KR20100006083A - Production method for conductive polyaniline dispersion - Google Patents

Production method for conductive polyaniline dispersion Download PDF

Info

Publication number
KR20100006083A
KR20100006083A KR1020080066257A KR20080066257A KR20100006083A KR 20100006083 A KR20100006083 A KR 20100006083A KR 1020080066257 A KR1020080066257 A KR 1020080066257A KR 20080066257 A KR20080066257 A KR 20080066257A KR 20100006083 A KR20100006083 A KR 20100006083A
Authority
KR
South Korea
Prior art keywords
ether
glycol
diethylene glycol
polyaniline
ethylene glycol
Prior art date
Application number
KR1020080066257A
Other languages
Korean (ko)
Inventor
김승훈
박재국
남우용
박상일
윤호성
Original Assignee
한스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한스주식회사 filed Critical 한스주식회사
Priority to KR1020080066257A priority Critical patent/KR20100006083A/en
Publication of KR20100006083A publication Critical patent/KR20100006083A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

PURPOSE: A production method for conductive polyaniline dispersion is provided to prepare polyaniline dispersion with high stability, homogeneity and conductivity by pulverizing and partially solubilizing the conductive polyaniline. CONSTITUTION: A production method for conductive polyaniline dispersion comprises the steps of: doping polyaniline with acids; adding the doped polyaniline to an amphoteric water-miscible organic solvent; adding a dispersing agent to the polyaniline added in the organic solvent to prepare pre-dispersion; and dispersing the added pre-dispersion using a bead mill.

Description

전도성 폴리아닐린 분산액의 제조 방법{PRODUCTION METHOD FOR CONDUCTIVE POLYANILINE DISPERSION} Method for producing conductive polyaniline dispersions {PRODUCTION METHOD FOR CONDUCTIVE POLYANILINE DISPERSION}

더욱 상세하게는 폴리아닐린을 산으로 도핑 하는 단계; 상기 도핑 된 폴리아닐린을 양쪽성 수혼화성 유기 용매에 첨가하는 단계; 상기 유기 용매에 첨가된 폴리아닐린에 분산제를 첨가하여 분산 준비액을 제조하는 단계; 상기 첨가된 분산 준비액을 비드밀(bead mill)을 이용하여 분산시키는 단계로 구성되는 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법에 관한 발명이다. More specifically, doping polyaniline with an acid; Adding the doped polyaniline to an amphoteric water miscible organic solvent; Preparing a dispersion preparation by adding a dispersant to the polyaniline added to the organic solvent; The present invention relates to a method for producing a conductive polyaniline dispersion, comprising the step of dispersing the added dispersion preparation using a bead mill.

본 발명에 따른 폴리아닐린 분산액을 코팅, 혼합 등의 방법으로 이용하면 높은 전기 전도도를 나타내는 폴리아닐린 응용제품을 제조할 수 있는 특징이 있다.When the polyaniline dispersion according to the present invention is used by coating, mixing, or the like, it is possible to prepare a polyaniline application product having high electrical conductivity.

전도성 고분자는 주사슬에 존재하는 공액 구조와 도핑을 통한 전자기 비편재화를 통하여 우수한 전기 전도도 특성을 갖는 고분자를 말한다. 현재까지 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene)등과 같은 전도성 고분자가 개발된 바 있다.The conductive polymer refers to a polymer having excellent electrical conductivity through the conjugated structure present in the main chain and electromagnetic delocalization through doping. To date, conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and the like have been developed.

전도성 고분자는 전도도에 따라 대전방지물질(10-13~ 10-7S/cm), 정전기 제거 물질 (10-6~10-2S/cm), 전자파 차폐용 물질 또는 전극 등으로(1S/cm 이상) 다양하게 이용된다.The conductive polymer may be formed of an antistatic material (10 -13 to 10 -7 S / cm), an antistatic material (10 -6 to 10 -2 S / cm), an electromagnetic shielding material, or an electrode (1S / cm) depending on the conductivity. It is used variously.

특히 폴리아닐린은 금속의 전기적, 자기적, 광학적 성질과 고분자의 기계적, 가공적 특성을 가지고 있으며, 합성 및 유도체를 만들기가 쉽고, 뛰어난 전기전도도와 열적, 대기 안전성이 높아 산업적 이용 가능성이 높다. In particular, polyaniline has the electrical, magnetic and optical properties of metals and mechanical and processing properties of polymers, and is easy to make synthesis and derivatives, and has high industrial conductivity due to its excellent electrical conductivity, thermal and atmospheric safety.

그러나 폴리아닐린은 메타크레졸과 같은 유독한 용매를 제외한 통상적인 용매에 용해되지 않는 특징으로 인하여 응용에 여러 가지 제약이 있으며, 그러한 문제점을 해결하기 위해 합성과정에서 용해도를 증가시키기 위한 작용기를 붙이거나 수용성 도판트를 이용하여 분산시키는 기술들이 개발되어 왔지만, 이럴 경우 주사슬의 입체적 간섭장애 문제로 전기 전도도가 떨어질 뿐만 아니라, 합성 과정이 복잡해지는 단점이 있다.However, polyaniline has various limitations in application due to its insoluble in conventional solvents except for toxic solvents such as methacresol, and in order to solve such problems, it is possible to attach a functional group or a water-soluble plate to increase the solubility in the synthesis process. Dispersion techniques have been developed, but in this case, not only the electrical conductivity decreases due to the problem of the three-dimensional interference of the main chain, but also the complication of the synthesis process is complicated.

상기 문제점을 해결하기 위한 방법으로 유화중합 (emulsion polymerization)이나 계면중합 (interfacial polymerization)이 제안된 바 있었으나, 폴리아닐린의 파라 위치뿐만 아니라 오르쏘 위치에도 첨가반응이 일어나는 등 부반응물의 함유량이 높고, 중합시 사용된 첨가물의 제거가 용이하지 못한 단점이 있다.Emulsion polymerization or interfacial polymerization has been proposed as a method to solve the above problems, but the content of the side reactants is high, such as addition reaction occurs at the ortho position as well as the para position of the polyaniline, and polymerization. There is a drawback that the removal of the additives used in the process is not easy.

따라서 본 발명에서는 상기한 종래 기술의 문제점을 극복하기 위한 방법으로서 이미 합성된 전도성 폴리아닐린을 다양한 유기용매에서 서브 마이크로(sub micro) 크기로 미세 분쇄하고 부분 가용화시켜 안정된 분산 특성 및 물성의 균질 성, 높은 전기 전도도를 나타낼 수 있는 방법을 제공하고자 한다.Therefore, in the present invention, as a method for overcoming the problems of the prior art, finely pulverized and partially solubilized the conductive polyaniline synthesized in various organic solvents to sub-micro size, and homogeneity of stable dispersion properties and physical properties, It is intended to provide a way to represent electrical conductivity.

