KR20100008161A - Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous - Google Patents

Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous Download PDF

Info

Publication number
KR20100008161A
KR20100008161A KR1020080068592A KR20080068592A KR20100008161A KR 20100008161 A KR20100008161 A KR 20100008161A KR 1020080068592 A KR1020080068592 A KR 1020080068592A KR 20080068592 A KR20080068592 A KR 20080068592A KR 20100008161 A KR20100008161 A KR 20100008161A
Authority
KR
South Korea
Prior art keywords
sample
nitrogen
oxidation reactor
oxidation
glass tube
Prior art date
Application number
KR1020080068592A
Other languages
Korean (ko)
Inventor
이근헌
전영관
김병렬
김훈수
Original Assignee
(주) 휴마스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 휴마스 filed Critical (주) 휴마스
Priority to KR1020080068592A priority Critical patent/KR20100008161A/en
Publication of KR20100008161A publication Critical patent/KR20100008161A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • A61L2/06Hot gas
    • A61L2/07Steam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE: A thermal oxidation reactor for automatic measurement of nitrogen and phosphorous is provided to reduce the time for lowering the temperature after oxidization and thereby shorten the time for analysis. CONSTITUTION: A thermal oxidation reactor for automatic measurement of nitrogen and phosphorous is as follows. In order to heat and oxidize a sample at 120°C for 30 minutes, an aluminum block(10) is made by processing an aluminum ingot into a cylindrical shape. The aluminium block is punched and a glass tube(4) and a heating element(13) are fitted into the hole, thereby achieving uniform heating. The aluminium block at the boundary in contact with the glass tube is spirally carved to form a cooling coil(3) in which cooling water flows.

Description

총질소 및 총인 자동측정기용 가열산화반응기{Thermal Oxidation Reactor for Automatic Measurement of Nitrogen and Phosphorous}Thermal Oxidation Reactor for Automatic Measurement of Nitrogen and Phosphorous

도 1은 본 발명에 따른 가열산화반응기의 개략도1 is a schematic diagram of a heating oxidation reactor according to the present invention

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1: 상부 캡, 2: 냉각수 유입 솔레노이드밸브, 3: 냉각코일, 4: 유리관 5: 온도조절용 온도센서, 6: 냉각수 배출관, 7: 하부 캡, 8: 하부 솔레노이드밸브, 9:과열방지용 온도센서, 10: 알루미늄 블럭, 11: 단열재, 12: 외부 케이스, 13:발열체, 14: 오링, 15: 상부 솔레노이드밸브1: upper cap, 2: coolant inlet solenoid valve, 3: cooling coil, 4: glass tube 5: temperature sensor for temperature control, 6: cooling water discharge line, 7: lower cap, 8: lower solenoid valve, 9: temperature sensor for preventing overheating, 10: aluminum block, 11: insulation, 12: outer case, 13: heating element, 14: O-ring, 15: upper solenoid valve

본 발명은 총질소 및 총인을 자동분석할 때 사용하는 가열산화반응기에 대한 것이다. 질소는 수중에 유기성 질소, 질산성 질소, 아질산성 질소, 암모니아성 질소의 형태로 존재한다. 또한 인은 유기 인, 축합 인, 정인 등의 형태로 존재한다. 따라서 수중에 함유되어 있는 총질소의 경우 질산성질소 형태로 산화시킨 후 220나노미터의 자외선에서 흡광도를 측정하여 정량하며, 총인의 경우 정인 형태로 산화시킨 후 880나노미터의 근적외선에서 흡광도를 측정하여 정량한다.The present invention relates to a thermal oxidation reactor used for the automatic analysis of total nitrogen and total phosphorus. Nitrogen is present in the form of organic nitrogen, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen. Phosphorus also exists in the form of organic phosphorus, condensed phosphorus, phosphorus phosphorus and the like. Therefore, in the case of total nitrogen contained in water, it is oxidized in the form of nitrate nitrogen, and then absorbance is measured in ultraviolet light of 220 nanometers. Quantify

대한민국 수질오염공정시험법에 명시된 총질소 및 총인의 측정 방법에서 산화 방법에 대해 설명하면 과황산칼륨, 가성소다 등을 첨가하여 섭씨 120도로 30분간 가열하여 질산성질소 및 정인의 형태로 산화시키도록 되어 있다.In the method of measuring total nitrogen and total phosphorus specified in the Korea Water Pollution Process Test Method, the oxidation method is explained. It is.

가열은 고압증기멸균기를 사용하도록 되어있다. 따라서 유리병 또는 불소수지 계열의 병에 시료를 담아 고온고압증기멸균기에 넣어 산화시키고 있다.Heating is to use a high pressure steam sterilizer. Therefore, the sample is placed in a glass bottle or a fluororesin-type bottle and oxidized in a high-temperature steam autoclave.

그러나 자동분석의 경우는 시료를 자동으로 주입하고 인출하기 때문에 일반적인 고압증기멸균기를 이용할 수는 없다. 따라서 자동분석을 위하여 여러 가지 형태의 산화반응기들이 개발되었다. 자동분석용 산화반응기에서 가장 중요한 것은 시료의 산화 결과가 수질오염공정시험법에 따라 고압증기멸균기로 산화시킨 결과와 일치하여야 한다는 점이다. 그러나 자동분석기의 특성상 수질오염공정시험법처럼 고압증기멸균기에 넣고 가열산화를 할 수 없어 현재까지 큰 산화율 차이를 보이고 있다. 이렇게 산화율에 차이를 보이는 가장 큰 이유는 자동분석기용 산화반응기의 산화메카니즘과 수질오염공정시험법 상의 산화반응의 산화메카니즘간에 차이가 있기 때문이다. 또한 자동분석을 위해서는 산화반응 외에 시료 이송, 약품 주입, 반응, 혼합 등 여러 가지 과정이 필요하다. 따라서 분석시간을 단축하기 위해서는 최대한 각 과정에 소요되는 시간을 단축해야 할 필요성이 있다.However, in the case of automatic analysis, a normal autoclave cannot be used because the sample is automatically injected and withdrawn. Therefore, various types of oxidation reactors have been developed for automatic analysis. The most important thing in the automatic analytical oxidation reactor is that the oxidation result of the sample should be consistent with that of the autoclave according to the water pollution process test method. However, due to the nature of the automatic analyzer, it cannot be heated and oxidized in a high-pressure steam sterilizer like the water pollution process test method. The main reason for the difference in oxidation rate is that there is a difference between the oxidation mechanism of the oxidation reactor for the automatic analyzer and the oxidation mechanism of the oxidation reaction in the water pollution process test method. In addition to the oxidation reaction, the automated analysis requires various processes such as sample transfer, chemical injection, reaction, and mixing. Therefore, in order to reduce the analysis time, it is necessary to reduce the time required for each process as much as possible.

일본국특허 특개2001-83136에 의하면 알루미늄 블럭을 발열체로 감싸고 알루미늄 블록 내부 양쪽 측면에 자외선 램프를 위치시켰으며, 알루미늄 블럭 중앙에 유리관 형태의 반응기를 위치시켰다. 온도를 섭씨 100도로 올리면서 자외선을 조사시켜, 가열과 자외선 조사에 의한 산화반응을 유도하고 있다.According to Japanese Patent Laid-Open No. 2001-83136, an aluminum block is wrapped with a heating element, an ultraviolet lamp is placed on both sides of the inside of the aluminum block, and a glass tube-shaped reactor is placed in the center of the aluminum block. Ultraviolet rays are irradiated while raising the temperature to 100 degrees Celsius, inducing an oxidation reaction by heating and ultraviolet irradiation.

또한 유리관 내부에는 전극을 넣어 전기분해에 의한 산화효과까지 유도하고 있다. 이 발명의 경우 세가지 산화 기구를 도입하여 확실한 산화반응을 유도하고 있으나 장치가 매우 복잡해지며 고장요인도 증가한다는 단점이 있다. 또한 수질오염공정시험법과 다른 산화반응메카니즘을 갖고 있어 측정시료의 성상에 따라 수질오염공정시험법의 측정 결과와 다른 결과가 얻어지는 경우가 많다.In addition, an electrode is placed inside the glass tube to induce an oxidation effect by electrolysis. In the case of the present invention, three oxidation mechanisms are introduced to induce a certain oxidation reaction, but the apparatus is very complicated and a failure factor is also increased. In addition, it has an oxidation mechanism different from that of the water pollution process test method, and thus, a result different from that of the water pollution process test method is often obtained depending on the properties of the measurement sample.

일본국특허 특개2004-93509에 의하면 유리관을 나선형으로 꼬아서 반응기로 이용하고 있다. 유리관 둘레를 발열체로 감싸 가열하고 있다. 이 발명의 경우 수질오염공정시험법과 거의 유사한 산화반응 메카니즘을 갖는다. 그러나 가열된 시료를 상온까지 냉각하는데 많은 시간을 필요로 하여 분석시간이 길어진다. 또한 열전달 효율이 낮은 유리관을 사용하는데 열전달 매체가 공기이므로 균일한 가열이 어렵다.According to Japanese Patent Laid-Open No. 2004-93509, a glass tube is twisted in a spiral to be used as a reactor. The glass tube is wrapped around the heating element and heated. This invention has an oxidation mechanism similar to that of the water pollution process test. However, it takes a long time to cool the heated sample to room temperature, which increases the analysis time. In addition, a glass tube with low heat transfer efficiency is used. Since the heat transfer medium is air, uniform heating is difficult.

본 발명은 총질소 및 총인을 자동 측정하기 위하여 시료를 산화반응 시킬 때 시료에 열이 균일하고 신속하게 전달되고 가열 및 냉각이 한 반응기에서 이루어지며 냉각속도를 신속하게 하고 수질오염공정시험법의 산화방법인 고압증기멸균기의 가열산화와 동일한 수순의 산화율을 가지는 가열산화반응기를 제공하는데 있다.In the present invention, when the sample is oxidized to automatically measure total nitrogen and total phosphorus, heat is uniformly and quickly transferred to the sample, heating and cooling are performed in one reactor, rapid cooling rate, and oxidation of the water pollution process test method. The present invention provides a heated oxidation reactor having the same oxidation rate as that of the high pressure steam sterilizer.

본 발명에서는 반응기의 온도를 최대한 신속하게 상승시키며 또한 반응이 끝난 후 신속하게 냉각시키고자 하였다. 도1과 같이 열전달이 좋은 알루미늄 괴를 원통형으로 가공한 후 알루미늄 블럭(10)을 제작한다. 이 알루미늄 블럭(10) 내부에 구멍을 천공하여 발열체(13) 및 반응관인 유리관(4)을 삽입한다. 이때 발열체(13)와 유리관(4)이 알루미늄 블럭(10)에 최대한 밀착시킴으로써 발열체(13)의 열이 알루미늄 블럭(10)을 통하여 균일하게 그리고 신속하게 유리관(4)에 전달되도록 하였다. 반응관으로는 유리관(4)을 사용하였으나 금속재질, 내열성 플라스틱을 사용하여도 무방하다.In the present invention, to increase the temperature of the reactor as quickly as possible and also to cool quickly after the reaction. As shown in FIG. 1, the aluminum ingot 10 is manufactured by machining the aluminum ingot having a good heat transfer into a cylindrical shape. A hole is drilled into the aluminum block 10 to insert the heating element 13 and the glass tube 4 as a reaction tube. At this time, the heat generating element 13 and the glass tube 4 are in close contact with the aluminum block 10 so that the heat of the heat generating element 13 is uniformly and quickly transmitted to the glass tube 4 through the aluminum block 10. Glass tube 4 was used as the reaction tube, but a metal material or heat-resistant plastic may be used.

전술하였듯이 자동측정기에서는 전처리로 산화반응뿐만 아니라 약품 주입, 발색과정, 흡광도 측정 등 여러 가지 과정이 필요하다. 따라서 최대한 각 과정에 소요되는 시간을 절감하는 것이 중요하다. 본 발명에서는 냉각속도를 빠르게 하기 위하여 알루미늄 블럭(10)에 유리관(4)이 삽입되어 접촉되는 면에 위에서부터 아래로 나선형의 홈을 내어 냉각코일(3)을 구성하였다.As mentioned above, the automatic measuring device requires various processes such as chemical injection, color development, absorbance measurement as well as oxidation reaction. Therefore, it is important to save as much time as possible in each process. In the present invention, in order to increase the cooling rate, the glass tube 4 is inserted into the aluminum block 10 to form a cooling coil 3 by making a spiral groove from the top to the bottom.

이 홈에는 냉각수 유입관과 냉각수 배출관(6)이 연결되어 있다. 냉각수 유입관에는 냉각수 유입 솔레노이드 밸브(2)가 연결되어 있다. 섭씨 120도에서 반응이 끝나면 냉각수 유입 솔레노이드 밸브(2)가 열리고 냉각수가 유입된다. 유입된 냉각수는 알루미늄 블럭(10)의 냉각코일(3)을 따라 흘러내리는데 이때 유리관(5)과 직접 접촉하게 된다. 따라서 냉각속도가 매우 빠르게 된다. 냉각수는 수도수를 직결할 수 도 있으며 펌프를 이용하여 주입 할 수도 있다. 냉각수를 수도수에 직결할 경우 압력조절밸브를 부착하여 냉각수의 압력을 조절할 필요가 있다. 냉각수의 압력에 따라서 냉각시간이 다소 차이가 나지만 냉각수의 양을 분당 1.3리터 이상만 흘려주면 냉각시간에 큰 차이는 없었다. 분당 1.3리터 이상 냉각수를 흘려줄 경우 섭씨 120도의 시료가 1분 이내에 섭씨 30도 이하로 냉각되는 것을 확인 하였다.The cooling water inlet pipe and the cooling water discharge pipe 6 are connected to this groove. The coolant inlet solenoid valve 2 is connected to the coolant inlet tube. When the reaction is completed at 120 degrees Celsius, the coolant inlet solenoid valve (2) is opened and the coolant is introduced. The introduced cooling water flows down along the cooling coil 3 of the aluminum block 10, and is in direct contact with the glass tube 5. Therefore, the cooling rate is very fast. Cooling water can be directly connected to tap water or can be injected using a pump. When the cooling water is directly connected to the tap water, it is necessary to adjust the pressure of the cooling water by attaching a pressure regulating valve. Although the cooling time was somewhat different depending on the pressure of the cooling water, if the amount of cooling water flowed more than 1.3 liters per minute, the cooling time was not significantly different. When cooling water flowed over 1.3 liters per minute, it was confirmed that the samples at 120 degrees Celsius were cooled to 30 degrees Celsius or less within 1 minute.

유리관(5)에는 상부 및 하부에 상부 캡(1)과 하부 캡(7)이 끼워져 있다. 이들 캡은 외부 케이스(12)에 의해 튼튼히 고정되어 있기 때문에 가열 반응을 할 때에도 유리관(4) 내부의 기밀성을 유지시킬 수 있다. 각 캡에는 오링(14)을 끼워 기밀성을 높였다.The upper cap 1 and the lower cap 7 are fitted in the glass tube 5 at the upper part and the lower part. Since these caps are firmly fixed by the outer case 12, the airtightness inside the glass tube 4 can be maintained even when it heats. O-rings 14 were fitted to each cap to improve airtightness.

온도 센서는 온도조절용 온도센서(5)와 과열방지용 온도센서(9)가 알루미늄 블럭(10)에 삽입되어 있다. 온도조절용 온도센서는 반응기의 온도를 조절하기 위한 센서이다. 과열방지용 온도센서(9)는 발열체(13)의 고장 또는 온도조절용 온도센서(5)에 고장이 발생하여 과열되거나 온도 상승 스케줄이 맞지 않을 경우 경보를 울리는 기능을 하도록 하였다. 알루미늄 블럭(10) 둘레에는 세라믹 섬유 단열재(11)를 둘러 단열하였으며 다시 외부를 알루미늄 케이스로 씌워 안전성을 높였다.In the temperature sensor, a temperature sensor 5 for controlling temperature and a temperature sensor 9 for preventing overheating are inserted into the aluminum block 10. Temperature control temperature sensor is a sensor for controlling the temperature of the reactor. The overheat prevention temperature sensor 9 has a function of sounding an alarm when a failure of the heating element 13 or a failure of the temperature control temperature sensor 5 occurs due to overheating or a temperature rise schedule does not match. Around the aluminum block 10, the ceramic fiber insulation 11 was surrounded and insulated, and the outside was covered with an aluminum case to increase safety.

시료를 전처리하는 방법은 다음과 같다. 유리관(4)에 부착되어 있는 상부 솔레노이드 밸브(15)와 하부 솔레노이드 밸브(8)를 열고 펌프를 이용하여 하부 솔레노이드 밸브(8)를 통하여 시료를 주입한다. 시료 주입이 끝나면 상부 솔레노이드 밸브(15)와 하부 솔레노이드 밸브(8)를 닫는다. 다음 발열체(13)와 온도조절용 온도센서(5)를 이용하여 온도를 섭씨 120도로 상승시키고 30분간 반응시킨다. 섭씨 120도까지 도달하는 시간은 반응 시작 온도에 따라 차이가 있으나 8분 내지 10분이면 섭씨 120도에 도달한다. 반응이 끝나면 냉각수 유입 솔레노이드 밸브(2)의 밸브를 열어 냉각수를 알루미늄 블록(10)의 냉각코일(3)로 흘려준다. 온도가 상온까지 냉각되면 냉각수 유입 솔레노이드 밸브(20)를 잠근다. 다음 상부 솔레노이드 밸브(15)와 하부 솔레노이드 밸브(8)를 열고 펌프를 역으로 회전시켜 시료를 인출한다. 하부 솔레노이드 밸브(8)는 삼방향 솔레노이드 밸브(3-way solenoid valve)를 이용할 수 도 있다. 이 경우는 한 방향으로 시료를 주입하고 다른 방향으로 시료를 인출한다.The pretreatment of the sample is as follows. The upper solenoid valve 15 and the lower solenoid valve 8 attached to the glass tube 4 are opened and a sample is injected through the lower solenoid valve 8 using a pump. When sample injection is completed, the upper solenoid valve 15 and the lower solenoid valve 8 are closed. Next, using a heating element 13 and the temperature control temperature sensor 5, the temperature is raised to 120 degrees Celsius and reacted for 30 minutes. The time to reach 120 degrees Celsius varies depending on the reaction start temperature, but reaches 8 degrees to 10 degrees Celsius. After the reaction, the valve of the cooling water inlet solenoid valve 2 is opened to flow the cooling water to the cooling coil 3 of the aluminum block 10. When the temperature is cooled to room temperature, the coolant inlet solenoid valve 20 is closed. Next, the upper solenoid valve 15 and the lower solenoid valve 8 are opened, and the pump is rotated in reverse to take out the sample. The lower solenoid valve 8 may use a three-way solenoid valve. In this case, the sample is injected in one direction and the sample is taken out in the other direction.

본 발명을 이용하여 시료를 산화시킨 결과와 수질오염공정시험법에 따라 전처리하여 산화시킨 결과를 비교하였을 때 수질오염공정시험법에 의한 산화량에 대해 98내지 101퍼센트의 범위를 가지고 있어 본 발명이 수질오염공정시험법의 전처리 방법과 동등한 수준의 산화력을 가지고 있는 것을 알 수 있었다.When the result of oxidizing the sample using the present invention and the result of oxidizing by pretreatment according to the water pollution process test method had a range of 98 to 101 percent with respect to the amount of oxidation by the water pollution process test method. It was found that it had the same level of oxidation power as the pretreatment method of the water pollution process test method.

본 발명을 이용하면 총질소 및 총인을 측정하고자 섭씨 120도로 가열하여 산화반응을 시킨 후 상온까지 냉각하는 시간을 크게 줄일 수 있어 분석에 소요되는 시간을 단축할 수 있다. 또한 수질오염공정시험법의 전처리방법과 비교하여 동등한 산화력을 나타내어 정확한 분석이 가능하게 한다. 본 발명의 가열산화반응기는 각종 자동측정장치 및 산화반응기에도 널리 이용될 수 있다.When the present invention is used to measure total nitrogen and total phosphorus, it is possible to greatly reduce the time required for analysis by heating to 120 degrees Celsius and oxidizing the reaction to cool to room temperature. In addition, compared with the pretreatment method of the water pollution process test method, it shows the same oxidation power, enabling accurate analysis. The heating oxidation reactor of the present invention can be widely used in various automatic measuring devices and oxidation reactors.

실시예 1Example 1

본 발명의 가열산화반응기를 이용하여 총질소 측정을 위한 산화실험을 실시하였다. 우레아를 순수에 용해시켜 총질소가 2피피엠(ppm)의 농도가 되도록 하였다. 이 시료 30밀리리터에 과황산칼륨 용액 2밀리리터, 가성소다 용액 2밀리리터를 첨가하고 반응기 하부로부터 펌프를 이용하여 유리관(4)에 시료를 주입하였다. 시료에 첨가하는 약품의 양 및 조성은 수질오염공정시험법에 맞춰 시료수의 양에 따라 농도를 조절하였다. 온도조절기의 설정온도를 섭씨 120도로 설정하고 가동시켜 섭씨 120도에 도달할 때부터 30분간 반응시켰다.Oxidation experiments for total nitrogen measurement were carried out using the heat oxidation reactor of the present invention. Urea was dissolved in pure water to bring the total nitrogen to 2 ppm (ppm). 2 milliliters of potassium persulfate solution and 2 milliliters of caustic soda solution were added to 30 milliliters of this sample, and a sample was injected into the glass tube 4 using a pump from the bottom of the reactor. The amount and composition of the chemical added to the sample was adjusted according to the amount of sample water according to the water pollution process test method. The temperature of the thermostat was set to 120 degrees Celsius and operated for 30 minutes after reaching 120 degrees Celsius.

반응이 끝나면 냉각수를 흘려 섭씨 30도 이하가 될 때 까지 냉각하였다. 냉각후 시료를 인출하여 분광광도계를 이용하여 220나노미터 파장으로 흡광도를 측정하였다. 동일 시료를 수질오염공정시험법의 방법대로 전처리하여 분광광도계를 이용하여 220나노미터 파장으로 흡광도를 측정하였다. 얻어진 흡광도를 본 발명의 산화반응기를 이용하여 전처리한 시료의 흡광도와 비교하였다. 또한 섭씨 120도까지 도달한 시간, 시작 온도까지 냉각된 시간을 측정하였다. 동일한 시험을 10회 반복하였으며 그 결과를 표 1에 나타내었다.After the reaction, the mixture was cooled by flowing cooling water until it reached 30 degrees Celsius or less. After cooling, the sample was taken out and the absorbance was measured at a wavelength of 220 nanometers using a spectrophotometer. The same sample was pretreated according to the water pollution process test method and the absorbance was measured at a wavelength of 220 nanometers using a spectrophotometer. The obtained absorbance was compared with the absorbance of the sample pretreated using the oxidation reactor of the present invention. In addition, the time reached to 120 degrees Celsius, the time cooled to the start temperature was measured. The same test was repeated 10 times and the results are shown in Table 1.

표 1. 실시예 1의 산화실험 결과Table 1. Oxidation Experiment Results of Example 1

Figure 112008503654410-PAT00001
Figure 112008503654410-PAT00001

실시예 2Example 2

본 발명의 가열산화반응기를 이용하여 총인 측정을 위한 산화실험을 실시하였다. 페닐린산2나트륨을 순수에 용해시켜 총인 농도가 1피피엠(ppm)이 되도록 하였다. 이 시료 30밀리리터에 과황산칼륨 용액 2밀리리터를 첨가하고 반응기 하부로부터 펌프를 이용하여 유리관(4)에 시료를 주입하였다. 시료에 첨가하는 약품의 양 및 조성은 수질오염공정시험법에 맞춰 시료수의 양에 따라 농도를 조절하였다. 온도조절기의 설정온도를 섭씨 120도로 설정하고 가동시켜 섭씨 120도에 도달할 때부터 30분간 반응시켰다. 반응이 끝나면 냉각수를 흘려 섭씨 30도 이하가 될 때 까지 냉각하였다. 냉각후 시료를 인출하여 몰리브덴산암모늄 아스코빈산혼합액 2밀리리터를 첨가하고 10분간 반응시킨후 분광광도계를 이용하여 880나노미터 파장으로 흡광도를 측정하였다. 동일 시료를 수질오염공정시험법의 방법대로 전처리하여 분광광도계를 이용하여 880나노미터 파장으로 흡광도를 측정하였다. 얻어진 흡광도를 본 발명의 산화반응기를 이용하여 전처리한 시료의 흡광도와 비교하였다. 또한 섭씨 120도까지 도달한 시간, 시작 온도까지 냉각된 시간을 측정하였다. 동일한 시험을 10회 반복하였으며 그 결과를 표 2에 나타내었다.Oxidation experiment for total phosphorus measurement was carried out using the heat oxidation reactor of the present invention. Disodium phenylate was dissolved in pure water so that the total phosphorus concentration was 1 ppm. 2 milliliters of potassium persulfate solution was added to 30 milliliters of this sample, and the sample was injected into the glass tube 4 using the pump from the bottom of a reactor. The amount and composition of the chemical added to the sample was adjusted according to the amount of sample water according to the water pollution process test method. The temperature of the thermostat was set to 120 degrees Celsius and operated for 30 minutes after reaching 120 degrees Celsius. After the reaction, the mixture was cooled by flowing cooling water until it reached 30 degrees Celsius or less. After cooling, the sample was taken out, 2 milliliters of ammonium molybdate ascorbic acid mixture was added thereto, and reacted for 10 minutes. The absorbance was measured at a wavelength of 880 nanometers using a spectrophotometer. The same sample was pretreated according to the water pollution process test method, and the absorbance was measured at a wavelength of 880 nanometers using a spectrophotometer. The obtained absorbance was compared with the absorbance of the sample pretreated using the oxidation reactor of the present invention. In addition, the time reached to 120 degrees Celsius, the time cooled to the start temperature was measured. The same test was repeated 10 times and the results are shown in Table 2.

표 2. 실시예 2의 산화실험 결과Table 2. Results of Oxidation Experiment of Example 2

Figure 112008503654410-PAT00002
Figure 112008503654410-PAT00002

Claims (2)

총질소, 총인을 자동 측정할 때 전처리 방법으로 시료를 섭씨 120도에서 30분간 가열하여 산화시키기 위하여 알루미늄 괴를 원통형으로 가공하여 알루미늄 블록을 만들고 그 블록에 구멍을 뚫어 반응관인 유리관과 발열체를 밀착하여 삽입함으로써 가열이 균일하게 이루어지게 한 가열산화반응기In order to measure total nitrogen and total phosphorus automatically, the aluminum ingot is processed into a cylindrical block to heat and oxidize the sample by heating at 120 degrees Celsius for 30 minutes, and the aluminum block is made by making a hole in the block. Heated oxidation reactor to make heating uniform by inserting 청구항 1항에 있어서 반응기의 냉각 속도를 빠르게 하기 위하여 반응관인 유리관과 알루미늄 블록이 접하는 경계면의 알루미늄 블록을 나선형으로 홈을 파 냉각코일을 만들고 냉각수를 흘릴 수 있게 한 가열산화반응기The heating oxidation reactor according to claim 1, wherein a cooling coil is formed by spirally circulating the aluminum block at the interface where the glass tube, which is the reaction tube, and the aluminum block contact each other in order to increase the cooling rate of the reactor.
KR1020080068592A 2008-07-15 2008-07-15 Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous KR20100008161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080068592A KR20100008161A (en) 2008-07-15 2008-07-15 Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080068592A KR20100008161A (en) 2008-07-15 2008-07-15 Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous

Publications (1)

Publication Number Publication Date
KR20100008161A true KR20100008161A (en) 2010-01-25

Family

ID=41816835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080068592A KR20100008161A (en) 2008-07-15 2008-07-15 Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous

Country Status (1)

Country Link
KR (1) KR20100008161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694083A (en) * 2019-11-11 2020-01-17 刘静 Ultrasonic medicine branch of academic or vocational study apparatus degassing unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694083A (en) * 2019-11-11 2020-01-17 刘静 Ultrasonic medicine branch of academic or vocational study apparatus degassing unit

Similar Documents

Publication Publication Date Title
KR101393470B1 (en) Liquid heater and liquid heating method
JP4683624B2 (en) Method and apparatus for continuously measuring sulfur trioxide concentration
US20080011336A1 (en) Induction heating type pure water heating apparatus and pure water heating method
CN203502339U (en) Digestion colorimetric device for monitoring water quality on line
KR101761216B1 (en) An analysis apparatus for total phosphorus or total nitrogen capable of reducing constant injection error rate of a sample and an analysis method for total phosphorus or total nitrogen using the same
JP5854122B2 (en) Total nitrogen measuring device
CA2623985A1 (en) Reactor and method for anoxic treatment of a material in a fluid reaction medium
CN110261557B (en) Measuring mechanism and method for determining component substances or quality parameters of water or wastewater
KR20100008161A (en) Thermal oxidation reactor for automatic measurement of nitrogen and phosphorous
Stathopoulos et al. Heat transfer of supercritical mixtures of water, ethanol and nitrogen in a bluff body annular flow
CN106644678B (en) A kind of method and apparatus measuring power plant's water degasification hydrogen conductivity
KR20070117511A (en) The instrument of thermal oxidation reaction for automatic measurements of nitrogen and phosphorous
JP6390351B2 (en) Analysis equipment
KR101455246B1 (en) Method and device for determining the phosphorus content of an aqueous sample
US20180156762A1 (en) Analytical device for constituents of a sample
CN114890532A (en) Spiral casing pipe reactor and micro-channel wet oxidation system
CN106018468A (en) Portable coal sample temperature-control heating experimental facility and method
CN112710697A (en) High-controllable high-stability automatic sample introduction type photo-thermal catalytic reactor and testing method
CN2554618Y (en) Pressure treatment reactor
JP2001083083A (en) Method and device for measuring total nitrogen
CN105466857A (en) Heatable liquid optical detection pool
US20030205077A1 (en) Continuous on-line carbon analyzer
CN105043102A (en) Novel device and method for reducing sinter using hydrogen
KR102018179B1 (en) Semi-continuos flow method and device for COD determination using coil-reactor under low temperature and high pressure
CN206033358U (en) Waste water treatment device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application