KR20100026015A - Process for producing inorganic membrane with hydrophobic property - Google Patents
Process for producing inorganic membrane with hydrophobic property Download PDFInfo
- Publication number
- KR20100026015A KR20100026015A KR1020080084818A KR20080084818A KR20100026015A KR 20100026015 A KR20100026015 A KR 20100026015A KR 1020080084818 A KR1020080084818 A KR 1020080084818A KR 20080084818 A KR20080084818 A KR 20080084818A KR 20100026015 A KR20100026015 A KR 20100026015A
- Authority
- KR
- South Korea
- Prior art keywords
- inorganic membrane
- membrane
- porous inorganic
- hydrophobic
- minutes
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 83
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 14
- 230000008569 process Effects 0.000 title description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000011248 coating agent Substances 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 21
- 229910000077 silane Inorganic materials 0.000 claims abstract description 13
- -1 fluoroalkyl silane Chemical compound 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000007598 dipping method Methods 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 claims description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 7
- 239000003791 organic solvent mixture Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 3
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 19
- 239000007788 liquid Substances 0.000 abstract description 6
- 239000003960 organic solvent Substances 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract description 2
- 239000012855 volatile organic compound Substances 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 2
- 150000002894 organic compounds Chemical class 0.000 abstract 1
- 238000007781 pre-processing Methods 0.000 abstract 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 35
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 9
- 229910052731 fluorine Inorganic materials 0.000 description 9
- 239000011737 fluorine Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229920001600 hydrophobic polymer Polymers 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910002808 Si–O–Si Inorganic materials 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229920005597 polymer membrane Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910002800 Si–O–Al Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00791—Different components in separate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/105—Support pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1214—Chemically bonded layers, e.g. cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/142—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/38—Hydrophobic membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 유기물 회수 및 농축용 소수성 무기막의 제조방법에 관한 것으로, 보다 구체적으로는 수용액이나 대기중의 유기물이나 휘발성 유기화합물을 분리 회수 및 농축을 위해 다공성 무기막(세라믹 담체) 표면에 유기물과 흡착 및 탈착이 용이한 소수성 불소계 고분자를 이용하여 표면에 균일한 막을 형성한 소수성 무기막의 제조 방법에 관한 것이다. The present invention relates to a method for preparing a hydrophobic inorganic membrane for organic matter recovery and concentration, and more particularly, to adsorb organic matter on the surface of a porous inorganic membrane (ceramic carrier) for separating and recovering and concentrating an organic or volatile organic compound in an aqueous solution or air. And a method for producing a hydrophobic inorganic membrane having a uniform film formed on its surface by using a hydrophobic fluorine-based polymer that is easily detachable.
막의 분리성능에 미치는 주요 인자로는 높은 선택도, 투과성, 기계적 안정성, 온도에 대한 안정성, 화학성분에 대한 내구성 등이 있다. 일반적으로, 고분자 막은 물리화학적인 다양성이 커서 막분리 공정에 주로 사용되고 있으나, 열적, 기계적, 화학 및 생물학적 안정성이 낮으며, 고농도의 유기혼합물 내에서의 팽윤(swelling) 현상 등의 단점들을 가지고 있다.Major factors affecting the membrane separation performance include high selectivity, permeability, mechanical stability, temperature stability, and chemical resistance. In general, polymer membranes are mainly used in membrane separation processes due to their large physical and chemical diversity, but have low thermal, mechanical, chemical and biological stability, and have disadvantages such as swelling in high concentration organic mixtures.
막분리 공정의 분리 메카니즘은 막이 가지고 있는 미세공의 형태, 미세공의 크기, 막의 물리ㆍ화학적 특성과 분리대상 물질의 형태, 크기, 물리ㆍ화학적 특성에 따라 압력, 농도 등의 추진력에 의하여 분리가 이루어진다. 그러나, 대부분의 막분리 공정은 단순히 막의 물리적 특성(미세공의 형태, 미세공의 크기 등)과 분리대상 물질의 물리적 특성 (형태, 크기 등)을 이용하는 것에 한정되어 있다. The separation mechanism of the membrane separation process is separated by the driving force such as pressure and concentration depending on the type of micropores, the size of micropores, the physical and chemical properties of the membrane and the type, size, physical and chemical properties of the separation target. Is done. However, most membrane separation processes are limited to simply using the physical properties of the membrane (morphology of micropores, the size of micropores, etc.) and the physical properties (shape, size, etc.) of the material to be separated.
따라서 최근에는 이러한 고분자 막의 단점을 해결하기 위해 새로운 막 소재를 개발하기 위한 다양한 시도가 있고 이러한 연구 결과를 무기막에 대한 관심이 증가하고 있는 상황이다. Therefore, in recent years, various attempts have been made to develop new membrane materials to solve the shortcomings of such polymer membranes, and the results of these studies have increased interest in inorganic membranes.