본 발명을 통해 제공되는 전도성 폴리아닐린 분산액은 필름, 잉크, 도료, 펠렛, 섬유등 다양한 분야에 이용가능하며, 전자파차폐 흡수재료, 대전방지재료, 유전재료, 도전재료등 고분자 고유의 가공 특성을 요구로 하는 산업 용도에 적용 가능하다.The conductive polyaniline dispersions provided through the present invention can be used in various fields such as films, inks, paints, pellets, fibers, etc., and require inherent processing characteristics of polymers such as electromagnetic shielding absorbing materials, antistatic materials, dielectric materials, and conductive materials. It is applicable to industrial use.

본 발명에서는 전도성 폴리아닐린의 서브 마이크로 크기로 미세 분쇄하고 부분 가용화시켜 분산액의 안정성과 균질성이 높고, 따라서 높은 전기 전도도를 나타내는 폴리아닐린 분산액을 제공하는 것이 본 발명에서 해결하고자 하는 과제이다. In the present invention, it is a problem to be solved in the present invention to provide a polyaniline dispersion finely pulverized and partially solubilized to the sub-micro size of the conductive polyaniline to provide high stability and homogeneity of the dispersion and thus high electrical conductivity.

상기 과제를 해결하기 위하여 본 발명에서는 폴리아닐린을 산으로 도핑 하는 단계; 상기 도핑 된 폴리아닐린을 양쪽성 수혼화성 유기 용매에 첨가하는 단계; 상기 유기 용매에 첨가된 폴리아닐린에 분산제를 첨가하여 분산 준비액을 제조하는 단계; 상기 첨가된 분산 준비액을 비드밀(bead mill)을 이용하여 분산시키는 단계로 구성되는 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법을 제공한다.In order to solve the above problems, the present invention comprises the steps of doping polyaniline with an acid; Adding the doped polyaniline to an amphoteric water miscible organic solvent; Preparing a dispersion preparation by adding a dispersant to the polyaniline added to the organic solvent; It provides a method for producing a conductive polyaniline dispersion, characterized in that consisting of dispersing the added dispersion preparation using a bead mill.

본 발명에서 도핑은 유기산 또는 무기산에서 선택되는 어느 1종 또는 2종 이상의 산에서 선택되며, 도핑된 폴리아닐린은 글리콜 에테르계 솔벤트에 분산제와 함께 혼합된 후 비드밀을 통해 미세한 입자로 분산되어 안정된 물성과 높은 전도도를 나타낸다. In the present invention, the doping is selected from any one or two or more acids selected from organic or inorganic acids, and the doped polyaniline is mixed with a dispersant in a glycol ether solvent and then dispersed into fine particles through a bead mill to provide stable physical properties. High conductivity.

본 발명을 통해 제공되는 전도성 폴리아닐린 분산액은 필름, 잉크, 도료, 펠 렛, 섬유 등 다양한 분야에 이용가능하며, 전자파차폐 흡수재료, 대전방지재료, 유전재료, 도전재료 등 고분자 고유의 가공 특성을 요구로 하는 산업 용도에 적용 가능하다.The conductive polyaniline dispersions provided through the present invention can be used in various fields such as films, inks, paints, pellets, fibers, etc., and require processing characteristics unique to polymers such as electromagnetic shielding absorbents, antistatic materials, dielectric materials, and conductive materials. It is applicable to the industrial use.

이하 본 발명의 실시를 위한 구체적인 내용을 설명하면 다음과 같다.Hereinafter will be described the specific content for the practice of the present invention.

본 발명의 폴리아닐린은 통상적인 방법에 의하여 합성된 폴리아닐린을 사용한다. 이렇게 합성된 폴리아닐린은 도핑을 통하여 향상된 전도도를 나타내게 되는데, 이는 도핑을 시키면 공액 구조를 따라 부분적인 전하를 띄면서 전자가 비편재화되는 특이한 현상을 보이기 때문이다.The polyaniline of the present invention uses polyaniline synthesized by conventional methods. The polyaniline thus synthesized exhibits improved conductivity through doping because the doping shows a unique phenomenon in which electrons are delocalized with partial charge along the conjugate structure.

이러한 발명에서는 10-camphorsulfonic acid (CSA), methyl sulfonic acid, dodecyl benzene sulfonic acid, antraquinone-2-sulfonic acid, 4-sulfosalicylic acid, camphor sulfonic acid, chlorinated sulfonic acid, trifluoro-sulfonic acid, 염산, 황산, 질산, 인산 등의 산에서 선택되는 어느 1종 이상의 산을 도핑제로 사용한다. In this invention, 10-camphorsulfonic acid (CSA), methyl sulfonic acid, dodecyl benzene sulfonic acid, antraquinone-2-sulfonic acid, 4-sulfosalicylic acid, camphor sulfonic acid, chlorinated sulfonic acid, trifluoro-sulfonic acid, hydrochloric acid, sulfuric acid, nitric acid Any one or more acids selected from acids such as phosphoric acid and the like are used as dopants.

또한 합성된 전도성 폴리아닐린은 수백마이크미터에서부터 수밀리미터 크기의 파우더형태로 수득되며, 수득된 입자는 공업적 활용도를 향상시키기 위해 합성단계에서, 측쇄의 분자구조를 특정 용매에 가용성을 갖는 구조로 치환하여 용해도를 높이거나 조분쇄를 통해 입자크기를 변화시켜 가용 표면적의 변화를 통한 분산안정성을 확보하는 방법을 사용하고 있다.In addition, the synthesized conductive polyaniline is obtained in the form of a powder of several hundred micrometers to several millimeters in size, and the obtained particles are substituted in the synthesis step with a structure soluble in a specific solvent in the synthesis step in order to improve industrial utilization. Increasing solubility or changing the particle size through coarse grinding is used to secure dispersion stability by changing the available surface area.

조분쇄 방법은 통상적으로 입자 상호간의 물리적 충돌과 에너지 전이에 의한 물리적인 분쇄 방법을 사용하는데, 본 발명에서는 조분쇄를 위하여 비드밀(bead mill)을 사용한다.The coarse grinding method typically uses a physical grinding method by physical collision and energy transfer between particles, and in the present invention, a bead mill is used for coarse grinding.

본 발명에서 조분쇄 과정에 사용되는 용매로서는 에틸렌 글리콜 에테르(glycol ether)계 또는 프로필렌 글리콜 에테르계가 바람직한데, 여기에는 에틸렌 글리콜 모노메틸 에테르(Ethylene Glycol Monomethyl Ether, CH3-O-CH2CH2OH, MG), 디에틸렌 글리콜 모노메틸 에테르(Diethylene Glycol Monomethyl Ether,CH3-(OCH2CH2)2-OH, MDG), 트리에틸렌 글리콜 모노메틸 에테르(Triethylene Glycol Monomethyl Ether, CH3-(OCH2CH2)3-OH, MTG), 폴리에틸렌 글리콜 모노메틸 에테르(Polyethylene Glycol Monomethyl Ether, CH3-(OCH2CH2)n-OH, MPG), 에틸렌 글리콜 모노이소프로필 에테르, Ethylene Glycol Monoisopropyl Ether, (CH3)2-CH-O-CH2CH2-OH, iPG), 디에틸렌 글리콜 모노이소프로필 에테르(Diethylene Glycol Monoisopropyl Ether, (CH3)2CH-(OCH2CH2)2OH, iPDG), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether, C4H9-O-CH2CH2-OH, BG), 디에틸렌 글리콜 모노부틸 에테르(Diethylene Glycol Monobutyl Ether, C4H9-(OCH2CH2)2-OH, BDG), 트리에틸렌 글리콜 모노부틸 에테르(Triethylene Glycol Monobutyl Ether, C4H9- (OCH2CH2)3-OH, BTG), 에틸렌 글리콜 모노이소부틸 에테르(Ethylene Glycol Monoisobutyl Ether, (CH3)2CHCH2-O-CH2CH2-OH, iBG), 디에틸렌 글리콜 모노이소부틸 에테르(Diethylene Glycol Monoisobutyl Ether, (CH3)2CHCH2-(OCH2CH2)2-OH, iBDG), 에틸렌 글리콜 모노헥실 에테르(Ethylene Glycol Monohexyl Ether, C6H13-O-CH2CH2-OH, HeG), 디에틸렌 글리콜 모노헥실 에테르(Diethylene Glycol Monohexyl Ether, C6H13-(OCH2CH2)2-OH, HeDG), 에틸렌 글리콜 모노 2-에틸헥실 에테르, C4H9CH(C2H5)CH2-O-CH2CH2-OH, Ehylene Glycol Mono 2-Ethylhexyl Ether, EHG), 디에틸렌 글리콜 모노 2-에틸헥실 에테르, Diethylene Glycol Mono 2-Ethylhexyl Ether, C4H9CH(C2H5)CH2-(OCH2CH2)2-OH, EHDG), 에틸렌 글리콜 모노알릴 에테르(Ethylene Glycol Monoallyl Ether, CH2=CHCH2-O-CH2CH2-OH, AG), 에틸렌 글리콜 모노페닐 에테르(Ethylene glycol Monophenyl Ether, Ph-O-CH2CH2-OH, PhG), 디에틸렌 글리콜 모노페닐 에테르(Diethylene Glycol Monophenyl Ether, Ph-(O-CH2CH2)2-OH, PhDG), 에틸렌 글리콜 모노벤질 에테르(Ethylene Glycol Monobenzyl Ether, Ph-CH2-O-CH2CH2-OH, BzG), Diethylene Glycol Monobenzyl Ether, Ph-CH2-O-(CH2CH2)2-OH, BzDG), 프로필렌 글리콜 모노메틸 에테르(Propylene Glycol Monomethyl Ether, CH3-O-CH2CH(CH3)-OH, MFG), 디프로필렌 글리콜 모노메틸 에테 르(Dipropylene Glycol Monomethyl Ether, CH3-(O-CH2CH(CH3))2-OH, MFDG), 트리프로필렌 글리콜 모노메틸 에테르(Tripropylene Glycol Monomethyl Ether, CH3-(O-CH2CH(CH3))3-OH, MFTG), 프로필렌 글리콜 모노프로필 에테르(Propylene Glycol Monopropyl Ether, C3H7-O-CH2CH(CH3)-OH, PFG), 디프로필렌 글리콜 모노프로필 에테르(Dipropylene Glycol Monopropyl Ether, C3H7-(O-CH2CH(CH3))2-OH, PFDG), 프로필렌 글리콜 모노부틸 에테르(Propylene Glycol Monobutyl Ether, C4H9-O-CH2CH(CH3)-OH, BFG), 디프로필렌 글리콜 모노부틸 에테르(Dipropylene Glycol Monobutyl Ether, C4H9-(O-CH2CH(CH3))2-OH, BFDG), 프로필렌 글리콜 모노페닐 에테르(Propylene Glycol Monophenyl Ether, Ph-O-CH2CH(CH3)-OH, PhFG), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate, CH3-O-CH2CH(CH3)-OOCCH3, MFG-AC), 에틸렌 글리콜 디메틸 에테르(Ethylene Glycol Dimethyl Ether, CH3O-CH2CH2O-CH3, DMG), 디에틸렌 글리콜 디메틸 에테르(Diethylene Glycol Dimethyl Ether, CH3O-(CH2CH2O)2-CH3, DMDG), 트리에틸렌 글리콜 디메틸 에테르(Triethylene Glycol Dimethyl Ether, CH3O-(CH2CH2O)3-CH3, DMTG), 디에틸렌 글리콜 메틸 에틸 에테르(Diethylene Glycol Methyl Ethyl Ether, CH3O-(C2H4O)2-C2H5, MEDG), 디에틸렌 글리콜 디에틸 에테르(Diethylene Glycol Diethyl Ether, C2H5O-(CH2CH2O)2-C2H5, DEDG), 디에틸렌 글리콜 디부틸 에테르(Diethylene Glycol Dibutyl Ether, C4H9O-(CH2CH2O)2-C4H9, DBDG), 디프로필렌 글리콜 디메틸 에테르(Dipropylene Glycol Dimethyl Ether, CH3O-(CH2CH(CH3)O)2-CH3, DMFDG) 등으로 이루어지는 군에서 선택되는 어느 1종 또는 2종 이상의 혼합물이 바람직하다.In the present invention, the solvent used in the coarse grinding process is preferably ethylene glycol ether or propylene glycol ether, which includes ethylene glycol monomethyl ether (CH 3 -O-CH 2 CH 2 OH). , MG), Diethylene Glycol Monomethyl Ether, CH 3- (OCH 2 CH 2 ) 2 -OH, MDG, Triethylene Glycol Monomethyl Ether, CH 3- (OCH 2 CH 2 ) 3 -OH, MTG), Polyethylene Glycol Monomethyl Ether, CH 3- (OCH 2 CH 2 ) n-OH, MPG), Ethylene Glycol Monoisopropyl Ether, Ethylene Glycol Monoisopropyl Ether, ( CH 3 ) 2 -CH-O-CH 2 CH 2 -OH, iPG), Diethylene Glycol Monoisopropyl Ether, (CH 3 ) 2 CH- (OCH 2 CH 2 ) 2 OH, iPDG) , Ethylene glycol monobutyl ether, C 4 H 9 -O-CH 2 CH 2 -OH, BG), Diethylene Glycol Monobutyl Ether, C 4 H 9- (OCH 2 CH 2 ) 2 -OH, BDG), Triethylene Glycol Monobutyl Ether, C 4 H 9- (OCH 2 CH 2 ) 3 -OH, BTG), ethylene glycol monoisobutyl ether, (CH 3 ) 2 CHCH 2 -O-CH 2 CH 2 -OH, iBG), di Diethylene Glycol Monoisobutyl Ether, (CH 3 ) 2 CHCH 2- (OCH 2 CH 2 ) 2 -OH, iBDG), Ethylene Glycol Monohexyl Ether, C 6 H 13 -O -CH 2 CH 2 -OH, HeG), Diethylene Glycol Monohexyl Ether, C 6 H 13- (OCH 2 CH 2 ) 2 -OH, HeDG), ethylene glycol mono 2-ethylhexyl ether, C 4 H 9 CH (C 2 H 5 ) CH 2 -O-CH 2 CH 2 -OH, Ehylene Glycol Mono 2-Ethylhexyl Ether, EHG), Diethylene Glycol Mono 2-ethylhexyl Ether, Diethylene Glycol Mono 2-Ethylhexyl Ether, C 4 H 9 CH (C 2 H 5 ) CH 2- (OCH 2 CH 2 ) 2 -OH, EHDG), Ethylene Glycol Monoallyl Ether, CH 2 = CHCH 2 -O-CH 2 CH 2 -OH, AG, Ethylene Glycol Monophenyl Ether (Ethylene glycol Monophenyl Ether, Ph-O-CH 2 CH 2 -OH, PhG), Diethylene Glycol Monophenyl Ether, Ph- (O-CH 2 CH 2 ) 2 -OH, PhDG), Ethylene Glycol Monobenzyl Ether, Ph-CH 2 -O-CH 2 CH 2 -OH, BzG, Diethylene Glycol Monobenzyl Ether, Ph-CH 2 -O- (CH 2 CH 2 ) 2 -OH, BzDG), Propylene Glycol Monomethyl Ether, CH 3 -O-CH 2 CH (CH 3 ) -OH, MFG, Dipropylene Glycol Monomethyl Ether, CH 3- (O -CH 2 CH (CH 3 )) 2 -OH, MFDG), Tripropylene Glycol Monomethyl Ether, CH 3- (O-CH 2 CH (CH 3 )) 3 -OH, MFTG), propylene Glycol Monopropyl Ether, C 3 H 7 -O-CH 2 CH (CH 3 ) -OH, PFG), Dipropylene Glycol Monopropyl Ether, C 3 H 7- (O-CH 2 CH (CH 3 )) 2- OH, PFDG), Propylene Glycol Monobutyl Ether, C 4 H 9 -O-CH 2 CH (CH 3 ) -OH, BFG), Dipropylene Glycol Monobutyl Ether, C 4 H 9- (O-CH 2 CH (CH 3 )) 2 -OH, BFDG), Propylene Glycol Monophenyl Ether, Ph-O-CH 2 CH (CH 3 ) -OH, PhFG), Propylene Glycol Monomethyl Ether Acetate, CH 3 -O-CH 2 CH (CH 3 ) -OOCCH 3 , MFG-AC, Ethylene Glycol Dimethyl Ether, CH 3 O-CH 2 CH 2 O-CH 3 , DMG), Diethylene Glycol Dimethyl Ether, CH 3 O- (CH 2 CH 2 O) 2 -CH 3 , DMDG), Triethylene Glycol Dimethyl Ether, CH 3 O- (CH 2 CH 2 O) 3 -CH 3 , DMTG), Diethylene Glycol Methyl Ethyl Ether, CH 3 O- (C 2 H 4 O) 2 -C 2 H 5 , MEDG, Diethylene Glycol Diethyl Ether, C 2 H 5 O- (CH 2 CH 2 O) 2 -C 2 H 5 , DEDG), Diethylene Glycol Dibutyl Ether, C 4 H 9 O- (CH 2 CH 2 O) 2 -C 4 H 9 , DBDG), any one selected from the group consisting of dipropylene glycol dimethyl ether, CH 3 O- (CH 2 CH (CH 3 ) O) 2 -CH 3 , DMFDG), or Mixtures of two or more are preferred.

