KR20100021265A - Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution - Google Patents

Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution Download PDF

Info

Publication number
KR20100021265A
KR20100021265A KR1020080080098A KR20080080098A KR20100021265A KR 20100021265 A KR20100021265 A KR 20100021265A KR 1020080080098 A KR1020080080098 A KR 1020080080098A KR 20080080098 A KR20080080098 A KR 20080080098A KR 20100021265 A KR20100021265 A KR 20100021265A
Authority
KR
South Korea
Prior art keywords
ion exchange
membrane
solution
exchange resin
acid
Prior art date
Application number
KR1020080080098A
Other languages
Korean (ko)
Other versions
KR101014000B1 (en
Inventor
황택성
강경석
박승욱
Original Assignee
충남대학교산학협력단
(주) 시온텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단, (주) 시온텍 filed Critical 충남대학교산학협력단
Priority to KR1020080080098A priority Critical patent/KR101014000B1/en
Publication of KR20100021265A publication Critical patent/KR20100021265A/en
Application granted granted Critical
Publication of KR101014000B1 publication Critical patent/KR101014000B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Abstract

PURPOSE: A composition for ion exchange liquid for electrode using polystyrene resin or derivates and a manufacturing method of an ion exchange film including the same are provided to reduce manufacturing costs of the ion exchange film and to replace the expensive ion exchange film. CONSTITUTION: A manufacturing method of an ion exchange film for CDI includes the following steps: manufacturing ion exchange liquid; coating the ion exchange liquid on a mesh net; post-processing the coated ion exchange film; and drying the ion exchange film. The ion exchange film adds a positive ion exchange group with mixed acid of sulfuric acid or chlorosulfonic acid / sulfuric acid on polysterene-based resin.

Description

폴리스티렌 수지 또는 그 유도체들을 이용한 전극용 이온교환용액 조성물 제조 및 이를 포함한 이온교환막의 제조방법{Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution}Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution}

본 발명은 폴리스틸렌(이하 PS라 칭함)을 원료로 CDI 전극용 고효율 이온교환막의 제조에 관한 것으로, 보다 상세하게는 지하수 및 간이급수내의 칼슘, 마그네슘 및 질산성질소와 같은 이온성 물질을 제거할 수 있는 전극용 이온교환용액과 그를 이용한 막을 제조하는 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of high efficiency ion exchange membranes for CDI electrodes using polystyrene (hereinafter referred to as PS), and more particularly to the removal of ionic substances such as calcium, magnesium and nitrate in groundwater and simplified feed water. The present invention relates to an ion exchange solution for electrodes and a method for producing a membrane using the same.

현재 사용되고 있는 이온교환막은 대부분 내열성이 우수한 불소계 고분자 수지에 술폰산기 등의 양이온성 관능기를 도입한 형태이며, 미국의 듀퐁, 다우케미칼, 일본의 아사히 케미칼, 도쿠야마 글래스 등에서 제조하여 상용화 하고있다. 또한 폴리스티렌, 폴리벤즈이미다졸, 폴리포스페이젠 등에 양이온 교환기를 도입한 형태에 PEEK, 폴리설폰, 폴리이미드, 폴리에테르이미다졸, 및 폴리페닐렌 설파이드술폰과 같이 기계적 물성이 우수한 수지를 혼합하여 양이온교환막의 기재로 사용하고 있다. Most of the ion exchange membranes currently used are those in which a cationic functional group such as sulfonic acid group is introduced into a fluorine-based polymer resin having excellent heat resistance, and are manufactured and commercialized by DuPont, Dow Chemical, Asahi Chemical of Japan, and Tokuyama Glass. In addition, a cation exchanger is introduced into polystyrene, polybenzimidazole, polyphosphazene, and the like to form a cation by mixing a resin having excellent mechanical properties such as PEEK, polysulfone, polyimide, polyetherimidazole, and polyphenylene sulfide sulfone. It is used as a substrate for the exchange membrane.

양이온 교환 막의 제조방법에는 고분자의 중합법인 벌크중합, 라텍스법, 페이스트법이 주로 이용되고 있다. 벌크중합법은 가장 일반적인 방법 중의 하나로 스티렌과 디비닐벤젠을 공중합시켜 제조하는 방법이 있지만 상기 단량체들은 취성이 강하여 가소제등을 사용해야하는 단점을 지니고 있고 또한 이를 이용한 박막제조를 위해서는 특수한 도구를 사용해야 하므로 제조원가가 높은 단점을 지니고 있다.Bulk polymerization, latex, and paste methods, which are polymer polymerization methods, are mainly used for the preparation of the cation exchange membrane. The bulk polymerization method is one of the most common methods of copolymerizing styrene and divinylbenzene. However, the monomers are brittle and have a disadvantage of using plasticizers. In addition, a special tool is required for manufacturing thin films using the same. Has a high disadvantage.

따라서 이러한 단점을 해결하는 방법으로 라텍스법이 사용되고 있는데 라텍스 법은 고무성질이 있는 스티렌-부타디엔 공중합체의 라텍스를 지지체에 침적시켜 건조한 후, 산화가교법을 이용하여 막을 제조하는 방법으로서, 이 방법은 라텍스의 소수특성으로 인한 물과의 친화력이 떨어져 성능이 저하됨은 물론 잔존 첨가물에 의한 물성저하와 이로 인한 전기적 성질이 저하되는 단점을 지니고 있다.Therefore, the latex method is used as a method to solve the above disadvantages. The latex method is a method of preparing a membrane by oxidative crosslinking after depositing a latex of a rubbery styrene-butadiene copolymer on a support and drying it. Due to the hydrophobicity of the latex, the affinity with water is reduced, and the performance is deteriorated, and the physical properties caused by the remaining additives are deteriorated and the electrical properties are deteriorated.

또 다른 방법으로는 고분자 분말에 가교제등 첨가제를 배합하여 페이스트를 제조한 후에 이를 PVC와 같은 플라스틱 천에 함침시킨 후, 관능화 방법을 통해 이온교환막을 제조하고 있으나 이들 방법은 기계적물성은 증가하나 막의 표면이 거칠고 기계적 강도의 증가를 위한 많은 첨가제가 필요하여 제조공정이 복잡하고 막의 제조원가가 높은 단점을 지니고 있다.In another method, a paste is prepared by mixing an additive such as a crosslinking agent with a polymer powder, and then impregnating it into a plastic cloth such as PVC, and then producing an ion exchange membrane by a functionalization method. The surface is rough and many additives for increasing the mechanical strength are required, which leads to a complicated manufacturing process and high manufacturing cost of the film.

따라서 이러한 기존의 막제조의 단점을 개선하기 위한 새로운 방법이 필요하다. Therefore, there is a need for a new method to remedy the disadvantages of conventional filmmaking.

본 발명에서는 지금까지 알려진 막 제조방법에 대한 단점을 개선하기 위하여 용해가 쉽고, 관능기의 도입이 가능한 전해전극용 이온교환 막을 제조하기 위하여 스티렌수지 및 그의 유도체를 이용한 이온교환수지의 제조및 이를 이용한 용액도포 방법에 의한 이온교환 막의 제조방법을 제공하는 것이다.In the present invention, to prepare an ion exchange resin using styrene resins and derivatives thereof and a solution using the same to prepare ion exchange membranes for electrolytic electrodes that are easy to dissolve and to introduce functional groups in order to improve the disadvantages of membrane production methods known to date. It is to provide a method for producing an ion exchange membrane by a coating method.

