KR20100021681A - Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste - Google Patents

Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste Download PDF

Info

Publication number
KR20100021681A
KR20100021681A KR1020080080241A KR20080080241A KR20100021681A KR 20100021681 A KR20100021681 A KR 20100021681A KR 1020080080241 A KR1020080080241 A KR 1020080080241A KR 20080080241 A KR20080080241 A KR 20080080241A KR 20100021681 A KR20100021681 A KR 20100021681A
Authority
KR
South Korea
Prior art keywords
activated carbon
gas
removal
impregnated
pelletized activated
Prior art date
Application number
KR1020080080241A
Other languages
Korean (ko)
Inventor
박영태
오성제
임철규
김연태
Original Assignee
주식회사 동양탄소
주식회사 에코포유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동양탄소, 주식회사 에코포유 filed Critical 주식회사 동양탄소
Priority to KR1020080080241A priority Critical patent/KR20100021681A/en
Publication of KR20100021681A publication Critical patent/KR20100021681A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/372Coating; Grafting; Microencapsulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Treating Waste Gases (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PURPOSE: A technique for manufacturing complex impregnation pelletized activated carbon for removing bad smell gas of food waste is provided to eliminate adsorbate molecules of the small size and adsorbate molecules of the big size by using coconut shell activated carbon in which the mean polishing size is 20Å and 100Å coal-based activated carbon. CONSTITUTION: A technique for manufacturing complex impregnation pelletized activated carbon comprises: a step of molding and mixing the pelletized activated carbon in a mixing ratio of CaCO 3(1.6Wt%), bunker-oil, creosote oil(antiseptic,5.1Wt%), lignin sodium sulfonate(a dispersing agent, and 1.9Wt%), and assembly water(12.3Wt%) by using coal tar pitch as a bonding agent; a step of carbonizing molded complex pelletized activated carbon for 2 hours at 450°C and in chemical activating for 2hr ~ 4hr at 850°C by using an activating oven of nitrogen atmosphere; and a step of manufacturing the complex impregnation pelletized activated carbon for removal of acid gas which is dipped in 5Wt% of potassium hydroxide(KOH) aqueous solution and the complex impregnation pelletized activated carbon for removal of basic gas which is dipped in 5v / v% of phosphoric acid(H3PO4) aqueous solution.

Description

음식물 쓰레기 악취가스 제거용 복합 첨착 조립상 활성탄소 제조 기술{Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste}Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste}

본 발명은 음식물 쓰레기 악취가스 제거용 복합 첨착 조립 활성탄소 제조 기술에 관한 것으로, 다양한 분자 크기의 악취가스의 제거율을 높이기 위하여 기존에 사용되어 오던 석탄계 활성탄소와 야자각 활성탄소를 분말로 미분쇄하여 혼합 후, 재 성형하여 복합 조립활성탄소를 제조한다. 여기에 산성가스, 중성가스, 염기성가스를 모두 효과적으로 제거할 수 있는 활성탄소 제조를 위하여 적합한, 화학약품의 선택과 첨착농도에 대한 것이다.The present invention relates to a technology for manufacturing complex impregnated activated carbon for removing odor gas from food wastes, by finely pulverizing coal-based activated carbon and coconut shell activated carbon, which have been conventionally used, in order to increase the removal rate of malodorous gas having various molecular sizes. After mixing, it is re-molded to produce a composite granulated activated carbon. Here, it is about the selection of chemicals and the concentration of impregnation, which are suitable for the production of activated carbon which can effectively remove all the acid gas, neutral gas and basic gas.

최근 들어 급증하고 있는 악취민원과 환경적 측면에서 많은 어려움을 겪고 있다. 공업단지는 물론이고 축사, 음식물 자원화 시설과 같은 환경기초시설등 생활 주변에 위치한 시설들과 근래에는 일반 가정에서의 음식물 쓰레기의 처리가 큰 문제로 대두되고 있다.In recent years, there have been many difficulties in terms of odor complaints and the environment. In addition to industrial complexes, facilities located near living, such as livestock barns, food resource-recycling facilities, and the like, and in recent years, disposal of food waste at homes has become a big problem.

우리나라는 전통적으로 음식의 종류가 다양하고 푸짐한 양이 미덕으로 여겨와 음식물 쓰레기 발생량이 다른 나라에 비하여 많은 편이다. 우리나라 2005년 하 루 생활폐기물 발생량은 48,398톤이며, 그 중 음식물 쓰레기의 구성비가 38.5%로 가장 높게 차지하고 있다. 또한, 연도별 음식물 쓰레기의 발생량도 2003년도 11,398톤/일, 2004년도 11,464톤/일, 2005년도 13,028톤/일로 매년 조금씩 증가하고 있는 추세이다.In Korea, the variety of foods is traditionally diverse, and the amount of food is considered a virtue, and the amount of food waste is much higher than that of other countries. Korea's daily waste generation amounted to 48,398 tons in 2005, with food waste consisting of 38.5%. In addition, the amount of food waste generated annually is increasing by 11,398 tons / day in 2003, 11,464 tons / day in 2004 and 13,028 tons / day in 2005.