상기 글리콜 에테르계의 용매는 다음과 같은 일반식으로 나타낼 수 있다.The glycol ether solvent may be represented by the following general formula.

Figure 112008049274525-PAT00001
Figure 112008049274525-PAT00001

이때, R1은 수소, alkyl, allyl, alkenyl, cycloalkyl, cycloalkenyl, alkanoyl, aryl-alkyl, alkyl-aryl, phenyl, benzyl, R2는 수소, 메틸기, R3는 수산기(hydroxyl), 술폰기(sulfone), 에스테르기이며, n은 1 이상의 자연수 이다.In this case, R 1 is hydrogen, alkyl, allyl, alkenyl, cycloalkyl, cycloalkenyl, alkanoyl, aryl-alkyl, alkyl-aryl, phenyl, benzyl, R 2 is hydrogen, methyl, R 3 is hydroxyl, sulfone ), An ester group, n is one or more natural numbers.

본 발명에서는 상기한 양쪽성 글리콜 에테르 중에서 1종 혹은 2종 이상을 선택 사용함으로 해서 불용 아닐린중합체의 용해도를 극대화시킨다. In the present invention, the solubility of the insoluble aniline polymer is maximized by the use of one or two or more of the above amphoteric glycol ethers.

또한, 불용상태로 존재하고 있는 아닐린 중합체를 비이온 아크릴 블록공중합 체, 아크릴레이트 공중합체의 염, 폴리에스테르 변성 폴리디메칠실록산, 고분자량 알킬올, 아미노아미드, 불포화 폴리카르복실산 폴리머, 불포화 폴리아민 아마이드염 혹은 산에스테르등에서 선택되는 1종 또는 2종 이상의 분산제를 첨가함으로써 분산성을 향상시키는 것이 본 발명의 특징이다.In addition, aniline polymers present in an insoluble state include nonionic acrylic block copolymers, salts of acrylate copolymers, polyester-modified polydimethylsiloxanes, high molecular weight alkylols, aminoamides, unsaturated polycarboxylic acid polymers, and unsaturated polyamines. It is a feature of the present invention to improve dispersibility by adding one or two or more dispersants selected from amide salts, acid esters and the like.

이때 상기 분산제는 용매로서 사용되는 양쪽성 수혼화성 용매에 대하여 0.05% 내지 10%의 부피비로 사용되는 것이 바람직하며, 더욱 바람직하게는 1% 내지 5%의 부피비로 사용되는 것이 바람직하다.At this time, the dispersant is preferably used in a volume ratio of 0.05% to 10% with respect to the amphoteric water miscible solvent used as a solvent, more preferably in a volume ratio of 1% to 5%.