본 발명에 따른 이온교환수지의 제조방법은 간단하고 용이하게 제조할 수 있는 방법을 제공하는 것이고 또한 그 막의 제조방법으로서 이온교환 용액 도포법은 기존 이온교환 막의 제조방법에서 채택하고 있는 페이스트화 단계, 중합단계 등을 거치지 않고, 침적 및, 팽윤공정이 불필요하며, 가교제 등 막제조를 위한 첨가제가 필요 없다. The method for producing an ion exchange resin according to the present invention provides a method which can be easily and easily prepared, and as a method for preparing the membrane, an ion exchange solution coating method is a paste forming step adopted in the conventional method for producing an ion exchange membrane, Without going through a polymerization step or the like, deposition and swelling processes are unnecessary, and additives for film production such as a crosslinking agent are not necessary.

또한 막 제조를 위하여 폴리스티렌 수지는 물론 폐 EPS와 같은 물질을 원료로 재활용할 수 있는 장점이 있으며, 상용화된 고분자를 직접 용매에 용해시켜 사용하기 때문에 공정이 매우 간편하며 관능화 등 반응시간이 짧아 제조단가가 매우 저렴한 특성을 지니고 있다. In addition, polystyrene resins, as well as waste EPS, can be recycled as raw materials for the production of membranes, and since the commercialized polymers are directly dissolved in a solvent, the process is very simple and the reaction time such as functionalization is short. The unit price is very inexpensive.

한편 본 발명의 특징은 ESP나 폴리스티렌(이하 PS라 칭함)을 용해시켜 용액을 제조후 관능기르 도입하는 것이며 그 제조에 의해 물성이 우수하고 안정한 플라스틱 지지체에 닥터블레이드와 같은 장치를 이용하여 직접 캐스팅할 수 있기 때문에 용도에 맞는 두께로 표면이 균질한 막의 제조가 가능하다. On the other hand, the characteristics of the present invention is to dissolve ESP or polystyrene (hereinafter referred to as PS) to prepare a solution, and then to introduce functional groups, which can be cast directly using a device such as doctor blade on a stable and stable plastic support. Therefore, it is possible to produce a film having a uniform surface with a thickness suitable for the purpose.

또한 이온교환 코팅용액을 제조 사용함으로써, 다양한 형태와 크기의 막 제 조가 가능하고, 용액을 다른 물질과 혼합하여 슬러리 상으로 성형이 가능하여 기능성 복합전극 소재의 제조에 응용가능하다. 그리고 기존 이온교환막의 단점인 막내 기포를 반복 캐스팅함으로써 제거가 용이하며 막의 제조 시 용액상태로 관능화 하여 막전체에 관능기가 고루 분포되어 이온교환 성능이 높은 특성을 지니고 있고, PS의 기계적 강도가 취약한 성질을 우수한 물성의 지지체를 사용함으로써 인장강도 등 기계적 물성이 우수한 막의 제조가 가능하다.In addition, by preparing and using an ion exchange coating solution, it is possible to manufacture membranes of various shapes and sizes, and the solution can be mixed with other materials to be molded into a slurry to be applied to the production of functional composite electrode materials. And it is easy to remove by repeatedly casting the bubbles in the membrane, which is a disadvantage of the existing ion exchange membrane, and functionalized evenly in the solution state when manufacturing the membrane, so that the functional groups are evenly distributed throughout the membrane, and the ion exchange performance is high, and the mechanical strength of PS is weak. By using a support of physical properties with excellent properties, it is possible to produce a film having excellent mechanical properties such as tensile strength.

따라서 본 발명에서는 EPS, PS등 관련 고분자물질을 용매에 용해시켜 막 제조용 이온교환 수지를 제공하고 이를 이를 이용한 고도 선택성 전극용 이온교환 막을 제조하는 방법을 제공하고자 한다.Accordingly, the present invention provides an ion exchange resin for membrane production by dissolving related polymer materials such as EPS and PS in a solvent, and a method for manufacturing an ion exchange membrane for highly selective electrodes using the same.

상기와 같은 발명의 목적을 달성하기 위한 본 발명은, 이온성교환막을 제조하는 새로운 방법을 제공하는 것으로 양이온교환막과 음이온교환막을 제조하는 방법에 관한 것이다. The present invention for achieving the above object of the present invention relates to a method for producing a cation exchange membrane and an anion exchange membrane to provide a new method for producing an ion exchange membrane.

양이온교환막의 제조에서는, 이온교환 막의 원료로서 EPS 또는 PS, EPS 페기물 등의 PS수지를 1,2-디클로로에탄(이하 DC라 칭함), 클로로포름 등의 용매에 대하여 5∼30 w/v%로 상기 고분자중 한가지 또는 2가지 이상을 선택하여 용해시켜 이온교환 용액을 제조한다. In the production of cation exchange membranes, PS resins such as EPS or PS, EPS wastes, etc. as raw materials for the ion exchange membranes are 5 to 30 w / v% based on solvents such as 1,2-dichloroethane (hereinafter referred to as DC) and chloroform. One or two or more of the polymers are selected and dissolved to prepare an ion exchange solution.

이어서, 술폰화촉매로서 실버술페이트 또는 아세틸술페이트를 PS계 수지에 대하여 0.005~0.01몰%로 투입하여 혼합하여 고분자용액을 제조한 후, 이어서 양이온교환막을 제조하기 위하여 고분자 용액에 황산을 용매에 대해 5∼30 vol%로 넣은 후 반응온도를 상온부터 80℃ 까지 변화시키고 교반하면서 술폰화 반응을 진행한다. 본 발명에서는 설폰화반응과 동시에 일부의 가교반응을 수행하는 경우에는 클로로술폰산을 추가로 첨가할 수 있는데, 이때 클로로술폰산/황산의 비를 부피비로 1/10∼1/100으로 조절하여 적가한 후 반응온도를 0℃∼50℃ 까지 변화시켜 술폰화 양이온교환 용액을 제조하는 방법을 제공한다. 황산에 클로로 술폰산을 첨가하는 경우 더욱 좋게는 1∼10 vol% 추가하는 것이 이온교환용액의 기능을 증가시키며 양이온교환기를 포함하여 벤젠고리 간에 부분적 가교를 통해 막의 내구성을 향상 시킨다.Subsequently, silver sulfate or acetyl sulfate was added in an amount of 0.005 to 0.01 mol% based on the PS-based resin as a sulfonation catalyst, followed by mixing to prepare a polymer solution. Then, sulfuric acid was added to a solvent in a polymer solution to prepare a cation exchange membrane. The reaction temperature is changed from room temperature to 80 ° C. and the sulfonation reaction is performed while stirring. In the present invention, when performing a partial crosslinking reaction simultaneously with the sulfonation reaction, chlorosulfonic acid may be additionally added, in which the ratio of chlorosulfonic acid / sulfuric acid is added dropwise to 1/10 to 1/100 by volume ratio. It provides a method for producing a sulfonated cation exchange solution by changing the reaction temperature from 0 ℃ to 50 ℃. In the case of adding chlorosulfonic acid to sulfuric acid, the addition of 1 to 10 vol% more preferably increases the function of the ion exchange solution and improves the durability of the membrane through partial crosslinking between benzene rings including cation exchange groups.

반응시간은 적절히 조절하여 반응시킬 수 있으므로 크게 제한은 되지 않지만 예를 들면, 상기 이온교환 용액의 제조과정은 황산 술폰화제를 사용하는 경우 65 ℃에서 40분 수행하는 것이 이온교환 성능을 향상시키는데 바람직하며, 클로로술폰산을 첨가한 경우 30℃에서 1시간 이내에 이루어지는 것이 바람직하다.The reaction time is not limited because it can be controlled by appropriate control, for example, the process of preparing the ion exchange solution is preferably 40 minutes at 65 ℃ when using a sulfate sulfonating agent to improve the ion exchange performance In the case where chlorosulfonic acid is added, it is preferable that the chlorosulfonic acid is added within 30 minutes at 30 ° C.

한편 상기에서 제조한 이온교환수지를 이용하여 막을 제조하는 단계에서는, 이온교환용액의 캐스팅 시에 아웃개싱(outgasing)에 의한 막의 고르지 못한 표면은 높은 막저항과 이온수송도의 저하를 가져올 수도 있으므로, 이를 방지하기 위하여 상기 방법으로 제조된 양이온 교환 수지막을 비활성 용매에 넣고, 가교역할을 함과 동시에 이온선택성을 높일 수 있도록 설포살리실산, 설포아세트산, 설포숙신산 등을 비활성용매인 물이나 에탄올 등의 극성용매에 대하여 0.1~10wt%의 용액에 담그어 막을처리함으로써 제조함으로써 표면의 폐쇄기공 등을 줄일 수 있고 동시에 표면을 2차 결합(second force)에 의해 부분 가교화 할 있어서 더욱 좋다.On the other hand, in the step of preparing the membrane using the ion exchange resin prepared above, the uneven surface of the membrane by outgasing during casting of the ion exchange solution may bring a high membrane resistance and a decrease in ion transport rate, In order to prevent this, the cation exchange resin membrane prepared by the above method is put in an inert solvent, and sulfosalicylic acid, sulfoacetic acid, sulfosuccinic acid and the like are added to a polar solvent such as water or ethanol, which are inert solvents, to increase crosslinking and ion selectivity. By dipping into a solution of 0.1 ~ 10wt% relative to the membrane to prepare the membrane can reduce the closed pores of the surface and at the same time it is better to partially crosslink the surface by a second force (second force).

다음에는 음이온성 이온교환수지를 제조하는 방법에 대하여 설명한다.Next, a method for producing an anionic ion exchange resin will be described.

아민화 음이온교환용액의 제조과정은 상기 양이온교환용액 제조과정에서 EPS를 용해한 비율과 동일하게 제조한 용액에 클로로메틸메틸에테르(이하 CMME라 칭함) 및 클로로메틸에테르(이하 CME라 칭함)에서 선택되는 1 이상을 투입하여 반응시킨다. 예를 들면 클로로메틸메틸에테르를 EPS를 기준으로 1: 2 몰비로 첨가하고 반응온도를 CMME의 끓는점(bp) 보다 5∼10℃ 높게 유지하고, 3~6시간동안 반응시켜 염화메틸화 PS 용액을 제조한다. 이때 루이스산으로서 염화아연 또는 염화알루미늄, 사염화철 등의 촉매를 PS수지 기준으로 0.1∼3wt%로 첨가하여 반응시킨다. The preparation process of the aminated anion exchange solution is selected from chloromethyl methyl ether (hereinafter referred to as CMME) and chloromethyl ether (hereinafter referred to as CME) in a solution prepared in the same manner as the rate of dissolving EPS in the cation exchange solution preparation process. Add 1 or more to react. For example, chloromethyl methyl ether is added at a molar ratio of 1: 2 based on EPS, and the reaction temperature is maintained at 5 to 10 ° C. higher than the boiling point (bp) of CMME, and reacted for 3 to 6 hours to prepare a methyl chloride PS solution. do. At this time, as a Lewis acid, a catalyst such as zinc chloride, aluminum chloride, iron tetrachloride or the like is added at 0.1 to 3 wt% based on the PS resin to react.

아민화 음이온교환용액의 제조를 위하여 염화메텔화된 PS용액에 트리메틸아민, 디메틸아민, 트리에틸아민 등의 3급 아민화제를 PS기준 5∼30 vol%로 넣은 후 반응온도를 상온부터 80℃ 까지 변화시키고 교반하면서 4급 아민화반응을 진행하여 음이온교환용액을 제조한다. 이때 4급 암모늄화를 촉진하기 위하여 촉매성분으로서 아민화제인 트리알킬아민 100ml기준으로 요오드화 나트륨을 0.02 ∼0.05mol를 첨가하고 반응온도를 상온부터 80℃ 까지 바람직하게는 60 ~80℃변화시키고 교반하면서 1∼6시간까지 아민화반응을 진행하여 4급 아민화반응을 통하여 음이온교환용액을 제조한다.In order to prepare an aminated anion exchange solution, a tertiary amination agent such as trimethylamine, dimethylamine, and triethylamine was added at 5 to 30 vol% based on the PS, and then the reaction temperature was changed from room temperature to 80 ° C. A quaternary amination reaction is carried out while changing and stirring to prepare an anion exchange solution. At this time, to promote quaternary ammonium, 0.02 to 0.05 mol of sodium iodide is added as a catalyst component based on 100 ml of trialkylamine as an amine agent, and the reaction temperature is changed from room temperature to 80 ° C, preferably 60 to 80 ° C, while stirring. The amination reaction is performed for 1 to 6 hours to prepare an anion exchange solution through a quaternary amination reaction.

상기 방법에 의해 제조된 양, 음이온교환용액에 메탄올 첨가하여 반응을 정지시킴과 동시에 정치시켜 층분리 하여 미반응 물질을 제거하여 이온교환수지를 제조한다. Methanol is added to the amount and anion exchange solution prepared by the above method to stop the reaction, and at the same time, it is left to separate the layers to remove the unreacted material to prepare an ion exchange resin.

이하에서는 상기 이온교환수지를 이용한 이온교환막에 대하여 설명한다.Hereinafter, an ion exchange membrane using the ion exchange resin will be described.

이온교환막은 상기방법에 의해 제조된 술폰화 또는 아민화 이온교환용액을 닥터블레이드와 같은 장치를 이용하여 플라스틱 기재에 캐스팅한 후 건조시켜 이온교환 막을 제조하는 방법을 제공한다. The ion exchange membrane provides a method for preparing an ion exchange membrane by casting a sulfonated or aminated ion exchange solution prepared by the above method onto a plastic substrate using an apparatus such as a doctor blade and then drying.

상기 방법에 의해 제조된 막은 각각 10∼40%의 황산수용액에 충분히 세척한 후 다시 증류수로 세척하여 제조한다. 이후 이를 건조하여, 예를들면 상온에서 0.5 ∼ 1시간 정도 건조, 하여 제조한다.Membranes prepared by the above method are prepared by washing sufficiently with 10-40% aqueous sulfuric acid solution and then again with distilled water. Thereafter, it is dried, for example, dried at room temperature for 0.5 to 1 hour, and prepared.

이하 각 과정에 따라 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail according to each process.

본 발명은 PS 또는 EPS를 재활용한 이온교환막의 제조방법에 관한 것으로 PS 또는 EPS의 용해과정, 술폰화과정, 염화메텔화과정, 아민화과정 및 이들 용액을 이용한 이온교환막의 제조과정으로 나눌 수 있다.The present invention relates to a method for producing an ion exchange membrane recycled PS or EPS, and can be divided into a process for dissolving PS or EPS, sulfonation, chloride chloride, amination, and ion exchange membranes using these solutions. .