무기막은 열적, 화학적, 기계적 안정성과 장기간의 수명, 세척 및 재생의 용이성, 미생물에 의한 손상이 없는 장점으로 인해 막 분리 기술에서 각광받고 있다. 그러나, 현재 분리 공정에서 사용되고 있는 무기막은 단순히 막의 재료를 다른 무기 소재로 바꾸거나 막 표면의 기공크기를 조절하여 분자의 크기에 따라 물질을 분리하므로 분리효율이나 분리성능 측면에서 고분자 막보다는 성능이 좋지 못한 문제점이 있었다.Inorganic membranes are spotlighted in membrane separation technology due to their thermal, chemical and mechanical stability, long life, ease of cleaning and regeneration, and no damage by microorganisms. However, the inorganic membrane currently used in the separation process performs better than the polymer membrane in terms of separation efficiency or separation performance since the material is separated according to the size of the molecule by simply changing the material of the membrane to another inorganic material or adjusting the pore size of the membrane surface. There was a problem.
상기한 문제점을 해결하기 위해 연구노력한 결과, 특정 조건으로 전처리한 다공성 무기막 표면에 소수성을 가지는 불소계 고분자를 코팅하여 소수성을 부여하고 이를 열처리함으로써, 기존의 분리막 분리특성인 분자 크기에 따라 물질을 분리하는 대신에 분자들의 물리화학적 특성을 이용하여 물질을 분리시킬 수 있음을 알 게 되었다.As a result of research efforts to solve the above problems, by coating a hydrophobic polymer having a hydrophobicity on the surface of the porous inorganic membrane pre-treated under a specific condition to give hydrophobicity and heat treatment, the material is separated according to the molecular size of the existing membrane separation characteristics Instead, they found that the physicochemical properties of molecules could be used to separate matter.
따라서 본 발명은 분리막의 분리 성능 및 분리 효율이 증대된 소수성 무기막의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for preparing a hydrophobic inorganic membrane having improved separation performance and separation efficiency.
상기한 목적을 달성하기 위한 일례로서, 본 발명의 소수성 무기막의 제조방법은, 풀루오로 알킬 실란계 화합물과 헥사데칸, 클로로포름, 및 사염화탄소가 0.5 : 0.5 : 1 중량비로 혼합된 유기용제 혼합물을 0.01 : 1 부피비로 혼합하여 코팅액을 제조하는 단계, 다공성 무기막을 NaOH 용액에 20 내지 40 분간 침지시킨 후 세척 및 건조하여 다공성 무기막을 전처리하는 단계, 상기 전처리된 다공성 무기막을 상기 제조된 코팅액에 침지하여 코팅하는 단계, 및, 상기 코팅된 다공성 무기막을 세정한 후 100 내지 140 ℃에서 30 분 내지 1 시간동안 열처리하는 단계를 포함하여 이루어지는 것을 특징으로 한다.As an example for achieving the above object, the method for producing a hydrophobic inorganic membrane of the present invention, the organic solvent mixture in which a fluoroalkyl silane compound and hexadecane, chloroform, and carbon tetrachloride are mixed in a 0.5: 0.5: 1 weight ratio 0.01 : Preparing a coating solution by mixing in a 1 volume ratio, immersing the porous inorganic membrane in NaOH solution for 20 to 40 minutes, washing and drying to pre-treat the porous inorganic membrane, immersing the pre-treated porous inorganic membrane in the prepared coating liquid coating And, and, after cleaning the coated porous inorganic membrane, heat treatment at 100 to 140 ° C. for 30 minutes to 1 hour.
이하, 본 발명의 소수성 무기막의 제조방법을 단계별로 구체적으로 설명한다.Hereinafter, the method for producing a hydrophobic inorganic membrane of the present invention will be described in detail step by step.
먼저, 다공성 무기막에 코팅할 코팅액을 제조하는 단계이다.First, a step of preparing a coating liquid to be coated on the porous inorganic membrane.
본 발병에 사용되는 다공성 무기막은 세라믹 담체로서 상용화 되어 있는 다공성 무기막(알루미나 실리카 등의 재질)을 사용할 수 있으며 분리하고자 하는 물질에 따라 적당한 기공 크기에 무기막을 선택할 수 있다. The porous inorganic membrane used in the present invention may be a commercially available porous inorganic membrane (materials such as alumina silica) as a ceramic carrier, and the inorganic membrane may be selected in an appropriate pore size according to the material to be separated.
본 발명에 따른 코팅액 제조에 사용하는 소수성 불소계 고분자(불소계 유기 바인더)는 플루오르 알킬 실란계 화합물로 트리클로로(1H, 1H, 2H, 2H-퍼풀루오르옥틸)실란 또는 (헵타데카-풀루오르-1,1,2,2-테트라하이드로-데실)-1-트리메톡시실란을 사용할 수 있다. 또한 코팅 용액 제조시 사용되는 유기용제 혼합물은 헥사데칸, 클로로포름 및 사염화탄소를 0.5 : 0.5 : 1의 중량비로 혼합하여 사용할 수 있다. 상기 플루오르 알킬 실란계 화합물의 가수분해와 치환반응 속도를 고려하여 유기용제 혼합물과의 혼합비를 조절하여 제조한다.The hydrophobic fluorine-based polymer (fluorine-based organic binder) used in the preparation of the coating solution according to the present invention is a fluoroalkyl silane compound, which is trichloro (1H, 1H, 2H, 2H-perfuluroctyl) silane or (heptadeca-pulluor-1). , 1,2,2-tetrahydro-decyl) -1-trimethoxysilane can be used. In addition, the organic solvent mixture used in preparing the coating solution may be used by mixing hexadecane, chloroform and carbon tetrachloride in a weight ratio of 0.5: 0.5: 1. It is prepared by adjusting the mixing ratio with the organic solvent mixture in consideration of the hydrolysis and substitution reaction rate of the fluoroalkyl silane compound.
플루오르 알킬 실란계 화합물과 유기용제 혼합물은 0.01 : 1 부피비의 비율로 혼합하여 코팅액을 제조한다.The fluoroalkyl silane compound and the organic solvent mixture are mixed at a ratio of 0.01: 1 volume to prepare a coating solution.
한편, 다공성 무기막을 일정 조건으로 전처리한다.Meanwhile, the porous inorganic membrane is pretreated under certain conditions.
즉, 다공성 무기막 표면에 소수성 고분자의 접착을 용이하기 하기 위해 다공성 무기막을 NaOH 용액에 침지한 후 세척 및 건조하는데, 상기 NaOH는 0.1M 농도로 조절하여 사용하고, 침지 시간은 20 내지 40 분, 바람직하기로는 30분간 소요되며, 3차 증류수를 사용하여 세척한 다음 건조시킨다.That is, in order to facilitate the adhesion of the hydrophobic polymer on the surface of the porous inorganic membrane, the porous inorganic membrane is immersed in NaOH solution and then washed and dried. The NaOH is adjusted to a concentration of 0.1 M, and the immersion time is 20 to 40 minutes, Preferably it takes 30 minutes, washed with tertiary distilled water and then dried.
다음으로, 상기 전처리된 다공성 무기막을 상기 제조된 코팅액에 침지하여 코팅한다.Next, the pretreated porous inorganic membrane is coated by dipping into the prepared coating solution.
상기와 같이 NaOH 용액으로 전처리한 다공성 무기막을 상기 제조된 코팅액에 12시간 정도 침지시킨다. 코팅액 내의 풀루오로 알킬 실란 화합물이 가수분해 반응에 의해 히드록실기가 풀루오로 알킬 실란 화합물에 말단에 도입된다. 가수분해 반응에 의해서 말단기가 히드록실기로 치환된 풀루오르 알킬 실란은 세라믹 담체 표면의 알루미나 분자와 결합하여 다공성 무기막 표면에 코팅된다. 막 표면에 코팅된 풀루오로 알킬 실란은 열처리 과정을 통하여 양단의 활성기 Si-OH의 표면에서 물 분자가 제거되고 Si-O-Si 구조를 갖는 화학결합을 형성한다. 따라서, 축중합과정에의해 Si-O-Si 구조를 형성하여 단분자층의 배열을 이루게 된다. The porous inorganic membrane pretreated with NaOH solution as described above is immersed in the prepared coating solution for about 12 hours. The hydroxyl group is introduced at the terminal into the pullouro alkyl silane compound by the hydrolysis reaction of the pullouro alkyl silane compound in the coating solution. Pullulor alkyl silane in which the end group is substituted with a hydroxyl group by the hydrolysis reaction is bonded to the alumina molecules on the surface of the ceramic carrier and coated on the porous inorganic membrane surface. Pulluloalkyl silane coated on the surface of the membrane removes water molecules from the surface of the active group Si-OH at both ends through a heat treatment process and forms a chemical bond having a Si-O-Si structure. Therefore, the Si-O-Si structure is formed by the condensation polymerization process to form an array of monolayers.
마지막으로, 상기 코팅된 다공성 무기막을 세정한 후 100 내지 140 ℃에서 30 분 내지 1 시간동안 열처리한다.Finally, the coated porous inorganic membrane is washed and then heat treated at 100 to 140 ° C. for 30 minutes to 1 hour.
상기 방법에 의해 다공성 무기막의 표면에 소수성 피막이 형성되면 이를 세정한 후 열처리를 한다. 또한 막 표면의 접착성을 증가시키기 위해 열처리를 실시한다. 열처리는 100 내지 140 ℃에서 30 분 내지 1 시간, 바람직하기로는 120 ℃에서 약 30 분간 수행되는데, 이 열처리 공정에 의해 다공성 무기막(세라믹 담체) 표면의 소수성 기능이 향상된다.When the hydrophobic film is formed on the surface of the porous inorganic film by the above method, the hydrophobic film is washed and then heat treated. In addition, heat treatment is performed to increase the adhesion of the film surface. The heat treatment is performed at 100 to 140 ° C. for 30 minutes to 1 hour, preferably at 120 ° C. for about 30 minutes, and the heat treatment process improves the hydrophobic function of the porous inorganic membrane (ceramic carrier) surface.
본 발명에 의해 소수성 고분자로 코팅된 세라믹 막의 표면 특성을 표면 분석 기기를 이용하여 조사하였다. 소수성 고분자인 실란 커플링제(FASs, Fluoloalkyl-silanes)로 표면 코팅된 세라믹 담체 표면에서의 각 원소의 조성비와 결합여부를 알아보기 위하여 표면분석장치(Electron Spectroscope for Chemical Analysis(ESCA) ; ARIESARSC 10MCD 150, VSW, 영국)를 이용하여 분석하였다. ESCA 분석 결과는 도 1a 및 다음 표 1에 나타내었다. The surface properties of the ceramic membrane coated with the hydrophobic polymer by the present invention were investigated using a surface analysis instrument. Electron spectroscope for chemical analysis (ESCA); ARIESARSC 10MCD 150, to determine the composition ratio and bonding of each element on the surface of the ceramic carrier coated with a hydrophobic polymer silane coupling agent (FASs, Fluoloalkyl-silanes) VSW, UK). ESCA analysis results are shown in Figure 1a and Table 1 below.
소수성 고분자로 코팅된 세라믹 담체 표면에서의 O/Si : C/Si : F/Si : Cl/Si의 원소비는 각각 0.72 : 1.15 : 4.23 : 0.00 이었으며, 막표면에서의 불소(F)의 농도수준이 가장 높게 나타났다. 소수성을 가장 크게 나타내는 불소(F)가 표면에서 가장 높은 농도로 포함되어 있다는 것은 실란 커플링제(FASs)가 표면에 코팅되었다는 것을 의미하며, 개질된 표면이 강한 소수성을 나타낸다는 것을 알 수 있다. 실란에 들어있는 염소이온(Cl)이 검출되지 않은 것은 반응 중 가수분해에 의해 해리된 것으로 판단된다. The element ratios of O / Si: C / Si: F / Si: Cl / Si on the surface of the ceramic carrier coated with hydrophobic polymer were 0.72: 1.15: 4.23: 0.00, respectively. Was the highest. The highest concentration of fluorine (F) on the surface, which exhibits the highest hydrophobicity, means that the silane coupling agents (FASs) are coated on the surface, indicating that the modified surface exhibits strong hydrophobicity. The fact that no chlorine ion (Cl) in the silane was detected was thought to have been dissociated by hydrolysis during the reaction.
또한, 도1a에서 알 수 있듯이 산소(O1s)의 결합에너지(binding energy)가 531eV로서, 세라믹 담체인 산화알루미나Al2O3)의 산소(O1s)의 결합에너지와 같으므로 -SiO- 그룹내에서의 산소(O)는 알루미나 담체의 산소 결합에너지임을 알 수 있다. 이는 담체 표면에 소수성 고분자인 FASs가 알루미나 막에 물리적인 결합이 아니라 화학적으로 결합되었다는 것을 나타낸다.In addition, as shown in FIG. 1A, the binding energy of oxygen (O1s) is 531 eV, which is the same as the binding energy of oxygen (O1s) of alumina oxide Al2O3, which is a ceramic carrier, and thus, the oxygen in -SiO- group ( It can be seen that O) is the oxygen binding energy of the alumina carrier. This indicates that the hydrophobic polymer FASs on the surface of the carrier was chemically bonded to the alumina membrane rather than physically.
또한, 소수성 고분자인 실란 커플링제(FASs, Fluoloalkyl-silanes)로 표면 개질한 알루미나 막 표면의 소수성을 확인하기 위해 적외선 분광분석(FT-IR)을 실시하였다. FT-IR 분석을 통해 구조 관능기들을 확인함으로써 표면에 소수성기(플루오르기와 실란기) 도입 여부를 확인할 수 있다. FASs로 코팅한 다공성 알루미나 담체 표면에서의 Si-O-Al, Si-O-Si, Si-C, -CF2-, -CF3의 관능기 도입여부를 도 1b에 나타내었다. 505~550cm- 1부근에서 -CF3그룹의 C-F 신축진동에 의한 특성 흡수 피크가 나타났으며, 1120cm-1부근에서 FASs의 -CF3에 의한 신축진동 피크를 확인할 수 있었다. 또한 3400~4000cm- 1부근에서 히드록실기(-OH)가 관찰되지 않았으며, 이는 열처리 과정에서 실란 분자들의 축중합 반응이 이루어졌음을 말해 준다. 도 1b에서 보는 바와 같이 800~1400 cm-1범위에서 C-C, C-F, Si-O-Si 피크를 모두 포함하고 있으므로, 화학적 결합에 의한 표면 코팅이 이루어졌음을 알 수 있다. In addition, infrared spectroscopy (FT-IR) was performed to confirm the hydrophobicity of the surface of the alumina film surface-modified with silane coupling agents (FASs, Fluoloalkyl-silanes) which are hydrophobic polymers. By FT-IR analysis, structural functional groups can be identified to confirm the introduction of hydrophobic groups (fluorine and silane groups) on the surface. The functional group introduction of Si-O-Al, Si-O-Si, Si-C, -CF 2- , -CF 3 on the surface of the porous alumina carrier coated with FASs is shown in FIG. 1B. 505 ~ 550cm - 1 was born the characteristic absorption peak due to stretching vibration of -CF CF 3 groups appear in the vicinity confirmed the stretching vibration peak by -CF3 in FASs near 1120cm-1. In addition, no hydroxyl group (-OH) was observed in the vicinity of 3400 ~ 4000cm - 1 , which indicates that the polycondensation reaction of silane molecules occurred during the heat treatment. As shown in Figure 1b, because it includes all CC, CF, Si-O-Si peak in the 800 ~ 1400 cm-1 range, it can be seen that the surface coating by the chemical bonding was made.