상기 양쪽성 용매와 분산제를 사용함으로써 메타크레졸(m-cresol), 클로로포름(chloroform), 염산, 황산, 질산 등과 같은 비환경 친화적인 용매사용을 억제하고 전도성 고분자의 사용 환경을 보다 유리하게 만들 수 있다. By using the amphoteric solvent and the dispersant, it is possible to suppress the use of non-environmentally friendly solvents such as m-cresol, chloroform, hydrochloric acid, sulfuric acid, nitric acid, etc., and make the use environment of the conductive polymer more advantageous. .

상기 방법으로 제조된 폴리아닐린 분산액은 코팅하여 필름으로 제조시에 표면 전도도가 200S/cm 이상되고, 아울러 균일한 입자 크기를 가지는 특징을 나타낸다.The polyaniline dispersion prepared by the above method has a surface conductivity of 200 S / cm or more when coated and manufactured into a film, and has a uniform particle size.

이하 본 발명의 특징을 실시예를 통하여 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the features of the present invention will be described in more detail with reference to Examples.

실시예Example 1 One

증류 정제한 아닐린 100mL를 1M HCl 용액 6L에 천천히 적가한 후 클로로포름 4L를 위 용액에 혼합하였다. 상기 혼합 용액의 온도를 -10℃로 고정하고 암모늄과산화설페이트(NH4)2S2O8) 56g이 1M HCl 용액 2L에 용해되어 있는 용액을 상기 혼합 용액에 40분 동안 서서히 잘 저어주면서 가하였다. 100 mL of distilled and purified aniline was slowly added dropwise to 6 L of 1 M HCl solution, and then 4 L of chloroform was mixed into the solution. The temperature of the mixed solution was fixed at −10 ° C. and a solution of 56 g of ammonium peroxide (NH 4 ) 2 S 2 O 8 ) dissolved in 2 L of 1 M HCl solution was added to the mixed solution with gentle stirring for 40 minutes. .

교반 속도 100 rpm/min으로 4시간 유지한 후 반응이 완료되고 얻어진 침전물을 여과지에 거른 후 염 형태의 폴리아닐린을 회수하고, 그 일부를 1M 수산화 암모늄(NH4OH) 1L 용액으로 세척하였다. After keeping the stirring speed at 100 rpm / min for 4 hours, the reaction was completed, and the obtained precipitate was filtered through a filter paper, and polyaniline in the form of a salt was recovered, and a portion thereof was washed with 1 L of 1M ammonium hydroxide (NH 4 OH) solution.

침전물을 0.1M 수산화암모늄 5L 용액에 옮기고 20시간 동안 교반 후 여과한 뒤, 진공펌프로 48시간 건조하여 폴리아닐린 염기(EB) 1.7g를 수득하였다.The precipitate was transferred to 0.1 M ammonium hydroxide 5L solution, stirred for 20 hours, filtered and dried for 48 hours in a vacuum pump to obtain 1.7 g of polyaniline base (EB).

실시예2Example 2

EB 형태의 폴리아닐린 분말 1.0 g (5.5 × 10-3 mol)과 D-t-BOC (di-tert-butyldicarbonate) 4.8 g (2.2 × 10-2 mol)을 NMP 50 mL에 용해시킨 후, 피리딘 10 mL를 첨가하여 75 ℃에서 5시간 동안 교반시켰다. 반응 생성물은 과량의 물에 침전시켜 여과한 후 물과 메탄올 1 : 1 용액으로 세척한 다음, 정제된 t-BOC-폴리아닐린 형태를 1.3 g의 수율로 얻었다.1.0 g (5.5 × 10 −3 mol) of polyaniline powder in EB form and 4.8 g (2.2 × 10-2 mol) of dit-BOC (di-tert-butyldicarbonate) were dissolved in 50 mL of NMP, followed by addition of 10 mL of pyridine. And stirred at 75 ° C. for 5 hours. The reaction product was precipitated in excess water, filtered and washed with water and methanol 1: 1 solution to obtain purified t-BOC-polyaniline form in 1.3 g yield.

실시예3Example 3

폴리아닐린 분말 6.0g을 CSA(10-camphorsulfonic acid)11.25g (9.6 × 10-2mol)와 혼합하여, 상기 글리콜 에테르에 잘 저어주면서 첨가하여 5%(w/w) 농도의 용액을 만든다. 이 용액은 1 %(v/v)의 아크릴 블록 공중합체와 혼합한 후, bead mill을 이용하여 3시간 동안 분산을 시킨다. 6.0 g of polyaniline powder is mixed with 11.25 g (9.6 × 10 −2 mol) of 10-camphorsulfonic acid (CSA) and added to the glycol ether with good stirring to form a 5% (w / w) solution. This solution is mixed with 1% (v / v) acrylic block copolymer and dispersed for 3 hours using a bead mill.

실시예4Example 4

t-Boc-폴리아닐린분말 6.0g을 CSA(10-camphorsulfonic acid)11.25g (9.6 × 10-2mol)와 혼합하여, 상기 글리콜 에테르에 잘 저어주면서 첨가하여 5%(w/w) 농도의 용액을 만든다. 이 용액은 1 %(v/v)의 아크릴 블록 공중합체와 혼합한 후, bead mill을 이용하여 3시간 동안 분산을 시킨다. 6.0 g of t-Boc-polyaniline powder was mixed with 11.25 g (9.6 × 10 −2 mol) of 10-camphorsulfonic acid (CSA), and the mixture was added to the glycol ether with stirring, thereby adding a 5% (w / w) solution. Make. This solution is mixed with 1% (v / v) acrylic block copolymer and dispersed for 3 hours using a bead mill.

실시예5Example 5

상기 실시예 1 및 2에서 얻은 폴리아닐린을 메타크레졸에 용해시킨 다음, 건조시 두께가 10 μm 정도가 되도록 PET필름 위에 코팅시킨 후 전도도를 측정하였다. 실시예 3 및 4에서 얻은 분산 폴리아닐린은 분산된 상태 그대로 PET필름에 코팅하여 역시 건조 두께가 10 μm 정도 되도록 코팅하였다. 이때 각각의 필름은 40oC에서 24시간 정도 충분히 건조시켰다. 전도도는 일반적인 4-point 표면 전도도계를 사용하였다.The polyaniline obtained in Examples 1 and 2 was dissolved in methacresol and then coated on a PET film to have a thickness of about 10 μm when dried, and then conductivity was measured. The dispersed polyaniline obtained in Examples 3 and 4 was coated on a PET film in a dispersed state, and was coated to have a dry thickness of about 10 μm. At this time, each film was sufficiently dried for 24 hours at 40 ° C. Conductivity was used with a general 4-point surface conductivity meter.