(1) (One) EPSEPS 의 용해과정Dissolution process

PS수지를 DC 또는 클로로포름 10∼30 vol%로 교반하면서 용해시켜 PS 고분자 용액을 제조한다.PS resin is dissolved by stirring in DC or chloroform 10-30 vol% to prepare a PS polymer solution.

이때 용해온도는 30∼40℃로 유지하고 용해시간은 1∼4시간 사이에서 수행하는 것이 바람직하다.At this time, the dissolution temperature is preferably maintained at 30 to 40 ℃ and the dissolution time is carried out between 1 to 4 hours.

(2) (2) 술폰화과정Sulfonation process

양이온 교환 수지제조 용액은 PS 고분자대비 용매를 80 ∼ 90 중량%로 된 고분자 용액에 술폰화반응 촉매인 실버술페이트(Silver sulfate), 또는 아세틸술페 이트(acetyl sulfate)를 PS대비 0.005 ∼0.01몰비로 첨가하고. 술폰화제인 황산을 용매에 대해 5∼30 vol%로 넣은 후 질소분위기 하에서 반응온도 25℃∼80℃, 바람직하게는 60~70℃에서 10∼60분 동안 교반을 통해 술폰화 반응을 진행한다. 또는 클로로술폰산/황산의 혼합성분을 술폰화제로 사용하는 경우 클로로술폰산/황산의 비를 1/10∼1/100으로 조절하여 적가한 후 반응온도를 0℃∼50℃ 까지 변화시켜 술폰화 양이온교환 용액을 제조한다.In the cation exchange resin preparation solution, silver sulfate or acetyl sulfate, which is a sulfonation catalyst, is contained in an amount of 0.005 to 0.01 mole ratio of PS to PS in a polymer solution having 80 to 90% by weight of solvent compared to PS polymer. Adding. Sulfuric acid, which is a sulfonating agent, is added at 5 to 30 vol% with respect to the solvent, and then the sulfonation reaction is performed by stirring for 10 to 60 minutes at a reaction temperature of 25 ° C to 80 ° C, preferably 60 to 70 ° C under a nitrogen atmosphere. Or when using a mixture of chlorosulfonic acid / sulfuric acid as a sulfonating agent, the ratio of chlorosulfonic acid / sulfuric acid is adjusted dropwise to 1/10 to 1/100 dropwise, and the reaction temperature is changed to 0 ℃ to 50 ℃ to sulfonated cation exchange Prepare a solution.

Figure 112008058361274-PAT00001
Figure 112008058361274-PAT00001

(3) 염화메틸화 과정(3) methylation process

상기 동일 EPS 용액에 클로로메틸메틸에테르(이하 CMME라 칭함) 또는 클로로메틸에테르(이하 CME라 칭함)를 EPS를 기준으로 1:1.3∼3, 바람직하게는 1: 2 몰비로 첨가하고 반응온도를 CMME 또는 CME의 끓는점(bp) 보다 5∼10℃ 높게 유지하고, 질소 분위기하에 1∼6시간동안 바람직하게는 3시간 교반과 함께 반응시켜 염화메틸화 한다. 이때 루이스산으로서 염화아연 또는 염화알루미늄, 사염화철등의 촉매를 상기 수지성분에 대하여 0.1∼3wt%로 첨가하여 반응시킨다. 또한 반응의 수율을 증가시키기 위하여 염화물 촉매중의 수분을 충분히 제거 후 사용하여야 한다. 이 과정에서 벤젠 고리를 할로메틸레이션화하여 아민그룹을 도입 할 수 있게 한다. To the same EPS solution, chloromethyl methyl ether (hereinafter referred to as CMME) or chloromethyl ether (hereinafter referred to as CME) is added at a molar ratio of 1: 1.3 to 3, preferably 1: 2, based on EPS, and the reaction temperature is CMME. Or 5 to 10 ° C. higher than the boiling point (bp) of CME, and reacted with stirring for 3 hours under nitrogen atmosphere, preferably with stirring for 3 hours, to methylate chloride. At this time, as a Lewis acid, a catalyst such as zinc chloride, aluminum chloride, iron tetrachloride or the like is added at 0.1 to 3 wt% with respect to the resin component and reacted. In addition, in order to increase the yield of the reaction should be used after sufficiently removing the water in the chloride catalyst. In this process, the benzene ring can be halomethylated to introduce amine groups.

Figure 112008058361274-PAT00002
Figure 112008058361274-PAT00002

(4) (4) 아민화과정Amination Process

상기 염화메틸화된 PS용액에 트리메틸아민등의 3차 아민을 PS용액 기준 5∼30 vol%로 넣은 후 아민화제인 트리메틸아민 100ml기준으로 요오드화 나트륨을 0.02 ∼0.05mol를 첨가하고 반응온도를 상온부터 80℃ 까지 바람직하게는 60 ~80℃변화시키고 교반하면서 1∼6시간까지 아민화반응을 진행하여 4급 아민화반응을 통하여 음이온교환용액을 제조한다.The tertiary amine, such as trimethylamine, was added to the methyl chlorided PS solution at 5-30 vol% based on the PS solution, and then 0.02-0.05 mol of sodium iodide was added based on 100 ml of trimethylamine as an amination agent, and the reaction temperature was raised from room temperature to 80%. Preferably an anion exchange solution is prepared through a quaternary amination reaction by changing the temperature from 60 ° C. to 80 ° C. and stirring for 1 to 6 hours while stirring.

Figure 112008058361274-PAT00003
Figure 112008058361274-PAT00003

(5) 이온교환막 제조과정(5) Ion exchange membrane manufacturing process

관능화된 양.음이온 교환 수지 용액을, 표면처리하여 친수화된 폴리에스테르 혹은 PVC등과 같은 메쉬 망 위에 닥터 블래이드를 이용하여 두께가 100 μm 이하의 이온교환 막을 형성하고 이를 상온에서 건조시켜 막을 제조한다. 이때 이온교환 용액을 한차례에서 수차례 반복하여 코팅하는 방법으로 막두께의 조절이 가능하다. 막의 제조과정에서 DC, 클로로포름 등 초기용매의 휘발도에 따라 점성의 급격하게 커지는 것을 방지하기 위해 밀폐된 공간에서 소량의 이온교환용액을 연속적으로 공급하는 것이 바람직하다. 한편 이온교환용액의 점도조절을 통한 액의 유동성을 이용하여 PE. PVC필름, 혹은 파이프 형태 등의 지지체에 캐스팅 혹은 코팅, 라미네이팅 어떠한 방법으로도 제조가 가능한 것을 특징으로 하는 기술이다. The functionalized positive and negative ion exchange resin solution is surface treated to form an ion exchange membrane having a thickness of 100 μm or less using a doctor blade on a mesh network such as hydrophilized polyester or PVC and dried at room temperature to prepare a membrane. . In this case, the thickness of the membrane can be controlled by repeatedly coating the ion exchange solution several times. It is preferable to continuously supply a small amount of ion exchange solution in an enclosed space in order to prevent a sudden increase in viscosity according to the volatilization of the initial solvent such as DC and chloroform during the preparation of the membrane. On the other hand PE by using the fluidity of the liquid through the viscosity control of the ion exchange solution. It is a technology characterized in that it can be manufactured by any method of casting, coating, laminating on a support such as PVC film or pipe form.

그러나 양이온교환수지의 경우에는 상기 이온교환용액의 캐스팅 시에 막의 고르지 못한 표면 때문에 막의 저항이 높고 이온수송도가 다소 낮은 경향이 있으므로 이를 해결하기 위하여 양이온 교환 수지의 경우에는 비활성 용매에 넣고, 가교역할을 함과 동시에 이온선택성을 높일 수 있도록 설포살리실산, 설포아세트산, 설포숙신산 등을 추가하여 막을 제조함으로써 표면의 폐쇄기공 등을 줄일 수 있고 동시에 표면을 2차 결합(second force)에 의해 부분 가교화하는 것이 좋다.However, in the case of cation exchange resins, the membrane has a high resistance to membranes and a low ion transport rate due to the uneven surface of the membrane during casting of the ion exchange solution. At the same time, by adding sulfosalicylic acid, sulfoacetic acid, sulfosuccinic acid, etc. to increase ion selectivity, it is possible to reduce the closed pores of the surface and to partially crosslink the surface by secondary force. good.

음이온교환막의 경우에는 미반응 3급아민등을 완전히 제거하기 이하여 0.05~1N의 암모늄염으로 세척하고 이어서 물로 충분히 씻어주는 것이 이온선택성을 더욱 높일 수 있고, 또한 표면의 불순물을 제거할 수 있다.In the case of the anion exchange membrane, to completely remove the unreacted tertiary amine, etc., washing with 0.05 to 1 N ammonium salt and then sufficiently washing with water can further increase ion selectivity and remove impurities on the surface.

본 발명에 의한 이온교환막 제조방법을 이용하면 저렴하고 처리비용이 현재 전기투석장치에 쓰이고 있는 고가의 이온교환 막을 대체 할 수 있어 매우 저렴하고 간단한 공정으로 성능이 우수한 전기투석장치 공정에 이용될 수 있어 연수화 장치 및 산업, 광산폐수에 존재하는 유용금속의 분리 및 기타 산업폐수에서의 중금속 회수등의 분야에 널리 상용화 될 수 있다. 원하는 기재에 이온교환용액을 도포하여 성형이 자유로우며 또한 원하는 관능기를 도입할 수 있다는 장점이 있어 그 응용분 야가 다양할 것이라고 기대된다. By using the ion exchange membrane manufacturing method according to the present invention can be used in the electrodialysis process of excellent performance in a very low cost and simple process because it can replace the expensive ion exchange membrane used in the current electrodialysis device is cheap and processing cost It can be widely commercialized in the field of softening device and industry, separation of useful metals in mine wastewater and recovery of heavy metals in other industrial wastewater. The application of the ion exchange solution to the desired substrate is free of molding and the ability to introduce the desired functional group is expected to have a variety of applications.

본 발명에 의해 제조된 이온교환막은 원재료인 폐 EPS 수지등을 이용하여 재활용 효과도 기대할 수 있으며 이같은 가격 경쟁력과 막의 고성능으로 향후 세계 멤브레인 시장에도 큰 효과를 볼 수 있다.The ion exchange membrane produced by the present invention can also be expected to recycle effect by using waste EPS resin as a raw material, it can be seen in the future global membrane market due to such a price competitiveness and high performance of the membrane.

본 발명은 CDI 전해전극용 고성능 이온교환막의 제조에 관한 것으로 하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명한다.The present invention relates to the production of a high performance ion exchange membrane for a CDI electrolytic electrode, and the present invention will be described in more detail with reference to the following examples.

1.One. 술폰화Sulfonation 양이온교환막의 제조 Preparation of Cation Exchange Membrane

하기 표 1에 기재된 바와 같이 EPS를 클로로포름에 용해시켜 제조된 이온교환용액에 클로로술폰산/황산 혼합 술폰화제의 농도를 변화시켜 술폰화 반응을 하여 양이온교환막을 제조한다.As shown in Table 1 below, the ion exchange solution prepared by dissolving EPS in chloroform was changed to a concentration of chlorosulfonic acid / sulfuric acid sulfonating agent to sulfonate to prepare a cation exchange membrane.

실시예 1: 양이온교환막의 제조 Example 1 Preparation of Cation Exchange Membrane

EPS 15g 을 DC 100ml에 녹인뒤 황산은(silver sulfate) 0.02g을 첨가하고 술폰화 과정에서 황산을 용매 대비 10v/v%의 농도로 첨가하여 45℃에서 술폰화반응 시간을 달리하여 각각 15(a), 30(b), 45(c), 60(d)분간 반응시켜 양이온교환용액을 제조하였다.After dissolving 15 g of EPS in 100 ml of DC, 0.02 g of silver sulfate was added and sulfuric acid was added at a concentration of 10v / v% of the solvent during the sulfonation process. ), 30 (b), 45 (c), 60 (d) was reacted to prepare a cation exchange solution.

도 1은 본 발명의 바람직한 일실시예에 따른 양이온교환막의 적외선분광분석결과이다. 도 1을 참조하면, 제조한 양이온교환막의 적외선분광분석 결과 술폰화전에 나타나지 않는 술폰산기의 특성피크가 1028cm-1, 1100 ~1200cm- 1 에서 나타나는 것으로부터 술폰화된 양이온교환 막이 제조되었음을 확인할 수 있었다.1 is an infrared spectroscopic analysis result of a cation exchange membrane according to an embodiment of the present invention. 1, the characteristics of a sulfonic acid group that is the infrared spectroscopy of a cation-exchange membrane produced results appear in the slash-and-burn sulfone peak 1028cm -1, 1100 ~ 1200cm - was confirmed that the sulfonation from those appearing in the first cation exchange membrane prepared .

제조하여 관능화된 용액은 메탄올(methanol)을 2~3ml 적가하여 반응을 정지시킴과 동시에 정치(dedication)시켜 미반응 황산과 silver를 층분리하여 제거하고, 캐스팅은 70μm 두께의 폴리에스테르 필름(polyester film)(100mesh)에 캐스팅하여 양이온막을 제조하였으며, 제조된 양이온교환막을 각각 40% 20% 10% 설포살리실산 수용액에 세척하고 증류수에서 충분히 세척한 후 상온에서 1시간동안 건조하였다.The prepared and functionalized solution was added dropwise with methanol to 2 to 3 ml to stop the reaction, and at the same time to stop the reaction to separate and remove the unreacted sulfuric acid and silver by layer separation, and the casting was a polyester film having a thickness of 70 μm. A cationic membrane was prepared by casting a film) (100mesh), and the prepared cation exchange membranes were washed in 40% 20% 10% sulfosalicylic acid aqueous solution, sufficiently washed in distilled water, and dried at room temperature for 1 hour.

실시예 2 : 양이온수지막의 제조 Example 2 Preparation of Cationic Resin Membrane

술폰화제를 용매대비 10(a), 20vol%(b)로 황산/클로로술폰산을 부피비로 10/1의 몰비로 혼합 첨가하여 반응시간 30분으로 실시예 1에서 와 동일한 방법으로 양이온 교환막을 제조한 것 이외에는 실시예 1과 동일한 방법으로 제조하였다.The cation exchange membrane was prepared in the same manner as in Example 1 by adding a sulfonating agent at a molar ratio of 10/1 in a volume ratio of 10 (a) and 20vol% (b) to a solvent in a molar ratio of 10/1. Except that, it was prepared in the same manner as in Example 1.

비교예 1: 막제조시 가교제를 첨가하지 않은 경우 Comparative Example 1 : When no crosslinking agent was added during film formation

실시예 1과 비교하여 막을 제조한 후 가교제로서 설포살리실산으로 처리하지 않은 것을 제외하고는 동일하게 실험하였다. 그 결과를 표 1에 나타내었다.The same experiment was conducted except that the membrane was prepared in comparison with Example 1 and not treated with sulfosalicylic acid as a crosslinking agent. The results are shown in Table 1.

2. 2. 아민화Amination 음이온교환막Anion exchange membrane

실시예 3 : 음이온교환막의 제조 Example 3 Preparation of Anion Exchange Membrane

EPS 15g을 100ml의 DC 용매에 녹인후 5.5g의 CMME를 첨가하고, 촉매인 ZnCl2 0.05g을 넣고 30℃에서 3시간동안 반응하였다. 클로로메틸화 된 용액을 아민화제인 트리메틸아민을 PS대비 20, 30vol%로 첨가하고 반응시간을 2, 4시간으로 달리하 여 음이온교환용액을 제조하였으며 용액내의 미반응 물질 및 불순물은 정치를 시켜 층분리함과 동시에 폴리에스테르 필름(polyester film)(100mesh)위에 캐스팅하여 0.1N 암모늄 클로라이드에 반복 세척 후 증류수에 세척하여 상온에서 1시간동안 건조하였다. 제조한 음이온교환막의 적외선분광분석 결과 아민기의 특성피크가 3500cm-1에서 나타나는 것으로부터 아민화된 양이온교환 막이 제조되었음을 확인하였다.Dissolve 15 g of EPS in 100 ml of DC solvent, add 5.5 g of CMME, and add ZnCl 2 as a catalyst. Add 0.05 g The reaction was carried out at 30 ° C. for 3 hours. The chloromethylated solution was prepared by adding trimethylamine, an aminizing agent, at 20, 30 vol% compared to PS, and changing the reaction time at 2, 4 hours to prepare an anion exchange solution. At the same time casting on a polyester film (100mesh) and repeated washing in 0.1N ammonium chloride and then washed in distilled water and dried at room temperature for 1 hour. Infrared spectroscopic analysis of the prepared anion exchange membrane confirmed that the aminated cation exchange membrane was prepared from the characteristic peak of the amine group at 3500 cm -1 .

3. 막의 특성분석3. Characterization of membrane

(1) 이온교환용량의 측정(1) Measurement of ion exchange capacity

이온교환용량을 측정하기 위하여 1 N NaOH 수용액과 1N HCl 수용액을 이용 산염기 적정에 의하여 이온교환용량을 다음과 같은 식에 의해 결정하였다. 음이온교환막의 경우 NaOH, HCl의 순서를 바꾸어 실시하였다.In order to measure the ion exchange capacity, the ion exchange capacity was determined by an acid salt titration using 1N NaOH aqueous solution and 1N HCl aqueous solution by the following equation. In the case of the anion exchange membrane, the order of NaOH and HCl was changed.

IEC(meq/g)={(VHCl×NHCl)-5(VNaOH×NNaOH)}/Weight of sample(g)IEC (meq / g) = {(V HCl × N HCl ) -5 (V NaOH × N NaOH )} / Weight of sample (g)

IEC: 이온교환용량(meq/g)IEC: ion exchange capacity (meq / g)

VHCl:HCl의 부피 (ml), VNaOH: NaOH의 부피(ml)V HCl : volume of HCl (ml), V NaOH : volume of NaOH (ml)

NHCl: HCl의 농도(N), NNaOH : NaOH의 농도(N)N HCl : Concentration of HCl (N), N NaOH : Concentration of NaOH (N)

(2) 함수율 측정(2) moisture content measurement

이온교환막을 일정크기(3×3 cm)로 절단한 후 0.1 M NaCl 용액에 침적시켜 충분히 팽윤시킨 다음 이온교환막 표면의 수분(free water)를 제거한 후 칭량하고, 이것을 60℃ 진공오븐에서 24 시간 건조시켜 냉각시킨 후 무게로 함수율을 구하였 다.The ion exchange membrane was cut to a size (3 × 3 cm) and then immersed in 0.1 M NaCl solution to swell sufficiently, and then free water on the surface of the ion exchange membrane was removed and weighed, and dried in a vacuum oven at 60 ° C. for 24 hours. After cooling, the water content was determined by weight.

WC(%) = {(Wwet - Wdry)/Wdry} x 100WC (%) = {(W wet -W dry ) / W dry } x 100

WC:물의 함량(%), Wwet: 침정한후 무게(g), Wdry: 건조후의 무게(g)WC: Water content (%), W wet : Weight after tacking (g), W dry : Weight after drying (g)

(3) 이온수송수(Ion Transport number): 이온교환막의 이온수송수를 측정하기 위하여 일정크기(3×3 cm)로 절단한 막을 0.1 M NaCl 용액에 침적시켜 평형상태에 도달시킨 후 2-compartment cell을 조립하고 우측에 0.01 M NaCl과 좌측에 0.1 M NaCl을 동일하게 채운 후 Ag/AgCl 기준전극을 멀티메타(multi meter)에 연결하여 전위차를 측정하였다. (3) Ion transport number : In order to measure the ion transport water of the ion exchange membrane, the membrane cut to a certain size (3 × 3 cm) was immersed in 0.1 M NaCl solution to reach an equilibrium state, and then 2-compartment cell was obtained. After assembling and filling 0.01 M NaCl on the right side and 0.1 M NaCl on the left side, the Ag / AgCl reference electrode was connected to a multi meter to measure the potential difference.

(4) 막저항(4) membrane resistance

이온교환막의 전기저항을 측정하기 위하여 2-compartment cell을 사용하였다. 막을 일정크기(3×3 cm)로 절단하여 전기화학 셀에 끼운 후 0.1 M NaCl 용액에서 전기저항을 측정(R1)한 후 막을 제거하고 전해질 용액만의 저항을 측정(R2)하여 전기저항값(ER)을 구하였다.A 2-compartment cell was used to measure the electrical resistance of the ion exchange membrane. Cut the membrane to a certain size (3 × 3 cm) and insert it into the electrochemical cell, measure the electrical resistance in 0.1 M NaCl solution (R 1 ), remove the membrane and measure the resistance of the electrolyte solution only (R 2 ) The value ER was obtained.

ER(Ω·m2) = (R1 - R2)·AER (Ωm 2 ) = (R 1 -R 2 ) · A

R: 저항(Ω), A:면적(m2)R: Resistance (Ω), A: Area (m 2 )

[표 1] 실시예 1의 성능Table 1 Performance of Example 1

실시예    Example 술폰화 반응시간 (분) Sulfonation reaction time (min) 함수율 (%) Water content (%) 이온교환용량 (meq/ g) Ion exchange capacity (meq / g) 막저항 (ohm-cm2)Membrane Resistance (ohm-cm 2 ) 이온수송수 (-)Ion transport water (-) 실시예 1aExample 1a 1515 17.817.8 1.61.6 1313 0.860.86 실시예 1bExample 1b 3030 20.720.7 2.02.0 99 0.880.88 실시예 1cExample 1c 4545 23.123.1 2.22.2 88 0.920.92 실시예 1dExample 1d 6060 28.528.5 2.32.3 88 0.920.92 비교예 1aComparative Example 1a 1515 15.315.3 1.51.5 1414 0.790.79 비교예 1bComparative Example 1b 3030 18.718.7 1.91.9 1313 0.810.81 비교예 1cComparative Example 1c 4545 20.820.8 2.02.0 1414 0.830.83 비교예 1dComparative Example 1d 6060 25.725.7 2.22.2 1313 0.860.86

상기 표 1에서와 보는바와 같이 실시예 1(a)∼1(d)까지 술폰화제의 일정한 농도에서 반응시간을 달리했을때 반응시간에 따라 막의 기본 특성변화를 나타내었다. 함수율과 이온교환용량이 증가하고 막의 전기적특성에서는 막저항이 저하되고 이온수송도가 증가하여 이온교환막으로써 유리함을 보여준다. 그러나 막을 형성한 후 가교제로 처리하지 않은 경우의 막성능은 전반적으로 떨어지는 것을 알 수 있다.As shown in Table 1 above, when the reaction time was changed at a constant concentration of the sulfonating agent from Examples 1 (a) to 1 (d), the basic characteristics of the membrane were changed according to the reaction time. The increase in water content and ion exchange capacity and the electrical properties of the membrane show that it is advantageous as an ion exchange membrane due to a decrease in membrane resistance and an increase in ion transport. However, it can be seen that the overall film performance is reduced when the film is formed and not treated with a crosslinking agent.

[표 2] 실시예 2의 막성능Table 2 Film Performance of Example 2

실시예Example 촉매 (v/v%)Catalyst (v / v%) 함수율 (%)   Water content (%) 이온교환용량 (meq/ g) Ion exchange capacity (meq / g) 막저항 (ohm-cm2)Membrane Resistance (ohm-cm 2 ) 이온수송수 (-)Ion transport water (-) aa 1010 24.7624.76 2.52.5 77 0.980.98 bb 2020 27.5427.54 2.72.7 77 0.970.97

상기 표 2에서는 술폰화제의 농도증가는 상대적인 막저항 저하와과 이온수송도 증가를 가져왔으며 이러한 이유는 클로로술폰산의 첨가로 인하여 막성능이 향상되었기 때문이라고 보여진다. 즉 이온수송도 >0.97 을 보여주어 상용화 막으로서 충분한 가능성을 보여주었다. 클로로술폰산의 함유량 증가부분가교를 증가시켜 상대적인 막저항의 저하로 나타났다. In Table 2, the increase in the concentration of the sulfonating agent resulted in a decrease in the relative membrane resistance and an increase in the ion transport. This is because the membrane performance was improved due to the addition of chlorosulfonic acid. In other words, the ion transport degree was> 0.97, showing sufficient potential as a commercialized membrane. Increasing the content of chlorosulfonic acid increased the partial crosslinking, resulting in a decrease in the relative film resistance.

[표 3] 실시예 3의 막성능Table 3 Membrane Performance of Example 3

실시예  Example 트리메틸아민 Trimethylamine 반응시간 (시간)        Response time (hours) 함수율 (%)Water content (%) 이온교환용량 (meq/ g) Ion exchange capacity (meq / g) 막저항 (ohm-cm2)Membrane Resistance (ohm-cm 2 ) 이온수송수 (-)Ion transport water (-) aa 2020 22 17.8017.80 0.80.8 1414 0.910.91 bb 3030 22 20.7620.76 1.11.1 1111 0.930.93 cc 2020 44 23.1023.10 1.21.2 88 0.970.97 dd 3030 44 24.0524.05 1.31.3 77 0.970.97

상기 표 3의 실시예에서 보는바와 같이 트리메틸아민의 양이 증가함에따라 함수율은 증가하였고 이온교환용량은 0.8~1.3meq/g이었으며 막저항은 14~7로 감소하였고 이온수송수는 0.91~0.97로 증가하였다.As shown in the Example of Table 3, as the amount of trimethylamine was increased, the water content increased, the ion exchange capacity was 0.8 ~ 1.3 meq / g, the membrane resistance was reduced to 14 ~ 7, and the ion transport was increased to 0.91 ~ 0.97 It was.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

도 1은 본 발명의 바람직한 일실시예에 따른 양이온교환막의 적외선분광분석결과.1 is an infrared spectroscopy analysis of the cation exchange membrane according to an embodiment of the present invention.

Claims (9)

이온교환수지 용액을 제조하는 단계;Preparing an ion exchange resin solution; 상기 이온교환수지 용액을 매쉬망의 기재에 코팅하는 단계;Coating the ion exchange resin solution on a substrate of a mesh; 상기 코팅된 이온교환수지막을 후처리하는 단계;Post-treating the coated ion exchange resin membrane; 건조하는 단계;Drying; 로 이루어지는 CDI 전극용 이온교환수지 막의 제조방법.A method for producing an ion exchange resin membrane for CDI electrodes. 제 1항에 있어서,The method of claim 1, 상기 이온교환수지는 폴리스테렌계 수지에 황산 또는 클로로설폰산/황산의 혼합산을 이용하여 양이온교환기를 부여하는 것을 특징으로 하는 CDI 전극용 이온교환수지 막의 제조방법.The ion exchange resin is a method for producing an ion exchange resin membrane for a CDI electrode, characterized in that to give a cation exchange group to a polystyrene resin using a mixed acid of sulfuric acid or chlorosulfonic acid / sulfuric acid. 제 2항에 있어서,3. The method of claim 2, 상기 양이온교환기를 부여하는 반응은 실버설페이트 또는 아세틸설페이트를 촉매로 사용하여 제조하는 것을 특징으로 하는 CDI 전극용 이온교환수지 막의 제조방법.The reaction for imparting a cation exchange group is a method for producing an ion exchange resin membrane for a CDI electrode, characterized in that the production using silver sulfate or acetyl sulfate as a catalyst. 제 3항에 있어서,The method of claim 3, 상기 이온교환막의 후처리는 이온교환막의 비활성 용매에 대하여 0.1~10wt% 의 설포살리실산, 설포아세트산, 설포숙신산에서 선택되는 하나 이상의 성분을 포함하는 용액에 침지한 후 수세하여 처리하는 것을 특징으로 하는 CDI 전극용 이온교환수지 막의 제조방법.The post-treatment of the ion exchange membrane is a CDI, characterized in that it is immersed in a solution containing at least one component selected from 0.1 ~ 10wt% of sulfosalicylic acid, sulfo acetic acid, sulfosuccinic acid with respect to the inert solvent of the ion exchange membrane and then washed with water. Method for producing an ion exchange resin membrane for electrodes. 제 4항에 있어서,The method of claim 4, wherein 상기 황산 또는 클로로설폰산/황산의 혼합산은 1/10~1/100몰비로서 용매에 대하여 5~30v/v%, 스티렌계수지는 용매에 대하여 5~30w/v%에서 제조되는 것을 특징으로하는 CDI 전극용 이온교환수지 막의 제조방법.The mixed acid of sulfuric acid or chlorosulfonic acid / sulfuric acid is 1/10 ~ 1/100 molar ratio of 5 ~ 30v / v% with respect to the solvent, the styrene resin is produced at 5 ~ 30w / v% with respect to the solvent Method for producing an ion exchange resin membrane for electrodes. 제 1항에 있어서,The method of claim 1, 상기 이온교환수지 용액의 제조단계는 폴리스테렌계 수지용액에 클로로메틸메틸에테르 또는 클로로메틸에테르를 수지 기준으로 1:1.3∼3몰비로 첨가하고, 촉매로서 루이스산을 상기 수지성분에 대하여 0.1∼3wt%로 첨가하여 아민화 반응을 한 후, 이어서 4급 암모늄화반응을 하여 제조하는 특징으로 하는 CDI 전극용 이온교환수지 막의 제조방법. In the step of preparing the ion exchange resin solution, chloromethylmethyl ether or chloromethyl ether is added to the polyester resin solution at a ratio of 1: 1.3 to 3 mol based on the resin, and Lewis acid as a catalyst is 0.1 to 3 wt% based on the resin component. A method for producing an ion-exchange resin membrane for a CDI electrode, which is prepared by adding%, followed by an amination reaction, followed by quaternary ammoniumation. 제 6항에 있어서,The method of claim 6, 상기 루이스산은 염화아연, 염화알루이늄 또는 염화철인 것을 특징으로 하는 CDI 전극용 이온교환수지 막의 제조방법.Said Lewis acid is zinc chloride, aluminium chloride or iron chloride method of producing an ion exchange resin membrane for a CDI electrode. 제 7항에 있어서,The method of claim 7, wherein 상기 4급암모늄화 반응은 트리알킬아민과 반응하며, 촉매로서 상기 트리알킬아민 100ml기준으로 요오드화 나트륨을 0.02 ∼0.05mol를 첨가하여 20~80℃에서 제조하는 것을 특징으로 하는 CDI 전극용 이온교환수지 막의 제조방법.The quaternary ammonium reaction is reacted with trialkylamine, and the ion exchange resin for CDI electrode is prepared at 20 to 80 ° C. by adding 0.02 to 0.05 mol of sodium iodide based on 100 ml of the trialkylamine as a catalyst. Method of preparing the membrane. 제 8항에 있어서,The method of claim 8, 상기 루이스산은 수지에 대하여 0.1~3wt%, 트리알킬아민은 수지용액에 대하여 5~30v/v%이며, 상기 수지는 용매에 대하여 5~30w/v%로 용해하여 제조하는 것을 특징으로 하는 CDI 전극용 이온교환수지 막.The Lewis acid is 0.1 ~ 3wt% with respect to the resin, trialkylamine is 5 ~ 30v / v% with respect to the resin solution, the resin is prepared by dissolving at 5 ~ 30w / v% with respect to the solvent Ion exchange resin membrane.
KR1020080080098A 2008-08-14 2008-08-14 Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution KR101014000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080080098A KR101014000B1 (en) 2008-08-14 2008-08-14 Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080080098A KR101014000B1 (en) 2008-08-14 2008-08-14 Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution

Publications (2)

Publication Number Publication Date
KR20100021265A true KR20100021265A (en) 2010-02-24
KR101014000B1 KR101014000B1 (en) 2011-02-14

Family

ID=42091074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080080098A KR101014000B1 (en) 2008-08-14 2008-08-14 Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution

Country Status (1)

Country Link
KR (1) KR101014000B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100236A1 (en) * 2011-12-28 2013-07-04 충남대학교산학협력단 Microspheres for recovering valuable metals, method for manufacturing the microspheres, and flow-through continuous deionization apparatus
KR101321035B1 (en) * 2012-02-09 2013-10-23 주식회사 삼양사 Ion exchange resin and method for fabricating the same
KR101364371B1 (en) * 2012-11-26 2014-02-18 호서대학교 산학협력단 Separator for alkaline water electrolysis and preparation method for the separator
CN114188585A (en) * 2021-11-26 2022-03-15 大连理工大学 Preparation method of ion exchange membrane containing hydrophilic ion screening micropores

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237258B1 (en) * 2012-06-08 2013-02-27 (주) 시온텍 Manufacturing method of capacitive deionization electrode having ion selectivity and cdi eletrode module
KR102291833B1 (en) 2019-10-01 2021-08-20 주식회사 이노켐텍 Manufacturing method of ion exchange solution and ion exchange solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279741A (en) * 1989-04-19 1990-11-15 Mitsubishi Kasei Corp Production of microporous membrane
EP1505086B1 (en) 1996-07-08 2009-02-11 Sony Corporation Method of manufacturing polyelectrolyte
KR100453680B1 (en) * 2001-11-10 2004-10-20 한국과학기술연구원 Crosslinked proton exchange membrane and its preparation
KR20080090079A (en) * 2007-04-04 2008-10-08 성균관대학교산학협력단 A porous ionic exchange catalyst membrane and method for preparing thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100236A1 (en) * 2011-12-28 2013-07-04 충남대학교산학협력단 Microspheres for recovering valuable metals, method for manufacturing the microspheres, and flow-through continuous deionization apparatus
KR101321035B1 (en) * 2012-02-09 2013-10-23 주식회사 삼양사 Ion exchange resin and method for fabricating the same
KR101364371B1 (en) * 2012-11-26 2014-02-18 호서대학교 산학협력단 Separator for alkaline water electrolysis and preparation method for the separator
CN114188585A (en) * 2021-11-26 2022-03-15 大连理工大学 Preparation method of ion exchange membrane containing hydrophilic ion screening micropores
CN114188585B (en) * 2021-11-26 2024-02-09 大连理工大学 Preparation method of ion exchange membrane containing hydrophilic ion screening micropores

Also Published As

Publication number Publication date
KR101014000B1 (en) 2011-02-14

Similar Documents

Publication Publication Date Title
CA1094982A (en) Single film, high performance bipolar membrane
EP2368933B1 (en) Bipolar membrane and method for manufacturing same
KR101014000B1 (en) Manufacturing method of ion exchange solution composion for electrod using polystyrene resins or their derivatives and method of ion exchange membrane containing their solution
Manohar et al. Alternative preparative route for efficient and stable anion-exchange membrane for water desalination by electrodialysis
EP1367086B1 (en) Anion exchanger and process for producing anion exchange membrane
US4057481A (en) High performance, quality controlled bipolar membrane
CN109939572B (en) Preparation method of anion exchange membrane with multiple cross-linked structure
KR20140126199A (en) Manufacturing Method of Ion Exchange Membrane Using Porous Substrate and Polymer Coating
Khan et al. Preparation and characterization of organic–inorganic hybrid anion-exchange membranes for electrodialysis
Singh et al. High performance cross-linked dehydro-halogenated poly (vinylidene fluoride-co-hexafluoro propylene) based anion-exchange membrane for water desalination by electrodialysis
JP3399531B2 (en) Strongly basic anion exchange membrane and method for producing the same
JP2003096219A (en) Anion exchange membrane
JP2022550498A (en) Fluorinated aliphatic hydrocarbon-based stable anion exchange membrane and method for producing the same
Lan et al. A monovalent selective anion exchange membrane made by poly (2, 6-dimethyl-1, 4-phenyl oxide) for bromide recovery
US10561991B2 (en) Homogeneous anion-exchange composite membrane having excellent chemical resistance and method for producing the same
US10543463B2 (en) Homogeneous cation-exchange composite membrane having excellent chemical resistance and method for producing the same
KR102227017B1 (en) Process for preparing an ion-exchange composite material comprising a specific polymer matrix and a filler consisting of ion-exchange particles
Sachdeva et al. Synthesis of anion exchange polystyrene membranes for the electrolysis of sodium chloride
Wang et al. A facile approach to prepare crosslinked polysulfone-based anion exchange membranes with enhanced alkali resistance and dimensional stability
KR101728772B1 (en) Anion exchange electrolyte membrane, method for preparing the same, energy storage and water treating apparatus comprising the same
KR100447949B1 (en) Preparation of PVC/Polystyren base cation-exchange membrane
KR102416829B1 (en) Halogenated polymers and methods for manufacturing the same
Son et al. Electrochemical Performance Evaluation of Bipolar Membrane Using Poly (phenylene oxide) for Water Treatment System
KR101817300B1 (en) Cross-linked anionic conductive polymer and uses thereof
KR101817301B1 (en) Cross-linked cationic conductive polymer and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150114

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160120

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190114

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200113

Year of fee payment: 10