흡착에 유효한 미세공의 크기는 흡착질 분자의 3∼6배 정도이다. 왜냐하면 이 차가 줄어들면 분자체작용에 의해 확산 저항이 증가하기 때문이다. 야자각 활성탄소의 평균 세공 크기는 20Å이므로 여기에 잘 흡착되기 위한 흡착질 분자의 크기는 3∼7Å이어야 하며, 마찬가지로 석탄계 활성탄소의 평균 세공크기는 100Å이므로 여기에 잘 흡착되기 위한 흡착질 분자의 크기는 16Å∼33Å이어야 한다. 그런데, 현재 이러한 흡착질 분자의 크기를 고려하지 않고 야자각 활성탄소와 석탄계 활성탄소를 임의로 사용하고 있다.The size of micropores effective for adsorption is about 3 to 6 times that of adsorbate molecules. Because this difference is reduced, the diffusion resistance increases by molecular sieve action. Since the average pore size of coconut shell activated carbon is 20 μs, the size of adsorbate molecules to be adsorbed here should be 3 to 7 μm. It should be 33Å. However, at present, without considering the size of these adsorbate molecules, coconut shell activated carbon and coal-based activated carbon are arbitrarily used.

본 발명은 매립, 소각, 자원화 등의 방법으로 음식물 쓰레기의 처리시 악취가스의 효과적인 제거가 이루어지지 못하여 혐오시설이나 기피대상으로 여겨지며 환경오염의 주범으로 인식되고 있는 현 실정을 해결하기 위해 평균 세공크기가 20Å인 야자각 활성탄소와 100Å인 석탄계 활성탄소를 혼합하여 사용할 경우 작은 크기의 흡착질 분자와 큰 크기의 흡착질 분자들도 제거할 수 있는 복합 활성탄소를 제조함과 동시에 적당한 화학약품을 첨착시켜 일반 활성탄소의 물리적 흡착력만이 아닌 화학적 흡착력을 이용하여 흡착능력을 향상시킨 복합 첨착 조립상 활성탄소를 제조하는데 그 목적이 있다.The present invention can not be effective removal of odor gas during the disposal of food waste by landfill, incineration, recycling, etc., which is considered as a hate facility or evacuation, and the average pore size to solve the current situation that is recognized as the main culprit of environmental pollution. Cobalt activated carbon of 20Å and coal-based activated carbon of 100Å are used to prepare complex activated carbon that can remove small sized adsorbate molecules and large sized adsorbate molecules, and attach appropriate chemicals to them. The purpose of the present invention is to prepare a composite impregnated activated carbon having improved adsorption capacity by using chemical adsorption power as well as physical adsorption power of activated carbon.

실제 많은 실험으로부터 나온 결과를 보면 음식물 쓰레기 1,000g 처리시 발생되는 총 산성가스인 메틸메르캅탄 발생량인 1.6ppm∼3.9ppm에 비하여 염기성 가스인 트리메틸아민은 109.6∼138.7ppm으로 월등히 많은 가스발생량을 보였으며, peak에서의 농도 또한 트리메틸아민이 2.4ppm으로 메틸메르캅탄 0.15ppm의 16배가 검출되었다. 본 발명은 평균 세공크기가 20Å인 야자각 활성탄소와 100Å인 석탄계 활성탄소를 혼합하여 사용할 경우 흡착질 분자의 크기가 3∼7Å으로 작은 분자들과 16∼33Å으로 큰 분자들도 효과적으로 제거할 수 있게 된다.In fact, the results from many experiments showed that the basic gas of trimethylamine (109.6 to 138.7 ppm) was significantly higher than that of 1.6 ppm to 3.9 ppm of methyl mercaptan, which is the total acid gas generated when treating 1,000 g of food waste. , peak concentration was 2.4 ppm of trimethylamine, and 16 times of 0.15 ppm of methyl mercaptan was detected. According to the present invention, when a mixture of coconut shell activated carbon having an average pore size of 20 kPa and coal-based activated carbon having 100 kPa is used, the adsorbent molecules have a size of 3 to 7 kPa and small molecules and 16 to 33 kPa can be effectively removed. do.

또한, 이러한 일반 활성탄소의 물리적 흡착력 만으로는 많은 악취가스를 제거할 수 없으므로, 산성가스를 제거하기 위하여 KOH의 알카리성 수용액에 함침시키고, 염기성가스를 제거하기 위하여 H3PO4의 산성 수용액에 함침시켜 화학약품을 첨착시킨다면 활성탄소의 흡착용량은 90% 정도로 약간 감소하지만, 적당한 세공을 가지는 활성탄소를 선정하면 활성탄의 우수한 흡착성과 화학약품의 반응성을 동시에 갖는 흡착제로 제조할 수 있다.In addition, since the physical adsorption power of the general activated carbon alone cannot remove many malodorous gases, it is impregnated with alkaline aqueous solution of KOH to remove acid gas, and impregnated with acidic aqueous solution of H 3 PO 4 to remove basic gas. If adsorbed, the adsorption capacity of the activated carbon is slightly reduced to about 90%. However, if the activated carbon having a suitable pore is selected, the adsorbent having both excellent adsorption of activated carbon and reactivity of chemicals can be prepared.

