎛ 내지 100 ㎛인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the droplets generated by spraying have a diameter of 0.1 µm to 100 µm. 제 1항에 있어서, 상기 화학식 1의 형광체를 구성하는 유로퓸(Eu)의 함량(x)이 0.1≤x≤0.4인 것을 특징으로 하는 형광체 분말의 제조방법. The method of claim 1, wherein the content (x) of europium (Eu) constituting the phosphor of Chemical Formula 1 is 0.1≤x≤0.4. 제 1항 내지 제 4항 중에서 선택된 어느 한 항에 있어서, 700℃ 내지 1300℃ 온도에서 분무열분해하여 생성된 결정을 성장시키는 과정을 추가로 수행하는 것을 특징으로 하는 형광체 분말의 제조방법. 5. The method of claim 1, further comprising growing a crystal produced by spray pyrolysis at a temperature of 700 ° C. to 1300 ° C. 6.
KR1020080085493A 2008-08-29 2008-08-29 Synthetic method of red emitting gallate phosphors with high color purity KR101109123B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080085493A KR101109123B1 (en) 2008-08-29 2008-08-29 Synthetic method of red emitting gallate phosphors with high color purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080085493A KR101109123B1 (en) 2008-08-29 2008-08-29 Synthetic method of red emitting gallate phosphors with high color purity

Publications (2)

Publication Number Publication Date
KR20100026474A true KR20100026474A (en) 2010-03-10
KR101109123B1 KR101109123B1 (en) 2012-02-15

Family

ID=42177801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080085493A KR101109123B1 (en) 2008-08-29 2008-08-29 Synthetic method of red emitting gallate phosphors with high color purity

Country Status (1)

Country Link
KR (1) KR101109123B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762692A (en) * 2010-04-23 2012-10-31 海洋王照明科技股份有限公司 Rare earth ion doped lanthanum gallate luminous material containing metal particles and preparation method thereof
CN112850780A (en) * 2021-01-08 2021-05-28 辽宁师范大学 Phosphorus doped beta-Ga2O3Preparation method of micron line
KR20230127679A (en) 2022-02-25 2023-09-01 부경대학교 산학협력단 Low-voltage visible emitting device based on metal-oxide-semiconductor structure and the Manufacturing Method
KR20230127680A (en) 2022-02-25 2023-09-01 부경대학교 산학협력단 Low voltage ultraviolet emitting device based on metal oxide semiconductor structure and the Manufacturing Method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501742B1 (en) * 2003-03-27 2005-07-18 럭스피아 주식회사 Yellow phosphor particles with nano-size and method for fabricating thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762692A (en) * 2010-04-23 2012-10-31 海洋王照明科技股份有限公司 Rare earth ion doped lanthanum gallate luminous material containing metal particles and preparation method thereof
CN102762692B (en) * 2010-04-23 2014-02-05 海洋王照明科技股份有限公司 Rare earth ion doped lanthanum gallate luminous material containing metal particles and preparation method thereof
CN112850780A (en) * 2021-01-08 2021-05-28 辽宁师范大学 Phosphorus doped beta-Ga2O3Preparation method of micron line
KR20230127679A (en) 2022-02-25 2023-09-01 부경대학교 산학협력단 Low-voltage visible emitting device based on metal-oxide-semiconductor structure and the Manufacturing Method
KR20230127680A (en) 2022-02-25 2023-09-01 부경대학교 산학협력단 Low voltage ultraviolet emitting device based on metal oxide semiconductor structure and the Manufacturing Method

Also Published As

Publication number Publication date
KR101109123B1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
Liu et al. LaGaO 3: A (A= Sm 3+ and/or Tb 3+) as promising phosphors for field emission displays
Raju et al. Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26: Ln (Ln= Tm or Er) phosphors
JP5229878B2 (en) Luminescent device using phosphor
JP3921545B2 (en) Phosphor and production method thereof
JP5910498B2 (en) Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
JP2007262417A (en) Fluorescent substance
Li et al. Facile synthesis, growth mechanism and luminescence properties of uniform La (OH) 3: Ho3+/Yb3+ and La 2 O 3: Ho3+/Yb3+ nanorods
JP3975451B2 (en) Luminaire and image display device using phosphor
KR101109123B1 (en) Synthetic method of red emitting gallate phosphors with high color purity
Xinyu et al. Photoluminescence enhancement of YAG: Ce3+ phosphor prepared by co-precipitation-rheological phase method
JP4836117B2 (en) Method for producing high-luminance luminescent particles
KR20030060697A (en) Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
Kang et al. Y 2 SiO 5: Tb phosphor particles prepared from colloidal and aqueous solutions by spray pyrolysis
Shimomura et al. Synthesis of Y (P, V) O4: Eu3+ red phosphor by spray pyrolysis without postheating
US9157024B2 (en) Phosphor and light emitting device
Dutta et al. Sonochemical synthesis of lanthanide ions doped CeF3 nanoparticles: potential materials for solid state lighting devices
JP4373670B2 (en) Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel
KR100398060B1 (en) Process for preparing of blue emitting phosphor particles by optimizing the precursor materials using spray pyrolysis
KR20020046101A (en) Preparation of red phosphor particles for PDP by spray pyrolysis
KR20020075058A (en) Preparation method of red phosphor particles with spherical shape
KR101419477B1 (en) Y2-xo3:eux red phosphor nano powder manufacturing method
KR20130057157A (en) Oxinitride phosphor and light emitting device comprising the same
KR20130074285A (en) Phosphate phosphor and light emitting device comprising the same
KR100451671B1 (en) Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190115

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 9