본 발명의 공정을 완료한 후의 세라믹 담체인 다공성 무기막의 표면 사진을 도 2에 나타내었다. 도 2a는 코팅 전의 세라믹 담체인 다공성 무기 막의 표면을 나타내는 SEM사진이고, 도 2b는 본 발명의 제조방법에 따라 제조된 균일한 피막을 형성한 다공성 무기막의 표면을 나타내는 SEM사진이다. 또한 도 2c 및 도 2d는 본 발명에 따른 열처리를 실시하지 않았을 때와 실시하였을 때의 막 표면의 상태를 물방울 사진으로서 확인한 것이다. 이로부터 본 발명에 따른 열처리에 의해 막표면의 소수성 특성이 향상됨을 알 수 있다.The surface photograph of the porous inorganic membrane which is a ceramic carrier after completing the process of the present invention is shown in FIG. 2. FIG. 2A is a SEM photograph showing the surface of a porous inorganic membrane which is a ceramic carrier before coating, and FIG. 2B is a SEM photograph showing the surface of a porous inorganic membrane having a uniform coating prepared according to the manufacturing method of the present invention. 2C and 2D confirm the state of the film surface when the heat treatment according to the present invention is not performed and when the water droplets are photographed. From this, it can be seen that the hydrophobic property of the film surface is improved by the heat treatment according to the present invention.
상술한 바와 같이 본 발명의 방법에 따라 다공성 무기막의 표면에 소수성을 부여한 소수성 무기막을 제조할 수 있으며 본 발명에 따라 제조한 소수성 무기막을 이용하여 대기중의 유기물을 분자 크기가 아닌 분자들 간의 특성을 이용하여 분리함으로써 대기중의 유기물 분리에 대한 분리 효율 및 분리 성능을 증대시킬 수 있다.As described above, according to the method of the present invention, a hydrophobic inorganic membrane having hydrophobicity may be prepared on the surface of the porous inorganic membrane. Separation can be used to increase the separation efficiency and separation performance for separation of organic matter in the atmosphere.
이하, 본 발명을 하기의 실시 예에 의해 더욱 구체적으로 설명할 것이다. 이러한 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이로써 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are intended to illustrate the invention, but the scope of the invention is not limited thereto.
실시예Example 1 One
트리클로로(1H, 1H, 2H, 2H-퍼풀루오르옥틸)실란과 유기 용제(헥사데칸 : 클로로포름 : 사염화탄소 = 0.5 : 0.5 : 1 중량비, pH 약 4) 혼합물을 0.01: 1 부피비 비율로 하여 코팅액을 제조하였다. Trichloro (1H, 1H, 2H, 2H-perfulluoroctyl) silane and organic solvent (hexadecane: chloroform: carbon tetrachloride = 0.5: 0.5: 1 weight ratio, pH about 4) The mixture was prepared in a ratio of 0.01: 1 volume by volume. Prepared.
기공크기 0.12㎛, 내경과 외경이 6.45, 8mm, 길이 75.6mm인 원통형의 다공성 알루미나 막을 0.1M NaOH 수용액에 30 분간 침지한 후 3차 증류수로 반복세척하고 완전히 건조시켜 전처리하였다.Cylindrical porous alumina membranes having a pore size of 0.12 μm, an inner diameter and an outer diameter of 6.45, 8 mm, and a length of 75.6 mm were immersed in 0.1 M aqueous NaOH solution for 30 minutes, washed repeatedly with distilled water, and completely dried.
상기 전처리한 다공성 알루미나 막을 상기 코팅액에 12 시간 동안 침지시켜 알루미나 막의 표면에 소수성 고분자 피막을 형성시키고, 이를 건조기(dry oven)로 120 ℃에서 30 분간 열처리하였다. The pretreated porous alumina membrane was immersed in the coating solution for 12 hours to form a hydrophobic polymer film on the surface of the alumina membrane, which was heat-treated at 120 ° C. for 30 minutes with a dry oven.
실시예Example 2 2
상기 실시예 1에 의하여 제조된 소수성 무기막의 유기물에 대한 투과 실험을 다음과 같이 수행하였다.The permeation experiment for the organic material of the hydrophobic inorganic membrane prepared in Example 1 was performed as follows.
0.5~10 중량% 농도습도 80%)로 제조된 휘발성유기혼합물을 상기 실시예 1에 따라 제조된 막의 바깥쪽에 놓은 후 막의 안쪽에 진공펌프를 이용하여 진공을 만들어 막 표면을 통한 투과 실험을 실시하였다. 그 결과는 표 3으로 나타내었다.The volatile organic mixture prepared in 0.5 ~ 10% by weight concentration humidity 80%) was placed on the outside of the membrane prepared according to Example 1, and then made a vacuum using a vacuum pump inside the membrane to perform a permeation experiment through the membrane surface. . The results are shown in Table 3.
실시예Example 3 3
상기 실시예 1에 의하여 제조된 FASs로 코팅된 소수성 무기막의 알코올 수용액(부탄올/물, 이소프로판올/물)에 대한 투과 특성을 실험하기 전에, 막 표면에서의 흡착특성을 조사하였다. 부탄올과 이소프로판올의 흡착실험 과정은 다음과 같다.Before experimenting the permeation characteristics of the aqueous alcohol solution (butanol / water, isopropanol / water) of the hydrophobic inorganic membrane coated with FASs prepared in Example 1, the adsorption characteristics on the membrane surface were investigated. The adsorption experiment process of butanol and isopropanol is as follows.
실시예 1에 의하여 제조된 소수성 무기막을 적당한 크기의 시편으로 만든 후 일정한 무게가 얻어질 때까지 진공 건조기에서 완전히 건조시켰다. 건조된 시편을 30 ℃의 부탄올 혼합물이 들어있는 삼각플라스크에 24시간 동안 침적시킨 다음 시편을 꺼내서 표면의 액체는 여과지로 신속히 닦아내고 무게를 측정하였다. 이후 3시간 간격으로 측정하여 무게 증가가 없으면 평형에 도달한 것으로 간주하였다. 평형 수착량은 5회 이상 측정하여 평균값을 취하였으며, 측정오차는 4% 이내 이었다. The hydrophobic inorganic membrane prepared in Example 1 was made into a specimen of a suitable size and then completely dried in a vacuum dryer until a constant weight was obtained. The dried specimen was immersed in a Erlenmeyer flask containing a butanol mixture at 30 ° C. for 24 hours, and then the specimen was taken out, and the liquid on the surface was quickly wiped with a filter paper and weighed. After that, it was measured at 3 hour intervals and considered to have reached equilibrium without weight increase. The equilibrium sorption amount was measured more than 5 times and the average value was taken, and the measurement error was within 4%.
알코올의 농도는 가스크로마토그라피 (GC)로 분석하였으며, 막표면에 흡착된 알코올의 농도는 다음의 수학식 1에 의하여 계산하였다. The concentration of alcohol was analyzed by gas chromatography (GC), and the concentration of alcohol adsorbed on the membrane surface was calculated by Equation 1 below.
상기 수학식 1에서, ml0 : 초기 용액의 무게, Wio : 초기농도, Wl : 흡착 후 농도, mp0 : 건조 막 무게, Δml : 흡착된 알코올의 무게를 의미한다.In Equation 1, m l0 : weight of initial solution, W io : initial concentration, W l : concentration after adsorption, m p0 : dry membrane weight, Δm l : weight of adsorbed alcohol.
상기한 방법으로 측정된 실시예 1에 의하여 제조된 무기막 표면에 대한 부탄올/물, 이소프로판올/물의 흡착량을 각 수용액의 농도에 따른 흡착량의 변화를 도 3에 나타내었다. The adsorption amount of butanol / water and isopropanol / water on the surface of the inorganic membrane prepared by Example 1 measured by the above method is shown in FIG. 3 according to the concentration of each aqueous solution.
부탄올/물의 경우, 부탄올의 농도가 0.05~3.0 중량%로 증가함에 따라 막표면에 대한 부탄올의 흡착량은 증가하였고, 물은 0.5 중량%영역에서 최대 수착량을 보인 후 감소하다가 일정한 흡착량을 나타내었다. 이소프로판올/물의 경우, 이소프 로판올의 농도가 1~40 중량%로 증가함에 따라 막표면에 대한 이소프로판올과 물의 흡착량이 동시에 증가하였다. In the case of butanol / water, the amount of butanol adsorbed on the surface of the membrane increased as the concentration of butanol increased from 0.05 to 3.0% by weight. It was. In the case of isopropanol / water, the adsorption of isopropanol and water on the membrane surface increased simultaneously as the concentration of isopropanol increased from 1 to 40% by weight.
부탄올과 이소프로판올의 표면개질한 막소재에 대한 용해도 계수는 각각 δt=23.1, δt=23.5 로서 거의 비슷하다. 그러나, 흡착실험에서의 막에 대한 흡착량은 부탄올의 흡착량이 이소프로판올보다 월등히 많았다. 이는 부탄올과 이소프로판올의 극성력과 수소결합의 차이로 설명할 수 있다. 부탄올의 극성력에 의한 용해도 계수(δp=5.7)가 이소프로판올(δp=9.0) 보다 작으므로, 막표면과 부탄올의 상호인력이 이소프로판올 보다 강하게 작용하여 이소프로판올보다 많은 량의 부탄올이 우선 흡착된다. 또한, 부탄올 분자와 물 분자와의 상호작용에 의한 분자쌍의 영향(δh=15.8)이 이소프로판올의 경우 (δh=16.8)보다 적어 흡착 저항이 작다는 것을 알 수 있다. 즉, 이소프로판올의 경우 극성력이 크고, 수소결합에 의한 물 분자와의 분자쌍의 현상이 발생하여 막표면에서의 흡착저항 증가와 흡착된 이소프로판올과 물분자의 수소결합에 의한 짝지음 효과(coupling effect)의 영향으로 용액 내의 농도증가에 따른 선택성이 크지 않음을 알 수 있다. The solubility coefficients of butanol and isopropanol for the surface-modified membrane material were almost similar as δ t = 23.1 and δ t = 23.5, respectively. However, the adsorption amount on the membrane in the adsorption experiment was much higher than that of isopropanol. This can be explained by the difference in polarity and hydrogen bonding between butanol and isopropanol. Since the solubility coefficient (δ p = 5.7) due to the polar force of butanol is smaller than isopropanol (δ p = 9.0), the mutual attraction between the membrane surface and butanol acts more strongly than isopropanol, and a larger amount of butanol is adsorbed than isopropanol first. In addition, it can be seen that the effect of molecular pairs (δ h = 15.8) due to the interaction between butanol molecules and water molecules is smaller than that of isopropanol (δ h = 16.8), so that the adsorption resistance is small. That is, in the case of isopropanol, the polarity is large, and the phenomenon of molecular pairing with water molecules due to hydrogen bonding occurs, so that the adsorption resistance on the membrane surface increases and the coupling effect due to hydrogen bonding of the adsorbed isopropanol and water molecules. It can be seen that the selectivity is not large due to the increase in concentration in the solution.
상기 실험에서 알 수 있는 바와 같이 물의 분자량이 유기물인 부탄올, 이소프로판보다 작음에도 불구하고 표면에서 유기물의 농도가 증가함을 알 수 있다. 이는 막이 막 표면의 소수성 성질 때문에 유기물과 물을 선택적으로 흡착시킴을 나타내는 것이다. 또한 흡착되어 나온 유기물의 경우 용해도가 낮기 때문에 상분리가 일어나게 되고 따라서 다른 공정 없이 순수한 유기물을 얻을 수 있다.As can be seen from the above experiments, although the molecular weight of water is smaller than that of organic butanol and isopropane, it can be seen that the concentration of organic matter on the surface increases. This indicates that the membrane selectively adsorbs organics and water due to the hydrophobic nature of the membrane surface. In addition, since the solubility of the organic material adsorbed is low so that the phase separation occurs and thus pure organic material can be obtained without other processes.
도 1a는 본 발명에 따른 소수성 불소계 고분자로 코팅된 세라믹(알루미나) 막 표면의 ESCA분석 결과를 나타낸 개략도이고, Figure 1a is a schematic diagram showing the results of the ESCA analysis of the ceramic (alumina) film surface coated with a hydrophobic fluorine-based polymer according to the present invention,
도 1b는 본 발명에 따른 소수성 불소계 고분자로 코팅된 세라믹(알루미나) 막 표면의 적외선 분광분석(FT-IR) 결과를 나타낸 개략도이며,Figure 1b is a schematic diagram showing the results of infrared spectroscopy (FT-IR) of the surface of the ceramic (alumina) film coated with a hydrophobic fluorine-based polymer according to the present invention,
도 2a는 불소계 고분자에 의해 코팅되기 전의 다공성 무기막 표면을 나타낸 SEM사진이고,Figure 2a is a SEM photograph showing the surface of the porous inorganic membrane before being coated with a fluorine-based polymer,
도 2b는 본 발명에 따라 코팅된 다공성 무기막의 표면을 나타낸 SEM사진이며,Figure 2b is a SEM photograph showing the surface of the porous inorganic membrane coated in accordance with the present invention,
도 3은 본 발명에 따른 소수성 불소계 고분자가 코팅된 소수성 무기막에 대한 유기물(부탄올 및 이소프로판올)의 흡착 실험 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of the adsorption experiment of the organic material (butanol and isopropanol) to the hydrophobic inorganic membrane coated with a hydrophobic fluorine-based polymer according to the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080084818A KR101047345B1 (en) | 2008-08-29 | 2008-08-29 | Method for producing hydrophobic inorganic membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080084818A KR101047345B1 (en) | 2008-08-29 | 2008-08-29 | Method for producing hydrophobic inorganic membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100026015A true KR20100026015A (en) | 2010-03-10 |
KR101047345B1 KR101047345B1 (en) | 2011-07-07 |
Family
ID=42177405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080084818A KR101047345B1 (en) | 2008-08-29 | 2008-08-29 | Method for producing hydrophobic inorganic membrane |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101047345B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102107749B1 (en) * | 2019-01-21 | 2020-05-07 | 울산과학기술원 | Superhydrophobic Membrane using Ceramic Nano Particles with Hydrophobic Modification by growing in Surface and Pore of Membrane and Manufacturing Method Thereof |
CN115318115A (en) * | 2022-07-11 | 2022-11-11 | 华东理工大学 | Micro-channel type hydrophobic membrane, preparation method and application thereof, and prediction method for bromine extraction yield by gas membrane method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101399392B1 (en) | 2012-06-12 | 2014-06-19 | 한국세라믹기술원 | The manufacturing process of niobium pentoxide material with superhydrophobic characteristics |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1006774A3 (en) | 1993-02-24 | 1994-12-06 | Univ Bruxelles | BIPOLAR MEMBRANE, METHOD FOR OBTAINING AND USE THEREOF FOR THE PRODUCTION BASES AND ACID OR REGULATING pH OF WATER SOLUTION. |
JP2000288367A (en) | 1999-04-05 | 2000-10-17 | Nok Corp | Manufacture of hydrophobic porous membrane |
KR20020061895A (en) * | 2001-01-18 | 2002-07-25 | 이광래 | Process for producing inorganic membrane with ultrahydrophobic property |
ITMI20011745A1 (en) | 2001-08-09 | 2003-02-09 | Ausimont Spa | PROCESS FOR IMPREGNATING MEDIA |
-
2008
- 2008-08-29 KR KR1020080084818A patent/KR101047345B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102107749B1 (en) * | 2019-01-21 | 2020-05-07 | 울산과학기술원 | Superhydrophobic Membrane using Ceramic Nano Particles with Hydrophobic Modification by growing in Surface and Pore of Membrane and Manufacturing Method Thereof |
CN115318115A (en) * | 2022-07-11 | 2022-11-11 | 华东理工大学 | Micro-channel type hydrophobic membrane, preparation method and application thereof, and prediction method for bromine extraction yield by gas membrane method |
CN115318115B (en) * | 2022-07-11 | 2023-11-17 | 华东理工大学 | Microchannel type hydrophobic membrane, preparation method, application and prediction method for bromine extraction yield by air film method |
Also Published As
Publication number | Publication date |
---|---|
KR101047345B1 (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106474947B (en) | Preparation method of porous ceramic membrane with hydrophobic surface | |
Bagheri et al. | Towards greater mechanical, thermal and chemical stability in solid-phase microextraction | |
Han et al. | Effect of surface charge on hydrophilically modified poly (vinylidene fluoride) membrane for microfiltration | |
US9205365B2 (en) | Sorbent article for CO2 capture | |
KR102006133B1 (en) | Cermic membrane having excellent fouling resistance by surface modification and water treatment method using the same | |
CN107875868B (en) | Composite nanofiltration membrane alternately assembled by phenol and amine and preparation method thereof | |
JP5595044B2 (en) | Carbon film manufacturing method | |
CN107519768B (en) | A kind of Hydophilic ceramics composite membrane and preparation method thereof | |
Jee et al. | Preparation and characterization of siloxane composite membranes for n-butanol concentration from ABE solution by pervaporation | |
CN107626218B (en) | Preparation method of graphene oxide/non-woven fabric composite membrane | |
EP2409756A1 (en) | Silica membrane and method for manufacturing the same | |
CN113522053B (en) | Ceramic membrane, chemical grafting modification method and application | |
CN105771683B (en) | Method for improving stability of SAPO-34 molecular sieve membrane in water vapor environment | |
KR101047345B1 (en) | Method for producing hydrophobic inorganic membrane | |
KR20130108073A (en) | Semi-permeable composite membrane | |
KR101713858B1 (en) | Hydrophobic alumina hollow fiber membrane for absorption of carbon dioxide and preparation method thereof | |
RU2696445C2 (en) | Method for increasing selectivity of nanoporous membranes for extraction of condensed components from gas mixtures and modified membrane obtained using said method | |
Wang et al. | Hybrid anion exchange hollow fiber membranes through sol–gel process of different organic silanes within BPPO matrix | |
Cao et al. | A novel hydrophilic polymer-ceramic composite membrane 1: Acrylic acid grafting membrane | |
JP4887493B2 (en) | Method for producing hydrophobic zeolite | |
Wu et al. | Pervaporation performance of BTESE/TEOS-derived organosilica membrane and its stability in isopropanol aqueous solutions | |
JP2007044677A (en) | Mesoporous composite for separating co2 and method for separating co2 using it | |
CN106422812B (en) | A kind of preparation method of dopamine nanofiltration membrane | |
KR20020061895A (en) | Process for producing inorganic membrane with ultrahydrophobic property | |
CN108889142A (en) | A kind of polyvinyl alcohol-hydroxyethyl cellulose/polyacrylonitrile gas dehumidification membrane preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140609 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150626 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160701 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170703 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190110 Year of fee payment: 8 |
|
R401 | Registration of restoration |