본 발명품인 복합 첨착 조립상 활성탄소는 음식물 쓰레기의 처리시 발생되는 악취가스 중 발생농도는 낮으나 악취강도가 강한 산성가스 중 메틸메르캅탄과 황화수소, 그리고 발생농도도 높으며 자극이 심한 염기성가스 중 암모니아와 트리메틸 아민을 대상으로 다양한 악취가스들의 제거능력 시험결과 일반 활성탄에 비하여 산성가스는 약 20배의 흡착용량을 보였고, 염기성가스는 약 7∼10배의 흡착용량 우수성을 보였으며, 석탄계 첨착 조립상 활성탄소에 비하여 약 40%의 흡착용량 우수성을 보였다. 이와 같은 방법으로 제조된 본 발명품은 음식물 쓰레기 소각시설이나 음식물 자원화 시설과 같은 환경기초시설에서도, 일반가정에서 성능부족으로 애물단지화 되어가던 음식물 쓰레기 처리기필터로의 사용에 있어서도 탁월한 성능향상이 가능하게 해줄 것이다.Activated carbon in the composite-impregnated granules of the present invention is methyl mercaptan and hydrogen sulfide among acid gases with low odor intensity but strong odor intensity generated during disposal of food waste, and high concentrations of ammonia and trimethyl As a result of testing the ability to remove various odorous gases from amines, acid gas showed adsorption capacity of 20 times compared to general activated carbon, basic gas showed adsorption capacity of about 7 to 10 times, and activated carbon on coal-based impregnated granules. Compared with the adsorption capacity of about 40% was shown. The present invention manufactured by the above method is capable of excellent performance even when used as a food waste processor filter, which has been turned into a water-treatment complex due to lack of performance in general homes such as food waste incineration facilities or food resource recycling facilities. I will do it.

본 발명은 H3PO4의 산성 수용액과 KOH의 알카리성 수용액 그리고 석탄계 분말활성탄소와 야자각 분말활성탄소를 혼합하여 재성형한 복합 조립활성탄소로 구성되었으며 이 복합 조립활성탄소를 건조할 수 있는 건조기(115±5℃)와 400℃이하에서의 탄화 및 900℃∼1,100℃ 사이에서 활성화할 수 있는 시험로를 이용하였다. 실물 시험을 위하여 일반 가정 및 음식점에서 가장 많이 배출되어지고, 악취가스가 많이 발생되는 대표적인 음식물 10종을 선별하여 배합비율에 맞춰 혼합 후, 일정시간 부패시킨 시료를 사용하였다. 공동 실험을 진행한 (주)에코포유社의 음식물 쓰레기 처리기인 '이브(EF-20)'로 파쇄 및 건조하여 처리시 발생되는 악취가스량 및 농도와 본 발명품을 필터로 장착하여 처리시의 배출되는 잔류 악취가스를 측정하여 제거능력을 실험하였다.The present invention consists of an acidic aqueous solution of H 3 PO 4 , an alkaline aqueous solution of KOH, and a composite granulated activated carbon re-formed by mixing coal-based powdered activated carbon and coconut shell powdered activated carbon, and a dryer capable of drying the composite granulated activated carbon ( 115 ± 5 ° C.) and carbonization under 400 ° C. and a test furnace which can be activated between 900 ° C. and 1,100 ° C. were used. For the real test, 10 kinds of typical foods that are most discharged from homes and restaurants and generate bad odor gas were selected and mixed according to the blending ratio, and then the samples were decayed for a certain time. The odor (EF-20), a food waste disposal system of Ecopoyu Co., Ltd., which conducted a joint experiment, was crushed and dried, and the amount of odor gas generated during treatment and the present invention were installed as a filter and discharged during treatment. Residual odor gas was measured and the removal capacity was tested.

악취가스 흡착능력 실험의 보다 정확한 비교를 위하여 순수 표준가스인 농도 501ppm의 Trimethyl amine gas((CH3)3N, N2 Balance)와, U자관, 유량계, 등의 장치 구성품과 각 가스에 대해 ppm 단위의 저농도를 검출할 수 있는 검지관을 이용하였다.For more accurate comparison of odor gas adsorption capacity test, 501ppm Trimethyl amine gas ((CH 3 ) 3 N, N 2 Balance), U-pipe, flow meter, etc. The detection tube which can detect the low density | concentration of a unit was used.

