KR20100003528A - Non-degradable waste water treatment apparatus using electrolysis and photo-fenton oxidation process - Google Patents
Non-degradable waste water treatment apparatus using electrolysis and photo-fenton oxidation process Download PDFInfo
- Publication number
- KR20100003528A KR20100003528A KR1020080063463A KR20080063463A KR20100003528A KR 20100003528 A KR20100003528 A KR 20100003528A KR 1020080063463 A KR1020080063463 A KR 1020080063463A KR 20080063463 A KR20080063463 A KR 20080063463A KR 20100003528 A KR20100003528 A KR 20100003528A
- Authority
- KR
- South Korea
- Prior art keywords
- oxidation process
- electrolyte
- wastewater
- electrolysis
- photo
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 139
- 230000008569 process Effects 0.000 title claims abstract description 122
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 118
- 230000003647 oxidation Effects 0.000 title claims abstract description 101
- 238000005868 electrolysis reaction Methods 0.000 title claims description 61
- 238000004065 wastewater treatment Methods 0.000 title claims description 22
- 239000002351 wastewater Substances 0.000 claims abstract description 77
- 239000003792 electrolyte Substances 0.000 claims abstract description 75
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000003860 storage Methods 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 15
- 238000006386 neutralization reaction Methods 0.000 claims abstract 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 26
- 239000001301 oxygen Substances 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- 239000000460 chlorine Substances 0.000 claims description 20
- 239000011780 sodium chloride Substances 0.000 claims description 17
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 15
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 15
- 229910052801 chlorine Inorganic materials 0.000 claims description 15
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 15
- 239000005416 organic matter Substances 0.000 claims description 15
- 230000003472 neutralizing effect Effects 0.000 claims description 9
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 6
- 238000007539 photo-oxidation reaction Methods 0.000 claims description 5
- QGMRQYFBGABWDR-UHFFFAOYSA-N sodium;5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,6-trione Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)NC1=O QGMRQYFBGABWDR-UHFFFAOYSA-N 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000004931 aggregating effect Effects 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000003311 flocculating effect Effects 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 abstract description 12
- 239000003054 catalyst Substances 0.000 abstract description 6
- 239000012528 membrane Substances 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 2
- 238000000354 decomposition reaction Methods 0.000 description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 150000002505 iron Chemical class 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000009303 advanced oxidation process reaction Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000010815 organic waste Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000004155 Chlorine dioxide Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 235000019398 chlorine dioxide Nutrition 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
본 발명은 염소산나트륨(NaClO2)과 염화나트륨(NaCl)을 혼합한 용액을 사용하여 무격막 전해셀으로 전기분해하여 이산화염소를 발생시키는 무격막 전해셀을 이용한 이산화염소 산화수 제조방법에 관한 것이다. The present invention relates to a method for producing chlorine dioxide oxidized water using a membrane-free electrolytic cell that generates chlorine dioxide by electrolysis into a membrane-free electrolytic cell using a solution in which sodium chlorate (NaClO 2 ) and sodium chloride (NaCl) are mixed.
다양한 산업체에서 발생되는 난분해성 산업폐수는 일반적인 생물학적 처리공정에 의해 처리가 어렵고 다량의 미생물 슬러지 발생 및 넓은 시설부지의 필요성으로 인해 주로 화학적 처리공정 또는 고급산화공정에 의해 처리되고 있다. 특히 불소(Fluorine)다음으로 높은 2.08 V의 산화전위(Oxidation Potential)를 갖는 강력한 산화력의 수산화라디칼(Hydroxyl radical, ·OH)을 이용하여 유기물을 CO2와 H2O로 완전 산화 분해시키는 고급산화공정(Advaned oxidation processes, AOPs)은 대표적인 난분해성 산업폐수 처리 기술로 알려져 있다. 이와 같은 고급산화 공정 중 가장 보편적으로 적용되고 있는 펜톤 산화 (Fenton oxidation) 또는 광-펜톤 산화(Photo-fenton oxidation)공정은 [반응식 1]에 보인 바와 같은 수산화라디칼 발생경로를 갖는 펜톤 산화공정에 UV 공정을 결합함으로써 [반응식 2]와 같이 히드록실 라디칼(수산기 라디칼, Hydroxyl radical)의 발생을 효과적으로 증진시키고, 산화제로 사용되는 2가의 철염(Ferrous salts) 및 과산화수소(Hydrogen peroxide, H2O2)의 양을 절감시킬 수 있는 장점이 있다. 그러나 고농도의 유기물 분해를 위해서는 과산화수소와 철염의 지속적 투입으로 인한 과량의 과산화수소 산화제 사용과 사용된 철염으로 인한 슬러지 발생이라는 문제점을 가지고 있다. 이에 최근 펜톤 산화공정과 전극이 내장된 환원조와 반응조를 결합하여 [반응식 3]과 같이 펜톤 산화 공정시 발생되는 3가철(Fe3+)을 2가철(Fe2+)로 전기화학적으로 환원시켜 펜톤 산화공정 효율을 향상시키고, 펜톤 공정에서 사용되는 철염의 투입량 및 이로 인해 발생되는 슬러지의 발생을 저감시키는 전기화학적 펜톤 산화공정 기술이 연구되고 있다. Hardly degradable industrial wastewater generated by various industries is difficult to be treated by general biological treatment processes, and is mainly treated by chemical treatment processes or advanced oxidation processes due to the generation of a large amount of microbial sludge and the necessity of large facility sites. In particular, advanced oxidation process that completely oxidizes organic matter into CO 2 and H 2 O using powerful oxidation radical (OH) with high oxidation potential of 2.08 V next to fluorine. Advanced oxidation processes (AOPs) are known as representative hard-degradable industrial wastewater treatment technologies. Fenton oxidation or photo-fenton oxidation, which is the most commonly applied among these advanced oxidation processes, is a UV to Fenton oxidation process having a radical generation path as shown in [Scheme 1]. By combining the processes, it is possible to effectively enhance the generation of hydroxyl radicals (Hydrogen radicals) as shown in [Scheme 2], and to the bivalent ferrous salts and hydrogen peroxide (H 2 O 2 ) used as oxidants. There is an advantage to reduce the amount. However, in order to decompose organic substances in high concentration, there is a problem of using excess hydrogen peroxide oxidant due to continuous input of hydrogen peroxide and iron salt and sludge generation due to used iron salt. In recent years, by combining the Fenton oxidation process, the reduction tank with the electrode and the reaction tank, the trivalent iron (Fe 3+ ) generated during the Fenton oxidation process is electrochemically reduced to the divalent iron (Fe 2+ ) as shown in [Scheme 3]. Electrochemical Fenton oxidation process technology to improve the oxidation process efficiency, reduce the amount of iron salt used in the Fenton process and the sludge generated by this is being studied.
[반응식 1]Scheme 1
Fe2 + + H2O2 → Fe3 + + OH- + ·OH (1) Fe 2 + + H 2 O 2 → Fe 3 + + OH - + · OH (1)
Fe3 + + H2O2 → Fe2 + + H+ + ·O2H (2)Fe 3 + + H 2 O 2 → Fe 2 + + H + + O 2 H (2)
[반응식 2]
H2O2 + hv → 2·OH (3)H 2 O 2 + hv → 2 OH (3)
Fe(OH)2+ → Fe3 + + ·OH (4)Fe (OH) 2+ → Fe 3 + + OH (4)
Fe2 ++ H2O2 → Fe3 + + OH- + ·OH (5) Fe 2 + + H 2 O 2 → Fe 3 + + OH - + · OH (5)
[반응식 3]Scheme 3
Fe3 + + e- → Fe2 +, E0= 0.77V (6)Fe 3 + + e- → Fe 2 + , E 0 = 0.77V (6)
일반적으로 펜톤 산화 공정은 산화제로 과산화수소(H2O2)와 2가의 철염(FeSO4, FeCl2 etc.)을 촉매로 하여 수산화라디칼(Hydroxyl radical)을 생성시킴으로써 수중에 존재하는 유기화합물을 CO2와 H2O로 완전산화분해시키는 기술이다. 펜톤 산화 공정에서는 [반응식 1]의 식 (1)과 같이 일정비율로 주입된 과산화수소와 2가의 철염이 반응하여 유기물 분해에 필요한 수산화 라디칼을 생성시키고, 2가의 철염은 3가로 산화되고, 3가의 철염은 [반응식 1]의 식 (2)와 같이 과산화수소와 반응하여 2가의 철염으로 환원되어 다시 [반응식 1]의 식 (1)과 같은 연속순환과정에 의해 수산화라디칼을 생성시키게 된다. 따라서 2가철과의 반응에 의해 수산 화 라디칼을 생성시키는데 사용되어야 할 과산화수소가 3가철을 2가철로 환원시키는데도 사용되어 과량의 과산화수소가 사용될 뿐만 아니라, 3가철의 2가철 환원반응도 요원하지 않은 문제점이 있다. 따라서 국내 등록특허 0592942의 "전해환원식 펜톤산화 폐수처리장치", 국내 특허 출원 10-2001-0001766"전기분해를 이용한 폐수 처리 방법"에서 전기분해장치와 펜톤산화 공정을 결합하여 철촉매의 효과적 절감과 유기물 분해효율의 향상을 목적으로 한 장치와 방법에 관한 특허가 기 출원된바 있다. 하지만, 상기 특허들은 과산화수소를 사용한다는 단점이 있다. In general, the phenton oxidation process generates hydrogen radicals by using hydrogen peroxide (H 2 O 2 ) and divalent iron salts (FeSO 4 , FeCl 2 etc.) as oxidants to convert organic compounds in water to CO 2. And oxidative decomposition with H 2 O. In the Fenton oxidation process, hydrogen peroxide and divalent iron salt injected at a constant ratio react with each other to generate hydroxide radicals necessary for decomposition of organic matter, and the trivalent iron salt is oxidized to trivalent and trivalent iron salt as shown in Equation (1) in [Scheme 1]. Reacts with hydrogen peroxide as shown in Equation (2) in [Reaction Scheme 1] is reduced to a divalent iron salt to generate radicals by a continuous circulation process as shown in Equation (1) in [Reaction Scheme 1]. Therefore, hydrogen peroxide, which should be used to generate hydroxylated radicals by reaction with ferric iron, is also used to reduce trivalent iron to ferric iron, so that excess hydrogen peroxide is used, and the trivalent ferric reduction reaction is not a problem. have. Therefore, in the "electrolytic reduction fenton oxidation wastewater treatment device" of Korean Patent No. 0592942, domestic patent application 10-2001-0001766 "Wastewater treatment method using electrolysis" by combining the electrolysis device and the fenton oxidation process effectively reduce the iron catalyst Patents relating to the device and method for the purpose of improving the decomposition efficiency of organic matter has been previously filed. However, these patents have the disadvantage of using hydrogen peroxide.
본 발명은 상기한 문제점을 개선하기 위한 것으로, 본 발명의 목적은 무격막 전기분해 반응조와 UV 펜톤 산화공정을 결합하고 펜톤산화 또는 광-펜톤산화 공정에 필요한 2가 철촉매의 사용을 절감할 수 있을 뿐만 아니라 과산화수소의 소비량을 줄일 수 있는 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치 및 방법을 제공하는 것이다. The present invention is to improve the above problems, an object of the present invention is to combine the membrane-free electrolysis reactor and the UV Fenton oxidation process and to reduce the use of the divalent iron catalyst required for the fenton oxidation or photo-pentone oxidation process In addition, to provide a non-degradable wastewater treatment apparatus and method using a complex oxidation process combined with electrolysis and photo-pentone oxidation process to reduce the consumption of hydrogen peroxide.
또한, 본 발명의 다른 목적은 전기분해 반응에 의해 전해질(NaCl)로부터 생성된 유리염소에 의해서도 유기물을 분해시켜 기존의 전기화학적 펜톤 산화공정보다 효과적인 유기물 분해율을 얻을 수 있는 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치 및 방법을 제공하는 것이다. In addition, another object of the present invention is to decompose organic matter by the free chlorine generated from the electrolyte (NaCl) by the electrolysis reaction to obtain an organic decomposition rate more effective than the conventional electrochemical Fenton oxidation process electrolysis and photo-phentone oxidation It is to provide an apparatus and method for difficult-degradable wastewater treatment using a combined oxidation process combined with a process.
본 발명의 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치는 유기물 폐수가 저장되는 폐수저장조(10); 상기 폐수저장조(10)로부터 공급되는 유기물 폐수에 2가철(Fe2+) 및 염화나트륨 전해질을 투입하는 전해질 투입기(20); 상기 전해질 투입기(20)에 의해 전해질이 투입된 유기물 폐수에 산소가 용해되도록 공기를 공급하는 공기공급기(30); 복수개의 양전극(41)과 음전극(42)이 교번 적층되며 전해질이 투입되고 산소가 용해된 유기물 폐수가 투입 되어 전기분해에 의해 전해질로부터 2가철을 산화시키고 유리염소를 발생시키며, 용존산소에 의해 과산화수소가 발생되도록 하여 수산기라디칼을 형성하는 펜톤(Fenton) 산화반응이 이루어지도록 하여 수산기 라디칼에 의해 폐수에 함유된 유기물을 분해시키는 무격막 전해조(40); 상기 전해조(40)에 의해 펜톤 산화반응된 폐수가 공급되고 UV가 조사되도록 하여 광 산화되도록 하는 UV 광반응기(50); 상기 UV 광반응기(50)에 의해 광 산화된 처리수가 집수되는 집수조(60); 를 포함하여 이루어지는 것을 특징으로 한다. An apparatus for treating hardly decomposable wastewater using a complex oxidation process in which an electrolysis and a photo-pentone oxidation process of the present invention comprises: a
또한, 상기 폐수저장조(10)와 상기 전해조(40) 사이에 설치되고 상기 전해질 투입기(20)와 연결되어 상기 전해질 투입기(20)로부터 투입된 전해질과 상기 폐수저장조(10)에서 공급된 유기물 폐수가 혼합되도록 하는 라인믹서(70)가 더 구비된 것을 특징으로 한다. In addition, the
아울러, 상기 전해조(40) 내부의 전해액을 외부로 배출시키며 상기 라인믹서(70)에 의해 전해질과 혼합된 유기물 폐수와 합류되도록 하여 상기 전해조(40)로 투입되도록 하는 순환펌프(80)가 더 구비되는 것을 특징으로 한다. In addition, the
또, 상기 순환펌프(80)와 연결되며 상기 전해조(40) 내부에서 배출된 전해액과 상기 공기공급기(30)로부터 공급된 공기가 혼합되어 공기 중의 산소가 배출된 전해액에 용해되도록 하는 벤츄리 혼합기(90)가 더 구비된 것을 특징으로 한다. In addition, the
또한, 상기 전해조(40)의 내부 하단에는 전해질이 투입되고 산소가 용해된 유기물 폐수가 상기 양전극(41)과 음전극(42)으로 산기되어 공급되도록 하는 다공성 산기관(43)이 더 구비된 것을 특징으로 한다. In addition, a
아울러, 상기 UV 광반응기(50)를 거친 처리수를 상기 라인믹서(70) 후단으로 반송시키는 처리수 반송라인(100)이 더 구비된 것을 특징으로 한다. In addition, the treatment
또, 상기 집수조(60)에 집수된 처리수에 pH 중화 약품을 투입시키는 pH 중화 약품 투입기(110)가 더 구비된 것을 특징으로 한다. In addition, the pH neutralizing
또한, 상기 집수조(60)에 집수된 처리수를 응집시키며 침전시키는 응집 침전조(120)가 더 구비된 것을 특징으로 한다. In addition, the
본 발명의 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리방법은 유기물 폐수에 2가철(Fe2+) 및 염화나트륨 전해질을 투입시키는 단계; 전해질이 투입된 유기물 폐수에 산소가 용해되도록 공기를 공급하는 단계; 전기분해에 의해 투입된 전해질로부터 2가철을 산화시키고 유리염소를 발생시키며 공급된 공기 중의 산소가 용해된 용존산소에 의해 과산화수소가 발생되도록 하여 폐수에 함유된 유기물을 분해하는 수산기라디칼을 형성시키는 펜톤(Fenton) 산화반응단계; 펜톤 산화반응된 폐수에 UV를 조사하는 광 산화단계; 광 산화된 처리수를 집수시키는 단계; 를 포함하여 이루어지는 것을 특징으로 한다. The hardly decomposable wastewater treatment method using the combined oxidation process of the electrolysis and photo-pentone oxidation process of the present invention comprises the steps of adding a ferric iron (Fe 2 + ) and sodium chloride electrolyte to the organic waste water; Supplying air to dissolve oxygen in the organic wastewater into which the electrolyte is introduced; Fenton, which oxidizes ferric iron from the electrolyte introduced by electrolysis, generates free chlorine, and generates hydrogen peroxide by dissolving oxygen dissolved in oxygen in the supplied air to form hydroxyl radicals that decompose organic matter contained in wastewater. Oxidation step; Photo oxidation step of irradiating UV to fenton oxidized wastewater; Collecting the photo oxidized treated water; Characterized in that comprises a.
또한, 펜톤 산화반응된 전해액을 펜톤 산화반응 전의 전해질이 투입된 유기물 폐수에 투입하여 순환시키는 전해액 순환단계; 를 더 포함하여 이루어지는 것을 특징으로 한다. In addition, the electrolyte circulating step of circulating the pentone oxidized electrolyte in the organic wastewater to which the electrolyte before the fenton oxidation reaction is added; Characterized in that further comprises.
또, 광산화된 처리수를 펜톤 산화반응 전의 전해질이 투입된 유기물 폐수에 투입하여 반송시키는 처리수 반송단계; 를 더 포함하여 이루어지는 것을 특징으로 한다. In addition, the treatment water conveying step of feeding the mineralized treated water into the organic wastewater to which the electrolyte before the Fenton oxidation reaction is introduced; Characterized in that further comprises.
아울러, 집수된 처리수에 pH 중화 약품을 투입시키는 단계; 를 더 포함하여 이루어지는 것을 특징으로 한다. In addition, the step of adding a pH neutralizing chemical to the collected treated water; Characterized in that further comprises.
또한, 집수된 처리수를 응집시키며 침전시키는 단계; 를 더 포함하여 이루어지는 것을 특징으로 한다. In addition, agglomerated and precipitated the collected treated water; Characterized in that further comprises.
본 발명은 공기공급기로부터 공급된 공기중의 산소가 용해된 용존산소가 전기분해에 의해 과산화수소를 발생시키므로 별도의 과산화수소(H2O2)의 주입이 필요없어 약품비용을 줄여 경제적인 장점이 있다. 또한, 펜톤 산화 반응과 UV에 의한 광-펜톤 산화 공정에 의해 2가철 촉매의 사용을 줄일 수 있고 수산기 라디칼에 의한 유기물 분해 뿐만 아니라 전기분해 반응에 의해 전해질(NaCl)로부터 생성된 유리염소에 의해서도 유기물을 분해시키므로 기존의 전기화학적 펜톤 산화공정보다 효과적인 유기물 분해율을 얻을 수 있는 효과가 있다. In the present invention, since dissolved oxygen in the air supplied from the air supply dissolved hydrogen to generate hydrogen peroxide by electrolysis, there is no need to inject additional hydrogen peroxide (H 2 O 2 ) has an economic advantage to reduce the drug cost. In addition, the use of the ferric catalyst can be reduced by the Fenton oxidation reaction and the photo-Fenton oxidation process by UV, and the organic matter is not only decomposed by organic radicals by hydroxyl radicals but also by free chlorine generated from the electrolyte (NaCl) by electrolysis reaction. Decomposition of the organic material has an effect of obtaining an organic decomposition rate more effective than the conventional electrochemical Fenton oxidation process.
본 발명은 무격막 전기분해 반응조와 UV 펜톤 산화공정을 결합하여, 별도의 H2O2 주입 없이 생성된 과산화수소와 펜톤 산화 공정에서 사용된 3가철(Fe3+)을 전기화학적으로 2가철(Fe2+)로 환원시켜 주입된 2가 펜톤 철 촉매의 반응에 의한 펜톤 산화 반응과 UV에 의한 광-펜톤 산화 공정에 의해 유기물 분해율을 향상시키며, 전기분해 반응에 의해 전해질(NaCl)로부터 생성된 유리염소에 의해서도 유기물을 분해시켜 기존의 전기화학적 펜톤 산화공정보다 효과적인 유기물 분해율을 얻을 수 있고 펜톤산화 또는 광-펜톤산화 공정에 필요한 2가 철촉매의 사용을 절감하는 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치 및 방법을 제공한다. The present invention combines a non-diaphragm electrolysis tank and a UV Fenton oxidation process, electrochemically ferric iron (Fe 3+ ) used in the hydrogen peroxide and Fenton oxidation process produced without a separate H 2 O 2 injection 2+ ) to improve the decomposition rate of organic matter by the pentone oxidation reaction by the reaction of the divalent pentone iron catalyst and the photo-pentone oxidation process by UV, and the glass produced from the electrolyte (NaCl) by the electrolysis reaction Chlorine can also decompose organic matters, resulting in more efficient decomposition of organic matters than conventional electrochemical Fenton oxidation processes, and electrolysis and photo-pentene oxidation processes that reduce the use of divalent iron catalysts required for fenton oxidation or photo-pentene oxidation processes. Provided is an apparatus and method for treating hardly degradable wastewater using a combined oxidation process.
이하, 본 발명에 의한 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치 및 방법을 첨부된 도면을 참조하여 설명한다. Hereinafter, an apparatus and method for treating hardly degradable wastewater using a complex oxidation process in which electrolysis and photo-pentone oxidation process are combined will be described with reference to the accompanying drawings.
먼저, 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치를 설명한다. First, an apparatus for treating hardly degradable wastewater using a complex oxidation process in which electrolysis and photo-pentone oxidation processes are combined will be described.
도 1은 본 발명에 의한 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치를 나타낸 도면이다. 1 is a view showing an apparatus for treating hardly degradable wastewater using a complex oxidation process in which electrolysis and photo-pentone oxidation process are combined according to the present invention.
도시된 바와 같이 본 발명에 의한 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치는, 유기물 폐수가 저장되는 폐수저장조(10); 유기물 폐수에 2가철(Fe2+) 및 염화나트륨 전해질을 투입하는 전해질 투입기(20); 전해질이 투입된 유기물 폐수에 산소가 용해되도록 공기를 공급하는 공기공급기(30); 유기물 폐수가 투입되어 전해질로부터 2가철을 산화시키고 유리염소를 발생시키며, 과산화수소가 발생되도록 하여 수산기라디칼을 형성하는 펜톤(Fenton) 산화반응이 이루어지도록 하는 무격막 전해조(40); 상기 전해조(40)에 의해 펜톤 산화반응된 폐수에 UV가 조사되도록 하는 UV 광반응기(50); UV에 의해 광 산화된 처리수가 집수되는 집수조(60); 를 포함하여 이루어진다. As shown, a non-degradable wastewater treatment apparatus using a complex oxidation process combined with electrolysis and light-pentone oxidation process according to the present invention,
상기 폐수저장조(10)는 유기물 폐수가 저장되며, 상기 폐수저장조(10)에는 산성 전해액이 산성 전해액 투입기(11)로부터 투입된다. The
상기 전해질 투입기(20)는 상기 폐수저장조(10)로부터 공급되는 유기물 폐수에 2가철(Fe2+) 및 염화나트륨(NaCl) 전해질을 투입하는 역할을 한다. 투입된 2가철(Fe2+)은 과산화수소와 반응하여 3가철(Fe3+)로 산화되고 수산기 라디칼(Hydroxyl Radical)을 생성시키는 일반적인 펜톤 산화반응을 하게 된다([반응식 2] 참조). The
상기 수산기 라디칼은 거의 모든 오염물질의 살균, 소독에 관여하며 화학적으로 분해하고 제거할 수 있는 가장 강력한 효과를 발휘하면서 인체에는 무해한 천연물질이다. 또한, 상기 수산기 라디칼은 현존하는 물질 중에서 산화력(살균, 소독, 분해하는 능력)이 불소(F)다음으로 강력하고, 오존(O3)과 염소(Cl2)보다 강력하지만 불소, 염소, 오존처럼 인체에 독성이 있거나 유해한 물질이 아니다. 최근 미국에서 실험한 연구결과에 의하면 수산기 라디칼은 오존보다 2000배, 태양의 자외선보다 180배나 빠른 산화 속도를 가지고 있다고 발표한바 있으며, 대기정화와 폐수 처리 등의 분해 및 제거에 이용되고 있다. The hydroxyl radicals are involved in the sterilization and disinfection of almost all contaminants, and are natural substances that are harmless to the human body while exhibiting the most powerful effect of chemical decomposition and removal. In addition, the hydroxyl radical has the strongest oxidizing power (capacitance to disinfect, disinfect, and decompose) after fluorine (F), and is stronger than ozone (O 3 ) and chlorine (Cl 2 ), but like fluorine, chlorine, and ozone. It is not toxic or harmful to humans. According to a recent study conducted in the United States, hydroxyl radicals have an oxidation rate 2000 times faster than ozone and 180 times faster than the sun's ultraviolet rays, and are used to decompose and remove air purification and wastewater treatment.
상기 공기공급기(30)는 상기 전해질 투입기(20)로부터 전해질이 투입된 유기물 폐수에 산소가 용해되도록 공기를 공급하는 역할을 한다. 폐수에 용해된 용존산소는 상기 전해조(40)에서 낮은 pH(산성) 조건에서의 음전극(42)에서는 [반응식 3] 에서와 같이 수소이온과 결합하여 산소의 환원에 의해 과산화수소가 발생되고 이 과산화수소는 투입된 전해질 중 2가철(Fe2+)과 반응하여 3가철(Fe3+)로 산화되며 수산기 라디칼을 형성하는 펜톤 산화 공정을 유도하게 된다. The
[반응식 3]Scheme 3
O2(g) +2H+ + 2e- → H2O2 (7) O 2 (g) + 2H + + 2e - → H 2 O 2 (7)
과산화수소와 반응 후 산화된 3가철(Fe3+)은 [반응식 3]에 의해 다시 2가철(Fe2+)로 환원되어 연속적인 펜톤 산화 반응을 유도하게 된다. After the reaction with hydrogen peroxide, oxidized trivalent iron (Fe 3+ ) is reduced back to divalent iron (Fe 2+ ) by [Scheme 3] to induce a continuous Fenton oxidation reaction.
상기 전해조(40)는 복수개의 양전극(41)과 음전극(42)이 교번 적층되며 전기분해에 의해 전해질이 투입되고 산소가 용해된 유기물 폐수가 투입되어 전기분해에 의해 전해질로부터 2가철을 산화시키고 유리염소를 발생시키며, 용존산소에 의해 과산화수소가 발생되도록 하여 수산기라디칼을 형성하는 펜톤(Fenton) 산화반응이 이루어지도록 하여 수산기 라디칼에 의해 폐수에 함유된 유기물을 분해시키는 역할을 하며 무격막으로 된다. In the
이때, 상기 폐수저장조(10)와 상기 전해조(40) 사이에 설치되고 상기 전해질 투입기(20)와 연결되어 상기 전해질 투입기(20)로부터 투입된 전해질과 상기 폐수저장조(10)에서 공급된 유기물 폐수가 혼합되도록 하는 라인믹서(70)가 더 구비되 는 것이 바람직하다. 상기 라인믹서(70)를 구비함으로써 유기물 폐수에 투입된 전해질의 혼합이 용이하게 된다. At this time, the
상기 전해조(40) 내에서 염화나트륨 전해질 중 염소는 [반응식 3]과 같이 염소(Cl2), 하이포아염소산(HOCl) 및 하이포아염소이온(OCl-)인 유리염소로 되며, 이 유리염소 또한, 유기물을 분해시키게 된다. Chlorine in the sodium chloride electrolyte in the
[반응식 3]Scheme 3
2Cl- → Cl2 + 2e- (8) 2Cl - → Cl 2 + 2e - (8)
Cl2 + H2O → HOCl + Cl- + H+ (9) Cl 2 + H 2 O → HOCl + Cl - + H + (9)
HOCl → H+ + OCl- (10) HOCl → H + + OCl - ( 10)
6OCl- + 3H2O → 2ClO3 - + 4Cl- + 6H+ + 3/2 O2 + 6e- (11) 6OCl - + 3H 2 O → 2ClO 3 - + 4Cl - + 6H + + 3/2
2ClO3 - + 2H2O → 2ClO4 - + 4H+ + 2e- (12) 2ClO 3 - + 2H 2 O → 2ClO 4 - + 4H + + 2e - (12)
OCl- +2HOCl → ClO3 - + 2Cl- + 2H+ (13) OCl - + 2HOCl → ClO 3 - + 2Cl - + 2H + (13)
상기 전해조(40) 내부 전해액을 외부로 배출시키며 상기 라인믹서(70)에 의 해 전해질과 혼합된 유기물 폐수와 합류되도록 하여 상기 전해조(40)로 투입되도록 하는 순환펌프(80)가 더 구비되도록 하여 유기물 폐수의 유기물 제거효율을 높이는 것이 바람직하다. The circulating
이때, 공기 중의 산소가 전해액에 용해되기 용이하도록 상기 순환펌프(80)와 연결되며 상기 전해조(40) 내부에서 배출된 전해액과 상기 공기공급기(30)로부터 공급된 공기가 혼합되어 공기 중의 산소가 배출된 전해액에 용해되도록 하는 벤츄리 혼합기(90)가 더 구비된 것이 바람직하다. At this time, the oxygen in the air is connected to the
아울러, 상기 전해조(40)의 내부 하단에는 전해질이 투입되고 산소가 용해된 유기물 폐수가 상기 양전극(41)과 음전극(42)으로 산기되어 공급되도록 하는 다공성 산기관(43)이 더 구비된 것이 바람직하다. 상기 다공성 산기관(43)에 의해 유기물 폐수가 전극판으로 산기되도록 하면 반응을 보다 효과적으로 유도할 수 있게 되어 유기물 제거효율을 높일 수 있게 된다. In addition, it is preferable that a
전기분해에 필요한 전기는 전원공급부(Power supply)(44)로부터 공급되며 양전극(41)과 음전극(42)에 일정량의 전압과 전류를 정전압 방식(Galvano static)으로 공급되게 된다. Electricity required for electrolysis is supplied from a
전기분해 반응에 사용되는 전극의 재질은 다양한 전극을 사용할 수 있으나, 보다 높은 효율과 경제성을 위해서는 양전극(41)으로 DSA(Ti에 IrO2 또는 RuO2가 코팅된 전극)전극을 사용하고, 음전극(42)으로는 저렴한 스테인레스 스틸(Stainless Steel) 또는 철(Iron), 흑연(Graphite), 탄소(Carbon) 전극 등을 사용할 수 있다.The electrode material used in the electrolysis reaction may be a variety of electrodes, but for higher efficiency and economy, a
상기 UV 광반응기(50)는 상기 전해조(40)에 의해 펜톤 산화반응된 폐수가 공급되고 UV가 조사되도록 하여 [반응식 2]의 (3)의 추가적인 광 산화가 되도록 한다.The
이와 같은 펜톤 산화공정과 광 산화공정의 연속적 공정에 의해 유기물은 CO2와 H2O로 완전 산화되게 된다. By the continuous process of the fenton oxidation process and the photo oxidation process, the organic material is completely oxidized to CO 2 and H 2 O.
유기물 분해율 및 필요에 따라 상기 UV 광반응기(50)를 거친 처리수를 상기 라인믹서(70) 후단으로 반송시키는 처리수 반송라인(100)이 더 구비되도록 하여 집수조(60)로 배출되는 유기물 분해율이 낮을 경우 전해조(40)로 재투입되도록 하여 분해되지 않은 유기물을 분해할 수 있도록 하는 것이 바람직하다. The organic matter decomposition rate and the organic matter decomposition rate discharged to the
상기 집수조(60)는 상기 UV 광반응기(50)에 의해 광 산화된 처리수가 집수되도록 한다. The
상기 집수조(60)에 집수된 처리수는 산성을 띠므로 NaOH와 같이 염기성을 띠는 pH 중화 약품을 투입시키도록 하는 pH 중화 약품 투입기(110)가 더 구비된 것이 바람직하다. Since the treated water collected in the
또한, 상기 집수조(60)에 집수된 처리수를 응집시키며 침전시키는 응집 침전조(120)가 더 구비된 것이 바람직하다. In addition, it is preferable that the
상기와 같은 구성으로 된 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치를 이용하여 다름과 같은 방법으로 폐수를 처 리하게 된다. The wastewater is treated in the following manner using a hardly decomposable wastewater treatment apparatus using a complex oxidation process in which the electrolysis and the photo-pentone oxidation process are configured as described above.
산성전해액을 투입한 유기물 폐수에 2가철(Fe2+) 및 염화나트륨 전해질을 투입시키고, 전해질이 투입된 유기물 폐수에 산소가 용해되도록 공기를 공급한다. Ferric iron (Fe 2+ ) and sodium chloride electrolyte are added to the organic wastewater to which the acidic electrolyte is added, and air is supplied to dissolve oxygen in the organic wastewater to which the electrolyte is added.
이어서, 전해질이 투입되고 공기가 공급되어 산소가 용해된 유기물 폐수를 전기분해한다. 이때의 전해반응은 투입된 전해질로부터 2가철을 산화시키고 유리염소를 발생시키며 공급된 공기 중의 산소가 용해된 용존산소에 의해 과산화수소가 발생되도록 하여 폐수에 함유된 유기물을 분해하는 수산기라디칼을 형성시키는 펜톤(Fenton) 산화반응이다. Subsequently, an electrolyte is introduced and air is supplied to electrolyze the organic wastewater in which oxygen is dissolved. At this time, the electrolysis reaction is performed by oxidizing the ferric iron from the injected electrolyte, generating free chlorine, and generating hydrogen radicals by dissolving oxygen in the supplied air to form hydroxyl radicals that decompose organic matter contained in the waste water. Fenton) is an oxidation reaction.
이때, 펜톤 산화반응 효율을 높이기 위해 펜톤 산화반응된 전해액을 펜톤 산화반응 전의 전해질이 투입된 유기물 폐수에 투입하여 순환시키는 것이 바람직하다. In this case, in order to increase the efficiency of the Fenton oxidation reaction, it is preferable to circulate the Fenton oxidized electrolyte into the organic wastewater to which the electrolyte before the Fenton oxidation is introduced.
이어서, 펜톤 산화반응된 폐수에 UV를 조사하는 광 산화시키고, 광 산화된 처리수를 집수시키게 된다. 이때, 유기물 분해가 낮은 경우에는 광산화된 처리수를 펜톤 산화반응 전의 전해질이 투입된 유기물 폐수에 투입하여 반송시키는 것이 바람직하다. 또한, 집수된 처리수에 pH 중화 약품을 투입시키는 것이 바람직하다. Subsequently, the Fenton oxidized wastewater is subjected to photo oxidation which irradiates UV, and the photo oxidized treated water is collected. At this time, when the decomposition of organic matters is low, it is preferable to add the treated mineralized water to the organic wastewater to which the electrolyte before the Fenton oxidation reaction is put and returned. In addition, it is preferable to add a pH neutralizing chemical to the collected treated water.
집수된 처리수는 응집시키며 침전시키는 것이 바람직하다. The collected treated water is preferably coagulated and precipitated.
[실시예]EXAMPLE
전기화학적 펜톤 산화공정에 UV 광반응공정을 결합한 복합산화 공정에서의 유기물 분해효과 향상을 확인하기 위해 페놀 100 ppm (CODcr 기준 약 250 ppm)으로 제조된 합성폐수 및 동일한 전기분해 조건하에서 페놀 폐수의 무격막 전기분해, Electro Fenton, Electro Photo-fenton공정에서의 유기물(Phenol) 분해결과를 비교하였다.Synthetic wastewater made with 100 ppm of phenol (about 250 ppm based on CODcr) and phenolic wastewater under the same electrolysis conditions to confirm the improvement of organic decomposition effect in the combined oxidation process combined with electrochemical Fenton oxidation process and UV photoreaction process. Phenol decomposition results were compared in diaphragm electrolysis, Electro Fenton and Electro Photo-fenton processes.
1. 실험조건1. Experimental conditions
1) Electro Photo-fenton공정 실험조건 1) Experimental condition of Electro Photo-fenton process
- CODcr : 250 ppm CODcr: 250 ppm
- Phenol conc. : 100 ppm -Phenol conc. 100 ppm
- Initial pH : 3 Initial pH: 3
- Volume : 500 ml Volume: 500 ml
- NaCl conc. : 0.3 % NaCl conc. 0.3%
- UV : 254nm, 저압 수은램프 3 개(35 W, 1.65× 1016 sec/cm3)-UV: 254nm, 3 low pressure mercury lamps (35 W, 1.65 × 10 16 sec / cm 3 )
- FeSO4·7H2O conc. : 0.25 g/LFeSO 4 7 H 2 O conc. 0.25 g / L
- Air blowing : 50 ml/min -Air blowing: 50 ml / min
- Current : 3 A Current: 3 A
- Electrode size : 5 × 6 cm -Electrode size: 5 × 6 cm
- Anode : IrO2/Ti Mesh 전극 4개-Anode: 4 IrO 2 / Ti Mesh electrodes
- Cathode : Stainless still Plate 전극 5개 -Cathode: 5 stainless still plate electrodes
2) Electro Fenton공정 실험조건 2) Electro Fenton process test condition
- CODcr : 250 ppm CODcr: 250 ppm
- Phenol conc. : 100 ppm -Phenol conc. 100 ppm
- Initial pH : 3 Initial pH: 3
- Volume : 500 ml Volume: 500 ml
- NaCl conc. : 0.3 % NaCl conc. 0.3%
- FeSO4·7H2O conc. : 0.25 g/LFeSO 4 7 H 2 O conc. 0.25 g / L
- Air blowing : 50 ml/min -Air blowing: 50 ml / min
- Current : 3 A Current: 3 A
- Electrode size : 5 × 6 cm -Electrode size: 5 × 6 cm
- Anode : IrO2/Ti Mesh 전극 4개-Anode: 4 IrO 2 / Ti Mesh electrodes
- Cathode : Stainless still Plate 전극 5개 -Cathode: 5 stainless still plate electrodes
3) Electrolysis공정 실험조건 3) Electrolysis process test condition
- CODcr : 250 ppm CODcr: 250 ppm
- Phenol conc. : 100 ppm -Phenol conc. 100 ppm
- Initial pH : 3 Initial pH: 3
- Volume : 500 ml Volume: 500 ml
- NaCl conc. : 0.3 % NaCl conc. 0.3%
- Current : 3 A Current: 3 A
- Electrode size : 5 × 6 cm -Electrode size: 5 × 6 cm
- Anode : IrO2/Ti Mesh 전극 4개-Anode: 4 IrO 2 / Ti Mesh electrodes
- Cathode : Stainless still Plate 전극 5개 -Cathode: 5 stainless still plate electrodes
2. 실험결과2. Experimental Results
도 2는 실험에 사용된 무격막 전해셀과 광 반응기가 결합된 복합 산화공정 실험 장치를 나타낸 도면으로 전해조(40)와 UV 광반응기(50)를 연속적으로 배치하고 공기공급기(30)로 공기를 전해조 내부 하단에 설치된 다공성 산기관(43)으로 공급하도록 하였다. FIG. 2 is a diagram illustrating a complex oxidation process experiment apparatus in which a membrane-free electrolysis cell and a photoreactor used in an experiment are disposed, and an
도 3은 본 발명에 의한 광-펜톤산화공정(Electro Photo-fenton Process)과, 일반적인 펜톤산화공정(Electro Fenton Process) 및 일반적인 무격막 전해셀 전기분해공정(Electrolysis)에서의 반응시간에 따른 페놀(Phenol) 용액의 COD 제거율을 비교한 것이다. 각 공정의 실험조건은 앞서 설명한 바와 같다. 동일한 전기분해 조건에서 60 분 동안 광-펜톤산화공정(Electro Photo-fenton Process)에서의 COD 제거율이 약 66 %에 도달한 반면, 펜톤산화공정(Electro Fenton Process)과 무격막 전해셀 전기분해공정(Electrolysis)에서의 COD 제거율은 각각 50 %와 34 %로 나타남을 알 수 있다. 3 is a phenol according to the reaction time in the photo-fenton oxidation process (Electro Photo-fenton Process), a general Fenton oxidation process (Electro Fenton Process) and a general non-electrode electrolytic cell (Electrolysis) ( Phenol) is a comparison of the COD removal rate of the solution. Experimental conditions of each process are as described above. The COD removal rate in the Electro Photo-fenton Process reached about 66% for 60 minutes under the same electrolysis conditions, whereas the Electro Fenton Process and the membraneless electrolytic cell electrolysis process ( COD removal rates in electrolysis were 50% and 34%, respectively.
도 4는 본 발명에 의한 광-펜톤산화공정(Electro Photo-fenton Process)과, 일반적인 펜톤산화공정(Electro Fenton Process) 및 일반적인 무격막 전해셀 전기분해공정(Electrolysis)에서의 전기분해 반응 중 전해셀에 걸리는 전압의 변화를 나타낸 그래프이다. 도시된 바와 같이 3가지 공정 모두 초기 약 5.8 V에서 반응시간에 따라 약 4.8 - 5 V 정도로 거의 일정하게 유지됨을 알 수 있다. Figure 4 is an electrolytic cell during the electrolysis reaction in the photo-fenton oxidation process (Electro Photo-fenton Process), a general Fenton oxidation process (Electro Fenton Process) and a general non-deposited electrolysis cell (Electrolysis) according to the present invention It is a graph showing the change of the voltage applied to. As shown, it can be seen that all three processes remain nearly constant at about 4.8 V at about 4.8-5 V depending on the reaction time.
도 5는 본 발명에 의한 광-펜톤산화공정(Electro Photo-fenton Process)과, 일반적인 펜톤산화공정(Electro Fenton Process) 및 일반적인 무격막 전해셀 전기분해공정(Electrolysis)에서의 용액 pH 변화를 나타낸 그래프이다. FIG. 5 is a graph showing solution pH changes in an electro-photon fenton process, a general fenton oxidization process, and a general membrane-free electrolytic cell electrolysis process according to the present invention. to be.
도시된 바와 같이, 3가지 공정 모두 초기 pH 3에서 약 3.57로 일정하게 나타남을 알 수 있다. As shown, it can be seen that all three processes appear constant at about 3.57 at initial pH 3.
종합하여 보면 본 발명에 의한 광-펜톤산화공정은 전압변화가 일정하고, 별도의 pH 조절이 없이도 pH가 일정하게 나타나며, 일반적인 펜톤산화공정과 일반적인 무격막 전해셀 전기분해공정보다 페놀의 제거율이 높게 나타나므로 다른 공정에 비해 유리하다는 것을 알 수 있다.Taken together, the photo-pentone oxidation process according to the present invention has a constant voltage change and a constant pH even without a separate pH adjustment. The removal rate of phenol is higher than that of the general fenton oxidation process and the electroless cell electrolysis process. As it appears, it can be seen that it is advantageous over other processes.
도 1은 본 발명에 의한 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을 이용한 난분해성 폐수 처리장치를 나타낸 도면.1 is a view showing an apparatus for treating hardly degradable wastewater using a complex oxidation process in which electrolysis and photo-pentone oxidation process are combined according to the present invention.
도 2는 실험에 사용된 무격막 전해셀과 광 반응기가 결합된 복합 산화공정 실험 장치를 나타낸 도면.2 is a view showing a combined oxidation process experiment apparatus combined with a membrane-free electrolytic cell and a photoreactor used in the experiment.
도 3은 본 발명에 의한 광-펜톤산화공정(Electro Photo-fenton Process)과, 일반적인 펜톤산화공정(Electro Fenton Process) 및 일반적인 무격막 전해셀 전기분해공정(Electrolysis)에서의 반응시간에 따른 페놀(Phenol) 용액의 COD 제거율을 나타낸 그래프.3 is a phenol according to the reaction time in the photo-fenton oxidation process (Electro Photo-fenton Process), a general Fenton oxidation process (Electro Fenton Process) and a general non-electrode electrolytic cell (Electrolysis) ( Phenol) graph showing the removal rate of COD.
도 4는 본 발명에 의한 광-펜톤산화공정(Electro Photo-fenton Process)과, 일반적인 펜톤산화공정(Electro Fenton Process) 및 일반적인 무격막 전해셀 전기분해공정(Electrolysis)에서의 전기분해 반응 중 전해셀에 걸리는 전압의 변화를 나타낸 그래프.Figure 4 is an electrolytic cell during the electrolysis reaction in the photo-fenton oxidation process (Electro Photo-fenton Process), a general Fenton oxidation process (Electro Fenton Process) and a general non-deposited electrolysis cell (Electrolysis) according to the present invention Graph showing the change in voltage across
도 5는 본 발명에 의한 광-펜톤산화공정(Electro Photo-fenton Process)과, 일반적인 펜톤산화공정(Electro Fenton Process) 및 일반적인 무격막 전해셀 전기분해공정(Electrolysis)에서의 용액 pH 변화를 나타낸 그래프. FIG. 5 is a graph showing solution pH changes in an electro-photon fenton process, a general fenton oxidization process, and a general membrane-free electrolytic cell electrolysis process according to the present invention. .
*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
10: 폐수저장조 20: 전해질 투입기10: wastewater storage tank 20: electrolyte injector
30: 공기공급기 40: 전해조30: air supply 40: electrolytic cell
41: 양전극 42: 음전극41: positive electrode 42: negative electrode
43: 다공성 산기관 44: 전원공급부43: porous diffuser 44: power supply
50: UV 광반응기 60: 집수조50: UV photoreactor 60: sump
70: 라인믹서 80: 순환펌프70: line mixer 80: circulation pump
90: 벤츄리 혼합기 100: 처리수 반송라인90: Venturi mixer 100: treated water return line
110: pH 중화 약품 투입기 120: 응집 침전조110: pH neutralizing chemical injector 120: flocculation settling tank
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080063463A KR101026641B1 (en) | 2008-07-01 | 2008-07-01 | Non-degradable Waste Water Treatment Apparatus using Electrolysis and Photo-fenton Oxidation Process |
MX2009002562A MX2009002562A (en) | 2008-03-07 | 2009-03-06 | Solderable elastic electric contact terminal. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080063463A KR101026641B1 (en) | 2008-07-01 | 2008-07-01 | Non-degradable Waste Water Treatment Apparatus using Electrolysis and Photo-fenton Oxidation Process |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100003528A true KR20100003528A (en) | 2010-01-11 |
KR101026641B1 KR101026641B1 (en) | 2011-04-04 |
Family
ID=41813309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080063463A KR101026641B1 (en) | 2008-03-07 | 2008-07-01 | Non-degradable Waste Water Treatment Apparatus using Electrolysis and Photo-fenton Oxidation Process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101026641B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101400332B1 (en) * | 2012-03-29 | 2014-05-27 | 현대제철 주식회사 | Creation apparatus of iron salt and removal apparatus of polluted matter having the same |
CN104310665A (en) * | 2014-10-08 | 2015-01-28 | 浙江卓锦工程技术有限公司 | Pretreatment method of nonionic surfactant wastewater |
CN104671364A (en) * | 2015-03-03 | 2015-06-03 | 中国科学院过程工程研究所 | Electrochemical wastewater treatment method for removing salts and refractory organic matters synchronously |
CN105271583A (en) * | 2014-07-24 | 2016-01-27 | 上海宝钢化工有限公司 | Coking wastewater treatment method |
CN105330072A (en) * | 2015-11-13 | 2016-02-17 | 长江大学 | Combined efficient high-difficulty wastewater treatment device |
CN106186476A (en) * | 2016-08-18 | 2016-12-07 | 南京大学 | Artificial sweetening agent acesulfame potassium and the light Fenton method of sucralose in a kind of mineralising sewage |
CN107777829A (en) * | 2016-08-29 | 2018-03-09 | 北京安宇通环境工程技术有限公司 | A kind of High-concentration organic wastewater treatment method and system |
WO2018176166A1 (en) * | 2017-03-28 | 2018-10-04 | Basualto Cancino Juan | Liquid waste treatment plant which uses the fenton system for reducing organic molecules |
CN109665597A (en) * | 2017-10-16 | 2019-04-23 | 韩国科学技术研究院 | Reducing electrode substance, its manufacturing method and the electric Fenton device using it |
CN109928537A (en) * | 2017-12-19 | 2019-06-25 | 煤炭科学技术研究院有限公司 | The method and device of UV/Fenton oxidation processes organic wastewater |
US20200321630A1 (en) * | 2019-04-05 | 2020-10-08 | King Fahd University Of Petroleum And Minerals | Droplet-impingement, flow-assisted electro-fenton purification using heterogeneous silica/iron nanocomposite catalyst |
CN117023854A (en) * | 2023-08-03 | 2023-11-10 | 广东威特雅环境科技有限公司 | Be used for DMM n Degradation method and equipment for pollutant in production wastewater |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103130307A (en) * | 2013-03-26 | 2013-06-05 | 重庆大学 | Ozone and photo-electrochemical coupled oxidation water-treatment device and method |
CN104773888A (en) * | 2015-04-23 | 2015-07-15 | 东南大学 | Iron-carbon inner electrolysis-Fenton oxidation-electrolytic electrocatalytic oxidation combined wastewater treatment method and device |
CN105347580B (en) * | 2015-11-10 | 2018-06-01 | 中国石油天然气股份有限公司 | Method suitable for polymer flooding produced water treatment standard-reaching discharge |
CN106007130A (en) * | 2016-08-09 | 2016-10-12 | 南昌航空大学 | Device and technology for advanced oxidation-electrolysis coupled recycling treatment on complex wastewater |
CN107777830B (en) * | 2016-08-29 | 2020-09-18 | 北京安宇通环境工程技术有限公司 | High-concentration degradation-resistant pharmaceutical wastewater treatment method and system |
KR101844915B1 (en) * | 2016-12-28 | 2018-05-18 | 이국두 | Porous plate electrode electrolysis apparatus and wastewater treatment method using the same |
KR101866425B1 (en) * | 2017-02-06 | 2018-06-12 | 한국과학기술연구원 | Apparatus for treatment of high concentration organic wastewater |
KR102525217B1 (en) | 2021-08-27 | 2023-05-03 | (주)일신종합환경 | Non-degradable Waste Water Treatment System |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003145161A (en) * | 2001-06-25 | 2003-05-20 | Kurita Water Ind Ltd | Water treatment apparatus and water treatment method |
-
2008
- 2008-07-01 KR KR1020080063463A patent/KR101026641B1/en active IP Right Grant
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101400332B1 (en) * | 2012-03-29 | 2014-05-27 | 현대제철 주식회사 | Creation apparatus of iron salt and removal apparatus of polluted matter having the same |
CN105271583A (en) * | 2014-07-24 | 2016-01-27 | 上海宝钢化工有限公司 | Coking wastewater treatment method |
CN104310665A (en) * | 2014-10-08 | 2015-01-28 | 浙江卓锦工程技术有限公司 | Pretreatment method of nonionic surfactant wastewater |
CN104671364A (en) * | 2015-03-03 | 2015-06-03 | 中国科学院过程工程研究所 | Electrochemical wastewater treatment method for removing salts and refractory organic matters synchronously |
WO2016138858A1 (en) * | 2015-03-03 | 2016-09-09 | 中国科学院过程工程研究所 | Electrochemical waste water treatment method that simultaneously removes salts and organic compounds that are hard to biodegrade |
CN104671364B (en) * | 2015-03-03 | 2017-03-01 | 中国科学院过程工程研究所 | A kind of same one-step desalting removes the electrochemical wastewater treatment method of hardly degraded organic substance |
CN105330072A (en) * | 2015-11-13 | 2016-02-17 | 长江大学 | Combined efficient high-difficulty wastewater treatment device |
CN106186476B (en) * | 2016-08-18 | 2019-01-01 | 南京大学 | The light Fenton method of artificial sweetener acesulfame potassium and Sucralose in a kind of mineralising sewage |
CN106186476A (en) * | 2016-08-18 | 2016-12-07 | 南京大学 | Artificial sweetening agent acesulfame potassium and the light Fenton method of sucralose in a kind of mineralising sewage |
CN107777829A (en) * | 2016-08-29 | 2018-03-09 | 北京安宇通环境工程技术有限公司 | A kind of High-concentration organic wastewater treatment method and system |
WO2018176166A1 (en) * | 2017-03-28 | 2018-10-04 | Basualto Cancino Juan | Liquid waste treatment plant which uses the fenton system for reducing organic molecules |
CN109665597A (en) * | 2017-10-16 | 2019-04-23 | 韩国科学技术研究院 | Reducing electrode substance, its manufacturing method and the electric Fenton device using it |
CN109665597B (en) * | 2017-10-16 | 2022-04-26 | 韩国科学技术研究院 | Reduction electrode material, method for producing same, and electro-Fenton device using same |
CN109928537A (en) * | 2017-12-19 | 2019-06-25 | 煤炭科学技术研究院有限公司 | The method and device of UV/Fenton oxidation processes organic wastewater |
US20200321630A1 (en) * | 2019-04-05 | 2020-10-08 | King Fahd University Of Petroleum And Minerals | Droplet-impingement, flow-assisted electro-fenton purification using heterogeneous silica/iron nanocomposite catalyst |
CN117023854A (en) * | 2023-08-03 | 2023-11-10 | 广东威特雅环境科技有限公司 | Be used for DMM n Degradation method and equipment for pollutant in production wastewater |
Also Published As
Publication number | Publication date |
---|---|
KR101026641B1 (en) | 2011-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101026641B1 (en) | Non-degradable Waste Water Treatment Apparatus using Electrolysis and Photo-fenton Oxidation Process | |
Kumar et al. | Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes | |
JP4671743B2 (en) | Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen | |
CN110759437B (en) | Method for electrochemical-UV composite treatment of refractory organic matters | |
Yang et al. | Ibuprofen removal from drinking water by electro-peroxone in carbon cloth filter | |
CN104556533B (en) | Treatment method for reverse osmosis concentrated water | |
Hajalifard et al. | The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater | |
Segundo et al. | Development of a treatment train for the remediation of a hazardous industrial waste landfill leachate: A big challenge | |
CN111422954A (en) | Advanced wastewater treatment method and system for realizing sludge source reduction | |
CN113957460A (en) | Method for synthesizing hydrogen peroxide based on alternating current electrolysis, device and application thereof | |
KR101866425B1 (en) | Apparatus for treatment of high concentration organic wastewater | |
CN205442899U (en) | Dense water processing system of manifold type reverse osmosis | |
KR101046942B1 (en) | Water treatment method using electrolysis | |
Mahmud et al. | Antibiotic-contaminated wastewater treatment and remediation by electro-advanced oxidation processes (EAOPs) | |
KR100492471B1 (en) | A continuous electrical analytic oxidation reactor of waste water with high concentrated nitrogen compound | |
KR20190120837A (en) | Apparatus for purifying water based on electro-peroxone reaction | |
KR20230035006A (en) | Apparatus treatmenting wastewater | |
JP4662327B2 (en) | Wastewater treatment method and apparatus | |
CN113184972B (en) | Method for removing organic pollutants in wastewater by sequencing batch reaction | |
JP2005013858A (en) | Method and apparatus for treating wastewater using high voltage pulses | |
JP2008264668A (en) | Method and apparatus for electrolytic treatment of wastewater | |
KR101036834B1 (en) | Electrolytic Cell for purifying water | |
JP4641435B2 (en) | Endocrine disrupting chemical substance decomposition method and apparatus | |
KR20020048343A (en) | Process and apparatus for ammonia removal and disinfection in high density aquaculture system | |
JP2000263049A (en) | Method and apparatus for cleaning barn effluent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150130 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160328 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170327 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180327 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20190325 Year of fee payment: 9 |