KR20100010793A - A novel method for the preparation of hexahydrocannabinol derivatives - Google Patents

A novel method for the preparation of hexahydrocannabinol derivatives Download PDF

Info

Publication number
KR20100010793A
KR20100010793A KR1020080071834A KR20080071834A KR20100010793A KR 20100010793 A KR20100010793 A KR 20100010793A KR 1020080071834 A KR1020080071834 A KR 1020080071834A KR 20080071834 A KR20080071834 A KR 20080071834A KR 20100010793 A KR20100010793 A KR 20100010793A
Authority
KR
South Korea
Prior art keywords
formula
group
hydrogen
compound
citronellal
Prior art date
Application number
KR1020080071834A
Other languages
Korean (ko)
Other versions
KR101146777B1 (en
Inventor
이용록
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020080071834A priority Critical patent/KR101146777B1/en
Publication of KR20100010793A publication Critical patent/KR20100010793A/en
Application granted granted Critical
Publication of KR101146777B1 publication Critical patent/KR101146777B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A method for preparing hexahydrocannabinol derivative which is a kind of cannabinoid is provided to ensure high yield of target compound through one-step reaction. CONSTITUTION: A hexahydrocannabinol of general formula II is prepared by reacting aldehyde having unsaturated bond with a compound of general formula I in the presence of non reaction organic solvent under the presence of catalyst. In general formula I, R1 is hydrogen, OH, OCH3, OEt, ether group, alkenyl group; R2 is hydrogen, carbonyl, ester group or alkenyl group; R3 is alkyl group such as hydrogen, methyl, ethyl, and pentanyl or alkenyl group; and R4 is hydrogen, alkyl or alkenyl group. The aldehyde having unsaturated bond citral, citronellal, citronelly oxyacetalde hyde, cyclamen aldehyde, hydroxycitronellal, lilial or bourgeonal.

Description

헥사하이드로칸나비올 유도체의 신규 제조방법 {A NOVEL METHOD FOR THE PREPARATION OF HEXAHYDROCANNABINOL DERIVATIVES}A new method for preparing hexahydrocannabiol derivatives {A NOVEL METHOD FOR THE PREPARATION OF HEXAHYDROCANNABINOL DERIVATIVES}

본 발명은 촉매 존재하에 [일반식 II]로 나타내어지는 화합물을 알데히드와 반응시켜 [일반식 I]로 나타내어지는 헥사하이드로칸나비올 유도체를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a hexahydrocannabiol derivative represented by [Formula I] by reacting a compound represented by [Formula II] with an aldehyde in the presence of a catalyst.

본 발명의 헥사하이드로칸나비올을 포함한 카나비노이드(cannabinoid)는 자연 상태에서 칸나비스 사비타 L(대마초, Cannabis sativa L)에 존재하고 있는 화합물로서, 칸나비스 사티바 L.은 420개의 다른 구성물을 갖고 있고, 이들 중 66개의 화합물은 카나비노이드의 종류에 속하며, 자연적으로 존재하는 카나비노이드들을 분류하면 다음 [표 1]과 같다. Cannabinoids including hexahydrocannabiol of the present invention are compounds present in cannabis savita L (cannabis, Cannabis sativa L) in nature, and cannabis sativa L. has 420 different components. Of these, 66 compounds belong to the class of cannabinoids, and naturally classified cannabinoids are shown in Table 1 below.

Figure 112008053037280-PAT00002
Figure 112008053037280-PAT00002

이러한 칸나비스 사티바 L. 성분 중에서도 특히 환각작용을 발휘하며 주요한 카나비노이드의 성분은 테트라하이드로칸나비놀 및 칸나비디올로서, 이들은 중추신경, 대뇌, 척수에 대하여 처음에는 쾌락, 다행감과 환각을 수반하는 흥분을 야기시키고, 이것이 경과되면 신체마비 등의 현상을 야기시키는데 그 원인은 신경외부 전달계의 차단 때문인 것으로 생각되고 있다. Among these cannabis sativa L. components, they exhibit hallucinations, and the main components of cannabinoids are tetrahydrocannabinol and cannabidiol, which initially have pleasure, gladness and hallucination in the central nervous system, cerebrum and spinal cord. It causes excitement, and when it passes, it causes phenomena such as physical paralysis, which is thought to be due to blocking of the external neurotransmitter system.

이와 같이 중요한 카나비노이드는 △9-THC(델타-9-테트라하이드로칸나비놀)과 △8 -THC(델타-8-테트라하이드로칸나비놀)로서 구체적인 화학식은 다음과 같다. 최근에는 합성 △9-THC 유도체등이 구토방지 치료제인 드로나비놀(Dronabinol), 마리놀(Marinol), 쎄사멧(Cesamet)의 상품명으로 사용되고 있다. The important cannabinoids are Δ 9 -THC (delta-9-tetrahydrocannabinol) and Δ 8 -THC (delta-8-tetrahydrocannabinol). Recently, synthetic Δ 9 -THC derivatives have been used under the trade names Dronabinol, Marinol, and Cesame, which are antiemetic drugs.

Figure 112008053037280-PAT00003
Figure 112008053037280-PAT00004
Figure 112008053037280-PAT00003
Figure 112008053037280-PAT00004

8-THC(델타-8-테트라하이드로칸나비놀) △9-THC(델타-9-테트라하이드로칸나비놀)Δ 8 -THC (delta-8-tetrahydrocannabinol) △ 9 -THC (delta-9-tetrahydrocannabinol)

이러한 칸나비올의 유사체 중 헥사하이드로칸나비올(HHC)의 경우 다음과 같은 (-)-HHC, (+)-HHC의 두가지 거울상 이성질체가 있으며, 이중 (-)-HHC 는 상기 △8 -THC 와 유사한 활성을 나타내고 있어 최근에 많은 주목을 받고 있다. Among the analogs of cannabiol, hexahydrocannabiol (HHC) has two enantiomers of (-)-HHC and (+)-HHC as follows, and (-)-HHC is similar to Δ 8 -THC. It shows activity and has attracted much attention recently.

Figure 112008053037280-PAT00005
Figure 112008053037280-PAT00006
Figure 112008053037280-PAT00005
Figure 112008053037280-PAT00006

(-)-HHC (+)-HHC     (-)-HHC (+)-HHC

상기 헥사하이드로칸나비올 (-)-HHC와 (+)-HHC 화합물의 합성법이 Tietze 에 의해 1,3-사이클로헥산다이온을 출발물질로 Knoevenagel/Diels-Alder 반응과 벤젠고리로의 산화반응등을 통해 3단계 (Tietze,L. F.; von Kiedrowski, G.,; Berger,B. Angew. Chem, Int. Ed. 1982, 21, 221)로 개발된 바 있다. 또한 Cornia 에 의해서는 디에틸알루미늄 클로라이드를 촉매로 하여 olivetol과 (R)-(+) 또는 (S)-(-)-시트로넬랄과의 축합반응에 의한 5 단계 (Casiraghi, G.; Cornia, M.; Casnati, G.; Fava, G. G.; Ferrare, M. J. Chem. Soc., Chem. Commun. 1986, 271)로 개발된 바 있다.Synthesis of the hexahydrocannabiol (-)-HHC and (+)-HHC compounds is carried out by Tietze using 1,3-cyclohexanedione as a starting material, and the Knoevenagel / Diels-Alder reaction and oxidation to benzene ring. In three stages (Tietze, LF; von Kiedrowski, G., Berger, B. Angew. Chem, Int. Ed. 1982, 21, 221). In addition, Cornia uses five steps of condensation of olivetol with (R)-(+) or (S)-(-)-citronellal using diethylaluminum chloride as a catalyst (Casiraghi, G .; Cornia, M .; Casnati, G .; Fava, GG; Ferrare, M. J. Chem. Soc., Chem. Commun. 1986, 271).

그러나, 이러한 헥사하이드로칸나비올에 대한 기존의 알려진 합성법은 여러 단계의 반응과 까다로운 반응조건 및 낮은 수율등으로 대량 생산하는데에 여러 가지 문제점을 보여주고 있다. 무엇보다도 기존에 알려진 합성방법을 통해서는 헥사하이드로칸나비올의 유도체들의 제조에 대한 접근이 어렵다.However, the known synthesis methods for such hexahydrocannabiol show various problems in mass production due to various stages of reaction, difficult reaction conditions, and low yield. Above all, it is difficult to approach the preparation of hexahydrocannabiol derivatives through known synthetic methods.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 한단계 반응을 통해 상기 헥사하이드로칸나비올과 그 유도체들을 높은 수율로 제조하는 방법을 제공하고자 한다. The present invention is to provide a method for producing the hexahydrocannabiol and its derivatives in a high yield through a one-step reaction in order to solve the problems of the prior art as described above.