[ 실시예 1 ]Example 1

시제품제조를 위해서 20Å의 Mirco pore가 위주인 야자각 활성탄소와 20∼100Å의 미세공과 중간세공이 고루 발달한 석탄계 분말활성탄소를 여러 비율로 혼합하였고(표 1의 세공형상 비교 참조), (주)거평에서 생산되는 coal tar pitch(230 ∼ 300℃에서의 유분)를 중량비 0.4 ∼ 0.55만큼 점결제로 사용하였으며 조립탄의 기계적 강도를 증가시키고자 이들을 200mesh이하로 충분히 미분쇄 하였다. 기타 부재료로는 산화제 역할을 하는 K2CO3, CaCO3(1.6Wt%) 및 Bunker-Oil 또는 Creosote Oil(방부제, 5.1Wt%)과 Lignin Sodium Sulfonate(분산제, 1.9Wt%) 그리고 조립수(12.3Wt%)를 사용하여 원료물질간의 응집을 용이하게 하였다.For the production of prototypes, Coconut activated carbon with 20Å of Mirco pore, and coal powder activated carbon with 20 ~ 100Å of fine pores and medium pores were mixed in various ratios (see comparison of pore shape in Table 1) . Coal tar pitch (oil content at 230-300 ℃) was used as caking agent by weight ratio 0.4-0.55, and they were pulverized sufficiently to 200mesh or less to increase the mechanical strength of the granulated coal. Other components include K 2 CO 3 , CaCO 3 (1.6Wt%) and Bunker-Oil or Creosote Oil (preservative, 5.1Wt%) and Lignin Sodium Sulfonate (dispersant, 1.9Wt%) and granulated water (12.3) Wt%) was used to facilitate aggregation between raw materials.

성형된 복합 조립활성탄소를 Dry oven에서 115 ± 5℃로 4시간 건조한 뒤 질소분위기의 활성화로에서 450℃까지 5℃/min 의 가열 속도로 승온 후 2시간동안 탄화하였고, 같은 가열속도로 850℃까지 2hr ∼ 4hr 화학활성화(KOH)후 냉각하였다.The molded composite granulated activated carbon was dried at 115 ± 5 ° C. for 4 hours in a dry oven, and then carbonized for 2 hours at a heating rate of 5 ° C./min from 450 ° C. to 450 ° C. in an activated nitrogen atmosphere. It was cooled after 2hr to 4hr chemical activation (KOH).

그 결과, 야자각 분말활성탄소의 비표면적인 1,355㎡/gAC와 석탄 분말활성탄소의 1,527㎡/gAC, 그의 평균인 1,441㎡/gAC보다 복합 조립 활성탄소로 재성형시 1,637㎡/gAC로 13.6% 증가하였다.As a result, the specific surface area of the coconut shell powder activated carbon was 1,355 m 2 / gAC, the coal powder activated carbon 1,527 m 2 / gAC, and an average of 1,441 m 2 / g AC, which was increased by 1,637 m 2 / gAC to 1,637 m 2 / gAC when reformed with the composite granular activated carbon.

표 1. 야자각 활성탄소와 석탄 활성탄소의 세공형상비교Table 1. Pore shape comparison of coconut shell activated carbon and coal activated carbon

Figure 112008504190900-PAT00001
Figure 112008504190900-PAT00001

[실시예 2]Example 2

기존의 음식물 쓰레기 처리시 사용되어지던 활성탄소들은 흡착제(AC) 표면과 흡착질(간단한 분자가스)간의 Van Der Waals 및 Coulomb Force (흡착열 10∼15kcal/ mol)에 의해 일시적인 capture상태인 '물리적 흡착' 위주의 사용을 하여왔으나, 이는 환경이나 온도변화에 의해서도 쉽게 탈착 및 재생이 될 수 있기 때문에 가역적이며, 극성분자인 악취가스들의 효과적인 제거가 힘들다. 반면에, 여러 화학약품의 첨착에 의해 전자이동을 수반하며 흡착열이 10∼30 kcal/mol인 비가역적 2차 화학 반응 즉, '화학적 흡착' 까지도 가능한 복합 첨착 조립 활성탄소를 제조하였다. (표 2 참조) Activated carbons used in conventional food waste treatment are based on 'physical adsorption', which is temporarily captured by Van Der Waals and Coulomb Force (heat of adsorption 10-15 kcal / mol) between adsorbent (AC) surface and adsorbate (simple molecular gas). Although it has been used, since it can be easily desorbed and regenerated even by environment or temperature changes, it is difficult to effectively remove the odorous gases that are reversible and polar molecules. On the other hand, complex impregnated activated carbon was prepared by irreversible secondary chemical reactions involving electron transfer and heat of adsorption of 10 to 30 kcal / mol, that is, 'chemical adsorption' by the deposition of various chemicals. (See Table 2)

산성가스제거용 복합 첨착 조립 활성탄소 제조에는 반대 극성인 강염기성의 가성소다(NaOH)와 수산화칼륨(KOH)을 수용액으로 하여 각각 5∼10wt%의 비율로 약 3시간 함침한 후, Dry oven에서 80 ± 5℃로 건조시켜 제조하였다. 이 발명품의 pH는 활성탄소 시험방법인 'KS M 1802'로 측정결과 10.0 이상으로 균일하게 측정되었 다. 이 발명품으로 산성가스인 메틸메르캅탄(CH3SH)의 제거실험을 하였고, 필터 통과 전·후에 검출되는 악취 가스농도를 준비된 "Gastech detector"과 검지관 No.71(측정가능범위인 0.1ppm ∼ 140ppm)로 측정결과, 전혀 검출되지 않았다.In the production of composite impregnated activated carbon for acid gas removal, impregnated with an aqueous solution of strong basic caustic soda (NaOH) and potassium hydroxide (KOH) as an aqueous solution at a ratio of 5 to 10 wt% for about 3 hours, and then dried in an 80 Prepared by drying to ± 5 ° C. The pH of this invention was uniformly measured to be more than 10.0 by 'KS M 1802', an activated carbon test method. This invention product was tested for the removal of acidic gas, methyl mercaptan (CH 3 SH), and the concentration of odor gas detected before and after the filter was prepared "Gastech detector" and detection tube No. 71 (measurable range 0.1ppm to 140 ppm) was not detected at all.

염기성가스제거용 복합 첨착 조립 활성탄소 제조에는 반대 극성인 강산성의 염산(HCl)과 인산(H3PO4)을 각각 5∼10v/v% 비율의 수용액에 약 3시간 함침한 후, Dry oven에서 115 ± 5℃로 건조시켜 제조하였으며, 같은 방법으로 측정한 결과 pH는 3.0 미만으로 균일하게 측정되었다. 염기성가스 제거실험시 암모니아(NH3)는 검지관 No.3L(측정가능범위 : 0.2∼60ppm), 트리메틸아민((CH3)3N)에는 검지관 No.180(0.35ppm∼70ppm)로 측정결과, 전혀 검출되지 않았다.In the production of the composite impregnated activated carbon for basic gas removal, impregnated with an opposite polarity of hydrochloric acid (HCl) and phosphoric acid (H 3 PO 4 ) in an aqueous solution of 5 to 10v / v% for about 3 hours, followed by drying in a dry oven. It was prepared by drying at 115 ± 5 ℃, the pH was uniformly measured to less than 3.0 as a result of the same method. In the basic gas removal experiment, ammonia (NH 3 ) was measured using detection tube No. 3L (measurable range: 0.2 to 60 ppm) and trimethylamine ((CH 3 ) 3 N) with detection tube No. 180 (0.35 ppm to 70 ppm). As a result, it was not detected at all.

표 2. 일반 활성탄소와 첨착 활성탄소의 비교Table 2. Comparison of General Activated Carbon and Impregnated Activated Carbon

Figure 112008504190900-PAT00002
Figure 112008504190900-PAT00002

[실시예 3]Example 3

환경부에서 고시한 내용에 따라 음식물 쓰레기 발생량 비율이 높고 악취가스가 많이 발생되는 대표적인 음식물 10종을 선별하여 배합비율에 맞춰 혼합 후, 일정시간 부패시킨 음식물들을 표준시료로 사용하였다. 이 표준시료를 (주)에코포유社의 음식물 쓰레기 처리기인 '이브(EF-20)'로 파쇄 및 건조하여 처리시 발생되는 메틸메르캅탄(CH3SH)의 각 시간대별 가스농도 및 총 발생량을 측정하여, 처리시간으로 나눠 평균 가스농도를 측정하였다. 또한, 필터에서 배출되는 잔류 악취가스를 측정하여 효과적인 제거가 가능함을 실험하였으며, 각 실험 차수별로 표준시료의 처리량과 상온(25℃)에서 부패진행시간의 변화를 주며 실험을 하였다.(표 3 참조)According to the information announced by the Ministry of Environment, 10 kinds of representative foods with high food waste generation rate and high odor gas were selected and mixed according to the mixing ratio, and the decayed foods were used as standard samples for a certain time. This standard sample is crushed and dried by Ecopoyu Co., Ltd., Food Waste Disposal Machine 'EF-20' to determine the gas concentration and total amount of methyl mercaptan (CH 3 SH) produced during processing. The average gas concentration was measured by dividing by the treatment time. In addition, it was tested that residual odor gas discharged from the filter could be effectively removed, and the experiments were conducted with varying the throughput of standard sample and the decay progress time at room temperature (25 ℃) for each experiment order. )

처리시 시간대별 가스 발생농도는 건조 초기인 30분을 기점으로 Peak에 이른 뒤 급격히 감소하였고, 발생량도 염기성 가스에 비하여 작았다. 이때 염기성 가스와는 반대로 부패가 진행될수록 메틸메르캅탄(CH3SH)의 가스 발생량은 감소하는 결과를 보였고, 본 발명품을 충진한 필터를 통과 후의 가스 검출량은 "Zero ppm"이었다.(표 3, 도면 2 참조)During the treatment, the gas generation concentration by time period decreased rapidly after reaching the peak at the beginning of 30 minutes of drying, and the generation amount was also smaller than that of the basic gas. At this time, the gas generation amount of methyl mercaptan (CH 3 SH) decreased as the decay progressed, as opposed to the basic gas, and the gas detection amount after passing the filter filled with the present invention was "Zero ppm" (Table 3, See drawing 2)

표 3. 실험 차수별 메틸메르캅탄 가스의 발생량 및 필터 통과 전·후의 농도Table 3. The amount of methyl mercaptan gas generated by the experimental order and the concentration before and after the filter pass

Figure 112008504190900-PAT00003
Figure 112008504190900-PAT00003

[실시예 4]Example 4

[실시예 3]에서 음식물 쓰레기 표준시료의 조건에 따른 메틸메르캅탄(CH3SH) gas의 발생량 및 필터 통과 전·후의 농도를 측정한 방법과 동일하게 암모니아(NH3) gas를 검지관 No.3L(측정가능범위 : 0.2∼60ppm)으로 측정한 결과, 처리시 시간대별 가스 발생농도는 건조 중·후기인 130분∼180분을 기점으로 Peak에 이른 뒤 급격히 감소하였다. 부패가 진행될수록 가스 발생량 및 농도는 급격히 증가하였으나, 필터 통과 후의 가스 검출량은 앞의 경우와 같이 "Zero ppm"을 나타내었다.(표 4, 도면 3 참조)In Example 3, the ammonia (NH 3 ) gas was detected in the same manner as the method of measuring the amount of methyl mercaptan (CH 3 SH) gas generated according to the food waste standard sample and the concentration before and after passing through the filter. As a result of measuring by 3L (measurable range: 0.2 ~ 60ppm), the gas generation concentration by treatment time decreased rapidly after reaching peak at 130 ~ 180 minutes during drying. As the decay progressed, the gas generation amount and concentration rapidly increased, but the gas detection amount after passing the filter showed "Zero ppm" as in the previous case (see Table 4 and Figure 3).

표 4. 실험 차수별 암모니아 가스의 발생량 및 필터 통과 전·후의 농도Table 4. Amount of Ammonia Gas Generated by Experimental Order and Concentration Before and After Filter Passing

Figure 112008504190900-PAT00004
Figure 112008504190900-PAT00004

[실시예 5]Example 5

앞선 [실시예 3], [실시예 4]와 같은 방법으로 트리메틸아민((CH3)3N) gas를 검지관 No.180(측정가능범위 : 0.2∼60ppm)으로 측정한 결과, 같은 염기성가스인 암모니아(NH3) gas와 마찬가지로 처리시 시간대별 가스 발생농도는 건조 중·후기인 150분∼180분을 기점으로 Peak에 이른 뒤 급격히 감소하였다. 부패가 진행될수록 가스 발생량 및 농도는 급격히 증가하였으나, 필터 통과 후의 가스 검출량은 앞의 경우와 같이 "Zero ppm"을 나타내었다.(표 5, 도면 3 참조)Trimethylamine ((CH 3 ) 3 N) gas was measured with detection tube No. 180 (measurable range: 0.2 to 60 ppm) in the same manner as in [Example 3] and [Example 4]. As with phosphorus ammonia (NH 3 ) gas, the concentration of gas generated during treatment decreased rapidly after peaking at 150-180 minutes during drying. As the decay progressed, the gas generation amount and concentration rapidly increased, but the gas detection amount after passing the filter showed "Zero ppm" as in the previous case (see Table 5 and Figure 3).

표 5. 실험 차수별 트리메틸아민 가스의 발생량 및 필터 통과 전·후의 농도Table 5. Trimethylamine Gas Generated by Experimental Order and Concentration Before and After Filter Passing

Figure 112008504190900-PAT00005
Figure 112008504190900-PAT00005

[실시예 6]Example 6

악취가스 흡착능력을 비교하기 위하여 가장 많은 발생량과 높은 발생 가스농도를 보인 염기성가스인 트리메틸아민((CH3)3N) 순수 표준가스(501ppm)를 사용하였고, 비교대상인 석탄계 첨착 조립활성탄소와 본 발명품인 복합 첨착 조립활성탄소는 [실시예 2]에서 제조한 인산(H3PO4) 5v/v% 첨착시킨 시제품을 사용하여 실험하였다. U-자관(반지름 1.8cm)에 각 시제품 9g(건조기준)씩을 충전하고 순수 표준가스(501ppm)를 1.14ℓ/min의 유량으로 통과시켜 흡착하게 하고 필터 입, 출구 이외의 기밀을 유지하여 유실되는 가스가 없도록 한다. 필터의 출구에서 시간대별로 "Gastech detector" No.180으로 검출하여 투입 가스농도인 501ppm의 1/10(50.1ppm)인 파과시간이 나타나는 시점에서 실험을 종료한다. 흡착이 이루어진 시간과 투입된 표준가스의 농도로 각 시제품이 흡착한 악취가스량을 각 활성탄 1g당 (CH3)3N 흡 착량 (g-(CH3)3N/g-AC)으로 계산한다.To compare the odor gas adsorption capacity, trimethylamine ((CH 3 ) 3 N) pure standard gas (501 ppm), which is the basic gas having the highest amount and the highest gas concentration, was used. Composite impregnated activated carbon as an invention was tested using a prototype impregnated with 5v / v% phosphoric acid (H 3 PO 4 ) prepared in [Example 2]. Fill the U-tube (radius 1.8cm) with 9g of each prototype (drying standard), and pass through the pure standard gas (501ppm) at a flow rate of 1.14ℓ / min to adsorb it, and keep the airtight except the filter inlet and outlet. Make sure there is no gas. The experiment is terminated at the time when the breakthrough time of 1/10 (50.1ppm) of the input gas concentration of 501ppm is detected by detecting with the gas detector No.180 at the time of the filter exit. The amount of odor gas adsorbed by each prototype is calculated as the amount of (CH 3 ) 3 N adsorption (g- (CH 3 ) 3 N / g-AC) per 1g of activated carbon, based on the time of adsorption and the concentration of standard gas.

그 결과, 복합 첨착 조립상 활성탄소의 파과점은 630min로 석탄계 첨착 조립활성탄소의 450min에 비해 약 40%의 높은 흡착성능을 보였다.As a result, the breakthrough point of the activated carbon in the composite-impregnated granules was 630min, which was about 40% higher than the 450min of the coal-based impregnated activated carbon.

[실시예 7]Example 7

[실시예 6]의 실험방법과 동일하게 복합 첨착 조립상 활성탄소를 대상으로 인산(H3PO4) 첨착농도를 10v/v%로 함침시킨 시제품을 사용하여 트리메틸아민((CH3)3N) 순수 표준가스(501ppm)의 흡착능력 비교실험을 하였다.Trimethylamine ((CH 3 ) 3 N) using a prototype impregnated with phosphoric acid (H 3 PO 4 ) impregnation concentration of 10 v / v% to the activated carbon in the composite impregnated granules in the same manner as in Experiment 6 The adsorption capacity of pure standard gas (501ppm) was compared.

그 결과, 파과점이 470min로 오히려 인산(H3PO4) 5v/v%인 복합 첨착 조립상 활성탄소가 34% 높은 흡착성능을 보였다.As a result, the activated carbon having a breakthrough point of 470 min rather than phosphorus (H 3 PO 4 ) 5v / v% showed 34% higher adsorption performance.

본 발명으로 일반 가정의 음식물 처리에서부터 대량의 음식물 처리시에도 특정 단일 악취가스와 다양한 복합 악취가스의 제거에 모두 효과적으로 사용될 수 있으며, 처리된 음식물 쓰레기는 퇴비등으로의 자원화도 가능하다.The present invention can be effectively used for the removal of a specific single odor gas and a variety of complex odor gas even when processing a large amount of food from the general household food processing, the processed food waste is also possible to resources such as compost.

도 1은 복합 첨착 조립상 활성탄소의 제조공정 과정을 나타낸 도면도.1 is a view showing a manufacturing process of the composite impregnated granular activated carbon.

도 2는 실물실험시 여러 조건에서 시간에 따른 메틸메르캅탄 가스의 발생농도.2 is a generation concentration of methyl mercaptan gas with time at various conditions in the real experiment.

도 3은 실물실험시 여러 조건에서 시간에 따른 암모니아 가스의 발생농도.3 is a generation concentration of ammonia gas with time at various conditions in the real experiment.

도 4는 실물실험시 여러 조건에서 시간에 따른 트리메틸아민 가스의 발생농도.4 is a generation concentration of trimethylamine gas with time at various conditions in the real experiment.

Claims (1)

복합 조립상 활성탄소를 제조함에 있어서,In preparing the composite granular activated carbon, 야자각 활성탄소와 석탄계 활성탄소를 혼합한 다음 Coal tar pitch를 점결제로, 부재료로는 CaCO3(1.6Wt%) 및 Bunker-Oil 또는 Creosote Oil(방부제,5.1Wt%)과 Lignin Sodium Sulfonate(분산제, 1.9Wt%) 그리고 조립수(12.3Wt%)의 혼합비로 혼합 및 조립상 활성탄소로 성형하는 단계,Coconut activated carbon and coal-based activated carbon were mixed, and then coal tar pitch was used as caking additive, and as a subsidiary material, CaCO 3 (1.6Wt%) and Bunker-Oil or Creosote Oil (preservative, 5.1Wt%) and Lignin Sodium Sulfonate (dispersant) , 1.9 Wt%) and granulated water (12.3 Wt%) at a mixing ratio to form the activated carbon in the granulation phase, 상기 성형한 복합 조립상 활성탄소를 질소분위기의 활성화로를 이용하여 450℃에서 2시간동안의 탄화 및 850℃에서 2hr ∼ 4hr 동안의 화학활성화하는 단계,Carbonization of the molded composite granular activated carbon using an activation atmosphere of a nitrogen atmosphere at 450 ° C. for 2 hours and chemical activation at 850 ° C. for 2hr to 4hr, 상기 단계 후 인산(H3PO4) 5v/v% 수용액에 함침시킨 염기성가스제거용 복합 첨착 조립상 활성탄소와 수산화칼륨(KOH) 5Wt% 수용액에 함침시킨 산성가스제거용 복합 첨착 조립상 활성탄소를 제조하는 단계After the above step, the composite impregnated granular activated carbon for basic gas removal impregnated with 5v / v% aqueous solution of phosphoric acid (H 3 PO 4 ) and the complex impregnated granular activated carbon for acid gas removal impregnated in 5 Wt% aqueous solution of potassium hydroxide (KOH) were prepared. Steps to
KR1020080080241A 2008-08-18 2008-08-18 Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste KR20100021681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080080241A KR20100021681A (en) 2008-08-18 2008-08-18 Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080080241A KR20100021681A (en) 2008-08-18 2008-08-18 Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste

Publications (1)

Publication Number Publication Date
KR20100021681A true KR20100021681A (en) 2010-02-26

Family

ID=42091226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080080241A KR20100021681A (en) 2008-08-18 2008-08-18 Manufacture technicque of chemical impregnated pelletized activated carbon for the removal of odorous gases from food waste

Country Status (1)

Country Link
KR (1) KR20100021681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419474B1 (en) * 2012-10-12 2014-07-16 재단법인 포항산업과학연구원 Pore size controlled activated carbon and method of manufacturing the same
KR20180058239A (en) 2016-11-23 2018-06-01 주식회사 유기산업 Method for producing activated carbon for filter using biomass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419474B1 (en) * 2012-10-12 2014-07-16 재단법인 포항산업과학연구원 Pore size controlled activated carbon and method of manufacturing the same
KR20180058239A (en) 2016-11-23 2018-06-01 주식회사 유기산업 Method for producing activated carbon for filter using biomass

Similar Documents

Publication Publication Date Title
Shi et al. High-efficiency removal of Cr (VI) by modified biochar derived from glue residue
Qu et al. Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb (II) scavenging from water: Characterization, kinetics, isotherms and mechanisms
Zhang et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere
Gebreegziabher et al. Adsorption of H2S, NH3 and TMA from indoor air using porous corncob activated carbon: Isotherm and kinetics study
Luo et al. Fast removal of Co (ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism
Suo et al. A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal
Xu et al. New double network hydrogel adsorbent: Highly efficient removal of Cd (II) and Mn (II) ions in aqueous solution
Pinto et al. Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution
Shi et al. Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions
Mondal et al. Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water
Yao et al. Defluoridation of water using neodymium-modified chitosan
Zhang et al. Ultra-efficient sorption of Cu2+ and Pb2+ ions by light biochar derived from Medulla tetrapanacis
Altun et al. Removal of Cr (VI) from aqueous solution by pyrolytic charcoals
Runtti et al. Sulphate removal from water by carbon residue from biomass gasification: Effect of chemical modification methods on sulphate removal efficiency
CN103028377B (en) Preparation method of coal-based composite chelating agent
López-Velandia et al. Adsorption of volatile carboxylic acids on activated carbon synthesized from watermelon shells
Baseri et al. Adsorption of reactive dye by a novel activated carbon prepared from Thevetia peruviana
Ai et al. Hexavalent chromium (Cr (VI)) removal by ball-milled iron-sulfur@ biochar based on P-recovery: Enhancement effect and synergy mechanism
Qu et al. Microwave-assisted synthesis of polyethylenimine-grafted nanocellulose with ultra-high adsorption capacity for lead and phosphate scavenging from water
Santhi et al. Adsorption of Rhodamine B from an aqueous solution: kinetic, equilibrium and thermodynamic studies
KR20220082365A (en) Phosphoric acid modified biochar adsorbent and the manufacturing method thereof
DEMİRAK et al. Removal of ammonium from water by pine cone powder as biosorbent
Yu et al. Single and bicomponent anionic dyes adsorption equilibrium studies on magnolia-leaf-based porous carbons
Yang et al. The removal of uranium (VI) from aqueous solution by the anaerobically digested sewage sludge with hydrothermal pretreatment
Frišták et al. The response of artificial aging to sorption properties of biochar for potentially toxic heavy metals

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application