폴리아닐린 용액과 분산액을 이용한 코팅의 전기 전도도Electrical Conductivity of Coatings with Polyaniline Solution and Dispersion 전도도(S/cm)Conductivity (S / cm) 코팅 방법Coating method 실시예1Example 1 600600 메타크레졸에 용해 후 코팅Coating after dissolving in metacresol 실시예2Example 2 7171 메타크레졸에 용해 후 코팅Coating after dissolving in metacresol 실시예3Example 3 345345 분산액 상태로 코팅Coating as dispersion 실시예4Example 4 5555 분산액 상태로 코팅Coating as dispersion

상기 표 1을 참조하면, 폴리아닐린의 경우 메타크레졸에 용해되었을 때 전도도가 600이었고, 본 발명의 분산방법을 사용하였을 경우 전도도가 445임을 알 수 있다. 따라서 본 발명의 분산액을 코팅했을 경우 메타크레졸에 용해시켜 코팅한 결과와 거의 동등한 전도도를 나타냄을 알 수 있다.Referring to Table 1, in the case of polyaniline, the conductivity was 600 when dissolved in the metacresol, and when using the dispersion method of the present invention, the conductivity was 445. Therefore, when the dispersion of the present invention is coated, it can be seen that the conductivity is almost equivalent to that obtained by dissolving in methacresol.

이는 본 발명에 따를 경우, 메타크레졸과 같이 유독한 용매를 사용하지 않아도 충분히 높은 전도성을 나타낼 수 있는 전도성 폴리아닐린 분산액을 제공할 수 있다는 점을 의미한다.This means that, according to the present invention, it is possible to provide a conductive polyaniline dispersion which can exhibit sufficiently high conductivity without the use of toxic solvents such as methacresol.

이러한 폴리아닐린 분산액은 전도성 잉크 등에 이용가능하며 잉크젯 등의 장치를 이용하면 전도성 패턴을 인쇄할 수 있어 RFID 등에 이용할 수 있다.Such polyaniline dispersions can be used in conductive inks and the like, and can be used in RFID and the like by using conductive devices such as inkjets.

Claims (5)

전도성 폴리아닐린의 분산액을 제조하는 방법에 있어서,In the method for producing a dispersion of conductive polyaniline, 폴리아닐린을 산으로 도핑 하는 단계;Doping the polyaniline with an acid; 상기 도핑 된 폴리아닐린을 양쪽성 수혼화성 유기 용매에 첨가하는 단계;Adding the doped polyaniline to an amphoteric water miscible organic solvent; 상기 유기 용매에 첨가된 폴리아닐린에 분산제를 첨가하여 분산 준비액을 제 조하는 단계;Preparing a dispersion preparation by adding a dispersant to the polyaniline added to the organic solvent; 상기 첨가된 분산 준비액을 비드밀(bead mill)을 이용하여 분산시키는 단계로 구성되는 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법Method for producing a conductive polyaniline dispersion, characterized in that consisting of dispersing the added dispersion preparation using a bead mill (bead mill) 제 1항에 있어서,The method of claim 1, 산은 10-camphorsulfonic acid (CSA), methyl sulfonic acid, dodecyl benzene sulfonic acid, antraquinone-2-sulfonic acid, 4-sulfosalicylic acid, camphor sulfonic acid, chlorinated sulfonic acid, trifluoro-sulfonic acid, 염산, 황산, 질산, 인산 등의 산에서 선택되는 어느 1종 또는 2종 이상의 산인 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법Acids are 10-camphorsulfonic acid (CSA), methyl sulfonic acid, dodecyl benzene sulfonic acid, antraquinone-2-sulfonic acid, 4-sulfosalicylic acid, camphor sulfonic acid, chlorinated sulfonic acid, trifluoro-sulfonic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid Method for producing a conductive polyaniline dispersion, characterized in that any one or two or more acids selected from acids such as 제 1항에 있어서,The method of claim 1, 상기 분산제는 아닐린 중합체를 비이온 아크릴 블록공중합체, 아크릴레이트 공중합체의 염, 폴리에스테르 변성 폴리디메칠실록산, 고분자량 알킬올, 아미노아미드, 불포화 폴리카르복실산 폴리머, 불포화 폴리아민 아마이드염 혹은 산에스테르로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상인 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법.The dispersing agent may be selected from aniline polymers for nonionic acrylic block copolymers, salts of acrylate copolymers, polyester modified polydimethylsiloxanes, high molecular weight alkylols, aminoamides, unsaturated polycarboxylic acid polymers, unsaturated polyamine amide salts or acid esters. Method for producing a conductive polyaniline dispersion, characterized in that any one or two or more selected from the group consisting of. 제 1항에 있어서,The method of claim 1, 양쪽성 수혼화성 유기용매는 에틸렌 글리콜 모노메틸 에테르(Ethylene Glycol Monomethyl Ether, CH3-O-CH2CH2OH, MG), 디에틸렌 글리콜 모노메틸 에테르(Diethylene Glycol Monomethyl Ether,CH3-(OCH2CH2)2-OH, MDG), 트리에틸렌 글리콜 모노메틸 에테르(Triethylene Glycol Monomethyl Ether, CH3-(OCH2CH2)3-OH, MTG), 폴리에틸렌 글리콜 모노메틸 에테르(Polyethylene Glycol Monomethyl Ether, CH3-(OCH2CH2)n-OH, MPG), 에틸렌 글리콜 모노이소프로필 에테르, Ethylene Glycol Monoisopropyl Ether, (CH3)2-CH-O-CH2CH2-OH, iPG), 디에틸렌 글리콜 모노이소프로필 에테르(Diethylene Glycol Monoisopropyl Ether, (CH3)2CH-(OCH2CH2)2OH, iPDG), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether, C4H9-O-CH2CH2-OH, BG), 디에틸렌 글리콜 모노부틸 에테르(Diethylene Glycol Monobutyl Ether, C4H9-(OCH2CH2)2-OH, BDG), 트리에틸렌 글리콜 모노부틸 에테르(Triethylene Glycol Monobutyl Ether, C4H9-(OCH2CH2)3-OH, BTG), 에틸렌 글리콜 모노이소부틸 에테르(Ethylene Glycol Monoisobutyl Ether, (CH3)2CHCH2-O-CH2CH2-OH, iBG), 디에틸렌 글리콜 모노이소부틸 에테르(Diethylene Glycol Monoisobutyl Ether, (CH3)2CHCH2- (OCH2CH2)2-OH, iBDG), 에틸렌 글리콜 모노헥실 에테르(Ethylene Glycol Monohexyl Ether, C6H13-O-CH2CH2-OH, HeG), 디에틸렌 글리콜 모노헥실 에테르(Diethylene Glycol Monohexyl Ether, C6H13-(OCH2CH2)2-OH, HeDG), 에틸렌 글리콜 모노 2-에틸헥실 에테르, C4H9CH(C2H5)CH2-O-CH2CH2-OH, Ehylene Glycol Mono 2-Ethylhexyl Ether, EHG), 디에틸렌 글리콜 모노 2-에틸헥실 에테르, Diethylene Glycol Mono 2-Ethylhexyl Ether, C4H9CH(C2H5)CH2-(OCH2CH2)2-OH, EHDG), 에틸렌 글리콜 모노알릴 에테르(Ethylene Glycol Monoallyl Ether, CH2=CHCH2-O-CH2CH2-OH, AG), 에틸렌 글리콜 모노페닐 에테르(Ethylene glycol Monophenyl Ether, Ph-O-CH2CH2-OH, PhG), 디에틸렌 글리콜 모노페닐 에테르(Diethylene Glycol Monophenyl Ether, Ph-(O-CH2CH2)2-OH, PhDG), 에틸렌 글리콜 모노벤질 에테르(Ethylene Glycol Monobenzyl Ether, Ph-CH2-O-CH2CH2-OH, BzG), Diethylene Glycol Monobenzyl Ether, Ph-CH2-O-(CH2CH2)2-OH, BzDG), 프로필렌 글리콜 모노메틸 에테르(Propylene Glycol Monomethyl Ether, CH3-O-CH2CH(CH3)-OH, MFG), 디프로필렌 글리콜 모노메틸 에테르(Dipropylene Glycol Monomethyl Ether, CH3-(O-CH2CH(CH3))2-OH, MFDG), 트리프로필렌 글리콜 모노메틸 에테르(Tripropylene Glycol Monomethyl Ether, CH3-(O-CH2CH(CH3))3-OH, MFTG), 프로필렌 글리콜 모노프로필 에테르(Propylene Glycol Monopropyl Ether, C3H7-O-CH2CH(CH3)-OH, PFG), 디프로필렌 글리콜 모노프로필 에테르(Dipropylene Glycol Monopropyl Ether, C3H7-(O-CH2CH(CH3))2-OH, PFDG), 프로필렌 글리콜 모노부틸 에테르(Propylene Glycol Monobutyl Ether, C4H9-O-CH2CH(CH3)-OH, BFG), 디프로필렌 글리콜 모노부틸 에테르(Dipropylene Glycol Monobutyl Ether, C4H9-(O-CH2CH(CH3))2-OH, BFDG), 프로필렌 글리콜 모노페닐 에테르(Propylene Glycol Monophenyl Ether, Ph-O-CH2CH(CH3)-OH, PhFG), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate, CH3-O-CH2CH(CH3)-OOCCH3, MFG-AC), 에틸렌 글리콜 디메틸 에테르(Ethylene Glycol Dimethyl Ether, CH3O-CH2CH2O-CH3, DMG), 디에틸렌 글리콜 디메틸 에테르(Diethylene Glycol Dimethyl Ether, CH3O-(CH2CH2O)2-CH3, DMDG), 트리에틸렌 글리콜 디메틸 에테르(Triethylene Glycol Dimethyl Ether, CH3O-(CH2CH2O)3-CH3, DMTG), 디에틸렌 글리콜 메틸 에틸 에테르(Diethylene Glycol Methyl Ethyl Ether, CH3O-(C2H4O)2-C2H5, MEDG), 디에틸렌 글리콜 디에틸 에테르(Diethylene Glycol Diethyl Ether, C2H5O-(CH2CH2O)2-C2H5, DEDG), 디에틸렌 글리콜 디부틸 에테르(Diethylene Glycol Dibutyl Ether, C4H9O-(CH2CH2O)2-C4H9, DBDG), 디프로필렌 글리콜 디메틸 에테르(Dipropylene Glycol Dimethyl Ether, CH3O-(CH2CH(CH3)O)2-CH3, DMFDG) 등으로 이루어지는 군에서 선택되는 어느 1종 또는 2종 이상인 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법.Amphoteric water miscible organic solvents are ethylene glycol monomethyl ether (CH 3 -O-CH 2 CH 2 OH, MG), diethylene glycol monomethyl ether (CH 3- (OCH 2) CH 2 ) 2 -OH, MDG), Triethylene Glycol Monomethyl Ether, CH 3- (OCH 2 CH 2 ) 3 -OH, MTG), Polyethylene Glycol Monomethyl Ether, CH 3- (OCH 2 CH 2 ) n-OH, MPG), ethylene glycol monoisopropyl ether, Ethylene Glycol Monoisopropyl Ether, (CH 3 ) 2 -CH-O-CH 2 CH 2 -OH, iPG), diethylene glycol Diethylene Glycol Monoisopropyl Ether, (CH 3 ) 2 CH- (OCH 2 CH 2 ) 2 OH, iPDG), Ethylene Glycol Monobutyl Ether, C 4 H 9 -O-CH 2 CH 2 -OH, BG), diethylene glycol monobutyl ether (diethylene glycol monobutyl ether, C 4 H 9 - (OCH 2 CH 2) 2 -OH, BDG), triethylene article Call monobutyl ether (Triethylene Glycol Monobutyl Ether, C 4 H 9 - (OCH 2 CH 2) 3 -OH, BTG), ethylene glycol mono-isobutyl ether (Ethylene Glycol Monoisobutyl Ether, (CH 3) 2 CHCH 2 -O- CH 2 CH 2 -OH, iBG), Diethylene Glycol Monoisobutyl Ether, (CH 3 ) 2 CHCH 2- (OCH 2 CH 2 ) 2 -OH, iBDG), Ethylene glycol monohexyl ether ( Ethylene Glycol Monohexyl Ether, C 6 H 13 -O-CH 2 CH 2 -OH, HeG, Diethylene Glycol Monohexyl Ether, C 6 H 13- (OCH 2 CH 2 ) 2 -OH, HeDG ), Ethylene glycol mono 2-ethylhexyl ether, C 4 H 9 CH (C 2 H 5 ) CH 2 -O-CH 2 CH 2 -OH, Ehylene Glycol Mono 2-Ethylhexyl Ether, EHG), diethylene glycol mono 2 -Ethylhexyl Ether, Diethylene Glycol Mono 2-Ethylhexyl Ether, C 4 H 9 CH (C 2 H 5 ) CH 2- (OCH 2 CH 2 ) 2 -OH, EHDG), Ethylene Glycol Monoallyl Ether , CH 2 = CHCH 2 -O- CH 2 CH 2 -OH, AG), Ethylene glycol monophenyl ether (Ethylene glycol Monophenyl Ether, Ph- O-CH 2 CH 2 -OH, PhG), diethylene glycol monophenyl ether (Diethylene Glycol Monophenyl Ether, Ph- ( O-CH 2 CH 2) 2 -OH , PhDG), Ethylene Glycol Monobenzyl Ether, Ph-CH 2 -O-CH 2 CH 2 -OH, BzG, Diethylene Glycol Monobenzyl Ether, Ph-CH 2 -O- (CH 2 CH 2 ) 2 -OH, BzDG), Propylene Glycol Monomethyl Ether, CH 3 -O-CH 2 CH (CH 3 ) -OH, MFG, Dipropylene Glycol Monomethyl Ether, CH 3 -(O-CH 2 CH (CH 3 )) 2 -OH, MFDG), Tripropylene Glycol Monomethyl Ether, CH 3- (O-CH 2 CH (CH 3 )) 3 -OH, MFTG ), Propylene Glycol Monopropyl Ether, C 3 H 7 -O-CH 2 CH (CH 3 ) -OH, PFG), Dipropylene Glycol Monopropyl Ether, C 3 H 7- (O-CH 2 CH (CH 3 )) 2 -OH, PFDG), Propylene Glycol Monobutyl Ether, C 4 H 9 -O-CH 2 CH (CH 3 ) -OH, BFG), Dipropylene Glycol Monobutyl Ether, C 4 H 9- (O-CH 2 CH (CH 3 )) 2 -OH, BFDG), Propylene Glycol Monophenyl Ether, Ph-O-CH 2 CH (CH 3 ) -OH, PhFG), Propylene Glycol Monomethyl Ether Acetate, CH 3 -O-CH 2 CH (CH 3 ) -OOCCH 3 , MFG-AC, Ethylene Glycol Dimethyl Ether, CH 3 O -CH 2 CH 2 O-CH 3 , DMG), Diethylene Glycol Dimethyl Ether, CH 3 O- (CH 2 CH 2 O) 2 -CH 3 , DMDG), Triethylene Glycol Dimethyl Ether Glycol Dimethyl Ether, CH 3 O- (CH 2 CH 2 O) 3 -CH 3 , DMTG, Diethylene Glycol Methyl Ethyl Ether, CH 3 O- (C 2 H 4 O) 2 -C 2 H 5 , MEDG), diethylene glycol Diethylene Glycol Diethyl Ether, C 2 H 5 O- (CH 2 CH 2 O) 2 -C 2 H 5 , DEDG, Diethylene Glycol Dibutyl Ether, C 4 H 9 O -(CH 2 CH 2 O) 2 -C 4 H 9 , DBDG), Dipropylene Glycol Dimethyl Ether, CH 3 O- (CH 2 CH (CH 3 ) O) 2 -CH 3 , DMFDG It is any 1 type, or 2 or more types chosen from the group which consists of etc. The manufacturing method of the conductive polyaniline dispersion liquid. 제 1항에 있어서,The method of claim 1, 분산제는 용매로서 사용되는 양쪽성 수혼화성 용매에 대하여 0.05% 내지 10%의 부피비로 사용되는 것을 특징으로 하는 전도성 폴리아닐린 분산액의 제조 방법.Dispersant is a method of producing a conductive polyaniline dispersion, characterized in that the volume ratio of 0.05% to 10% relative to the amphoteric water miscible solvent used as a solvent.
KR1020080066257A 2008-07-08 2008-07-08 Production method for conductive polyaniline dispersion KR20100006083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080066257A KR20100006083A (en) 2008-07-08 2008-07-08 Production method for conductive polyaniline dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080066257A KR20100006083A (en) 2008-07-08 2008-07-08 Production method for conductive polyaniline dispersion

Publications (1)

Publication Number Publication Date
KR20100006083A true KR20100006083A (en) 2010-01-18

Family

ID=41815322

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080066257A KR20100006083A (en) 2008-07-08 2008-07-08 Production method for conductive polyaniline dispersion

Country Status (1)

Country Link
KR (1) KR20100006083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725569B2 (en) 2010-10-25 2014-05-13 Alohar Mobile Inc. Location based user behavior analysis and applications
CN116390507A (en) * 2023-03-23 2023-07-04 武汉大学 Preparation method of polyaniline electrode capable of being coated at low temperature and perovskite solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725569B2 (en) 2010-10-25 2014-05-13 Alohar Mobile Inc. Location based user behavior analysis and applications
US8958822B2 (en) 2010-10-25 2015-02-17 Alohar Mobile Inc. Determining points of interest of a mobile user
CN116390507A (en) * 2023-03-23 2023-07-04 武汉大学 Preparation method of polyaniline electrode capable of being coated at low temperature and perovskite solar cell
CN116390507B (en) * 2023-03-23 2024-02-13 武汉大学 Preparation method of polyaniline electrode capable of being coated at low temperature and perovskite solar cell

Similar Documents

Publication Publication Date Title
JP3103030B2 (en) Disaggregated conductive polymer
EP1595908A1 (en) Conductive polymers having highly enhanced solubility in organic solvent and synthesizing process thereof
JP6645138B2 (en) Conductive polymer aqueous solution, conductive polymer film, and coated article
JP3065524B2 (en) Method for producing deagglomerated conductive polymer
TWI725256B (en) Dopant for conductive polymer, conductive polymer using it, and method for producing conductive polymer
JP2017101102A (en) Conductive polymer aqueous solution, and conductive polymer film and article coated therewith
US6194540B1 (en) Method for production of water-soluble conducting polyaniline
Wang et al. Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes
JP2017179324A (en) Conductive polymer aqueous solution, conductive polymer film and coated article thereof
Shuangxi et al. Synthesis and characterization of polyaniline in CTAB/hexanol/water reversed micelle
KR20100006083A (en) Production method for conductive polyaniline dispersion
JP2022142739A (en) Conductive polymer composition, and conductive polymer film
CN107189083B (en) Conductive polymer PEDOT organic dispersion system and preparation method thereof
JP2017105982A (en) Antistatic thin film and antistatic solution
JP2000204158A (en) Aromatic amine derivative and soluble conductive compounds
JP5584847B1 (en) Quaternary ammonium salt compounds
KR100648894B1 (en) Process of Synthesizing Polyaniline by Self-Stabilized Dispersion Polymerization
JP7279488B2 (en) Conductive polymer aqueous solution and conductive polymer film
CN102336909B (en) Eigenstate poly 2,3-dimethylaniline preparation, and application of eigenstate poly 2,3-dimethylaniline in anti-corrosive paint
JP7167570B2 (en) Conductive polymer aqueous solution, conductive polymer film, and coated article
KR20030039153A (en) Synthetic Method of Polyaniline and application for electroststic discharge and EMI Shielding
KR19990073157A (en) Method for Preparation of the Conductive Polypyrrole having a high Solubility in Alcohol and Various Organic Solvents
JP2003277500A (en) Electrically conductive polyaniline solution and method of producing the same
JP2019077852A (en) Conductive polymer aqueous solution and conductive polymer film
US9378860B2 (en) Polyvinyl copolymer, dopant having the same, and conductive polymer composite having the dopant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee