KR20100011256U - The cooling and heating system for battery room with refrigerant jacket - Google Patents

The cooling and heating system for battery room with refrigerant jacket Download PDF

Info

Publication number
KR20100011256U
KR20100011256U KR2020100011177U KR20100011177U KR20100011256U KR 20100011256 U KR20100011256 U KR 20100011256U KR 2020100011177 U KR2020100011177 U KR 2020100011177U KR 20100011177 U KR20100011177 U KR 20100011177U KR 20100011256 U KR20100011256 U KR 20100011256U
Authority
KR
South Korea
Prior art keywords
battery
refrigerant
jacket
battery chamber
batteries
Prior art date
Application number
KR2020100011177U
Other languages
Korean (ko)
Inventor
임재현
Original Assignee
임재현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임재현 filed Critical 임재현
Priority to KR2020100011177U priority Critical patent/KR20100011256U/en
Publication of KR20100011256U publication Critical patent/KR20100011256U/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 고안은 실생활에서 많이 사용되고 있는 배터리가 충전과 방전을 잘 하도록 배터리의 온도를 최적으로 유지하기 위하여 냉방 뿐 만아니라 난방까지 겸하는 장치를 설치하고 온도센서에 의한 온도를 감시하면서 배터리의 온도를 운전에 최적으로 유지될 수 있도록 하는 배터리 온도조절을 위한 냉난방장치에 관한 것이다. 노트북, 로봇, 무정전전원장치, 자전거, 오토바이, 자동차, 태양광발전, 풍력발전기 등 실생활에서 배터리가 많이 사용된다. 납배터리, 니켈배터리가 지금까지 사용되다가 최근에 리튬이온 배터리와 리튬폴리머배터리 등이 이를 대체하고 있다. 배터리는 화학적 반응에 의해 전기를 저장하는 장치이므로 충전이나 방전시 화학반응을 일으키므로 온도에 따라 화학반응이 달라져서 온도에 매우 민감한 설비이다.
본 고안에서는 배터리(111)가 최적온도에서 충전과 방전을 할 수 있도록 하기 위하여 다수의 배터리셀/팩으로 구성된 배터리(111)가 수용되는 배터리실(21)을 감싸도록 형성된 배터리실냉매재킷(11) 내부에 배터리실(21)로부터 받은 열에 의해 기화할 수 있는 냉매(112)를 넣고, 배터리실냉매재킷(11) 상부에 응축기(12)를 설치하고 상호간에 배관으로 연결하여 배터리(111)의 온도가 적정온도 이상으로 올라갈 경우 배터리(111)외 직접 접하고 있는 냉매(112)가 기화하여 자연적으로 냉매(112)가 순환하면서 배터리(111)를 냉각하도록 하였으며 온도가 적정온도보다 내려가면 배터리실냉매재킷(11) 내부 냉매공간에 설치한 가열장치(113)에서 열을 발생시켜 냉매를 끓임으로써 냉매의 순환에 의해 열이 배터리에 공급되어 배터리가 제 성능을 발휘할 수 있도록 하였다. 따라서 배터리가 적정온도에서 관리되도록 하여 배터리의 안정성과 운전효율을 획기적으로 높이도록 하였다.
The present invention installs a device that not only cooling but also heating to optimally maintain the temperature of the battery so that the battery used in real life can charge and discharge well. The present invention relates to a heating and cooling device for battery temperature control that can be optimally maintained. Batteries are widely used in real life such as laptops, robots, uninterruptible power supplies, bicycles, motorcycles, automobiles, solar power, and wind power generators. Lead batteries and nickel batteries have been used until now, but lithium ion batteries and lithium polymer batteries have recently been replaced. Batteries are devices that store electricity by chemical reactions, so they cause chemical reactions during charging or discharging.
In the present invention, the battery chamber refrigerant jacket 11 formed to surround the battery chamber 21 in which the battery 111 composed of a plurality of battery cells / packs is accommodated so that the battery 111 can be charged and discharged at an optimum temperature. Into the inside of the battery compartment 21, the refrigerant 112 which can be vaporized by the heat received from the battery chamber 21 is placed, and the condenser 12 is installed on the upper side of the battery chamber refrigerant jacket 11 and connected to each other by piping to connect the When the temperature rises above the proper temperature, the refrigerant 112 directly in contact with the battery 111 vaporizes to cool the battery 111 while the refrigerant 112 circulates naturally. The heating device 113 installed in the coolant space inside the jacket 11 generates heat to boil the coolant so that heat is supplied to the battery by the circulation of the coolant so that the battery can exhibit its performance. Therefore, the battery is managed at an appropriate temperature to significantly increase the stability and operating efficiency of the battery.

Description

냉매재킷이 설치된 배터리실 냉난방장치 {The cooling and heating system for battery room with refrigerant jacket}The cooling and heating system for battery room with refrigerant jacket}

배터리 냉난방장치 구조분야Battery air conditioner structure

실생활에서는 많은 배터리가 사용된다. 납배터리, 수은배터리, 니켈배터리가 지금까지 많이 사용되다가 최근에 리튬이온 배터리와 리튬폴리머배터리 등이 이를 대체하고 있다. 특히 리튬폴리머배터리는 안정성이 특히 우수하고 무게가 가벼워 향후 전기자동차 및 각종 기기에 사용될 가능성이 높다. 배터리는 화학적 반응에 의해 전기를 저장하는 장치이므로 충전이나 방전시 화학반응을 일으키므로 온도에 매우 민감한 설비이다. 온도가 너무 낮으면 화학반응이 느리게 일어나서 배터리의 성능이 감소하고 온도가 너무 높으면 화학반응이 지나치게 높아서 배터리의 안정성에 문제를 유발시킬 수 있다. 등록번호 10-0792915[하이브리드 전기차량용 고전압 배터리 냉각 장치 및 방법] 등 공기에 의한 냉각방법이 제시되었으며, 본고안자는 출원번호 10-2010-0030669[배터리 온도조절을 위한 냉난방장치]에서 냉매의 기화열을 이용하는 기술을 개발하였으나 상기 발명에서는 배터리가 냉매재킷 내부에 위치하도록 하여 냉난방 성능은 우수하나 배터리 유출입에 어려운 점이 다소 있다.     Many batteries are used in real life. Lead batteries, mercury batteries, and nickel batteries have been widely used so far, but lithium ion batteries and lithium polymer batteries have recently been replaced. In particular, lithium polymer batteries have excellent stability and light weight, which is likely to be used in electric vehicles and various devices in the future. A battery is a device that stores electricity by chemical reactions, so it generates chemical reactions during charging and discharging, so it is very sensitive to temperature. If the temperature is too low, the chemical reaction will be slow, resulting in a decrease in battery performance. If the temperature is too high, the chemical reaction may be too high, causing battery stability problems. A method of cooling by air has been proposed, such as registration number 10-0792915 [high voltage battery cooling device and method for a hybrid electric vehicle], and the present inventor uses the heat of vaporization of a refrigerant in application number 10-2010-0030669 Although the technology has been developed, in the present invention, the battery is located inside the refrigerant jacket, so the cooling and heating performance is excellent, but there are some difficulties in the flow of the battery.

본 고안에서는 이미 고안한 냉매기화열을 이용하는 배터리 냉난방장치에서 재킷의 형태가 내부에 배터리를 수용하는 것이 아니라 배터리실을 외부에서 감싸는 재킷의 형태를 취하여 배터리가 냉낭방장치에서 유출입이 쉽도록 하고자 한다.    In the present invention, in the battery cooling and heating device using the refrigerant vaporization heat designed in advance, the shape of the jacket does not accommodate the battery inside, but takes the form of a jacket surrounding the battery compartment from the outside to facilitate the flow of the battery in the cooling and cooling device.

배터리실을 형성하고 배터리실 외부를 감싸는 밀폐된 공간을 가지며 이 밀폐공간에 배터리실로부터 전달되는 열에 의해 기화하는 냉매를 수용하고 이 냉매공간에 가열장치를 설치하여 구성되는 배터리실냉매재킷에서 기화하는 냉매로 냉난방을 하는 배터리냉난방장치를 구성함. The battery chamber has a sealed space that surrounds the outside of the battery chamber, which contains a refrigerant vaporized by heat transferred from the battery chamber, and vaporizes in a battery chamber refrigerant jacket formed by installing a heating device in the refrigerant space. Constructs a battery air conditioning unit that cools and cools with refrigerant.

실생활에서는 많은 배터리가 사용된다. 배터리는 화학적 반응에 의해 전기를 저장하는 장치이므로 충전이나 방전시 화학반응을 일으키므로 온도에 매우 민감한 설비이다. 온도가 너무 낮으면 화학반응이 느리게 일어나서 배터리의 성능이 감소하고 온도가 너무 높으면 화학반응이 지나치게 높아서 배터리의 안정성에 문제를 유발시킬 수 있다. 따라서 배터리는 냉각 뿐 만 아니라 난방을 겸하여 배터리 관리의 최적온도(Toptimal)를 유지하도록 하는 것이 중요하다. 본 고안에서는 배터리(111)가 들어있는 배터리실(21)을 감싸는 밀폐된 배터리실냉매재킷(11) 내부에 냉매(112)를 수용하여 배터리(111)에서 발생하는 열에 의해 냉매(112)가 기화하면서 기화열로 냉각되도록 하였으며 기화한 냉매(112)는 배터리실냉매재킷(11)과 배관으로 냉매순환 폐회로를 형성하고 있는 응축기(12)에서 응축시키도록 하여 액화된 냉매(112)를 중력에 의해 다시 배터리실냉매재킷(11)으로 유입되도록 하는 자연순환방식을 택함으로 냉매순환에 최소의 에너지를 사용하도록 하였으며 적정한 기화온도의 냉매(112)를 선택함으로써 제어의 필요성을 최소화시켰다. 그리고 온도가 낮은 경우 배터리(111) 성능을 높여주도록 배터리실냉매재킷(11) 내부에 가열장치(113)를 추가하여 최적의 배터리 성능을 유지할 수 있도록 하였다.Many batteries are used in real life. A battery is a device that stores electricity by chemical reactions, so it generates chemical reactions during charging and discharging, so it is very sensitive to temperature. If the temperature is too low, the chemical reaction will be slow, resulting in a decrease in battery performance. If the temperature is too high, the chemical reaction may be too high, causing battery stability problems. Therefore, it is important for the battery not only to cool but also to maintain the optimal temperature (T optimal ) of the battery management. In the present invention, the refrigerant 112 is vaporized by heat generated from the battery 111 by accommodating the refrigerant 112 in the sealed battery chamber refrigerant jacket 11 surrounding the battery chamber 21 in which the battery 111 is contained. While the vaporized refrigerant 112 is condensed in the condenser 12 which forms the refrigerant circulation closed circuit through the battery chamber refrigerant jacket 11 and the pipe, and the liquefied refrigerant 112 is again gravity-reduced. By adopting a natural circulation method to be introduced into the battery chamber refrigerant jacket 11 to minimize the use of energy in the refrigerant circulation and to minimize the need for control by selecting the refrigerant 112 of the appropriate vaporization temperature. In addition, when the temperature is low, the heating device 113 is added to the inside of the battery chamber refrigerant jacket 11 so as to increase the performance of the battery 111 to maintain optimal battery performance.

도 1은 본 고안이 적용될 냉매재킷이 설치된 배터리실 냉난방장치 설명도이다.
도 2는 배터리실 냉매재킷 설명도이다.
도 3은 배터리실 냉매재킷에 배터리가 내장된 상황 설명도이다.
1 is an explanatory view of a battery chamber heating and heating device with a refrigerant jacket to which the present invention is applied.
2 is an explanatory view of a battery chamber refrigerant jacket.
3 is a diagram illustrating a situation in which a battery is built in a battery chamber refrigerant jacket.

도 1 내지 도3을 동시에 설명한다. 배터리는 적정온도에서 최대로 충전과 방전을 하는 설비이므로 온도조절이 매우 중요하다. 다수의 배터리셀/팩을 직렬 또는 병렬로 연결시킨 배터리(111)를 수용하는 배터리실(21)을 형성하며 배터리실(21) 외부를 감싸도록 밀폐된 공간을 형성하여 그 공간 내부에는 배터리실(21)로부터 받는 폐열에 의해 끓을 수 있는 냉매(112)를 수용하며 이 냉매공간 일측에 가열장치(113)가 설치되는 밀폐된 구조이면서 하부 일측에 액체냉매유입구(18)가 설치되고 상부 일측에는 기체냉매유출구(19)가 설치되도록 배터리실냉매재킷(11)을 형성시킨다. 배터리실(21)의 배터리(111)가 유출입하는 입구를 막는 입구마개(114)를 설치한다. 배터리실냉매재킷(11) 상부에 냉매 순환통로를 가지는 응축기(12)를 설치하는데 응축기(12)에는 바람을 제공하도록 냉각팬(미도시)을 설치할 수도 있다. 배터리실냉매재킷(11) 상부 기체냉매유출구(19)와 응축기(12) 상부 인출배관을 기체배관(13)으로 상호 관통되도록 연결하고 배터리실냉매재킷(11) 하부 액체냉매유입구(18)와 응축기(12) 하부 인출배관을 액체배관(14)으로 상호 관통되도록 연결한다. 배터리실(21)로부터 받는 폐열에 의해 끓을 수 있는 냉매(112)를 배터리실냉매재킷(11) 내부에 채우고 냉매(112)를 가열하여 공기를 배출시킴으로써 배터리실냉매재킷(11), 기체배관(13), 액체배관(14), 응축기(12)로 구성되는 냉매공간이 진공이 되도록 한다. 기체배관(13) 상부 관로 일측에 내부 공기를 배출하기 위하여 밸브가 달린 기체유출구(16)를 설치할 수 있으며 액체배관(14) 하부 관로 일측에 냉각시스템 내부의 액체 냉매를 유출시킬 수 있도록 밸브가 달린 액체유출구(15)를 설치할 수 있다. 기체유출구(16)에는 일정압력 이상에서 방압하는 기능을 부가할 수 있다. 냉각성능을 조절하는 역할을 하도록 기체배관(13) 관로상과 액체배관(14) 관로 상에 온도제어장치가 겸비된 냉각조절밸브(17)를 각각 설치할 수 있다. 온도가 낮을 경우 배터리(111)의 온도를 높이기 위하여 가열할 필요가 있으므로 배터리실냉매재킷(11) 내부에 일측에 가열장치(113)를 추가로 설치하는 것도 본 고안의 범위에 포함된다. 가열장치(113)는 전기가열식 가열장치나 온풍순환식 가열장치 중의 하나를 택할 수 있는데 가열장치(113)는 냉매(112)를 끓임으로써 배터리(111)를 간접적으로 가열시킨다. 온풍순환식 가열장치의 경우 외부에서 만들어진 온풍을 활용하는 것으로 예를 들면 전기자동차의 경우 자동차 실내의 바람을 온풍순환식 가열장치에 통과하도록 하여 가열시킬 수 있다. 냉매(112)는 프레온냉매, 자연냉매, 액화가스 중의 하나를 사용하는 것도 본 고안의 범위에 포함된다. 특히 리튬폴리머배터리의 최적온도가 약25℃임을 감안할 때 냉매 HFC-245fa, HFC-245cb, HFC-245ca, HCFC141-b는 비등점이 15℃, 17℃, 26℃, 32℃이므로 배터리 포장의 열전달경사를 감안하면 최적의 냉매일 수가 있다. 액체유출구(15), 기체유출구(16), 냉각조절밸브(17)를 모두 설치하지 않고 냉각장치를 단순화시키는 것도 본 고안의 범위에 포함된다. 노트북, 로봇, 무정전전원장치, 자전거, 오토바이, 자동차, 태양광발전기, 풍력발전기 중의 하나에 사용되는 배터리(111)에 본 고안을 적용하는 것도 본 고안의 범위에 포함된다. 배터리실냉매재킷(11)은 밀폐구조이므로 습기의 침입을 걱정하지 않아도 된다. 배터리실냉매재킷(11) 외부는 단열성이 뛰어난 재질을 사용하여 외부온도에 따라 배터리의 온도가 수시로 변하지 않도록 단열처리 할 수도 있다. 배터리실냉매재킷(11)은 온도에 따라 냉매공간이 변하면서 필요한 냉매 량을 최소화시키기 위해 변형가능한(flexible) 재질인 합성수지, 알루미늄파우치중의 하나로 만들 수도 있고 형태는 벨로우즈 형태로 만들 수 있다. 온도가 내려가면 배터리실냉매재킷(11) 내부의 압력이 내려가면 배터리실냉매재킷(11) 공간이 축소되어 냉매 수용공간이 줄어들 수 있다. 냉매 수용공간이 줄면 냉매가 적게 소요되고 이는 무게를 가볍게 할 뿐 만아니라 냉매의 열에 의한 관성이 적어서 냉매의 동작을 빠르게 할 수 있다. 작동원리는 다음과 같다. 배터리(111)에서 열이 발생하면 배터리실냉매재킷(11)에 채워진 냉매(112)는 배터리실(21)로부터 열을 전달받아 기화를 하면서 증발잠열로 배터리실(21)을 냉각시켜 종국에는 배터리(111)가 냉각되도록 한다. 배터리실냉매재킷(11)에서 기화된 기체냉매는 기체배관(13)을 통하여 응축기(12)에 유입되어 열을 버리고 액화되고 액체로 변한 냉매(112)는 중력에 의해 액체배관(14)을 통해 다시 배터리실냉매재킷(11) 하부로 유입되면서 냉각의 한 주기를 마친다. 배터리의 폐열과 중력에 의하여 냉매의 순환이 이루어지므로 자연순환방식이다. 냉매의 순환속도가 배터리의 열의 과다에 의해 결정되므로 매우 효율적인 냉각시스템이다. 도2와 도3은 배터리실 냉매재킷을 자세히 설명한다. 배터리실냉매재킷(11)에 의해 형성되는 배터리실(21)에 배터리(111)를 수납시키고 배터리실(21) 입구는 냉난방을 원활하게 하기 위하여 배터리실(21) 입구는 입구마개(114)로 막아서 배터리실냉매재킷(11)을 구성한다.    1 to 3 will be described at the same time. Temperature control is very important because battery is the equipment which charges and discharges at the proper temperature at maximum. A battery chamber 21 is formed to accommodate a battery 111 in which a plurality of battery cells / packs are connected in series or in parallel, and a sealed space is formed to surround the outside of the battery chamber 21. 21 is a sealed structure that accommodates the refrigerant 112 that can be boiled by the waste heat received from the heating device 113, and a heating device 113 is installed at one side of the refrigerant space, and a liquid refrigerant inlet 18 is installed at one side of the lower side, and a gas is provided at one side of the upper side. The battery chamber refrigerant jacket 11 is formed so that the refrigerant outlet 19 is installed. An inlet plug 114 that blocks an inlet through which the battery 111 of the battery chamber 21 flows in and out is installed. A condenser 12 having a refrigerant circulation passage is installed on the battery chamber refrigerant jacket 11, but a cooling fan (not shown) may be installed in the condenser 12 to provide wind. Connect the upper gas coolant outlet 19 of the battery compartment refrigerant jacket 11 and the upper outlet pipe of the condenser 12 to each other through the gas pipe 13 and connect the liquid refrigerant inlet 18 of the lower battery compartment jacket 11 and the condenser. (12) Connect the lower outlet pipe to each other through the liquid pipe (14). The battery compartment refrigerant jacket 11 and the gas pipes are filled with the refrigerant 112 which can be boiled by the waste heat received from the battery compartment 21 in the battery compartment refrigerant jacket 11, and the refrigerant 112 is heated to discharge air. 13), the refrigerant space consisting of the liquid pipe 14, the condenser 12 is to be a vacuum. Gas outlet (13) A gas outlet 16 with a valve can be installed to discharge the internal air on one side of the upper pipeline and a valve is provided to allow the liquid refrigerant in the cooling system to flow out on one side of the lower pipeline. The liquid outlet 15 can be provided. The gas outlet 16 may be provided with a function to discharge pressure at a predetermined pressure or more. Cooling control valve 17 having a temperature control device may be installed on the gas pipe 13 pipe line and the liquid pipe 14 pipe line so as to adjust the cooling performance, respectively. If the temperature is low, since it is necessary to heat to increase the temperature of the battery 111, it is also included in the scope of the present invention to further install a heating device 113 on one side inside the battery chamber refrigerant jacket (11). The heating device 113 may select either an electric heating device or a hot air circulation heating device. The heating device 113 indirectly heats the battery 111 by boiling the refrigerant 112. In the case of the hot air circulation heater, the outside air is utilized to take advantage of, for example, the electric vehicle can be heated by passing the wind in the interior of the car through the hot air circulation heater. Refrigerant 112 is also included in the scope of the present invention to use one of the Freon refrigerant, natural refrigerant, liquefied gas. Especially considering that the optimum temperature of lithium polymer battery is about 25 ℃, the heat transfer inclination of the battery packaging because the refrigerants HFC-245fa, HFC-245cb, HFC-245ca and HCFC141-b have boiling points of 15 ℃, 17 ℃, 26 ℃ and 32 ℃. In consideration of this, it may be an optimal refrigerant. It is also included in the scope of the present invention to simplify the cooling apparatus without installing the liquid outlet 15, the gas outlet 16, and the cooling control valve 17. It is also included in the scope of the present invention to apply the present invention to a battery 111 used in one of a laptop, a robot, an uninterruptible power supply, a bicycle, a motorcycle, a car, a solar power generator, and a wind power generator. Since the battery compartment refrigerant jacket 11 is a sealed structure, there is no need to worry about intrusion of moisture. The battery compartment refrigerant jacket 11 may be thermally insulated so that the temperature of the battery does not change from time to time by using a material having excellent thermal insulation. The battery compartment refrigerant jacket 11 may be made of one of a flexible resin, an aluminum pouch, and a bellows shape, in order to minimize the amount of refrigerant required as the refrigerant space changes with temperature. When the temperature decreases, when the pressure inside the battery chamber refrigerant jacket 11 decreases, the space of the battery chamber refrigerant jacket 11 may be reduced, thereby reducing the refrigerant accommodating space. If the refrigerant receiving space is reduced, less refrigerant is required, which not only reduces the weight but also reduces the inertia caused by the heat of the refrigerant. The principle of operation is as follows. When heat is generated in the battery 111, the refrigerant 112 filled in the battery chamber refrigerant jacket 11 receives heat from the battery chamber 21 and vaporizes it while cooling the battery chamber 21 with latent heat of evaporation. Allow 111 to cool. The gaseous refrigerant vaporized in the battery chamber refrigerant jacket 11 flows into the condenser 12 through the gas pipe 13, discards heat, liquefies, and turns the liquid 112 into a liquid through the liquid pipe 14 by gravity. As it flows back into the lower battery compartment refrigerant jacket 11, one cycle of cooling is completed. It is a natural circulation method because the refrigerant is circulated by the waste heat and gravity of the battery. It is a very efficient cooling system because the circulation speed of the refrigerant is determined by the excessive heat of the battery. 2 and 3 will be described in detail the battery chamber refrigerant jacket. In order to store the battery 111 in the battery chamber 21 formed by the battery chamber refrigerant jacket 11 and the entrance of the battery chamber 21 to facilitate the heating and cooling, the entrance of the battery chamber 21 to the inlet plug 114. The battery chamber refrigerant jacket 11 is constituted by blocking.

11 : 배터리실냉매재킷 12 : 응축기
13 : 기체배관 14 : 액체배관
15 : 액체유출구 16 : 기체유출구
17 : 냉각조절밸브 18 : 액체냉매유입구
19 : 기체냉매유출구 21 : 배터리실
111 : 배터리 112 : 냉매
113 : 가열장치 114 : 입구마개
11: battery chamber refrigerant jacket 12: condenser
13 gas piping 14 liquid piping
15 liquid outlet 16 gas outlet
17: cooling control valve 18: liquid refrigerant inlet
19 gas refrigerant outlet 21 battery compartment
111: battery 112: refrigerant
113: heating device 114: inlet plug

Claims (1)

다수의 배터리셀/팩을 직렬 또는 병렬로 연결시킨 배터리(111)를 수용하는 배터리실(21)을 형성하며 배터리실(21) 외부를 감싸도록 밀폐된 공간을 형성하여 그 공간 내부에는 배터리실(21)로부터 받는 폐열에 의해 끓을 수 있는 냉매(112)를 수용하며 이 냉매공간 일측에 가열장치(113)가 설치되는 밀폐된 구조이면서 하부 일측에 액체냉매유입구(18)가 설치되고 상부 일측에는 기체냉매유출구(19)가 설치되도록 배터리실냉매재킷(11)과; 배터리실(21)의 배터리(111)가 유출입하는 입구를 막는 입구마개(114)와; 배터리실냉매재킷(11) 상부에 냉매 순환통로를 가지는 응축기(12)와; 배터리실냉매재킷(11) 상부 기체냉매유출구(19)와 응축기(12) 상부 인출배관을 상호 관통되도록 연결하는 기체배관(13)과; 배터리실냉매재킷(11) 하부 액체냉매유입구(18)와 응축기(12) 하부 인출배관을 상호 관통되도록 연결하는 액체배관(14)으로 구성되는 것을 특징으로 하는 냉매재킷이 설치된 배터리실 냉난방장치.    A battery chamber 21 is formed to accommodate a battery 111 in which a plurality of battery cells / packs are connected in series or in parallel, and a sealed space is formed to surround the outside of the battery chamber 21. 21 is a sealed structure that accommodates the refrigerant 112 that can be boiled by the waste heat received from the heating device 113, and a heating device 113 is installed at one side of the refrigerant space, and a liquid refrigerant inlet 18 is installed at one side of the lower side, and a gas is provided at one side of the upper side. A battery chamber refrigerant jacket 11 so that the refrigerant outlet 19 is installed; An inlet plug 114 which blocks an inlet through which the battery 111 of the battery chamber 21 flows in and out; A condenser 12 having a refrigerant circulation passage on the battery chamber refrigerant jacket 11; A gas pipe 13 for connecting the upper gas refrigerant outlet 19 of the battery chamber refrigerant jacket 11 and the upper outlet pipe of the condenser 12 to each other; Battery chamber cooling jacket (11) Battery chamber cooling and heating device is installed with a refrigerant jacket characterized in that consisting of a liquid pipe (14) for connecting the lower liquid refrigerant inlet (18) and the condenser (12) withdrawal pipe through each other.
KR2020100011177U 2010-10-31 2010-10-31 The cooling and heating system for battery room with refrigerant jacket KR20100011256U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020100011177U KR20100011256U (en) 2010-10-31 2010-10-31 The cooling and heating system for battery room with refrigerant jacket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2020100011177U KR20100011256U (en) 2010-10-31 2010-10-31 The cooling and heating system for battery room with refrigerant jacket

Publications (1)

Publication Number Publication Date
KR20100011256U true KR20100011256U (en) 2010-11-18

Family

ID=44203912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020100011177U KR20100011256U (en) 2010-10-31 2010-10-31 The cooling and heating system for battery room with refrigerant jacket

Country Status (1)

Country Link
KR (1) KR20100011256U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081138A1 (en) * 2012-11-22 2014-05-30 자동차부품연구원 Apparatus for controlling temperature of battery
WO2023106876A1 (en) * 2021-12-09 2023-06-15 주식회사 엘지에너지솔루션 Charge/discharge test device and method for controlling same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081138A1 (en) * 2012-11-22 2014-05-30 자동차부품연구원 Apparatus for controlling temperature of battery
WO2023106876A1 (en) * 2021-12-09 2023-06-15 주식회사 엘지에너지솔루션 Charge/discharge test device and method for controlling same

Similar Documents

Publication Publication Date Title
KR20100041727A (en) The cooling and heating system for battery to control temperature
US9660307B2 (en) Battery temperature adjustment device
US10033072B2 (en) Fluid-cooled battery module containing battery cells
CN202758989U (en) Battery system with multi-medium cooling source
CN103959513B (en) There is the busbar of new structure
CN106356584B (en) Battery system with thermal management function
KR101526389B1 (en) Thermal management system of battery for electric vehicle
US20150380783A1 (en) Method and device providing the temperature regulation of a rechargeable electrical energy storage battery
WO2005122311A1 (en) Cooling device for fuel cell and vehicle having the same
CN102271939A (en) Device for cooling the batteries of an especially electric vehicle and vehicle comprising such a device
JP2010212099A (en) Battery system
JPH11307139A (en) Battery cooling device
CN109585729A (en) A kind of controlling temp type power battery pack
CN105051968B (en) Battery and motor vehicle
JP2012516005A (en) Temperature controlled battery system
EP4193403A1 (en) Fuel cell vehicle thermal management system and method for managing fuel cell thermal loads
CN112952237A (en) Battery heat management device, battery module and battery heat management method
KR20100011256U (en) The cooling and heating system for battery room with refrigerant jacket
JP5437889B2 (en) Battery cooling device and battery temperature control device
JP7062683B2 (en) A device for controlling the temperature of the battery pack
JP7263713B2 (en) Thermal insulation device
JP6089670B2 (en) Hot water system
Mishra et al. EV's Battery Thermal Management analysis using various cooling techniques-A Case study
Gayathri et al. Challenging Issues and Solutions on Battery Thermal Management for Electric Vehicles
KR20100047210A (en) The battery cells/pack combined with cooling instrument

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid