KR20100004481A - A wastewater treatment methods by decay of organic materials using methane bio-reactor - Google Patents

A wastewater treatment methods by decay of organic materials using methane bio-reactor Download PDF

Info

Publication number
KR20100004481A
KR20100004481A KR1020080064672A KR20080064672A KR20100004481A KR 20100004481 A KR20100004481 A KR 20100004481A KR 1020080064672 A KR1020080064672 A KR 1020080064672A KR 20080064672 A KR20080064672 A KR 20080064672A KR 20100004481 A KR20100004481 A KR 20100004481A
Authority
KR
South Korea
Prior art keywords
tank
fermentation
sludge
methane
aeration
Prior art date
Application number
KR1020080064672A
Other languages
Korean (ko)
Other versions
KR100983829B1 (en
Inventor
이박
Original Assignee
이박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이박 filed Critical 이박
Priority to KR1020080064672A priority Critical patent/KR100983829B1/en
Publication of KR20100004481A publication Critical patent/KR20100004481A/en
Application granted granted Critical
Publication of KR100983829B1 publication Critical patent/KR100983829B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE: A method for processing wastewater due to corrosion of organic materials using a methane fermentation bath is provided to improve C/N ratio drastically while reducing the energy consumption used for heating the methane fermentation, and to reduce bad smell of anaerobic digestive fluid. CONSTITUTION: A method for processing wastewater due to corrosion of organic materials includes the following steps of; activating corrosion reaction by agitating raw water, corrosion materials, and reactive silicate; progressing fermentation by methane bacteria by transferring the raw water to a methane fermentation bath; maintaining the fermented digestive fluid uniformly; decomposing the organic materials in an aeration state; transferring water to a processing tank; transferring remaining sewage to a sludge reservoir and a cultivation tank; cultivating the precipitated sludge under the corrosion materials and the reactive silicate; and hydrating the precipitated sludge in the cultivation tank.

Description

메탄발효조를 이용하는 유기물의 부식화에 의한 폐수의 처리방법{A Wastewater Treatment Methods by Decay of Organic Materials Using Methane Bio-Reactor}Wastewater Treatment Methods by Decay of Organic Materials Using Methane Bio-Reactor

본 발명은 메탄발효조를 이용하는 유기물의 부식화에 의한 폐수의 처리방법에 관한 것으로서, 보다 상세하게는, 투입조, 메탄발효조, 집수조, 계량조, 폭기조, 침전조, 분배조, 배양조 및 오니저류조를 경유시켜 유기물을 부식화시키므로써 폐수를 처리하는 방법에 관한 것이다. The present invention relates to a method for treating wastewater by corrosive organics using a methane fermentation tank, and more specifically, to an input tank, a methane fermentation tank, a collection tank, a metering tank, an aeration tank, a precipitation tank, a distribution tank, a culture tank and a sludge storage tank. A method of treating wastewater by corrosive organics via light oil.

메탄발효는 유기물을 혐기성 세균인 메탄균으로 분해하여 메탄과 이산화탄소를 생성하는 현상이다. 일반적으로 메탄균은 산소가 존재하는 환경에서는 사멸하거나 불활성화한다. 따라서 공기 중의 유리산소를 차단하기 위하여 메탄발효조는 혐기성 상태를 유지해야 한다. 그런데 메탄발효에 의해 생성된 이산화탄소가 환원되어 메탄가스가 생성되는 과정에서 여분의 산소가 발생하게 된다(CO2 + 2H2O = CH4 + 2O2). 이와 같은 산소가 유리산소의 형태를 취할 경우에는 메탄균을 비롯한 편성 혐기성 세균군이 사멸되거나 불활성화되어, 메탄발효가 정지되고 만다. 따라서 메탄 발효가 계속 진행되기 위해서는 위에서 말한 여분의 산소를 유리산소의 형태를 경유하지 않고 소비해야 한다. Methane fermentation is a phenomenon in which organic matter is decomposed into methane, an anaerobic bacterium, to produce methane and carbon dioxide. Methane is usually killed or inactivated in the presence of oxygen. Therefore, the methane fermentation tank must remain anaerobic in order to block free oxygen in the air. By the way, the carbon dioxide produced by the methane fermentation is reduced to produce excess oxygen in the process of producing methane gas (CO 2 + 2H 2 O = CH 4 + 2O 2 ). When such oxygen takes the form of free oxygen, a group of organized anaerobic bacteria, including methane, is killed or inactivated, and methane fermentation is stopped. Therefore, in order for methane fermentation to continue, the above-mentioned excess oxygen must be consumed without the form of free oxygen.

한편, 종래의 폐수 처리방법에 있어서는, 메탄발효조에서 생성되는 소화액(발효액)은 악취가 심하기 때문에 이를 액비로 사용하려 하여도 사용할 수가 없다. On the other hand, in the conventional wastewater treatment method, the extinguishing liquid (fermentation liquid) produced in the methane fermentation tank has a bad smell, and therefore it cannot be used even if it is used as a liquid ratio.

또한, 메탄발효조에서 생성되는 소화액을 하수처리장에서 연계하여 처리하려고 하여도, 축산분뇨, 음식물쓰레기 등 C/N비가 높은 유기물 속의 탄소는 메탄가스로 환원되지만 질소는 제거되지 않고 그대로 남게 되어, 결과적으로 C/N비가 극도로 낮아져 하수처리장의 총 질소 규제치를 유지하는데에도 어려움이 있다.In addition, even if the digestive liquid produced in the methane fermentation tank is to be treated in a sewage treatment plant, carbon in organic matter with high C / N ratio such as livestock manure and food waste is reduced to methane gas, but nitrogen is not removed and remains as it is. The extremely low C / N ratio also makes it difficult to maintain total nitrogen regulation in sewage treatment plants.

또한, 메탄가스로의 환원 일변도의 화학반응에서는 열량을 흡수함으로 인해, 지속적으로 혐기성 발효조인 메탄발효조의 액온이 낮아지므로 메탄발효조를 지속적으로 가열하여야 한다. 결국, 메탄가스라는 바이오에너지를 얻는 대신 발효조를 가열하는데에 에너지가 상당량 소요된다. In addition, due to the absorption of heat in the chemical reaction of the reduction univariate to methane gas, the liquid temperature of the methane fermentation tank, an anaerobic fermentation tank is continuously lowered, so the methane fermentation tank must be continuously heated. As a result, a considerable amount of energy is required to heat the fermenter instead of obtaining bioenergy called methane gas.

종래의 폐수 처리방법에서의 메탄발효조는 특별한 경우를 제외하고는 콘크리트 구조물 등 인위적 환경으로 구성되어 있어 부식물질이나 규산염이 존재하지 않는다. 또한, 폐수 속에 함유되어 있는 유기물을 먹이로 하는 미생물이 콘크리트 구조물 속에서 자연 발생하고, 이들 자연 발생한 미생물군이 폐수를 정화하도록 하기 때문에 부식물이 존재하지 않는 환경이 되어서 자연 중에서 발생하는 유기물의 부식화 반응과는 괴리된 활동을 하게 된다. 그 결과, 메탄발효조에서는 토양화 반응(부식화 반응)이 일어나지 않아, 부식화 과정에서 생성되는 미생물 대사산물인 킬레이트 화합물, 성장촉진물질, 항생물질, 생물활성물질 등이 생성되지 않게 된다. Except for special cases, methane fermentation tanks in the conventional wastewater treatment methods are composed of artificial environments such as concrete structures, and thus no corrosive substances or silicates are present. In addition, since microorganisms that feed organic matter contained in wastewater naturally occur in concrete structures, and these naturally occurring microbial groups allow the wastewater to be purified, it becomes an environment where no corrosives exist, thereby degrading organic matter generated in nature. The reaction is different from the reaction. As a result, in the methane fermentation tank, no soiling reaction (corrosion reaction) occurs, and thus, chelating compounds, growth promoters, antibiotics, and bioactive substances, which are microbial metabolites generated during the corrosion process, are not produced.

그 결과, 외적에 대한 항균기능, 성장촉진기능, 킬레이트 화합물에 의한 탈취기능이 미약하므로, 메탄발효조에서 생성된 소화액에서는 악취가 심하게 나고, 또한, 편성 혐기성 미생물과 공생하는 호기성 미생물 및 통성 혐기성 미생물의 서식밀도가 낮아 분자 내 산소를 호흡하는 비율이 낮기 때문에 메탄가스 발생효율이 떨어질 뿐만 아니라, 특히, 니트로소모나스(NITROSOMONAS), 니트로박터(NITROBACTER) 등의 질산화균의 서식밀도가 극도로 낮아 질산화 반응이 전혀 일어나지 않으므로, 질소제거 효율이 낮아, 소화액 중의 질소함량이 낮아지지 않게 된다. As a result, since the antibacterial function against the external product, growth promoting function and deodorization function by the chelate compound are weak, the digestive fluid generated in the methane fermentation tank produces bad odor, and furthermore, the since the rate at which breathing oxygen within the template density low molecular low as well as degrade methane gas generation efficiency, and particularly, nitro consumption eggplant (NITROSOMONAS), nitro bakteo (NITROBACTER) lower nitrification reaction as the template density of the nitrifying bacteria, such as extreme Since this does not occur at all, the nitrogen removal efficiency is low, and the nitrogen content in the extinguishing liquid is not lowered.

본 발명은 상기와 같은 종래의 폐수의 처리방법에서의 문제점들을 효과적으로 해소하고자 개발된 것으로서,The present invention was developed to effectively solve the problems in the conventional wastewater treatment method,

본 발명의 목적은 메탄가스 발생효율을 높이고, 혐기성 소화조인 메탄발효조의 가열을 위한 에너지 소비량을 줄이고, C/N비를 현저히 향상시키고, 혐기성 소화액의 악취를 줄일 수 있는 유기물의 부식화에 의한 폐수의 처리방법을 제공함에 있다. An object of the present invention is to improve the methane gas generation efficiency, reduce the energy consumption for heating the methane fermentation tank anaerobic digestion tank, significantly improve the C / N ratio, wastewater by the corrosion of organic materials that can reduce the odor of anaerobic digestion liquid To provide a treatment method of.

본 발명의 상기 목적은 유기물질을 함유한 폐수를 투입조, 메탄발효조, 발효여액 집수조, 계량조, 폭기조, 침전조, 분배조, 배양조 및 오니저류조로 경유시키면서 부식물로 변성시키고, 이를 다시 반복하여 폐수의 유입지점으로 반송하고, 최종 처리수는 처리수조로부터 방류하거나 액비로 사용하는 폐수의 처리방법에 의하여 달성된다.The object of the present invention is to denature the waste water containing organic material via input tank, methane fermentation tank, fermentation filtrate collection tank, metering tank, aeration tank, sedimentation tank, distribution tank, culture tank and reservoir tank, and this is repeated again The wastewater is returned to the inflow point of the wastewater, and the final treated water is achieved by a method of treating wastewater discharged from the treatment tank or used as a liquid ratio.

본 발명은 유기물질을 함유한 원수(폐수)를 투입조, 메탄발효조, 발효여액 집수조, 계량조, 폭기조, 침전조, 분배조, 배양조, 오니저류조 및 처리수조를 경유시켜 처리하는 폐수처리방법으로서,The present invention is a wastewater treatment method for treating raw water (wastewater) containing organic substances via input tank, methane fermentation tank, fermentation filtrate collection tank, metering tank, aeration tank, sedimentation tank, distribution tank, culture tank, sludge storage tank, and treatment tank. ,

상기 투입조에는 교반기를 설치하여, 유입되는 원수와 배양조로부터 반송되는 부식화 반응이 완료된 부식물질 및 활성규산염을 교반하여 부식화 반응을 활성화시키고;A stirrer is installed in the input tank to agitate the corrosive reaction and the activated silicate having completed the corrosive reaction returned from the raw water and the culture tank to activate the corrosive reaction;

상기 투입조로부터 부식화 반응을 겪은 원수를 메탄발효조로 유입시켜, 메탄균에 의한 발효를 진행시키고;Introducing the raw water which has undergone the corrosion reaction from the charging tank into a methane fermentation tank to proceed with fermentation by methane;

상기 메탄발효조로부터 발효가 완료된 소화액(발효여액)을 발효여액 집수조로 유입시키고, 발효여액 집수조로부터 계량조로 유입시킨 상태에서, 소화액의 일정량은 폭기조로 유입시키고, 나머지량은 발효여액 집수조로 되돌려 보냄으로써 상기 폭기조로의 소화액의 유입을 일정하게 유지시키고;The fermentation digestion solution (fermentation filtrate) from the methane fermentation tank is introduced into the fermentation filtrate collection tank, while the fermentation filtrate collection tank is introduced into the metering tank, a certain amount of digestion liquid is introduced into the aeration tank, and the remaining amount is returned to the fermentation filtrate collection tank. Maintaining a constant flow of digestive fluid into the aeration tank;

상기 폭기조에서는 상기 계량조로부터 유입되는 소화액을, 분배조로부터 유입되는 오니와 혼합하여, 소화액 중의 유기물을 호기상태에서 분해시키고;In the aeration tank, the digestion liquid flowing from the metering tank is mixed with sludge flowing from the distribution tank to decompose the organic matter in the digestion liquid in an aerobic state;

상기 폭기조로부터의 처리물을 침전조로 유입시켜, 침전조에서 고액분리한 후, 침전 오니는 분배조로 이송시키고, 상등수는 처리수조로 이송시켜 방류하거나 액비로 사용하고;The treated product from the aeration tank is introduced into the settling tank, and after solid-liquid separation in the settling tank, the settling sludge is transferred to the distribution tank, and the supernatant is transferred to the treated water tank and discharged or used as a liquid ratio;

상기 분배조로 유입된 침전 오니의 일부는 발효여액 집수조 및 폭기조로 반송시키고, 침전 오니의 나머지는 오니저류조 및 배양조로 이송시키고;A part of the settling sludge introduced into the distribution tank is returned to the fermentation filtrate collection tank and the aeration tank, and the rest of the settling sludge is transferred to the sludge storage tank and the culture tank;

상기 배양조로 유입된 침전 오니는 배양조내에 충전된 부식토를 펠릿화한 부식물질과 활성규산염의 존재하에 배양하고;The precipitated sludge introduced into the culture tank is incubated in the presence of the active material silicate and the corroded pellets of the humus filled in the culture tank;

상기 오니저류조로 유입된 침전 오니는 탈수처리하여, 슬러지는 배출하고, 탈수여액의 일정량은 발효여액 집수조로 반송시키고, 탈수여액의 나머지량은 액비로 사용하는 것을 특징으로 하는 유기물의 부식화에 의한 폐수의 처리방법을 제공한다.The sedimentation sludge introduced into the reservoir tank is dehydrated, sludge is discharged, and a certain amount of the dehydration filtrate is returned to the fermentation filtrate collection tank, and the remaining amount of the dehydration filtrate is used as a liquid ratio. Provide a method for treating wastewater.

본 발명의 폐수의 처리방법은 종래의 폐수의 처리방법에 비하여 1) 메탄발효조로부터의 혐기성 소화액의 악취가 적고, 2) 메탄가스의 발생율이 높아지며, 3) 메탄 발효조의 가열에 따른 에너지의 소비를 줄일 수 있고, 4) 질산화균의 서식밀도 및 증식속도를 높여 탈질을 촉진하기 때문에 C/N비를 현저히 향상시킬 수 있다.Compared with the conventional wastewater treatment method, the wastewater treatment method of the present invention has 1) less odor of anaerobic digestion liquid from methane fermentation tank, 2) higher generation rate of methane gas, and 3) energy consumption due to heating of the methane fermentation tank. 4) C / N ratio can be significantly improved because it promotes denitrification by increasing the density and proliferation rate of nitrifying bacteria.

이하, 본 발명의 폐수 처리방법에 대하여, 도 1의 처리 계통도를 참조하여 상세히 살펴보기로 한다.Hereinafter, the wastewater treatment method of the present invention will be described in detail with reference to the treatment flow diagram of FIG. 1.

본 발명의 폐수 처리방법에서는 원수(폐수)가 투입조에 새로이 유입되면, 상기 원수는 투입조 내에 설치된 교반기로 교반된다. 또한, 상기 투입조의 폐수 유입 지점에는 배양조로부터의 부식화 반응이 완료된 부식물질 및 활성규산염이 풍부한 배양액이 유입된다. 따라서, 단지 원수만이 투입조에 투입되는 종래의 폐수 처리방법과는 달리, 본 발명의 폐수 처리방법에서는 투입조내의 부식물질 및 활성규산염의 존재에 의해, 원수 속에 서식하고 있는 통성 혐기성 미생물과 호기성 미생물의 작용에 의한 대사산물들이 생성된다. 이들 미생물들과 그들의 대사산물 및 유기물질들이 메탄발효조에 유입되면, 먼저 유기성 발효가 시작되어 CO2가 발생한다. 이들 CO2는 메탄균에 의해 다시 메탄으로 변환되는데, 이때 발생되는 산소가 유리산소가 되어 메탄균이 사멸하기 전에, 분자 내 산소를 편성 혐기성 미생물과 공생하고 있는 통성 혐기성 미생물과 호기성 미생물이 호흡하여 유기물 속의 탄소원을 에너지로 CO2를 다시 발생시키고, 이들 CO2는 메탄균에 의해 다시 메탄으로 변환되는 것이 다.In the wastewater treatment method of the present invention, when raw water (wastewater) is newly introduced into the input tank, the raw water is stirred by a stirrer installed in the input tank. In addition, the wastewater inflow point of the input tank is introduced with a culture medium rich in corrosive substances and active silicates, the corrosion reaction from the culture tank is completed. Therefore, unlike the conventional wastewater treatment method in which only raw water is introduced into the input tank, in the wastewater treatment method of the present invention, due to the presence of corrosive substances and active silicates in the input tank, the anaerobic and anaerobic microorganisms inhabiting the raw water Metabolites are produced by the action of. When these microorganisms, their metabolites and organics enter the methane fermentation tank, organic fermentation begins first and CO 2 is generated. These CO 2 are converted back to methane by methane bacteria. Before the oxygen generated becomes free oxygen and the methane bacteria die, the anaerobic and aerobic microorganisms in which the oxygen in the molecule symbiizes with the organized anaerobic microorganisms The carbon source in the organic material generates CO 2 as energy again, and these CO 2 are converted back to methane by methane bacteria.

또한, 상기의 CO2 발생과정에서 에너지가 생성되어, 혐기성 미생물의 환원 반응에 의한 에너지 흡수를 상쇄해주기 때문에, 메탄발효조의 온도를 상승시켜주기 위하여 필요한 가열 에너지를 절감할 수 있고, 유기산 발효에 의한 CO2 발생과 호기성 미생물의 산화작용에 의한 CO2 발생이 동시에 일어나므로 메탄 발생 효율도 높아진다.In addition, since the energy is generated during the CO 2 generation process, and offsets the energy absorption by the reduction reaction of anaerobic microorganisms, heating energy required to increase the temperature of the methane fermentation tank can be reduced, and organic acid fermentation Since the CO 2 generated by the CO 2 generation and oxidation of aerobic microorganisms get up at the same time the higher the methane generation efficiency.

또한, 상기 배양조에서 투입조로 반송되는 배양액 속의 니트로소모나스(NITROSOMONAS), 니트로박터(NITROBACTER) 등 질산화균의 서식밀도가 높으면, 암모니아 내 질소를 분자 내 산소를 이용하여 질산으로 산화시킬 수 있으며, 무산소 상태에서 폐수 속의 탄소원을 에너지로 하여 탈질시키기도 하여 질소를 제거하게 된다.In addition, the culture tank is formatted density of nitrifying bacteria nitro consumption eggplant (NITROSOMONAS) in the culture medium to be conveyed twos input, nitro bakteo (NITROBACTER) is high in, the nitrogen within the ammonia with oxygen in the molecule can be oxidized with nitric acid, In an oxygen-free state, the carbon source in the wastewater is denitrified as energy, thereby removing nitrogen.

상기 메탄 발효조에서 발효하고 난 소화액은 발효여액 집수조로 유입되는데, 상기 발효여액 집수조로 유입되는 소화액의 양이 일정하지 않아서 발효여액 집수조의 수위는 항상 변하지만, 발효여액 집수조로부터 폭기조로의 유입은 폭기조 전단에 설치된 계량조에 의하여 항상 일정하게 유지된다.The digestion liquid fermented in the methane fermentation tank is introduced into the fermentation filtrate collection tank, the level of the fermentation filtrate collection tank is always changed because the amount of digestion liquid flowing into the fermentation filtrate collection tank is constant, but the inflow from the fermentation filtrate collection tank to the aeration tank is aeration tank. It is always kept constant by the metering tank installed at the front end.

즉, 본 발명의 폐수처리방법에서는, 폐수의 안정적인 처리를 위하여 상기 발효여액 집수조에서 소화액을 펌핑(Pumping up)하여 계량조로 유입시킨 상태에서 일정량을 폭기조로 유입시키고, 나머지량은 발효여액 집수조로 되돌려 보내는 과정을 취함으로써. 상기 폭기조로의 소화액 유입을 24시간 항상 일정하도록 만든다.That is, in the wastewater treatment method of the present invention, in order to stably treat the wastewater, a certain amount is introduced into the aeration tank while pumping digestion liquid from the fermentation filtrate collection tank into the metering tank, and the remaining amount is returned to the fermentation filtrate collection tank. By taking the sending process. The inflow of digestive fluid into the aeration tank is made constant at all times for 24 hours.

상기 폭기조의 전단에서는, 상기 계량조로부터의 소화액 및 분배조로부터의 침전 오니가 유입되어, 소화액 중의 유기물이 호기성 상태에서 분해된다. At the front end of the aeration tank, the digestion liquid from the metering tank and the settling sludge from the distribution tank flow in to decompose the organic matter in the digestion liquid in an aerobic state.

상기 폭기조의 MLSS를 높게하여 운전하면 오니 일령이 길게 되므로, 질산화균을 유점토록하여 증식 속도가 느린 질산화균의 증식 밀도가 높아질 뿐만 아니라 반송 오니 속에 서식하고 있는 질산화균이 폭기조로 공급되므로, 질산화균의 서식 밀도가 폭기조에서 자연 발생적으로 증식하는 것보다 높아지게 된다. 또한, 반송되어 유입되는 오니 속에 함유된 생장촉진 물질, 생물활성 물질의 영향으로 미생물들의 활성이 높아지기 때문에 질산화균의 증식 속도도 빨라져서, 상기 질산화균에 의한 암모니아성 질소의 질산성 질소로의 산화가 촉진된다. When the operation of the aeration tank is increased by increasing the MLSS, the sludge age is long, so that the nitrifying bacteria can be occupied to increase the proliferation density of the nitrifying bacteria which are slow to grow, as well as the nitrifying bacteria inhabiting the return sludge are supplied to the aeration tank. The densities of are higher than naturally occurring growth in the aeration tank. In addition, since the activity of microorganisms increases under the influence of growth promoting substances and bioactive substances contained in the sludge returned and introduced, the growth rate of nitrifying bacteria is also increased, and oxidation of ammonia nitrogen to nitrate nitrogen by the nitrifying bacteria is prevented. Is promoted.

또한, 상기 반송되어 유입되는 오니 속에 함유된 킬레이트성 유기물질은 원수 속에 함유되어 있는 이온성 무기물질과 킬레이트 효과에 의해서 착화합물이나 내착화합물을 형성함으로써 이들을 액상에서 제거한다. 동시에 악취의 구성 분자가 물에 녹아 수화되어 이온으로 존재하고 있기 때문에, 악취의 구성분자인 NH4 + 등의 이온을 착화합물이나, 내착화합물의 구성분자로 포집함으로써 악취가 사라지게 된다.In addition, the chelating organic material contained in the sludge returned and introduced is removed from the liquid phase by forming a complex compound or an internal compound by the chelating effect with the ionic inorganic material contained in the raw water. At the same time, the odor constituent molecules are dissolved in water, hydrated, and exist as ions. Thus, the odor disappears by collecting ions such as NH 4 + , which are the constituent molecules of the odor, as constituent molecules of the complex or internal compound.

또한, 호기성 미생물과 통성 혐기성 미생물이 투입조에 처음으로 유입되는 원수 속에 존재하는 BOD, COD를 탄소원으로 하여, 상기 분배조로부터 폭기조 유입 지점으로 반송되는 침전 오니 속에 함유된 NOX의 분자내 산소를 호흡함으로써 탈질이 진전되고, 동시에 BOD와 COD도 낮아진다.In addition, breathing the intramolecular oxygen of NO X contained in the sedimentation sludge returned from the distribution tank to the aeration tank inlet point using BOD and COD present in the raw water first introduced into the input tank by the aerobic and anaerobic microorganisms. As a result, denitrification progresses, and at the same time, BOD and COD are lowered.

상기 폭기조는 분배조로부터 반송장치(펌프)를 사용하여 침전 오니의 일부를 반송시키므로 폭기조 중앙은 항상 교반상태로 유지하고, 계량조로부터 상기 폭기조에 유입되는 소화액과 혼합, 교반을 활발하게 하여서 탈질을 촉진한다.Since the aeration tank conveys a part of the sedimentation sludge from the distribution tank by using a conveying device (pump), the center of the aeration tank is always kept in a stirring state, and the denitrification is performed by actively mixing and agitating the extinguishing liquid flowing from the metering tank into the aeration tank. Promote.

상기 폭기조로부터의 처리물은 침전조로 유입되는데, 침전조에서는, 예를 들어 한외여과막 등을 이용하여 고액분리가 수행된다. 상기 침전조는 바로 전단계인 폭기조가 고MLSS상태에서 운전되기 때문에, 오니가 케리오버(Carry Over)되지 않는 정도의 용량이 바람직하다. The treated product from the aeration tank flows into the settling tank, where the solid-liquid separation is performed using, for example, an ultrafiltration membrane. Since the settling tank is operated in a high MLSS state, the aeration tank, which is the previous stage, is preferably a capacity that does not carry over the sludge.

상기 침전조는 고액 분리조의 기능을 할 뿐만 아니라 분배조로 침전 오니를 연속적으로 이송하고 있어서, 항상 교반상태를 유지하고 있고, DO도 낮기 때문에, 탈질조의 기능을 아울러 하게 된다. 또한, 상기 침전조는 T-N이 제거되면서 BOD와 COD도 낮추는 반응조의 기능도 한다. 침전조로부터 분배조로의 침전 오니의 이송은, 물질적인 힘이 강하게 작용하는 펌프는 피하고, 가능한 물리적인 힘이 약하게 작용하는 에어리프트(Air Lift)를 장착하여 수행하는 것이 바람직하다. 분배조로부터 발효여액 집수조와 배양조 및 오니저류조로 일정량의 침전 오니를 분배하여 항상 일정하게 유입시키도록 브이노치(V-knoch)로 분배량을 조절하고, 나머지량의 침전 오니는 폭기조로 드레인(Drain)한다.The settling tank not only functions as a solid-liquid separation tank but also continuously transfers the settling sludge to the distribution tank, and thus maintains a stirring state at all times, and also has a low DO, thereby serving as a denitrification tank. In addition, the settling tank also functions as a reaction tank to lower the BOD and COD while T-N is removed. The transfer of the settling sludge from the settling tank to the dispensing tank is preferably carried out by installing an air lift which avoids a pump with strong physical force and a weak physical force as much as possible. From the distribution tank, a certain amount of precipitated sludge is distributed to the fermentation filtrate collection tank, the culture tank, and the sludge storage tank, and the distribution amount is adjusted to V-knoch so that it is always introduced constantly, and the remaining amount of the precipitated sludge is drained to the aeration tank. Drain).

상기 분배조로부터 배양조로 유입된 침전오니는 부식토를 펠릿화한 부식물질과 활성 규산염분이 충전된 배양조내에서 배양되는데, 상기 배양조에는 충전된 부식토펠릿(부식물질)과 활성규산염이 부식토펠릿:활성규산염 = 1:2의 중량비율로 충전되는 것이 바람직하고, 1년마다 부식토펠릿과, 활성규산염의 50%를 보충하도록 설계하는 것이 바람직하다. The sedimentation sludge introduced into the culture tank from the distribution tank is cultured in the culture tank filled with the corrosive substance and active silicate powder pelletized humus soil, and the cultured corrosive pellet (corrosive material) and activated silicate are filled with the corrosive pellet. It is preferable to be filled in a weight ratio of silicate = 1: 2, and it is preferable to design it to replenish the caustic to pellet and 50% of the active silicate every year.

상기와 같이, 투입조, 메탄발효조, 발효여액 집수조, 계량조, 폭기조, 침전조, 분배조 및 배양조를 경과하는 과정에서 폐수 속의 유기물질은 CO2, N2 등으로 기화하고, 남은 유기물질은 부식물로 변하게 되는데, 이러한 부식물을 폐수의 유입 지점인 투입조로 반송하여 폐수와 혼합, 교반함으로써, 폐수 속의 유기물의 부식화가 더욱 효과적으로 달성된다.As described above, in the course of the input tank, methane fermentation tank, fermentation filtrate collection tank, metering tank, aeration tank, sedimentation tank, distribution tank and culture tank, the organic material in the waste water is vaporized with CO 2 , N 2, etc. The corrosives are converted into corrosives, and the corrosives are returned to the input tank which is the inflow point of the wastewater, mixed with the wastewater, and stirred, whereby the corroding of the organic matter in the wastewater is more effectively achieved.

오니저류조로 유입된 오니는 탈수처리하여, 이중 슬러지는 외부로 배출하고, 탈수여액은 발효여액 집수조로 반송시키거나, 액비로 사용한다.The sludge flowing into the sludge storage tank is dewatered, and the sludge is discharged to the outside, and the dehydration liquid is returned to the fermentation filtrate collection tank or used as a liquid ratio.

상기 침전조로부터 처리수조로 유입되는 상등수는 방류하거나, 액비로 사용한다.The supernatant flowing into the treatment tank from the settling tank is discharged or used as a liquid ratio.

도 1은 본 발명의 폐수 처리방법의 계통도이다.1 is a system diagram of a wastewater treatment method of the present invention.

Claims (2)

유기물질을 함유한 폐수를 투입조, 메탄발효조, 발효여액 집수조, 계량조, 폭기조, 침전조, 분배조, 배양조, 오니저류조 및 처리수조를 경유시켜 처리하는 폐수처리방법으로서,A wastewater treatment method for treating wastewater containing organic substances via an input tank, a methane fermentation tank, a fermentation filtrate collection tank, a measuring tank, an aeration tank, a precipitation tank, a distribution tank, a culture tank, a sludge storage tank, and a treatment tank, 상기 투입조에는 교반기를 설치하여, 유입되는 원수와 배양조로부터 반송되는 부식화 반응이 완료된 부식물질 및 활성규산염을 교반하여 부식화 반응을 활성화시키고;A stirrer is installed in the input tank to agitate the corrosive reaction and the activated silicate having completed the corrosive reaction returned from the raw water and the culture tank to activate the corrosive reaction; 상기 투입조로부터 부식화 반응을 겪은 원수를 메탄발효조로 유입시켜, 메탄균에 의한 발효를 진행시키고;Introducing the raw water which has undergone the corrosion reaction from the charging tank into a methane fermentation tank to proceed with fermentation by methane; 상기 메탄발효조로부터 발효가 완료된 소화액을 발효여액 집수조로 유입시키고, 발효여액 집수조로부터 계량조로 유입시킨 상태에서, 소화액의 일정량은 폭기조로 유입시키고, 나머지량은 발효여액 집수조로 되돌려 보냄으로써 상기 폭기조로의 소화액의 유입을 일정하게 유지시키고;From the methane fermentation tank, the fermentation complete digestion liquid is introduced into the fermentation filtrate collection tank, and in a state in which the fermentation filtrate collection tank is introduced into the metering tank, a predetermined amount of digestion liquid is introduced into the aeration tank, and the remaining amount is returned to the fermentation filtrate collection tank to the aeration tank. Keep the inflow of digestive fluid constant; 상기 폭기조에서는 상기 계량조로부터 유입되는 소화액을, 분배조로부터 유입되는 오니와 혼합하여, 소화액 중의 유기물을 호기상태에서 분해시키고;In the aeration tank, the digestion liquid flowing from the metering tank is mixed with sludge flowing from the distribution tank to decompose the organic matter in the digestion liquid in an aerobic state; 상기 폭기조로부터의 처리물을 침전조로 유입시켜, 침전조에서 고액분리한 후, 침전 오니는 분배조로 이송시키고, 상등수는 처리수조로 이송시켜 방류하거나 액비로 사용하고;The treated product from the aeration tank is introduced into the settling tank, and after solid-liquid separation in the settling tank, the settling sludge is transferred to the distribution tank, and the supernatant is transferred to the treated water tank and discharged or used as a liquid ratio; 상기 분배조로 유입된 침전 오니의 일부는 발효여액 집수조 및 폭기조로 반 송시키고, 침전 오니의 나머지는 오니저류조 및 배양조로 이송시키고;A part of the settling sludge introduced into the distribution tank is returned to the fermentation filtrate collection tank and the aeration tank, and the rest of the settling sludge is transferred to the sludge storage tank and the culture tank; 상기 배양조로 유입된 침전 오니는 배양조내에 충전된 부식토를 펠릿화한 부식물질과 활성규산염의 존재하에 배양하고;The precipitated sludge introduced into the culture tank is incubated in the presence of the active material silicate and the corroded pellets of the humus filled in the culture tank; 상기 오니저류조로 유입된 침전 오니는 탈수처리하여, 슬러지는 배출하고, 탈수여액의 일정량은 발효여액 집수조로 반송시키고, 탈수여액의 나머지량은 액비로 사용하는 것을 특징으로 하는 유기물의 부식화에 의한 폐수의 처리방법.The sedimentation sludge introduced into the reservoir tank is dehydrated, sludge is discharged, and a certain amount of the dehydration filtrate is returned to the fermentation filtrate collection tank, and the remaining amount of the dehydration filtrate is used as a liquid ratio. Waste water treatment method. 상기 제1항에 있어서, 상기 배양조 내에는 펠릿화된 부식토로 이루어진 부식물질과 활성규산염이 부식물질:활성규산염 = 1:2의 중량비로 충전되어 있는 것을 특징으로 하는 폐수 처리방법.The wastewater treatment method according to claim 1, wherein the culture tank is filled with a corrosive substance consisting of pelletized humus and active silicate in a weight ratio of corrosive substance: active silicate = 1: 2.
KR1020080064672A 2008-07-04 2008-07-04 Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank KR100983829B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080064672A KR100983829B1 (en) 2008-07-04 2008-07-04 Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080064672A KR100983829B1 (en) 2008-07-04 2008-07-04 Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank

Publications (2)

Publication Number Publication Date
KR20100004481A true KR20100004481A (en) 2010-01-13
KR100983829B1 KR100983829B1 (en) 2010-09-28

Family

ID=41814051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080064672A KR100983829B1 (en) 2008-07-04 2008-07-04 Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank

Country Status (1)

Country Link
KR (1) KR100983829B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048811A1 (en) * 2022-08-31 2024-03-07 (주)엔씨스퀘어 Apparatus for removing tritium contained in radioactive wastewater
WO2024048810A1 (en) * 2022-08-31 2024-03-07 (주)엔씨스퀘어 Method for removing tritium included in radioactive wastewater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000072333A (en) * 2000-08-29 2000-12-05 유현숙 Wastewater Treatment Method by Corrosion of Organics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048811A1 (en) * 2022-08-31 2024-03-07 (주)엔씨스퀘어 Apparatus for removing tritium contained in radioactive wastewater
WO2024048810A1 (en) * 2022-08-31 2024-03-07 (주)엔씨스퀘어 Method for removing tritium included in radioactive wastewater

Also Published As

Publication number Publication date
KR100983829B1 (en) 2010-09-28

Similar Documents

Publication Publication Date Title
Molinuevo et al. Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance
He et al. Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor
CA2083199C (en) Method for the treatment of sewage and installation to be used for this method
JP4982789B2 (en) Wastewater treatment method and apparatus by methane fermentation
KR100953058B1 (en) Natural high-treatment system
Rajesh Banu et al. Trends in biological nutrient removal for the treatment of low strength organic wastewaters
CN101626983A (en) Processing contains the method and apparatus of the waste water of sulfide and ammonium
JP2011078938A (en) Waste water treatment method
CN102583927A (en) Sludge micro oxygen hydrolytic acidizing method
Zheng et al. Pilot-scale experiments on multilevel contact oxidation treatment of poultry farm wastewater using saran lock carriers under different operation model
KR20130064590A (en) A method and apparatus for treatment of livestock waste water using bacteria mineral water process
KR20170105950A (en) An autothermal aerobic/anaerobic digestion system in swine farms
CN108298771A (en) A kind of pig farm refuse processing method
CN108383320A (en) A kind of integrated processing method of livestock breeding wastewater
Bhattacharya et al. Evaluation of nitrification kinetics for treating ammonium nitrogen enriched wastewater in moving bed hybrid bioreactor
CN113845273A (en) Method for efficiently removing nitrogen and carbon from anaerobic effluent of pig raising wastewater
KR101047507B1 (en) Sewage Treatment Method Using Sewage Treatment Equipment Including Direct Manure
CN214880538U (en) Device for rapidly culturing aerobic granular sludge and treating low-carbon-ratio urban sewage
CN105152330A (en) Treatment method for landfill leachate
KR100983829B1 (en) Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank
KR100865682B1 (en) Sporulation Tank of Genus Bacillus
KR101179049B1 (en) Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
KR102488754B1 (en) Apparatus and Method for Treating Anaerobic Digestive Fluid
Mirel et al. Simulation of wastewater depolution processes by advanced biological methods
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160907

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170918

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 10