본 발명은 다음 [일반식 I]로 나타내어지는 헥사하이드로칸나비올 유도체의 제조 방법에 관한 것이다. The present invention relates to a method for producing a hexahydrocannabiol derivative represented by the following [formula I].

[일반식 I][Formula I]

Figure 112008053037280-PAT00007
Figure 112008053037280-PAT00007

상기 [일반식 I]에서 R1은 수소, OH, OCH3, OEt, 에테르 그룹, 알겐일 그룹을, R2는 수소, 카보닐, 에스터 그룹 및 알겐일 그룹을, R3는 수소, 메틸, 에틸, 펜탄닐 같은 알킬 그룹 및 알켄일 그룹을, R4는 수소, 알킬 및 알겐일 그룹을 의미한다. 또는 상기 [일반식 I]에서 A 는 나프틸, 퀴놀일, 이소퀴놀일, 퀴놀리지닐, 퀴놀살리닐 및 디벤조푸릴고리를 의미한다.In Formula [I], R 1 is hydrogen, OH, OCH 3 , OEt, ether group, algenyl group, R 2 is hydrogen, carbonyl, ester group, and alkenyl group, R 3 is hydrogen, methyl, Alkyl groups and alkyl groups such as ethyl, pentanyl and R 4 refer to hydrogen, alkyl and alkenyl groups. Or A in the general formula [I] means naphthyl, quinolyl, isoquinolyl, quinolizylyl, quinolsalinyl and dibenzofuryl ring.

본 발명에 의해 제조된 카나비노이드 유사체는 키랄 중심을 가질 수 있으며, [일반식 I]의 6a, 10a 위치에서 라세미체 및 부분 입체 이성질체로서 존재할 수 있다. 이들 성분의 물리화학적 차이로 인해, 부분 입체 이성질체는 공지된 방식으로 이들의 라세미 변형체로 분리될 수 있다. The cannabinoid analogs prepared by the present invention may have a chiral center and exist as racemates and diastereomers at the 6a, 10a positions of [Formula I]. Due to the physicochemical differences of these components, diastereomers can be separated into their racemic variants in a known manner.

라세미체는 공지된 방법에 의해, 예를 들어 미생물에 의해, 또는 라세미 화합물과의 염을 형성하는 광학적 활성 산 또는 염기와의 반응, 분별 결정화에 의한 부분 입체 이성질체의 분리 및 적합한 제제에 의한 거울상 이성질체의 유리에 의해, 광학적 활성 용매 중에서 재결정화시킴으로써 분리될 수 있다. 유리하게는, 더 큰 활성의 광학 이성질체가 분리된다. 그러나, 본 발명에 따라, 상기 [일반식 I]과 반응하는 알데히드를 선택하는 비대칭 합성에 의해 순수한 거울상 이성질체를 수득하는 것이 또한 가능하다.Racemates can be prepared by known methods, for example by microorganisms, or by reaction with optically active acids or bases that form salts with racemic compounds, by separation of diastereomers by fractional crystallization and by suitable preparations. The glass of the enantiomers can be separated by recrystallization in an optically active solvent. Advantageously, more active optical isomers are separated. However, according to the invention, it is also possible to obtain pure enantiomers by asymmetric synthesis, which selects the aldehyde reacting with the above [formula I].

본 발명은 다음 [일반식 II]의 화합물을 에틸렌디아민 디아세테이트의 촉매 존재하에서 알데히드와의 Diels-Alder 고리 첨가 반응에 의해 상기 [일반식 I]의 헥사하이드로칸나비올 유도체를 제조하는 방법을 제공한다. The present invention provides a method for preparing the hexahydrocannabiol derivative of the general formula (I) by reacting a compound of the general formula (II) with a Diels-Alder ring addition reaction with an aldehyde in the presence of a catalyst of ethylenediamine diacetate. .

[일반식 II][Formula II]

Figure 112008053037280-PAT00008
Figure 112008053037280-PAT00008

상기 [일반식 II]에서 R5는 수소, 히드록시기, 카르보닐기, 또는 에스테르기를 가지는 탄화수소이며, 또는 상기 [일반식 II]에서 R5는 B 고리와 함께 나프틸, 퀴놀일, 이소퀴놀일, 퀴놀리지닐, 퀴놀살리닐 및 디벤조푸릴에서 선택된 그룹을 형성한다. In Formula [II], R 5 is a hydrocarbon having a hydrogen, a hydroxy group, a carbonyl group, or an ester group, or in [Formula II], R 5 is a naphthyl, quinolyl, isoquinolyl, quinoli with a B ring. A group selected from genyl, quinolsalinyl and dibenzofuryl.

상기 [일반식 II]의 화합물과 반응하여 헥사하이드로칸나비올 유도체를 생성하는 데에 있어 사용되는 알데히드는, dienophile 로서 작용할 수 있는 8 내지 18 개의 탄소 원자를 갖고, 탄소사이의 이중 결합을 가지고 있는 불포화 알데히드로서, 예를 들어, 시트랄 (citral), 시트로넬랄 (citronellal), 시트로넬릴옥시아세트알데히드 (citronellyl oxyacetalde hyde), 시클라멘 (cyclamen) 알데히드, 히드록시시트로넬랄, 릴리알 (lilial) 및 부르지오날 (bourgeonal) 중에서 선택된다. Aldehydes used to produce hexahydrocannabiol derivatives by reacting with the compound of [Formula II] are unsaturated having 8 to 18 carbon atoms that can act as dienophile and having double bonds between carbons. Aldehydes such as citral, citronellal, citronellyl oxyacetalde hyde, cyclamen aldehydes, hydroxycitronellal, lilial and It is selected from bourgeonal.

상기 화합물 중 다음의 시트랄 및 시트로넬랄 유사체는 분자내의 이중결합에 의하여 대응하여, 상기 [일반식 II] 화합물과 반응할 경우 하나 혹은 두 위치 모두에서 시클로헥산화 될 수 있으며, 각각 광학이성질체가 존재한다. The following citral and citronellal analogues of the compounds correspond to double bonds in the molecule, and when reacted with the compound of [Formula II], may be cyclohexanated at one or both positions, each of which the optical isomer is exist.

Figure 112008053037280-PAT00009
Figure 112008053037280-PAT00010
Figure 112008053037280-PAT00009
Figure 112008053037280-PAT00010

시트랄 시트로넬랄           Citral Citronellal

본 발명에 의한 제조 방법은 비반응성 유기 용매 내에서 일어나며, 통상 사용되는 비반응성 유기 용매로는 디클로로메탄, 클로로포름, 1-2-디브로모에탄, 1-브로모-2-클로로에탄, 1,1-디브로모에탄, 2-클로로 푸로판, 1-요도푸로판, 클로로벤젠, 브로모벤젠 및 1, 2-디클로로벤젠과 같은 할로겐화 탄화수소 : 벤젠, 톨루엔, 키실렌과 같은 방향성 용매 : 디에틸에테르, 디메틸에테르, 디메틸에테르 및 디이소푸로필 에테르와 같은 에테르를 포함함다. 바람직한 비반응성 유기용매는 할로겐화 탄화수소와 방향성 용매이다.The preparation method according to the present invention takes place in a non-reactive organic solvent, and non-reactive organic solvents commonly used include dichloromethane, chloroform, 1-2-dibromoethane, 1-bromo-2-chloroethane, 1, Halogenated hydrocarbons such as 1-dibromoethane, 2-chlorofuropane, 1-iodofuropane, chlorobenzene, bromobenzene and 1,2-dichlorobenzene: aromatic solvents such as benzene, toluene, xylene: diethyl Ethers such as ethers, dimethyl ethers, dimethyl ethers and diisofurophyl ethers. Preferred non-reactive organic solvents are halogenated hydrocarbons and aromatic solvents.

이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 상기 [일반식 II]로 나타내어지는 화합물을 불포화 결합을 가진 알데히드와 알돌반응과 Diels-Alder 고리화 첨가 반응에 의하여 상기 [일반식 I]의 화합물을 제조하는 방법을 제공함을 특징으로 한다. The present invention provides a method for preparing the compound of [Formula I] by reacting an aldehyde having an unsaturated bond with an aldehyde having an unsaturated bond, an Aldol reaction, and a Diels-Alder cycloaddition reaction. .

본 발명에 따른 상기 [일반식 I] 중 어느 하나로 표시되는 화합물의 제조 방법을 하기 반응식을 일례로 설명하나, 하기 설명이 본 발명의 범위를 제한하지는 않는다. Although the following reaction scheme is demonstrated to the manufacturing method of the compound represented by any one of said [formula I] which concerns on this invention as an example, the following description does not limit the scope of the present invention.

메틸 2,4-다이하이드록시벤조에이트(1 mmol)을 (R)-(+)-citronellal (2 mmol)과 반응시켰다. 이때의 반응식은 다음 [반응식 1]과 같다. Methyl 2,4-dihydroxybenzoate (1 mmol) was reacted with (R)-(+)-citronellal (2 mmol). The reaction scheme at this time is as follows [Scheme 1].

[반응식 1] Scheme 1

Figure 112008053037280-PAT00011
Figure 112008053037280-PAT00011

생성물 a 생성물 b                          Product a product b

이때 촉매로 인듐클로라이드(Indium(III)chloride), 이테르븀 트리플레이트 (ytterbium(III) triflate), 피리딘, 에틸렌디아민디아세테이트 및 에틸렌디아민디아세테이트/트라이에틸아민과의 혼합촉매를 사용하였고, 용매로서 아세토니트릴 또는 자일렌을 사용하여 각각 다음과 같은 조건에서 반응시켜서, 상기 생성물 a, b의 수율을 측정하였으며, 그 결과는 다음 [표 2]과 같다.In this case, a mixed catalyst of indium (III) chloride, ytterbium (III) triflate, pyridine, ethylenediamine diacetate and ethylenediamine diacetate / triethylamine was used as a catalyst, and aceto was used as a solvent. Using nitrile or xylene, respectively, under the following conditions, the yields of the products a and b were measured, and the results are shown in the following [Table 2].

사용 촉매Used catalyst 촉매 사용량Catalyst usage 반응조건Reaction condition 수율yield 생성물 (a)Product (a) 생성물(b)Product (b) InCl3InCl3 10 mol%10 mol% 아세토니트릴. 환류, 12시간 Acetonitrile. Reflux, 12 hours 00 00 Yb(OTf)3Yb (OTf) 3 10 mol%10 mol% 아세토니트릴. 환류, 12시간Acetonitrile. Reflux, 12 hours 88 33 pyridinepyridine 과량Overdose 140C, 24시간140C, 24 hours 00 00 EDDA (ethylenediamine diacetate )EDDA (ethylenediamine diacetate) 20 mol%20 mol% 자일렌, 환류, 24시간 Xylene, reflux, 24 hours 3030 4040 TEA(triethylamine) Triethylamine (TEA) 2 mL2 mL 자일렌, 환류, 24시간Xylene, reflux, 24 hours 1010 3030 EDDA와 TEA의 혼합 촉매EDDA and TEA Mixed Catalyst 20 mol% + 2mL20 mol% + 2 mL 자일렌, 환류, 24시간Xylene, reflux, 24 hours 00 8585

이때 생성된 상기 생성물 a와 b의 분광학적 데이터는 아래와 같다. Spectroscopic data of the product a and b produced at this time is as follows.

생성물 a: Product a:

1H NMR (CDCl3, 300 MHz) δ11.35 (1H, s), 7.70-7.50 (2H, m), 6.43 (1H, d, J= 16.6 Hz), 6.07 (1H, dd, J= 16.6, 7.8 Hz), 5.10 (1H, t, J= 7.1 Hz), 3.89 (3H, s), 2.40-2.31 (1H, m), 2.06-1.99 (2H, m), 1.62 (3H, s), 1.58 (3H, s), 1.45-1.37 (2H, m), 1.10 (3H, d, J= 6.7 Hz); 1 H NMR (CDCl 3 , 300 MHz) δ 11.35 (1H, s), 7.70-7.50 (2H, m), 6.43 (1H, d, J = 16.6 Hz), 6.07 (1H, dd, J = 16.6, 7.8 Hz), 5.10 (1H, t, J = 7.1 Hz), 3.89 (3H, s), 2.40-2.31 (1H, m), 2.06-1.99 (2H, m), 1.62 (3H, s), 1.58 ( 3H, s), 1.45-1.37 (2H, m), 1.10 (3H, d, J = 6.7 Hz);

IR (neat) 3406, 2955, 1667, 1618, 1499, 1439, 1341, 1273, 1204, 1150, 984, 791 cm-1.IR (neat) 3406, 2955, 1667, 1618, 1499, 1439, 1341, 1273, 1204, 1150, 984, 791 cm -1 .

생성물 b:Product b:

[α]D 20 -127.7o (c 0.30, CHCl3);[α] D 20 -127.7 o (c 0.30, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 11.56 (1H, s), 7.59 (1H, d, J= 8.9 Hz), 6.29 (1H, d, J= 8.9 Hz), 3.86 (3H, s), 3.18 (1H, br d, J= 12.8 Hz), 2.52-2.44 (1H, m), 1.86-1.80 (2H, m), 1.67-1.52 (3H, m), 1.46-1.40 (1H, m), 1.37 (3H, s), 1.14-1.10 (1H, m), 1.05 (3H, s), 0.93 (3H, d, J= 6.6 Hz); 1 H NMR (CDCl 3 , 300 MHz) δ 11.56 (1H, s), 7.59 (1H, d, J = 8.9 Hz), 6.29 (1H, d, J = 8.9 Hz), 3.86 (3H, s), 3.18 (1H, br d, J = 12.8 Hz), 2.52-2.44 (1H, m), 1.86-1.80 (2H, m), 1.67-1.52 (3H, m), 1.46-1.40 (1H, m), 1.37 ( 3H, s), 1.14-1.10 (1H, m), 1.05 (3H, s), 0.93 (3H, d, J = 6.6 Hz);

13C NMR (CDCl3, 75 MHz) δ171.2, 162.5, 160.2, 128.6, 112.9, 109.6, 104.3, 78.3, 51.8, 48.8, 38.2, 35.4, 35.2, 32.7, 27.9, 27.5, 22.5, 19.1; 13 C NMR (CDCl 3 , 75 MHz) δ 171.2, 162.5, 160.2, 128.6, 112.9, 109.6, 104.3, 78.3, 51.8, 48.8, 38.2, 35.4, 35.2, 32.7, 27.9, 27.5, 22.5, 19.1;

IR (neat) 2949, 1663, 1622, 1582, 1489, 1439, 1339, 1260, 1209, 1138, 1086, 1069, 1003, 914, 883 cm-1.IR (neat) 2949, 1663, 1622, 1582, 1489, 1439, 1339, 1260, 1209, 1138, 1086, 1069, 1003, 914, 883 cm -1 .

상기 [표 2]에서 보는 바와 같이 EDDA/TEA의 혼합촉매을 사용할 경우 상기 [반응식 1]의 알돌반응과 고리화 반응이 일어난 생성물 b 만이 85% 수율로 생성되었다. 이는 메틸 2,4-다이하이드록시벤조에이트(1 mmol)이 (R)-(+)-시트로넬랄 (2mmol)과 알돌반응을 거쳐 Diels-Alder 고리첨가 반응시, o-퀴논 메타이드(o-quinone methide)가 생성되며, Diels-Alder 반응에서 o-퀴논 메타이드의 강한 exo 선택성 때문에 하나의 이성질체만 합성되는 것으로 설명될 수 있다 (이하 [반응식 2] 참조). As shown in Table 2, when the mixed catalyst of EDDA / TEA was used, only the product b in which the aldol reaction and the cyclization reaction of [Scheme 1] occurred was produced in 85% yield. It was found that methyl 2,4-dihydroxybenzoate (1 mmol) was reacted with (R)-(+)-citronellal (2 mmol) via Didol-Alder ring addition to o-quinone metade (o). -quinone methide) can be produced and explained by the synthesis of only one isomer due to the strong exo selectivity of the o-quinone metade in the Diels-Alder reaction (see Scheme 2 below).

[반응식 2]Scheme 2

Figure 112008053037280-PAT00012
Figure 112008053037280-PAT00012

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의하여 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.

실시예Example 1.  One.

(-)-3,6,6,9-(-)-3,6,6,9- TetramethylTetramethyl -6a,7,8,9,10,10a--6a, 7,8,9,10,10a- hexahydrohexahydro -6H--6H- benzobenzo [c]chromen-1-[c] chromen-1- olol (1a) 과 (+)-3,6,6,9-Tetramethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c] chromen-1-ol (1b)의 제조 Preparation of (1a) and (+)-3,6,6,9-Tetramethyl-6a, 7,8,9,10,10a-hexahydro-6H-benzo [c] chromen-1-ol (1b)

상기 [일반식 II] 화합물로서 5-메틸치환 레조시놀 (124mg, 1mmol), 즉, orcinol을 사용하고, 알데히드로서 (R)-(+)-citronellal (308 mg, 2mmol) 또는 (S)-(-)-citronellal (308 mg, 2mmol)를 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 24시간 자일렌 환류조건에서 반응시켜 다음 [표 3]과 같이 생성물로 화합물 1a (177 mg, 68%)과 화합물 1b (182 mg, 70%) 을 각각 얻었다. 5-methyl-substituted resorcinol (124 mg, 1 mmol), that is, orcinol, was used as the [Formula II] compound, and aldehyde (R)-(+)-citronellal (308 mg, 2 mmol) or (S)- (-)-citronellal (308 mg, 2 mmol) was used, and the catalyst was reacted under reflux conditions of xylene for 24 hours using EDDA (36 mg, 0.2 mmol) / TEA (2 mL) mixed catalyst as the following [Table 3] and Similarly, Compound 1a (177 mg, 68%) and Compound 1b (182 mg, 70%) were obtained as products.

일반식 II 화합물Formula II Compound 알데히드Aldehyde 반응시간Reaction time 생성물product 수율 yield

Figure 112008053037280-PAT00013
Figure 112008053037280-PAT00013
(R)-(+)-citronellal   (R)-(+)-citronellal 24시간   24 hours
Figure 112008053037280-PAT00014
Figure 112008053037280-PAT00014
68   68
Figure 112008053037280-PAT00015
Figure 112008053037280-PAT00015
(S)-(-)-citronellal   (S)-(-)-citronellal 24시간   24 hours
Figure 112008053037280-PAT00016
Figure 112008053037280-PAT00016
70   70

상기 화합물 1a 와 1b 의 분광학적 데이터는 아래와 같다.Spectroscopic data of the compounds 1a and 1b are as follows.

화합물 1a:Compound 1a:

[α]D 20 -90.9o (c 0.18, CHCl3);[α] D 20 -90.9 o (c 0.18, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 6.26 (1H, s), 6.08 (1H, s), 5.67 (1H, s), 3.09 (1H, br d, J= 12.6 Hz), 2.51-2.43 (1H, m), 2.16 (3H, s), 1.86-1.83 (2H, m), 1.73-1.59 (3H, m), 1.49-1.42 (1H, m), 1.38 (3H, s), 1.14-1.10 (1H, m), 1.07 (3H, s), 0.94 (3H, d, J= 6.6 Hz); 1 H NMR (CDCl 3 , 300 MHz) δ 6.26 (1H, s), 6.08 (1H, s), 5.67 (1H, s), 3.09 (1H, br d, J = 12.6 Hz), 2.51-2.43 (1H , m), 2.16 (3H, s), 1.86-1.83 (2H, m), 1.73-1.59 (3H, m), 1.49-1.42 (1H, m), 1.38 (3H, s), 1.14-1.10 (1H m), 1.07 (3H, s), 0.94 (3H, d, J = 6.6 Hz);

13C NMR (CDCl3, 75 MHz) δ 154.9, 154.7, 137.2, 110.5, 110.2, 108.5, 77.1, 49.1, 38.8, 35.4, 35.3, 32.7, 27.9, 27.4, 22.5, 20.9, 18.7; 13 C NMR (CDCl 3 , 75 MHz) δ 154.9, 154.7, 137.2, 110.5, 110.2, 108.5, 77.1, 49.1, 38.8, 35.4, 35.3, 32.7, 27.9, 27.4, 22.5, 20.9, 18.7;

IR (neat) 3387, 2922, 1624, 1580, 1510, 1454, 1332, 1267, 1188, 1138, 1115, 1086, 1057, 1001, 821, 740 cm-1.IR (neat) 3387, 2922, 1624, 1580, 1510, 1454, 1332, 1267, 1188, 1138, 1115, 1086, 1057, 1001, 821, 740 cm -1 .

화합물 1b:Compound 1b:

[α]D 20 +94.5o (c 0.20, CHCl3);[α] D 20 +94.5 o (c 0.20, CHCl 3 );

실시예Example 2.  2.

(-)-(-)- HexahydrocannabinolHexahydrocannabinol (2a) 과 (+)- (2a) and (+)- HexahydrocannabinolHexahydrocannabinol (2b)의 제조 Preparation of (2b)

상기 [일반식 II] 화합물로서 olivetol(180 mg, 1.0 mmol)을 사용하고, 알데히드로서 (R)-(+)-citronellal (308 mg, 2mmol) 또는 (S)-(-)-citronellal (308 mg, 2mmol)를 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 24시간 자일렌 환류조건에서 반응시켜 아래 [표 4]과 같이 생성물로 화합물 2a (228 mg, 72%)과 화합물 2b (231 mg, 73%) 를 각각 얻었다. Olivetol (180 mg, 1.0 mmol) was used as the [Formula II] compound, and aldehyde (R)-(+)-citronellal (308 mg, 2 mmol) or (S)-(-)-citronellal (308 mg) was used. , 2mmol), and EDDA (36mg, 0.2mmol) / TEA (2mL) mixed catalyst as a catalyst, reacted under reflux conditions for 24 hours to reflux the compound 2a (228 mg) as a product as shown in Table 4 below. , 72%) and compound 2b (231 mg, 73%) were obtained, respectively.

일반식 II 화합물Formula II Compound 알데히드Aldehyde 반응시간Reaction time 생성물product 수율 yield

Figure 112008053037280-PAT00017
Figure 112008053037280-PAT00017
(R)-(+)-citronellal   (R)-(+)-citronellal 24시간   24 hours
Figure 112008053037280-PAT00018
Figure 112008053037280-PAT00018
72   72
Figure 112008053037280-PAT00019
Figure 112008053037280-PAT00019
(S)-(-)-citronellal   (S)-(-)-citronellal 24시간   24 hours
Figure 112008053037280-PAT00020
Figure 112008053037280-PAT00020
73   73

상기 화합물 2a, 2b에 대한 분광학적 데이터는 아래와 같다.Spectroscopic data about the compound 2a, 2b is as follows.

화합물 2a:Compound 2a:

[α]D 20 -85.4o (c 0.30, CHCl3);[α] D 20 -85.4 o (c 0.30, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 6.23 (1H, s), 6.06 (1H, s), 4.82 (1H, s), 3.02 (1H, br d, J= 12.6 Hz), 2.47-2.38 (3H, m), 1.85-1.81 (2H, m), 1.60-1.51 (5H, m), 1.35 (3H, s), 1.30--1.25 (4H, m), 1.08-1.05 (1H, m), 1.05 (3H, s), 0.89 (3H, d, J= 6.6 Hz), 0.86-0.84 (3H, m), 0.79-0.72 (1H, m); 1 H NMR (CDCl 3 , 300 MHz) δ 6.23 (1H, s), 6.06 (1H, s), 4.82 (1H, s), 3.02 (1H, br d, J = 12.6 Hz), 2.47-2.38 (3H , m), 1.85-1.81 (2H, m), 1.60-1.51 (5H, m), 1.35 (3H, s), 1.30--1.25 (4H, m), 1.08-1.05 (1H, m), 1.05 ( 3H, s), 0.89 (3H, d, J = 6.6 Hz), 0.86-0.84 (3H, m), 0.79-0.72 (1H, m);

13C NMR (CDCl3, 75 MHz) δ 154.9, 154.7, 110.3, 109.9, 107.6, 77.0, 49.1, 38.9, 35.5, 35.4, 32.8, 31.5, 30.6, 28.0, 27.7, 22.6, 22.5, 19.0, 14.0; 13 C NMR (CDCl 3 , 75 MHz) δ 154.9, 154.7, 110.3, 109.9, 107.6, 77.0, 49.1, 38.9, 35.5, 35.4, 32.8, 31.5, 30.6, 28.0, 27.7, 22.6, 22.5, 19.0, 14.0;

IR (neat) 3406, 2926, 2865, 1624, 1578, 1426, 1358, 1138, 1038, 828 cm-1.IR (neat) 3406, 2926, 2865, 1624, 1578, 1426, 1358, 1138, 1038, 828 cm -1 .

화합물 2b:Compound 2b:

[α]D 20 +86.9o (c 0.10, CHCl3);[α] D 20 +86.9 o (c 0.10, CHCl 3 );

실시예Example 3.  3.

(-)-1-(1-(-)-1- (1- HydroxyHydroxy -6,6,9--6,6,9- trimethyltrimethyl -6a,7,8,9,10,10a--6a, 7,8,9,10,10a- hexahydrohexahydro -6H-benzo[c]chromen-2-yl)ethanone (3a) 과 (+)-1-(1--6H-benzo [c] chromen-2-yl) ethanone (3a) and (+)-1- (1- HydroxyHydroxy -6,6,9--6,6,9- trimethyltrimethyl - 6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-2-yl)ethanone (3b) 의 제조Preparation of 6a, 7,8,9,10,10a-hexahydro-6H-benzo [c] chromen-2-yl) ethanone (3b)

상기 [일반식 II] 화합물로서 2,4-디하이드록시아세토페논 (152mg, 1mmol)과 알데히드로서 (R)-(+)-citronellal (308 mg, 2mmol) 또는 (S)-(-)-citronellal (308 mg, 2mmol)를 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 16시간 자일렌 환류조건에서 반응시켜 다음 [표 5]와 같이 결과로 화합물 3a (216 mg, 75%)과 화합물 3b (219 mg, 76%) 을 각각 얻었다. 2,4-dihydroxyacetophenone (152 mg, 1 mmol) and (R)-(+)-citronellal (308 mg, 2 mmol) or (S)-(-)-citronellal as the [General Formula II] compound (308 mg, 2 mmol) was used, and EDDA (36 mg, 0.2 mmol) / TEA (2 mL) mixed catalyst was used as a catalyst. The reaction was carried out under reflux conditions for 16 hours. (216 mg, 75%) and Compound 3b (219 mg, 76%) were obtained, respectively.

일반식 II 화합물Formula II Compound 알데히드 Aldehyde 반응시간Reaction time 생성물product 수율yield

Figure 112008053037280-PAT00021
Figure 112008053037280-PAT00021
(R)-(+)-citronellal(R)-(+)-citronellal 1616
Figure 112008053037280-PAT00022
Figure 112008053037280-PAT00022
7575
Figure 112008053037280-PAT00023
Figure 112008053037280-PAT00023
(S)-(-)-citronellal(S)-(-)-citronellal 1616
Figure 112008053037280-PAT00024
Figure 112008053037280-PAT00024
7676

상기 화합물 3a, 3b의 분광학적 데이터는 아래와 같다.Spectroscopic data of the compound 3a, 3b is as follows.

화합물 3a:Compound 3a:

[α]D 20 -118.6o (c 0.25, CHCl3);[α] D 20 -118.6 o (c 0.25, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ13.5 (1H, s), 7.43 (1H, d, J= 8.9 Hz), 6.27 (1H, d, J= 8.9 Hz), 3.17 (1H, br d, J= 12.6 Hz), 2.57-2.48 (1H, m), 2.49 (3H, s), 1.85-1.78 (2H, m), 1.65-1.57 (3H, m), 1.49-1.42 (1H, m), 1.37 (3H, s), 1.14-1.04 (1H, m), 1.04 (3H, s), 0.91 (3H, d, J= 6.6 Hz); 1 H NMR (CDCl 3 , 300 MHz) δ 13.5 (1H, s), 7.43 (1H, d, J = 8.9 Hz), 6.27 (1H, d, J = 8.9 Hz), 3.17 (1H, br d, J = 12.6 Hz), 2.57-2.48 (1H, m), 2.49 (3H, s), 1.85-1.78 (2H, m), 1.65-1.57 (3H, m), 1.49-1.42 (1H, m), 1.37 (3H, s), 1.14-1.04 (1H, m), 1.04 (3H, s), 0.91 (3H, d, J = 6.6 Hz);

13C NMR (CDCl3, 75 MHz) δ 202.6, 164.2, 160.9, 129.8, 112.9, 112.8, 109.4, 78.6, 48.6, 38.1, 35.4, 34.9, 32.6, 27.8, 27.4, 26.1, 22.4, 19.1; 13 C NMR (CDCl 3 , 75 MHz) δ 202.6, 164.2, 160.9, 129.8, 112.9, 112.8, 109.4, 78.6, 48.6, 38.1, 35.4, 34.9, 32.6, 27.8, 27.4, 26.1, 22.4, 19.1;

IR (neat) 2922, 1620, 1487, 1414, 1372, 1331, 1260, 1211, 1144, 1067, 912, 882, 847, 802 cm-1.IR (neat) 2922, 1620, 1487, 1414, 1372, 1331, 1260, 1211, 1144, 1067, 912, 882, 847, 802 cm -1 .

화합물 3b:Compound 3b:

[α]D 20 +123.4o (c 0.30, CHCl3);[α] D 20 +123.4 o (c 0.30, CHCl 3 );

실시예Example 4.  4.

(+)-1-(+)-1- HydroxyHydroxy -6,6,9--6,6,9- trimethyltrimethyl -6a,7,8,9,10,10a--6a, 7,8,9,10,10a- hexahydrohexahydro -6H--6H- benzobenzo [c]chromene-2-carboxylic [c] chromene-2-carboxylic acidacid ethylethyl esterester (4) 의 제조 (4) Preparation

상기 [일반식 II] 화합물로서 에스테르기를 가지는 2,4-디하이드록시벤조에이트(2,4-dihydroxybenzoate) (182 mg, 1 mmol)를, 알데히드로서 (S)-(-)-citronellal (308 mg, 2 mmol)을 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 12시간 자일렌 환류조건에서 반응시켜 다음 [표 6] 과같이 화합물 4 (267 mg, 84%)을 얻었다. 2,4-dihydroxybenzoate (182 mg, 1 mmol) having an ester group as the above [Formula II] compound was used as an aldehyde (S)-(-)-citronellal (308 mg). , 2 mmol) and EDDA (36 mg, 0.2 mmol) / TEA (2 mL) as a catalyst were reacted under reflux conditions for 12 hours using a compound catalyst as shown in [Table 6]. Compound 4 (267 mg, 84%).

일반식 II 화합물Formula II Compound 알데히드 Aldehyde 반응시간Reaction time 생성물product 수율yield

Figure 112008053037280-PAT00025
Figure 112008053037280-PAT00025
(S)-(-)-citronellal(S)-(-)-citronellal 1212
Figure 112008053037280-PAT00026
Figure 112008053037280-PAT00026
8484

상기 화합물 4에 대한 분광학적 데이터는 아래와 같다.Spectroscopic data for the compound 4 is as follows.

화합물 4:Compound 4:

[α]D 20 +142.3o (c 0.30, CHCl3);[α] D 20 +142.3 o (c 0.30, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 11.7 (1H, s), 7.58 (1H, d, J= 8.8 Hz), 6.28 (1H, d, J= 8.8 Hz), 4.32 (2H, q, J= 7.1 Hz), 3.18 (1H, br d, J= 12.6 Hz), 2.52-2.43 (1H, m), 1.83-1.79 (2H, m), 1.64-1.53 (3H, m), 1.42-1.33 (1H, m), 1.37 (3H, s), 1.35 (3H, t, J= 7.1 Hz), 1.14-1.04 (1H, m), 1.05 (3H, s), 0.91 (3H, d, J= 6.6 Hz); 1 H NMR (CDCl 3 , 300 MHz) δ 11.7 (1H, s), 7.58 (1H, d, J = 8.8 Hz), 6.28 (1H, d, J = 8.8 Hz), 4.32 (2H, q, J = 7.1 Hz), 3.18 (1H, broad, J = 12.6 Hz), 2.52-2.43 (1H, m), 1.83-1.79 (2H, m), 1.64-1.53 (3H, m), 1.42-1.33 (1H, m), 1.37 (3H, s), 1.35 (3H, t, J = 7.1 Hz), 1.14-1.04 (1H, m), 1.05 (3H, s), 0.91 (3H, d, J = 6.6 Hz);

13C NMR (CDCl3, 75 MHz) δ 170.8, 162.6, 160.1, 128.6, 112.9, 109.4, 104.4, 78.3, 60.8, 48.7, 38.3, 35.4, 35.2, 27.9, 27.5, 22.5, 19.0, 17.6, 14.2; 13 C NMR (CDCl 3 , 75 MHz) δ 170.8, 162.6, 160.1, 128.6, 112.9, 109.4, 104.4, 78.3, 60.8, 48.7, 38.3, 35.4, 35.2, 27.9, 27.5, 22.5, 19.0, 17.6, 14.2;

IR (neat) 2924, 2868, 1659, 1620, 1582, 1373, 1331, 1258, 1208, 1138, 1020, 797 cm-1.IR (neat) 2924, 2868, 1659, 1620, 1582, 1373, 1331, 1258, 1208, 1138, 1020, 797 cm -1 .

실시예Example 5.  5.

(-)-1-(-)-One- HydroxyHydroxy -3,6,6,9--3,6,6,9- tetramethyltetramethyl -6a,7,8,9,10,10a--6a, 7,8,9,10,10a- hexahydrohexahydro -6H-benzo[c]chromene-2-carboxylic -6H-benzo [c] chromene-2-carboxylic acidacid ethylethyl esterester (5a) 와 (-)-1- (5a) and (-)-1- HydroxyHydroxy -3,6,6,9- -3,6,6,9- tetramethyltetramethyl -6a,7,8,9,10,10a--6a, 7,8,9,10,10a- hexahydrohexahydro -6H--6H- benzobenzo [c]chromene-2-carboxylic [c] chromene-2-carboxylic acidacid ethyl  ethyl esterester (5b) 의 제조 (5b) Preparation

상기 [일반식 II] 화합물로서 에스테르기를 가지는 2,4-디하이드록시-6-메틸벤조에이트(196 mg, 1.0 mmol)를, 알데히드로서 (R)-(+)-citronellal (308 mg, 2.0 mmol) 또는 (S)-(-)-citronellal (308 mg, 2.0 mmol)을 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 12시간 자일렌 환류조건에서 반응시켜 다음 [표 7]과 같이 화합물 5a (289 mg, 87%)와 5b (286 mg, 86%)을 각각 얻었다. 2,4-Dihydroxy-6-methylbenzoate (196 mg, 1.0 mmol) having an ester group as the above [Formula II] compound was used as an aldehyde (R)-(+)-citronellal (308 mg, 2.0 mmol). ) Or (S)-(-)-citronellal (308 mg, 2.0 mmol) and reacted under reflux conditions for 12 hours using an EDDA (36 mg, 0.2 mmol) / TEA (2 mL) mixed catalyst as a catalyst. Compounds 5a (289 mg, 87%) and 5b (286 mg, 86%) were obtained as shown in the following [Table 7].

일반식 II 화합물Formula II Compound 알데히드 Aldehyde 반응시간Reaction time 생성물product 수율yield

Figure 112008053037280-PAT00027
Figure 112008053037280-PAT00027
(R)-(+)-citronellal   (R)-(+)-citronellal 12   12
Figure 112008053037280-PAT00028
Figure 112008053037280-PAT00028
87   87
Figure 112008053037280-PAT00029
Figure 112008053037280-PAT00029
(S)-(-)-citronellal    (S)-(-)-citronellal 12   12
Figure 112008053037280-PAT00030
Figure 112008053037280-PAT00030
86   86

생성물 5a, 5b에 대한 분광학적 데이터는 아래와 같다.Spectroscopic data for products 5a and 5b are as follows.

화합물 5a:Compound 5a:

[α]D 20 -130.6o (c 0.30, CHCl3);[α] D 20 -130.6 o (c 0.30, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 12.3 (1H, s), 6.16 (1H, s), 4.35 (2H, q, J= 7.1 Hz), 3.17 (1H, br d, J= 12.6 Hz), 2.52-2.43 (1H, m), 2.43 (3H, s), 1.85-1.79 (2H, m), 1.67-1.59 (3H, m), 1.44-1.35 (1H, m), 1.37 (3H, t, J= 7.1 Hz), 1.35 (3H, s), 1.14-1.04 (1H, m), 1.04 (3H, s), 0.92 (3H, d, J= 6.6 Hz); 1 H NMR (CDCl 3 , 300 MHz) δ 12.3 (1H, s), 6.16 (1H, s), 4.35 (2H, q, J = 7.1 Hz), 3.17 (1H, br d, J = 12.6 Hz), 2.52-2.43 (1H, m), 2.43 (3H, s), 1.85-1.79 (2H, m), 1.67-1.59 (3H, m), 1.44-1.35 (1H, m), 1.37 (3H, t, J = 7.1 Hz), 1.35 (3H, s), 1.14-1.04 (1H, m), 1.04 (3H, s), 0.92 (3H, d, J = 6.6 Hz);

13C NMR (CDCl3, 75 MHz) δ 172.5, 164.2, 158.5, 140.3, 112.6, 110.9, 104.3, 78.2, 61.0, 49.0, 38.4, 35.5, 35.2, 32.7, 28.0, 27.5, 24.2, 22.5, 19.1, 14.3; 13 C NMR (CDCl 3 , 75 MHz) δ 172.5, 164.2, 158.5, 140.3, 112.6, 110.9, 104.3, 78.2, 61.0, 49.0, 38.4, 35.5, 35.2, 32.7, 28.0, 27.5, 24.2, 22.5, 19.1, 14.3 ;

IR (neat) 2926, 1644, 1568, 1454, 1402, 1368, 1316, 1267, 1198, 1142, 1022, 928, 812 cm-1.IR (neat) 2926, 1644, 1568, 1454, 1402, 1368, 1316, 1267, 1198, 1142, 1022, 928, 812 cm -1 .

화합물 5b:Compound 5b:

[α]D 20 +135.5o (c 0.30, CHCl3);[α] D 20 +135.5 o (c 0.30, CHCl 3 );

실시예Example 6.  6.

(-)-6,6,9-(-)-6,6,9- TrimethylTrimethyl -6a,7,8,9,10,10a--6a, 7,8,9,10,10a- hexahydrohexahydro -6H-dibenzo[c,h]-6H-dibenzo [c, h] chromenechromene (6a)와 (-)-6,6,9-Trimethyl-6a,7,8,9,10,10a-hexahydro-6H-dibenzo[c,h] (6a) and (-)-6,6,9-Trimethyl-6a, 7,8,9,10,10a-hexahydro-6H-dibenzo [c, h] chromenechromene (6b)의 (6b)

제조Produce

상기 [일반식 II] 화합물로서 벤젠 고리가 2개인 1-나프톨(1-naphthol) (144mg, 1.0 mmol)을, 알데히드로서 (R)-(+)-citronellal (308 mg, 2.0 mmol) 또는 (S)-(-)-citronellal (308 mg, 2.0 mmol)을 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 8시간 자일렌 환류조건에서 반응시켜 다음 [표 8]과 같이 화합물 6a (191 mg, 68%)와 6b (196 mg, 70%)을 각각 얻었다.1-naphthol (144 mg, 1.0 mmol) having two benzene rings as the [Formula II] compound was used as an aldehyde (R)-(+)-citronellal (308 mg, 2.0 mmol) or (S )-(-)-citronellal (308 mg, 2.0 mmol) was used, and the reaction was carried out under reflux condition of xylene for 8 hours using EDDA (36 mg, 0.2 mmol) / TEA (2 mL) mixed catalyst as a catalyst. 8] were obtained Compound 6a (191 mg, 68%) and 6b (196 mg, 70%), respectively.

일반식 II 화합물Formula II Compound 알데히드 Aldehyde 반응시간Reaction time 생성물product 수율yield

Figure 112008053037280-PAT00031
Figure 112008053037280-PAT00031
(R)-(+)-citronellal   (R)-(+)-citronellal 8   8
Figure 112008053037280-PAT00032
Figure 112008053037280-PAT00032
68   68
Figure 112008053037280-PAT00033
Figure 112008053037280-PAT00033
(S)-(-)-citronellal    (S)-(-)-citronellal 8   8
Figure 112008053037280-PAT00034
Figure 112008053037280-PAT00034
70   70

생성물 6a, 6b에 대한 분광학적 데이터는 아래와 같다.Spectroscopic data for products 6a and 6b are as follows.

화합물 6a:Compound 6a:

[α]D 20 -57.9o (c 1.02, CHCl3);[α] D 20 -57.9 o (c 1.02, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 8.36-8.32 (1H, m), 7.82-7.79 (1H, m), 7.51-7.46 (2H, m), 7.43-7.39 (2H, m), 2.66-2.54 (2H, m), 1.94-1.90 (2H, m), 1.78-1.66 (1H, m), 1.61 (3H, s), 1.58-1.49 (1H, m), 1.29-1.11 (2H, m), 1.08 (3H, d, J= 6.6 Hz) 1.00-0.96 (1H, m); 1 H NMR (CDCl 3 , 300 MHz) δ 8.36-8.32 (1H, m), 7.82-7.79 (1H, m), 7.51-7.46 (2H, m), 7.43-7.39 (2H, m), 2.66-2.54 (2H, m), 1.94-1.90 (2H, m), 1.78-1.66 (1H, m), 1.61 (3H, s), 1.58-1.49 (1H, m), 1.29-1.11 (2H, m), 1.08 (3H, doublet, J = 6.6 Hz) 1.00-0.96 (1H, m);

13C NMR (CDCl3, 75 MHz) δ 147.8, 133.0, 127.2, 125.5, 124.8, 124.1, 122.0, 121.9, 118.7, 118.4, 77.6, 47.1, 39.7, 35.9, 34.8, 32.6, 28.0, 27.6, 22.6, 20.1; 13 C NMR (CDCl 3 , 75 MHz) δ 147.8, 133.0, 127.2, 125.5, 124.8, 124.1, 122.0, 121.9, 118.7, 118.4, 77.6, 47.1, 39.7, 35.9, 34.8, 32.6, 28.0, 27.6, 22.6, 20.1 ;

IR (neat) 3055, 2922, 1572, 1507, 1458, 1385, 1265, 1209, 1144, 1096, 1020, 939, 909, 847, 745 cm-1.IR (neat) 3055, 2922, 1572, 1507, 1458, 1385, 1265, 1209, 1144, 1096, 1020, 939, 909, 847, 745 cm -1 .

화합물 6b:Compound 6b:

[α]D 20 +60.5o (c 1.10, CHCl3);[α] D 20 +60.5 o (c 1.10, CHCl 3 );

실시예Example 7.  7.

(-)-2,5,5-(-)-2,5,5- TrimethylTrimethyl -1,3,4,4a,5,12c--1,3,4,4a, 5,12c hexahydrohexahydro -2H-6-oxabenzo[c]-2H-6-oxabenzo [c] phenanthrenephenanthrene (7a) 와 (-)-2,5,5-(7a) and (-)-2,5,5- TrimethylTrimethyl -1,3,4,4a,5,12c-hexahydro-2H-6-oxabenzo[c] phenanthrene(7b)의 제조Preparation of -1,3,4,4a, 5,12c-hexahydro-2H-6-oxabenzo [c] phenanthrene (7b)

상기 일반식 II 화합물로서 벤젠 고리가 2개인 2-나프톨(1-naphthol) (144mg, 1.0 mmol)을, 알데히드로서 (R)-(+)-citronellal (308 mg, 2.0 mmol) 또는 (S)-(-)-citronellal (308 mg, 2.0 mmol)을 사용하며, 촉매로서 EDDA(36mg, 0.2mmol) /TEA (2mL) 혼합촉매를 사용하여, 12시간 자일렌 환류조건에서 반응시켜 다음 [표 9]에서와 같이 화합물 7a (202 mg, 72%)와 7b (210 mg, 75%)을 각각 얻었다. 2-naphthol (144 mg, 1.0 mmol) having two benzene rings as the general formula II compound was selected from (R)-(+)-citronellal (308 mg, 2.0 mmol) or (S)-as an aldehyde. (-)-citronellal (308 mg, 2.0 mmol) was used, and the reaction was carried out under reflux conditions of xylene for 12 hours using an EDDA (36 mg, 0.2 mmol) / TEA (2 mL) mixed catalyst as a catalyst. Compounds 7a (202 mg, 72%) and 7b (210 mg, 75%) were obtained as in, respectively.

일반식 II 화합물Formula II Compound 알데히드 Aldehyde 반응시간Reaction time 생성물product 수율yield

Figure 112008053037280-PAT00035
Figure 112008053037280-PAT00035
(R)-(+)-citronellal    (R)-(+)-citronellal 12    12
Figure 112008053037280-PAT00036
Figure 112008053037280-PAT00036
72    72
Figure 112008053037280-PAT00037
Figure 112008053037280-PAT00037
(S)-(-)-citronellal     (S)-(-)-citronellal 12    12
Figure 112008053037280-PAT00038
Figure 112008053037280-PAT00038
75    75

생성물 7a, 7b 에 대한 분광학적 데이터는 아래와 같다.Spectroscopic data for the products 7a, 7b are as follows.

화합물 7a:Compound 7a:

[α]D 20 -55.6o (c 0.50, CHCl3);[α] D 20 -55.6 o (c 0.50, CHCl 3 );

1H NMR (CDCl3, 300 MHz) δ 7.93(1H, d, J= 8.4 Hz), 7.83 (1H, d, J= 8.0 Hz), 7.67 (1H, d, J= 8.9 Hz), 7.53 (1H, dt, J= 8.4, 1.4 Hz), 7.38 (1H, dt, J= 8.0, 1.1 Hz), 7.14 (1H, d, J= 8.9 Hz), 2.95-2.80 (1H, m), 2.07-1.95 (2H, m), 1.75-1.67 (1H, m), 1.55 (3H, s), 1.44-1.20 (3H, m), 1.16 (3H, s), 1.05 (3H, d, J= 6.5 Hz), 1.00-0.88 (1H, m); 1 H NMR (CDCl 3 , 300 MHz) δ 7.93 (1H, d, J = 8.4 Hz), 7.83 (1H, d, J = 8.0 Hz), 7.67 (1H, d, J = 8.9 Hz), 7.53 (1H) , dt, J = 8.4, 1.4 Hz), 7.38 (1H, dt, J = 8.0, 1.1 Hz), 7.14 (1H, d, J = 8.9 Hz), 2.95-2.80 (1H, m), 2.07-1.95 ( 2H, m), 1.75-1.67 (1H, m), 1.55 (3H, s), 1.44-1.20 (3H, m), 1.16 (3H, s), 1.05 (3H, d, J = 6.5 Hz), 1.00 -0.88 (1 H, m);

13C NMR (CDCl3, 75 MHz) δ 151.5, 132.4, 129.7, 128.8, 128.0, 125.2, 124.2, 122.6, 120.0, 117.4, 77.6, 51.2, 42.5, 36.7, 36.0, 33.3, 28.4, 27.6, 22.6, 18.4; 13 C NMR (CDCl 3 , 75 MHz) δ 151.5, 132.4, 129.7, 128.8, 128.0, 125.2, 124.2, 122.6, 120.0, 117.4, 77.6, 51.2, 42.5, 36.7, 36.0, 33.3, 28.4, 27.6, 22.6, 18.4 ;

IR (neat) 3059, 2926, 1620, 1599, 1512, 1460, 1386, 1240, 1213, 1144, 1001, 981, 956, 908, 814, 748 cm-1.IR (neat) 3059, 2926, 1620, 1599, 1512, 1460, 1386, 1240, 1213, 1144, 1001, 981, 956, 908, 814, 748 cm -1 .

화합물 7b:Compound 7b:

[α]D 20 +56.1o (c 0.40, CHCl3);[a] D 2 0 +56.1 o (c 0.40, CHCl 3 );

Claims (6)

[일반식 I]의 화합물과, 불포화 결합을 가지는 알데히드를 비반응성 유기용매내에서 촉매 존재하에 반응시켜 [일반식 II]의 헥사하이드로칸나비올 유도체를 제조하는 방법.A method for producing a hexahydrocannabiol derivative of [Formula II] by reacting a compound of Formula [I] with an aldehyde having an unsaturated bond in a non-reactive organic solvent in the presence of a catalyst. [일반식 I][Formula I]
Figure 112008053037280-PAT00039
Figure 112008053037280-PAT00039
상기 [일반식 I]에서 R1은 수소, OH, OCH3, OEt, 에테르 그룹, 알겐일 그룹을, R2는 수소, 카보닐, 에스터 그룹 및 알겐일 그룹을, R3는 수소, 메틸, 에틸, 펜탄닐 같은 알킬 그룹 및 알켄일 그룹을, R4는 수소, 알킬 및 알겐일 그룹을 의미한다 In Formula [I], R 1 is hydrogen, OH, OCH 3 , OEt, ether group, algenyl group, R 2 is hydrogen, carbonyl, ester group, and alkenyl group, R 3 is hydrogen, methyl, Alkyl groups and alkyl groups such as ethyl, pentanyl and R 4 means hydrogen, alkyl and alkenyl groups 또는 상기 [일반식 I]에서 A는 나프틸, 퀴놀일, 이소퀴놀일, 퀴놀리지닐, 퀴놀살리닐 및 디벤조푸릴고리를 의미한다.Or A in the general formula [I] means naphthyl, quinolyl, isoquinolyl, quinolizylyl, quinolsalinyl and dibenzofuryl ring. [일반식 II][Formula II]
Figure 112008053037280-PAT00040
Figure 112008053037280-PAT00040
상기 [일반식 II]에서 R5는 수소, 히드록시기, 카르보닐기, 또는 에스테르기를 가지는 탄화수소이며, 또는 상기 [일반식 II]에서 R5는 B 고리와 함께 나프틸, 퀴놀일, 이소퀴놀일, 퀴놀리지닐, 퀴놀살리닐 및 디벤조푸릴에서 선택된 그룹을 형성한다.In Formula [II], R 5 is a hydrocarbon having a hydrogen, a hydroxy group, a carbonyl group, or an ester group, or in [Formula II], R 5 is a naphthyl, quinolyl, isoquinolyl, quinoli with a B ring. A group selected from genyl, quinolsalinyl and dibenzofuryl.
제 1 항에 있어서,The method of claim 1, 상기 불포화 결합을 가지는 알데히드는 8 내지 18 개의 탄소 원자를 갖고, 탄소사이의 이중 결합을 가지고 있는 불포화 알데히드로서, 시트랄 (citral), 시트로넬랄 (citronellal), 시트로넬릴옥시아세트알데히드 (citronellyl oxyacetalde hyde), 시클라멘 (cyclamen) 알데히드, 히드록시시트로넬랄, 릴리알 (lilial) 및 부르지오날 (bourgeonal) 중에서 선택된 어느 하나인 것인 헥사하이드로칸나비올 유도체를 제조하는 방법.Aldehydes having unsaturated bonds have 8 to 18 carbon atoms, unsaturated aldehydes having double bonds between carbons, citral, citronellal, citronellyl oxyacetalde hyde), a method for producing hexahydrocannabiol derivatives, which is any one selected from cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal. 제 2항에 있어서 The method of claim 2 상기 불포화 결합을 가지는 알데히드는 (R)-(+)-시트로넬랄 또는 (S)-(-)-시 트로넬랄 인 것인 헥사하이드로칸나비올 유도체를 제조하는 방법. The aldehyde having an unsaturated bond is (R)-(+)-citronellal or (S)-(-)-cytronellal. 제1항에 있어서, The method of claim 1, 상기 비반응성 유기용매는 디클로로메탄, 클로로포름, 1-2-디브로모에탄, 1-브로모-2-클로로에탄, 1,1-디브로모에탄, 2-클로로 푸로판, 1-요도푸로판, 클로로벤젠, 브로모벤젠 및 1, 2-디클로로벤젠과 같은 할로겐화 탄화수소 : 벤젠, 톨루엔, 키실렌과 같은 방향성 용매 : 디에틸에테르, 디메틸에테르, 디메틸에테르 및 디이소푸로필 에테르와 같은 에테르 중에서 선택되는 것인 헥사하이드로칸나비올 유도체를 제조하는 방법. The non-reactive organic solvent is dichloromethane, chloroform, 1-2-dibromoethane, 1-bromo-2-chloroethane, 1,1-dibromoethane, 2-chloro furophane, 1-dodofuropan Halogenated hydrocarbons such as chlorobenzene, bromobenzene and 1,2-dichlorobenzene: aromatic solvents such as benzene, toluene, xylenes: selected from ethers such as diethyl ether, dimethyl ether, dimethyl ether and diisopurofyl ether How to prepare a hexahydrocannabiol derivative. 제1항에 있어서, The method of claim 1, 상기 비반응성 유기용매는 자일렌인 것인 헥사하이드로칸나비올 유도체를 제조하는 방법. Wherein the non-reactive organic solvent is xylene. 제1항에 있어서The method of claim 1 상기 촉매는 에틸렌디아민 디아세테이트와 트리에틸아민을 각각 20 mol% 와 2 mL 혼합한 촉매를 사용하는 것인 헥사하이드로칸나비올 유도체를 제조하는 방법. Wherein the catalyst is a method for producing a hexahydrocannabiol derivatives using a catalyst obtained by mixing 20 mol% and 2 mL of ethylenediamine diacetate and triethylamine, respectively.
KR1020080071834A 2008-07-23 2008-07-23 A novel method for the preparation of hexahydrocannabinol derivatives KR101146777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080071834A KR101146777B1 (en) 2008-07-23 2008-07-23 A novel method for the preparation of hexahydrocannabinol derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080071834A KR101146777B1 (en) 2008-07-23 2008-07-23 A novel method for the preparation of hexahydrocannabinol derivatives

Publications (2)

Publication Number Publication Date
KR20100010793A true KR20100010793A (en) 2010-02-02
KR101146777B1 KR101146777B1 (en) 2012-05-21

Family

ID=42085387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080071834A KR101146777B1 (en) 2008-07-23 2008-07-23 A novel method for the preparation of hexahydrocannabinol derivatives

Country Status (1)

Country Link
KR (1) KR101146777B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539199A (en) * 2022-02-18 2022-05-27 云南工麻生物科技有限公司 Cannabinol derivative compounds and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539199A (en) * 2022-02-18 2022-05-27 云南工麻生物科技有限公司 Cannabinol derivative compounds and preparation method thereof

Also Published As

Publication number Publication date
KR101146777B1 (en) 2012-05-21

Similar Documents

Publication Publication Date Title
Xu et al. Total synthesis of (±)-cephanolides B and C via a palladium-catalyzed cascade cyclization and late-stage sp3 C–H bond oxidation
Chen et al. Total synthesis of (−)-galanthamine and (−)-lycoramine via catalytic asymmetric hydrogenation and intramolecular reductive Heck cyclization
Ellis Chromenes, Chromanones, and Chromones, Volume 31
US7399872B2 (en) Conversion of CBD to Δ8-THC and Δ9-THC
Quang et al. Chemical constituents of the ascomycete Daldinia concentrica
Breuning et al. Catalytic Enantioselective Diels− Alder Reactions of 1, 4-Quinone Monoketals
Yeom et al. Total syntheses of cannabicyclol, clusiacyclol A and B, iso-eriobrucinol A and B, and eriobrucinol
EP1706110A1 (en) Therapeutic use of quinonoid derivatives of cannabinoids
JP2005500272A (en) Synthesis of cannabinoids
Patrusheva et al. Anti-influenza activity of monoterpene-derived substituted hexahydro-2H-chromenes
Carreño et al. Enantioselective Diels− Alder Cycloadditions with (SS)-2-(p-Tolylsulfinyl)-1, 4-naphthoquinone: Efficient Kinetic Resolution of Chiral Racemic Vinylcyclohexenes
Lee et al. Efficient one-pot synthesis of benzopyranobenzopyrans and naphthopyranobenzopyrans by domino aldol-type reaction/hetero Diels–Alder reaction of resorcinols and naphthols
Kopp et al. Stereoselective Total Synthesis of the Dimeric Naphthoquinonopyrano-γ-lactone (−)-Crisamicin A: Introducing the Dimerization Site by a Late-Stage Hartwig Borylation
Benbow et al. A biomimetic approach to dihydrobenzofuran synthesis
HU190500B (en) Process for the resoluvation of alcohols, phenoles and lactones
KR101146777B1 (en) A novel method for the preparation of hexahydrocannabinol derivatives
Schafroth et al. Synthesis of phytocannabinoids
Cao et al. Total synthesis of linoxepin facilitated by a Ni-catalyzed tandem reductive cyclization
Mikhalchenko et al. Formation of the compounds with an epoxychromene framework: role of the methoxy groups
Singh et al. Skeletal reorganization: synthesis of diptoindonesin G from Pauciflorol F
Chen et al. Stereoselective Synthesis of trans-Decalin-Based Spirocarbocycles via Photocyclization of 1, 2-Diketones
Mies et al. Biomimetic Syntheses of Analogs of Hongoquercin A and B by Late-Stage Derivatization
Xinlei et al. Synthesis and Larvicidal Activity of Palmarumycin B6 Analogues
US5990322A (en) Alpha-tocopherol cyclopropylates, the new vitamin E derivatives and method for producing the same
Alvarez-Manzaneda et al. Novel synthetic strategy toward abietane and podocarpane-type diterpenes from (−)-sclareol: synthesis of the antitumor (+)-7-deoxynimbidiol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee