KR20090132236A - Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof - Google Patents

Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof Download PDF

Info

Publication number
KR20090132236A
KR20090132236A KR1020080058406A KR20080058406A KR20090132236A KR 20090132236 A KR20090132236 A KR 20090132236A KR 1020080058406 A KR1020080058406 A KR 1020080058406A KR 20080058406 A KR20080058406 A KR 20080058406A KR 20090132236 A KR20090132236 A KR 20090132236A
Authority
KR
South Korea
Prior art keywords
cells
stem cells
cell
pluripotent stem
induced
Prior art date
Application number
KR1020080058406A
Other languages
Korean (ko)
Inventor
조쌍구
이창현
김정현
이응룡
최혜연
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020080058406A priority Critical patent/KR20090132236A/en
Publication of KR20090132236A publication Critical patent/KR20090132236A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Transplantation (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A method for establishing induced pluripotent stem cells through non-viral transformation is provided to induce induced pluripotent stem cells without virus and introduce gene with high efficiency. CONSTITUTION: A method for producing induced pluripotent stem cells comprises: a step of preparing gene vector relating to induced pluripotency; a step of introducing the induced pluripotent relating gene to a cell using a nanoparticle; a step of culturing stem cells containing LIF(leukemia inhibitory factor) in a culture device; and a step of replating the cells on a dish having a support cell. The cell is fibroblast. The support cell is STO embryonic fibroblast cell line of rat.

Description

비바이러스성 형질전환방법을 이용한 유도 다능성 줄기세포의 확립 방법 및 그 용도{Method of manufacturing iPS (induced pluripotent stem) cells using nonviral gene delivery system and use thereof}Method for manufacturing induced pluripotent stem cells using nonviral transformation method and its use {Method of manufacturing iPS (induced pluripotent stem) cells using nonviral gene delivery system and use

본 발명은 비바이러스성 형질전환방법을 이용한 유도 다능성 줄기세포의 확립 방법 및 그 용도에 관한 것이다.The present invention relates to a method for establishing induced pluripotent stem cells using a non-viral transformation method and its use.

다양한 세포조직으로 분화 가능한 줄기 세포관련 연구는 1960년대부터 배아종양세포 (embryonic carcinoma cells) 위주로 진행되었으나, 종양세포의 특성 및 불안정한 염색체 상태에 의하여 지극히 한정된 연구결과만 도출되었으며, 1981년 세계 최초로 코프만(MJ Evans, MH Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, 292, 154,.1981)에 의해서 생쥐배아 줄기세포가 확립된 후, 배아 줄기세포 연구가 급격히 발전되었으며, Stem cell research, which can differentiate into various cell tissues, has been focused on embryonic carcinoma cells since the 1960s, but only limited results were obtained due to the characteristics of tumor cells and unstable chromosomal conditions. After the establishment of mouse embryonic stem cells by MJ Evans, MH Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, 292, 154 ,.

1998년에는 톰슨에 의해서 인간 배아 줄기세포가 확립되었다(JA Thomson, J Itskovitz-Eldor, SS Shapiro, et al., Embryonic stem cell lines derived from human blastocysts, Science, 282: 1145 1998.). 현재 많은 보고를 통하여 인체의 여러 조직에서 다양한 분화능을 보유한 성체줄기세포들이 동정되었고, 이들은 분화 다양성을 보유하고 있는 것으로 보고되고 있으며 줄기세포는 21세기의 새로운 재생의학의 중심이 되는 세포대체 치료의 중요한 연구 과제로 여겨지고 있다(Asahara T., Kalka C., Isner J.M., Stem cell therapy andgene transfer for regeneration, Gene Therapy, 7: 451-457,2000) In 1998 human embryonic stem cells were established by Thomson (JA Thomson, J Itskovitz-Eldor, SS Shapiro, et al., Embryonic stem cell lines derived from human blastocysts, Science, 282: 1145 1998.). Currently, many reports have identified adult stem cells with differentiation potential in various tissues of the human body, and they have been reported to have differentiation diversity. Stem cells are an important part of cell replacement therapy, which is the center of new regenerative medicine in the 21st century. It is considered a research project (Asahara T., Kalka C., Isner JM, Stem cell therapy and gene transfer for regeneration, Gene Therapy, 7: 451-457,2000)

줄기세포를 신체의 각종 장기나 조직으로 분화시킬 수 있다면, 질병이 발생한 조직과 기관을 재생 또는 대체할 수 있는 새로운 세포도 만들어낼 수 있어서 특히 배아 줄기세포가 질병 치료에 가장 유용할 것으로 예상하고, 이를 이용해 당뇨병,심장병,알츠하이머병, 암, 파킨슨병 등 각종 난치병을 치료하고자 하는 연구를 진행해 오고 있다. 또한, 동물 클로닝과 인간 배아 줄기세포 기술의 혼합은 개개인의 환자로부터 줄기세포를 생산하여 임상적으로 사용하는 맞춤형 치료법 개발을 촉진시켜왔는데, 이러한 줄기세포는 동종 배아 줄기 세포로부터 유도된 세포 이식에 대한 면역 거부반응을 극복할 수 있고 복합적인 인간 질병들을 연구하는 실험 모델로도 사용되어질 수 있다. 그러나 이러한 방법들이 인간의 질병 치료에 응용되는 데는 윤리적이고 기술적인 한계가 있어서, 줄기 세포를 사용하기보다는 체세포를 재프로그램화하여 다양한 세포로 분화시키는 방법들이 연구되고 있다. If stem cells can be differentiated into various organs or tissues of the body, it is also possible to produce new cells that can regenerate or replace diseased tissues and organs. Especially, embryonic stem cells are expected to be most useful for treating diseases. It has been researched to treat various incurable diseases such as diabetes, heart disease, Alzheimer's disease, cancer and Parkinson's disease. In addition, a combination of animal cloning and human embryonic stem cell technology has facilitated the development of customized therapies to produce and clinically use stem cells from individual patients. These stem cells can be used for cell transplantation derived from allogeneic embryonic stem cells. It can overcome immune rejection and can be used as an experimental model for studying complex human diseases. However, there are ethical and technical limitations in applying these methods to the treatment of human diseases. Therefore, methods for reprogramming somatic cells into different cells rather than using stem cells are being studied.

유도 다능성 줄기세포 (iPSc; induced pluripotent stem cells)는 배아세포를 둘러싼 윤리 논란을 불식시키고 치료용 맞춤 줄기세포를 연구할 수 있는 계기를 마련하였는데, 2006년 8월 일본 교토대 야마나카 교수팀은 retrovirus를 이용해서 마우스의 섬유아세포에 Oct4, Sox2, c-Myc, Klf4를 삽입하여 배아줄기세포와 유사한 원시세포가 발생하였고, 이 세포를 induced Pluripotent Stem cells (iPSc)라고 명명하였다(Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126(4):663-76. 2006). 이는 인간 배아를 복제하거나 파괴하지 않고 피부세포를 이용해 배아줄기세포와 같은 기능을 하는 만능세포를 배양하는 데 성공하였다는 점에 큰 의의가 있으며, 생쥐의 태아 조직으로부터 얻어진 섬유 모세포 (fibroblast)는 몇 가지 핵심적인 전사인자들을 혼합하여 처리하면 다양한 세포로 분화될 수 있는 줄기세포로 재프로그램화 (reprogramming) 시킬 수 있음이 확인되었다. 그러나 이 논문에서 사용된 실험과정은 c-Myc oncogene이 무작위로 세포 게놈의 여러 부분에 끼어들어 가기 때문에 암을 발생시킬 수 있으며. 따라서 이러한 안전상의 문제로 c-Myc으로 변환된 줄기세포를 임상적으로 사용되기에는 한계성이 있다. Nature Biotechnology` 최신호(Nakagawa 2008)에는 oncogene을 사용하지 않고 생쥐나 인간의 섬유아세포로부터 induced pluripotent stem (iPS) 세포를 유도해 낸 결과가 보고되었다. c-Myc이 없이 생성된 iPSc을 배반포 (blastocyst)에 주사함으로 생산된 키메라 생쥐는 c-Myc이 발현되는 iPSc로 만든 생쥐와 비교하여 종양 발생 빈도가 매우 낮다. 최근에 발표된 2편의 논문(Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature biotechnology 26: 101-106, 2008.Meissner, A., Wernig, M., and Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature biotechnology 25:1177-1181, 2007.)은 유전자로 형질 전환된 인간의 섬유 모세포를 줄기 세포로 재프로그램화 한 결과를 소개하고 있으며. 이 2편의 논문에서 공통적으로 사용한 유전자는 줄기세포 상태를 조절하는 핵심인자인 Oct4 와 Sox2이었다. 이 연구에서는 c-Myc 과 같은 oncogene은 사용하지 않았지만 Oct4 나 Sox2 유전자도 게놈에 무작위로 끼어들어가기 때문에 돌연변이를 발생시킬 수 있는 가능성이 있고 재프로그램화 후에도 다시 활성화되어 세포 분화에 좋지 않은 영향을 미칠 수 있다. 또 다른 방법은 화학 화합물 라이브러리를 이용하여 섬유 모세포의 재프로그램화 과정을 유도하는 small molecules를 동정하여 사용하는 것 등이 고려되고 있다. 최근 연구 결과는 인간의 iPSc가 teratoma을 형성할 수 있다고 보고하고 있다(Wernig, M., Meissner, A., Foreman, R., Brambrink,T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318- 324, 2007). 그러나 과학적 관점에서 볼 때 몇 가지 문제점을 제기하고 있는데 첫째, 게놈에 유전자를 영구적으로 끼어들어 가게 하는 방법보다 유전자를 단기간 발현하여 재프로그램화하는 방법이 개발되어야 할 필요가 있으며 둘째, iPSc가 유도되려면 역전사바이러스가 유전자의 특정 지역 (loci)에 통합되어야 할지도 모른다는 가능성이 있다. 마지막으로, iPSc가 유도되기 위해서는 핵형검사 (karyotype analysis)에서 탐지될 수 없는 경미한 유전자 변화나 후생유전학적 변화가 필요한 것으로 보 인다. Induced pluripotent stem cells (iPSc) dispel the ethical controversy surrounding embryonic cells and provide an opportunity to study therapeutic stem cells for treatment.Aug. 2006 By inserting Oct4, Sox2, c-Myc, and Klf4 into mouse fibroblasts, primitive cells similar to embryonic stem cells were generated. These cells were named induced Pluripotent Stem cells (iPSc) (Takahashi K, Yamanaka S). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell. 126 (4): 663-76. 2006). This is significant because it has succeeded in culturing pluripotent cells that function like embryonic stem cells using skin cells without duplicating or destroying human embryos. Mixing and processing branch key transcription factors has been shown to be reprogramming into stem cells that can differentiate into various cells. However, the experimental procedure used in this paper can cause cancer because c-Myc oncogene randomly intersects various parts of the cell genome. Therefore, there is a limit to the clinical use of stem cells converted to c-Myc due to these safety issues. The latest issue of Nature Biotechnology (Nakagawa 2008) reported the derivation of induced pluripotent stem (iPS) cells from mice and human fibroblasts without the use of oncogenes. Chimeric mice produced by injecting iPSc generated without c-Myc into blastocysts have a lower incidence of tumors than mice made with iPSc expressing c-Myc. Two recently published papers (Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.Nature biotechnology 26: 101-106, 2008.Meissner, A., Wernig, M., and Jaenisch, R. Direct reprogramming of Genetically unmodified fibroblasts into pluripotent stem cells.Nature biotechnology 25: 1177-1181, 2007.) presents the results of reprogramming human fibroblasts with genes into stem cells. Commonly used genes in these two papers were Oct4 and Sox2, key factors that regulate stem cell states. In this study, no oncogenes such as c-Myc were used, but since the Oct4 or Sox2 genes also randomly intervene in the genome, there is the potential for mutations and reactivation after reprogramming, which may adversely affect cell differentiation. have. Another approach is to identify and use small molecules that induce reprogramming of fibroblasts using chemical compound libraries. Recent studies report that human iPSc can form teratoma (Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, BE, and Jaenisch, R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.Nature 448: 318-324, 2007). However, from a scientific point of view, there are some problems. First, there is a need to develop a method for short-term expression and reprogramming of genes rather than permanently inserting them into the genome. Second, to induce iPSc, There is a possibility that reverse transcriptase may need to be integrated into specific loci of the gene. Finally, iPSc appears to require minor genetic changes or epigenetic changes that cannot be detected in karyotype analysis.

본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 배아파괴나 난자제공과 같은 윤리적 문제를 비켜가면서, 환자별/질환별로 맞춤식 다능성 줄기세포를 만들어낼 수 있는 기반 및 역전사 바이러스로 인한 발암을 비롯한 안전성의 문제점을 감안하여 경제적이고 간편하면서도 유전자 전달효율이 높고 유전자 발현이 안정적으로 이루어질 수 있는 새로운 유전자 도입 방법을 제공하는 것이다. The present invention solves the above problems, and the object of the present invention as devised by the necessity of the above, while avoiding ethical problems such as embryo destruction or oocyte donation, it is possible to create a customized pluripotent stem cells for each patient / disease In view of safety problems, including carcinogenicity caused by underlying and reverse transcriptase viruses, it provides a new method for introducing genes that is economical, simple, high in gene transfer efficiency, and stable in gene expression.

상기의 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

(a)유도 다능성과 관련된 유전자를 벡터에 클로닝하여 유도 다능성 관련 유전자 벡터를 준비하는 단계; 및 (a) cloning a gene associated with induction pluripotency into a vector to prepare an induced pluripotency related gene vector; And

(b) 상기 유도 다능성 관련 유전자 벡터 및 조합된 벡터를 이용하여 유도 다능성 관련 유전자를 나노입자을 이용하여 세포에 도입시켜 유도 다능성 관련 유전자가 도입된 유도 다능성 줄기세포의 제조 방법을 제공한다.(b) providing a method for producing induced pluripotent stem cells into which an induced pluripotency related gene has been introduced by introducing the induced pluripotency related gene into a cell using nanoparticles using the induced pluripotency related gene vector and the combined vector. .

또 본 발명에 있어서, 상기 방법은 제1항에 있어서, 상기 방법은 (b) 단계 이후에 LIF가 들어있는 줄기세포 배양액을 넣어준 후 배양기에서 배양하고, 상기 세포를 지지세포가 깔려있는 디쉬에 리플레이팅하는 단계를 더욱 포함하는 것을 특징으로 한다.In the present invention, the method of claim 1, wherein the method is added to the stem cell culture medium containing the LIF after step (b) and cultured in the incubator, the cells in a dish on which the supporting cells are laid And further comprising the step of replating.

또한 본 발명에 있어서, 상기 유도 다능성 관련 유전자는 Oct4 (Pouf5f1), Sox2(SRY-box containing gene 2), Klf4(Kruppel-like factor 4, 또는 c-Myc (myelocytomatosis oncogene)인 것이 바람직하나 이에 한정되지 아니한다.In the present invention, the induced pluripotency-related gene is preferably Oct4 (Pouf5f1), Sox2 (SRY-box containing gene 2), Klf4 (Kruppel-like factor 4, or c-Myc (myelocytomatosis oncogene), but is not limited thereto. Not.

본 발명에 일 실시예에 있어서, 상기 세포는 섬유아세포인 것이 바람직하나이에 한정되지 아니하고, 상기 섬유아세포는 마우스 섬유아세포인 것이 더욱 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the cells are preferably fibroblasts, but not limited thereto, and the fibroblasts are more preferably mouse fibroblasts, but are not limited thereto.

상기 나노입자는 폴리머, 예를 들어 cationic polymer polyethyleneimine (PEI))로 코팅한 iron oxide로(magnetic Fe3O4 나노입자) 제조한 것(Chemicell, 독일, 제품명: MagnetofectionTM) 이며, 그 크기는 지름 100에서 200nm이 바람직하며, 그 폴리머의 농도는 w/v: 1 mg/mlT이다. 그 mg 당 입자수는 공식을 사용하여 계산가능ㅎ나데, 본 발명의 입자의 크기(100 nm - 200 nm)에 따른 입자의 수는 약 1,800E+15 (100 nm) Particles/gram ; 2,202E+14 (200 nm) Particles/gram정도이나 이에 한정되지 아니한다.The nanoparticles are made of iron oxide coated with a polymer such as cationic polymer polyethyleneimine (PEI) (magnetic Fe 3 O 4). Nanoparticles) (Chemicell, Germany, product name: Magnetofection ), the size of which is preferably 100 to 200 nm in diameter, and the polymer concentration is w / v: 1 mg / mlT. The number of particles per mg can be calculated using the formula, according to the particle size (100 nm-200 nm) of the present invention the number of particles is about 1,800E + 15 (100 nm) Particles / gram; 2,202E + 14 (200 nm) Particles / gram, but not limited to.

또한 본 발명에 있어서, 상기 지지 세포는 생쥐의 STO 세포주(embryonic fibroblast cell line), hES 세포(human embryonic stem cell, 인간 배아줄기세포), hNP 세포(human neural progenitor, 인간 신경줄기 또는 신경전구세포) 및 hNPST-1 세포(hNP와 STO가 결합된 세포)로 구성된 군으로부터 선택된 하나 이상의 세포인 것이 바람직하고, 상기 지지 세포는 생쥐의 STO 세포주(embryonic fibroblast cell line)인 것이 더욱 바람직하나 이에 한정되지 아니한다.In addition, in the present invention, the support cells are mouse STO cell line (embryonic fibroblast cell line), hES cells (human embryonic stem cells, human embryonic stem cells), hNP cells (human neural progenitor, human neural stem or neuroprogenitor cells) And it is preferably at least one cell selected from the group consisting of hNPST-1 cells (cells combined with hNP and STO), the support cell is more preferably an embryonic fibroblast cell line of the mouse (but not limited to this) .

또한 본 발명은 본 발명의 방법에 의하여 제조된 유도 다능성 줄기세포를 제공한다.The present invention also provides an induced pluripotent stem cell produced by the method of the present invention.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 유도 다능성과 관련된 네 가지 유전자를 벡터에 클로닝하여 유도 다능성 관련 유전자 벡터를 준비하는 단계, 상기 유도 다능성 관련 유전자 벡터 및 조합된 벡터를 이용하여 유도 다능성 관련 유전자를 나노입자을 이용하여 마우스 섬유아세포에 도입 (transfection)시켜 유도 다능성 관련 유전자가 도입된 유도 다능성 줄기세포의 제조 방법을 제공한다. The present invention provides a method of cloning four genes related to induced pluripotency into a vector to prepare an induced pluripotency related gene vector, using the induced pluripotency related gene vector and a combined vector to induce pluripotency related genes using nanoparticles. Provided is a method for producing induced pluripotent stem cells to which the induced pluripotency related gene has been introduced by transfection into mouse fibroblasts.

본 발명에 의한 유도 다능성 관련 유전자 도입 줄기세포 및 그 제조 방법은 환자맞춤형 줄기세포의 생성을 위하여 바이러스를 사용하지 않으면서도 유도 다능성 줄기세포 유도가 가능하다. 또한 경제적이고 간편하며 유전자 도입 효율이 우수하다. Induced pluripotency related gene-introduced stem cells and a method for producing the same according to the present invention can induce induced pluripotent stem cells without using a virus for generation of patient-specific stem cells. It is also economical and simple, and has high efficiency of gene introduction.

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to non-limiting examples.

본 발명에서 사용된 DMEM과 DMEM/F12는 Invitrogen사에서 구입하였다. STO cells은 ATCC사에서 구입하였다. Fetal bovine serum은 Hyclone사에서 구입하였고 retinoic acid, glutamine, penicillin과 streptomycin 그리고 DAPI는 Sigma사에서 구입하였다. leukemia inhibitory factor (LIF)는 Chemicon 사에서 구입하였고 나노입자은 chemicell에서 구입하였으며, basic fibroblast growth factor는 Koma Biotech에서 구입하였다. 실험에 사용된 항체로써 Oct-4, SSEA-1, Brychury, HNF 항체는 Santa Cruz사에서 구입하였다, β-tubulin III은 Sigma-Aldrich사에서 구입하였다.DMEM and DMEM / F12 used in the present invention were purchased from Invitrogen. STO cells were purchased from ATCC. Fetal bovine serum was purchased from Hyclone and retinoic acid, glutamine, penicillin and streptomycin, and DAPI were purchased from Sigma. Leukemia inhibitory factor (LIF) was purchased from Chemicon, nanoparticles from chemicell, and basic fibroblast growth factor from Koma Biotech. Oct-4, SSEA-1, Brychury, and HNF antibodies were purchased from Santa Cruz, and β-tubulin III was purchased from Sigma-Aldrich.

마우스 섬유아 세포 (MEF; mouse embryonic fibroblast)는 c57BL 6주령 마우스를 교배하여 3 주후 외과적 수술을 통하여 배아를 적출하여 실험에 공시하였다. 클로닝에 사용된 pGEM-T easy, pcDNA3 벡터는 invitrogen사에서 구입하였다.Mouse embryonic fibroblasts (MEFs) were mated to c57BL 6-week-old mice, and 3 weeks later, embryos were harvested and surgically disclosed. PGEM-T easy and pcDNA3 vectors used for cloning were purchased from invitrogen.

제조예Production Example :: magneticmagnetic FeFe 33 OO 44 나노입자의 제조Preparation of Nanoparticles

본 발명의 나노입자는 cationic polymer polyethyleneimine (PEI))로 코팅한 iron oxide로(magnetic Fe3O4 나노입자) 제조한 것(Chemicell, 독일, 제품명: MagnetofectionTM)을 사용하였다. Nanoparticles of the present invention is iron oxide coated with cationic polymer polyethyleneimine (PEI) (magnetic Fe 3 O 4 Nanoparticles) (Chemicell, Germany, product name: Magnetofection ) was used.

실시예Example 1:배아 줄기세포로부터  1: From embryonic stem cells 토탈total RNARNA 추출  extraction

회수된 배아 줄기세포에 트리졸 시약 (Trizol reagent Sigma사 제조) 1 ml을 넣고 5분간 상온에서 방치하여 세포를 파괴시켜 세포 내용물을 용출시켰다. 200 ul의 클로로포름 (chloroform)을 투입하고 섞어준 다음 상온에서 15분간 방치하고 섭씨 4도의 온도에서 15분 동안 회전 속도 1300 rpm으로 원심 분리하여 DNA와 단백질의 고형체인 침전 부위를 제외하고 상층액 만을 회수하였다. 다음으로 500 ul의 이 소프로판올 (isopropanol)을 추가로 투입하고 상온에서 10분간 방치한 후, 섭씨 4도의 온도에서 10분 동안 회전 속도 1300 rpm으로 원심 분리하여 남아있는 클로로포름 성분을 제거하였다. 그리고 75% EtOH 1 ml로 세척한 다음 섭씨 4도에서 5분 동안 회전 속도 8000 rpm으로 원심 분리한 다음 상층액을 제거하고 펠렛(pellet)을 건조하였다. 그 후 DEPC (diethyl pyrocarbonate) water 20 ul에 상기 펠렛을 녹여 토탈 RNA를 준비하였다. 1 ml of Trizol reagent (manufactured by Trizol reagent Sigma) was added to the recovered embryonic stem cells, and left at room temperature for 5 minutes to destroy cells to elute cell contents. 200 ul of chloroform was added and mixed, and the mixture was left at room temperature for 15 minutes and centrifuged at a rotational speed of 1300 rpm for 15 minutes at a temperature of 4 degrees Celsius to recover only the supernatant except the precipitation site, which is a solid body of DNA and protein. It was. Next, 500 ul of isopropanol was further added and left at room temperature for 10 minutes, followed by centrifugation at a rotational speed of 1300 rpm for 10 minutes at a temperature of 4 degrees Celsius to remove the remaining chloroform components. After washing with 1 ml of 75% EtOH and centrifuged at 8000 rpm for 5 minutes at 4 degrees Celsius, the supernatant was removed and the pellet was dried. Then, the pellet was dissolved in 20 ul of DEPC (diethyl pyrocarbonate) water to prepare total RNA.

실시예Example 2:  2: 역전사Reverse transcription 중합 효소 연쇄 반응( Polymerase chain reaction ( RTRT -- PCRPCR )을 이용한 With) 유도다능성Induction pluripotency 관련 유전자의 클로닝( Cloning of related genes cloningcloning ))

(1) cDNA 합성 (1) cDNA synthesis

cDNA를 합성하기 위하여 상기 토탈 RNA 5 ug과 올리고 (oligo) dT 2 ul를 혼합하여 70℃에서 5분간 반응시킨 후 4℃에서 5분간 방치하였다. 물 5.6 ul, MLVv RT 5X 버퍼 (buffer) 4 ul, 25 mM 염화마그네슘 (MgCl2) 2.4 ul, 10 mM dNTP 1 ul, RNasin 리보핵산 분해효소 저해제 (Ribonuclease inhibitor) 1 ul 및 MLV-RTase 역전사 효소 (reverse transcriptase (Promega사 제조)) 1 ul이 혼합된 역전사 혼합물 (reverse transcription mixture)을 준비하였다. 상기 역전사 혼합물 15 ul를 상기 total RNA 및 올리고 dT의 혼합물에 추가로 투입한 다음 25℃에서 5분 동안 결합 (annealing), 37℃에서 60분 동안 신장(extending)시키고, 70℃에서 15분간 MLV-RTase 역전사 효소 (reverse transcriptase)를 불활성화 (inactivation)하였 다. In order to synthesize cDNA, 5 ug of total RNA and oligo dT 2 ul were mixed and reacted at 70 ° C. for 5 minutes, and then left at 4 ° C. for 5 minutes. 5.6 ul of water, MLVv RT 5X buffer 4 ul, 25 mM magnesium chloride (MgCl 2 ) 2.4 ul, 10 mM dNTP 1 ul, RNasin Ribonuclease inhibitor 1 ul and MLV-RTase reverse transcriptase (promega) 1 ul mixed reverse transcription mixture (reverse transcription mixture) prepared It was. 15 ul of the reverse transcription mixture was further added to the mixture of total RNA and oligo dT, followed by annealing at 25 ° C. for 5 minutes, extending at 37 ° C. for 60 minutes, and MLV- for 15 minutes at 70 ° C. RTase reverse transcriptase was inactivated.

(2) 역전사 중합 효소 연쇄 반응(RT-PCR)(2) Reverse Transcription Polymerase Chain Reaction (RT-PCR)

합성된 cDNA를 I-Taq 중합효소 (Taq polymerase invitrogen사 제조)를 이용하여 95℃에서 15분, 53℃에서 1분, 72℃에서 1분으로 30 사이클 (cycles) 반복한 후, 72℃에서 5분 동안 신장 (extension)하였다. 유전자 클로닝 (gene cloning)에 사용된 프라이머 (primer)는 mOCT4 (F-EcoRI : gaattcatggctggacacctggcttcag(서열번호 1), R-NotI :gcggccgcttaaccccaaagctccaggttc(서열번호 2)), Sox2 (F-EcoR1: gggaa gaattct atgtataacatgatggagacggag(서열번호 3) R-Sal I: gggaa gtcgac tcacatgtgcgacaggggcagtgtgcc(서열번호 4)), Klf4 (F-EcoR I: gggaa gaattct atgaggcagccacctggcgagtctgac(서열번호 5) R-Sal I: gggaa gtcgac ttaaaagtgcctcttcatgtgtaag(서열번호 6)), c-MYC (F-EcoR I: gggaa gaattct ctggatttcctttgggcgttggaaacc(서열번호 7) R-Sal I: gggaa gtcgac ttatgcaccagagtttcgtcgaagctgttc(서열번호 8))을 사용하였다. PCR 후 DNA band는 전기영동하여 ethidum bromide으로 염색한 후 자외선 (UV) 하에서 관찰하였으며, T-벡터 클로닝을 실시하였다.Synthesized cDNA was repeated 30 cycles for 15 minutes at 95 ℃, 1 minute at 53 ℃, 1 minute at 72 ℃ using I-Taq polymerase (manufactured by Taq polymerase invitrogen), 5 at 72 ℃ It was extended for minutes. Primers used for gene cloning include mOCT4 (F-EcoRI: gaattcatggctggacacctggcttcag (SEQ ID NO: 1), R-NotI: gcggccgcttaaccccaaagctccaggttc (SEQ ID NO: 2)), Sox2 (F-EcoR1: ggggga gagatct atagata Number 3) R-Sal I: gggaa gtcgac tcacatgtgcgacaggggcagtgtgcc (SEQ ID NO: 4)), Klf4 (F-EcoR I: gggaa gaattct atgaggcagccacctggcgagtctgac (SEQ ID NO: 5) R-Sal I: gggaa gtcgac ttaaaagtgta cgt MYC (F-EcoR I: gggaa gaattct ctggatttcctttgggcgttggaaacc (SEQ ID NO: 7) R-Sal I: gggaa gtcgac ttatgcaccagagtttcgtcgaagctgttc (SEQ ID NO: 8)) was used. After PCR, the DNA band was electrophoresed, stained with ethidum bromide, and observed under ultraviolet (UV) light. T-vector cloning was performed.

(3) 발현벡터에 재조합(3) recombination into expression vectors

4가지 유도 다능성 관련 유전자 (Oct4, Sox2, Klf4, c-Myc)를 T-vector에 클로닝후 pcDNA 3와 pDS-xb GFP 발현벡터에 각각 재조합하였다(도 1a 및 1b 참고).  Four induced pluripotency related genes (Oct4, Sox2, Klf4, c-Myc) were cloned into T-vector and recombined into pcDNA 3 and pDS-xb GFP expression vectors, respectively (see FIGS. 1A and 1B).

실시예Example 3: 마우스 섬유아세포에 나노입자를 이용하여 유전자 도입 3: Gene introduction using nanoparticles into mouse fibroblasts

토탈 200 ul의 혈청이 배제된 배양액에 나노입자와 유전자의 결합을 유도하기 위하여 토탈 2 ug의 나노입자와 네 가지의 클로닝된 유도 다능성 유전자 (Oct4: Sox2: Klf4: c-Myc)를 1:1:1:1의 비율로 혼합하여 15분간 상온에서 방치 후 미리 96 well 배양조에서 미리 배양된 마우스 섬유아 세포 (1x104/ml)에 도포한 후 배양조의 수직방향으로 자기장을 형성시키는 magetic plate를 이용하여 15분간 나노입자와 유전자 결합체를 MEF 세포에 도입시켰다. 도입 후 혼합액을 제거한 후 마우스 줄기세포의 자가 증식에 관련된 LIF가 들어있는 줄기세포배양액(DMEM+ 15% FBS+ antibiotics+ NEAA)을 넣어준 후 배양기에 넣어 배양하였다. Total 2 ug of nanoparticles and four cloned induced pluripotent genes (Oct4: Sox2: Klf4: c-Myc) were 1: After mixing at a ratio of 1: 1: 1, the mixture is left at room temperature for 15 minutes, and then applied to mouse fibroblasts (1x10 4 / ml) pre-cultured in a 96 well culture vessel, and then formed a magnetic field in the vertical direction of the culture vessel. Nanoparticles and gene conjugates were introduced into MEF cells for 15 minutes using. After the introduction, the mixed solution was removed and the stem cell culture solution (DMEM + 15% FBS + antibiotics + NEAA) containing LIF related to the autologous proliferation of mouse stem cells was added to the incubator.

실시예Example 4: 유도  4: induction 다능성Versatility 줄기세포의 확립  Establishment of Stem Cells

유전자 도입 후 6일째 세포를 트립신 처리하여 분리한 후 1 X 104/ml의 농도로 STO 지지세포가 깔려있는 디쉬에 리플레이팅 하였다. 리플레이팅 후 이틀에 한번씩 줄기세포 배양액으로 교체하여 배양하였다. 그리고 생성된 각 콜로니를 물리적으로 회수하여 새로운 지지세포가 깔려있는 디쉬에 리플레이팅 하였다. 이때부터 계대배양 1로 명명하였다. Six days after the gene was introduced, the cells were separated by trypsin treatment, and then replated in a dish coated with STO support cells at a concentration of 1 × 10 4 / ml. After replating, the cells were replaced with a stem cell culture solution every two days. Each colony was physically recovered and replated in a dish on which new support cells were laid. From this time it was named subculture 1.

실시예Example 5:  5: 웨스턴Weston 블럿팅Blotting

전기영동을 위한 단백질 시료의 추출은 유도 다능성 줄기세포를 ice-cold Tris buffered saline (TBS; 20 mM Tris-HCl, pH 8.0, 137 mM NaCl)으로 3회 수세한 후, lysis buffer (TBS, 1% NP-40, 1 mM sodium orthovanadata, 10 ㎍/㎖ leupeptin 및 1 mM PMSF)를 넣어 4℃에서 20분간 반응시키고 12,000 × g에서 15분간 원심 분리하여 얻은 상등액의 단백질을 BSA를 표준물질로 하여 BCA 단백질 정량 kit을 이용해 562 nm에서 흡광도를 측정하여 정량 한 후 동일한 양의 단백질을 가지고 sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)로 분리시킨 후, 단백질을 나이트로셀루로스 막에 transfer하였다. 이 막을 항체의 비 특이적 결합을 차단하기 위하여 blocking buffer (5% non-fat milk와 0.1% Tween 20을 함유한 TBS용액)에서 1시간 동안 반응시킨 후, 각 검증 단백질에 대한 항체를 가하여 1~2시간 동안 반응시켰다. 이어서 0.1% Tween 20을 함유한 TBS-T 용액으로 10분씩 3차례 수세한 다음, peroxidase-conjugated anti-mouse IgG 혹은 anti-rabbit IgG를 2차 항체로 1-2시간 동안 반응시켰다. 0.1% Tween 20을 함유한 TBS-T 용액으로 10분씩 3차례 수세한 다음 ECL system으로 반응시킨 후 X-ray film상에서 단백질을 검증하였다. 각 시료의 단백질 정량은 BCA protein assay kit를 사용하여 565 nm에서 흡광도를 측정하여 실시하였다. Extraction of protein samples for electrophoresis was performed by washing the induced pluripotent stem cells with ice-cold Tris buffered saline (TBS; 20 mM Tris-HCl, pH 8.0, 137 mM NaCl) three times, followed by lysis buffer (TBS, 1). % NP-40, 1 mM sodium orthovanadata, 10 μg / ml leupeptin and 1 mM PMSF) were added and reacted at 4 ° C. for 20 minutes and centrifuged at 12,000 × g for 15 minutes. After measuring the absorbance at 562 nm using a protein quantitative kit, the protein was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with the same amount of protein, and then the protein was transferred to nitrocellulose membrane. The membrane was reacted for 1 hour in a blocking buffer (TBS solution containing 5% non-fat milk and 0.1% Tween 20) to block nonspecific binding of the antibody, followed by addition of an antibody to each test protein. The reaction was carried out for 2 hours. Subsequently, the cells were washed three times for 10 minutes with a TBS-T solution containing 0.1% Tween 20. Then, peroxidase-conjugated anti-mouse IgG or anti-rabbit IgG was reacted with a secondary antibody for 1-2 hours. After washing three times for 10 minutes with a TBS-T solution containing 0.1% Tween 20, and then reacted with an ECL system, the protein was verified on an X-ray film. Protein quantification of each sample was performed by measuring the absorbance at 565 nm using a BCA protein assay kit.

실시예Example 6: 면역학적 세포염색 6: immunological cell staining

면역학적 세포염색을 위하여 유도 다능성 줄기세포를 4% paraformaldehyde 용액에 고정하였고, 10분 동안 0.2% Triton X-100 용액으로 처리하였다. 그 후 PBS로 수세한 후 10% nomal goat serum 용액에서 1시간 동안 불럭킹을 실시하였다. 1 차 항체는 4℃에서 밤새 반응시켰으며 PBS로 수세 후 형광 물질이 표지된 2차 항체를 1시간 동안 처리하였다. PBS로 여러 번 수세 후 DAPI 가 포함된 mounting solution을 이용하여 커버 글래스 위에 얹은 후 형광현미경 하에서 관찰을 실시하였다. For immunological cell staining, induced pluripotent stem cells were fixed in 4% paraformaldehyde solution and treated with 0.2% Triton X-100 solution for 10 minutes. Thereafter, washing with PBS was performed for 1 hour in 10% normal goat serum solution. The primary antibody was reacted overnight at 4 ° C. and washed with PBS for 1 hour with a secondary antibody labeled with fluorescent material. After washing with PBS several times, it was mounted on the cover glass using a mounting solution containing DAPI and observed under a fluorescence microscope.

실시예Example 7:  7: RTRT -- PCRPCR

cDNA를 합성하기 위하여 상기 total RNA 5 ug과 올리고 (oligo) dT 1 ul를 혼합하여 70℃에서 5분간 반응시킨 후 4℃에서 10분간 방치하였다. 물 5.6 ul, MLV- RT 5X 버퍼 (buffer) 4 ul, 25 mM 염화마그네슘 (MgCl2) 2.4 ul, 10 mM dNTP 1 ul, RNasin 리보핵산 분해효소 저해제 (Ribonuclease inhibitor) 1 ul 및 MLV-RTase 역전사 효소 (reverse transcriptase Promega사 제조) 1 ul 가 혼합된 역전사 혼합물 (reverse transcription mixture)을 준비하였다. In order to synthesize cDNA, 5 ug of total RNA and oligo dT 1 ul were mixed and reacted at 70 ° C. for 5 minutes and then left at 4 ° C. for 10 minutes. 5.6 ul of water, MLV- RT 5X buffer 4 ul, 25 mM magnesium chloride (MgCl 2 ) A reverse transcription mixture was prepared in which 2.4 ul, 10 mM dNTP 1 ul, RNasin Ribonuclease inhibitor 1 ul, and 1 ul of MLV-RTase reverse transcriptase (manufactured by reverse transcriptase Promega) were mixed.

상기 역전사 혼합물 15 ul를 상기 total RNA 및 올리고 dT의 혼합물에 추가로 투입한 다음 25℃에서 5분 동안 결합 (annealing), 37℃에서 60분 동안 신장(extending)시키고, 70℃에서 15분간 MLV-RTase 역전사 효소 (reverse transcriptase)를 불활성화 (inactivation)하였다. 15 ul of the reverse transcription mixture was further added to the mixture of total RNA and oligo dT, followed by annealing at 25 ° C. for 5 minutes, extending at 37 ° C. for 60 minutes, and MLV- for 15 minutes at 70 ° C. RTase reverse transcriptase was inactivated.

합성된 cDNA를 I-Taq 중합효소 (Taq polymerase invitrogen사 제조)를 이용하여 55-60°C에서 30 cycle 동안 증폭하였다. 사용된 primer sequences 다음과 같다. HA (5- tac cca tac gat gtt cca gat tac gct -3(서열번호 9)); Oct-4 (499 bp, up, 5- ctc ttt gga aag gtg ttc ag-3(서열번호 10), down, 5-tca gga aaa ggg act gag ta -3(서열번호 11)); Nanog (450 bp, up, 5-cag atg caa ctc tcc tc-3(서열번호 12), down, 5-aat tca cct cca aat cac tg-3(서열번호 13)); Brachyury (230 bp, up, 5-gag aga gcg agc ctc caa ac-3(서열번호 14), down, 5-gct gtg act gcc tac cag aat g-3(서열번호 15)); Fectoprotein (466bp, up, 5-atg tat gcc cca gcc att ctg tcc -3(서열번호 16), down, 5-gag ata agc ctt cag gtt tga cgc-3(서열번호 17)). Sox1 (250 bp, up, 5-aga acc cca aga tgc aca ac-3(서열번호 18), down, 5-gcc agc gag tac ttg tcc tt-3(서열번호 19)) G3PDH (450 bp, up, 5-gtc gtg gag tct act ggt gt-3(서열번호 20), down, 5-gtc atc ata ctt ggc agg tt-3(서열번호 21)). Synthesized cDNA was amplified for 30 cycles at 55-60 ° C using I-Taq polymerase (manufactured by Taq polymerase invitrogen). Primer sequences used are as follows. HA (5-tac cca tac gat gtt cca gat tac gct -3 (SEQ ID NO: 9)); Oct-4 (499 bp, up, 5-ctc ttt gga aag gtg ttc ag-3 (SEQ ID NO: 10), down, 5-tca gga aaa ggg act gag ta -3 (SEQ ID NO: 11)); Nanog (450 bp, up, 5-cag atg caa ctc tcc tc-3 (SEQ ID NO: 12), down, 5-aat tca cct cca aat cac tg-3 (SEQ ID NO: 13)); Brachyury (230 bp, up, 5-gag aga gcg agc ctc caa ac-3 (SEQ ID NO: 14), down, 5-gct gtg act gcc tac cag aat g-3 (SEQ ID NO: 15)); Fectoprotein (466 bp, up, 5-atg tat gcc cca gcc att ctg tcc -3 (SEQ ID NO: 16), down, 5-gag ata agc ctt cag gtt tga cgc-3 (SEQ ID NO: 17)). Sox1 (250 bp, up, 5-aga acc cca aga tgc aca ac-3 (SEQ ID NO: 18), down, 5-gcc agc gag tac ttg tcc tt-3 (SEQ ID NO: 19)) G3PDH (450 bp, up, 5-gtc gtg gag tct act ggt gt-3 (SEQ ID NO: 20), down, 5-gtc atc ata ctt ggc agg tt-3 (SEQ ID NO: 21).

상기 실시예의 결과는 다음과 같다.The result of the above example is as follows.

유도 Judo 다능성Versatility 관련 유전자의 도입 및 검정 Introduction and testing of related genes

먼저 클로닝하여 재조합된 IPS 유전자를 마우스 섬유아세포에 나노입자를 이용하여 형질 도입한 결과 도입된 유전자에 태깅되어있는 GFP 단백질 발현을 도 2와 같이 확인할 수 있었다. 따라서 형질 도입된 유전자가 마우스 섬유아세포 내에서 안정하게 발현하고 있다는 것을 확인할 수 있었다.First, the cloned IPS gene was transfected into mouse fibroblasts using nanoparticles, and as a result, expression of the GFP protein tagged in the introduced gene was confirmed as shown in FIG. 2. Therefore, it was confirmed that the transduced gene was stably expressed in mouse fibroblasts.

유도 Judo 다능성Versatility 줄기세포주Stem cell line 확립 Establish

나노입자와 네 가지의 클로닝된 유도 다능성 유전자들을 혼합하여 마우스 섬유아 세포 (1 X 104/ml)에 도포하여 magetic plate 위에서 형질도입 후 혼합액을 제 거하고 LIF가 들어있는 줄기세포 배양액을 넣어준 후 배양기에 넣어 배양하였다. 유전자 도입 후 트립신 처리하여 분리하고 1 X 104/ml의 농도로 STO 지지세포가 깔려있는 디쉬에 리플레이팅하여 이틀에 한번씩 줄기세포 배양액으로 교체하여 배양하였다. 그리고 생성된 각 콜로니를 물리적으로 회수하여 새로운 지지세포가 갈려있는 디쉬에 리플레이팅하였다. 지시세포에서 계대배양을 실시한 후 passage 4시기에 도 3과 같이 줄기세포와 유사한 형태의 콜로니가 형성 및 유지되는 세포주를 확립하였다. Nanoparticles and four cloned induced pluripotency genes were mixed and applied to mouse fibroblasts (1 X 10 4 / ml), transduced on a magetic plate, and then the mixed solution was removed and a stem cell culture containing LIF was added. After injecting into the incubator and incubated. After transduction, the cells were separated by trypsin treatment, replated in a dish coated with STO support cells at a concentration of 1 X 10 4 / ml, and replaced with cultured stem cells every two days. Each colony was physically recovered and replated in a dish with new donor cells. After passage in the indicator cells, cell lines in which colonies were formed and maintained in the form similar to those of stem cells were established at the 4th passage.

확립된 Established iPSiPS 세포 주에서  In the cell line RTRT -- PCRPCR 를 이용한 내외인성 유전자 발현 분석Analysis of Endogenous Gene Expression Using

확립된 세포주의 유전자 발현 양상을 분석하기 위하여 RT-PCR을 수행한 결과 내재성 iPS 관련 유전자 (Oct4, Sox2, Klf4, c-Myc)들 모두 확립된 iPS 세포에서 발현되는 것을 확인할 수 있었으며, 초기 계대배양시 (passage 8까지)의 세포 주에서는 형질전환에 사용된 외인성 네 가지의 iPS 관련유전자들이 발현되고 있는 것을 확인할 수 있었다. 하지만 15 passage 이상 계대배양된 세포 주에서는 이러한 네 가지 외인성 유전자가 발현되지 않은 것을 확인할 수 있었다.(그림 4) RT-PCR was performed to analyze the gene expression patterns of established cell lines. It was confirmed that all endogenous iPS-related genes (Oct4, Sox2, Klf4, c-Myc) were expressed in established iPS cells. In cultured cells (up to passage 8), four exogenous iPS genes used for transformation were expressed. However, these four exogenous genes were not expressed in cell lines passaged over 15 passages (Figure 4).

확립된 Established iPSiPS 세포주에서  In cell lines WesternWestern blottingblotting 을 이용한 내인성 유전자 단백질 발현 분석Expression Analysis of Endogenous Gene Proteins

유도 다능성 관련 유전자들의 단백질 발현 양상을 확인하기 위하여 Westerm blotting을 실시한 결과 도 5와 같이 대조군인 MEF에서는 유도 다능성 관련 유전자의 단백질 발현이 확인되지 않았거나 그 발현 정도가 낮았다. 그러나 확립된 유도 다능성 세포주인 L1 및 L3에서는 배아줄기세포주인 D3와 비슷한 정도로 유도 다능성 관련 단백질들의 발현이 높게 나타나고 있음을 확인할 수 있었다. 이들 결과들로부터, 본 발명자가 확립 한 MEF를 이용한 iPS 세포주가 유도 다능성 줄기세포로의 리프로그래밍을 통하여 확립되었음을 확인할 수 있었다.As a result of performing Westerm blotting to confirm the protein expression pattern of the induced pluripotency related genes, the protein expression of the induced pluripotency related gene was not confirmed or low in the MEF control group as shown in FIG. 5. However, it was confirmed that the expression of induced pluripotency-related proteins in the established induced pluripotent cell lines L1 and L3 was similar to that of embryonic stem cell line D3. From these results, it was confirmed that the iPS cell line using MEF established by the present inventors was established through reprogramming to induced pluripotent stem cells.

확립된 유도 Established induction 다능성Versatility 줄기세포주의  Stem cell 전능성Omnipotence 검정 black

유전자 및 단백질 발현 분석을 통하여 확립된 세포주의 Pluripotency (전능성)를 검증하기 위하여 면역학적 세포염색을 통하여 재검증한 결과 유전자 및 단백질 발현 검증 결과와 마찬가지로 전능성 관련 표지 인자인 Oct4와 SSEA1의 발현이 도 6과 같이 높게 발현되는 것을 확인하였다. 따라서 나노입자를 이용한 유전자 도입을 통해 마우스 섬유아세포를 형질전환시켜 iPS 세포를 생성하였을 경우에도 이 세포들이 줄기세포의 전능성을 가지는 것으로 예상되었다. As a result of re-validation through immunological cell staining to verify the pluripotency of the cell line established through gene and protein expression analysis, the expression of pluripotency-related markers Oct4 and SSEA1 was similar to that of gene and protein expression verification. It was confirmed that it is expressed as high. Therefore, even when iPS cells were generated by transforming mouse fibroblasts through gene introduction using nanoparticles, these cells were expected to have the potential of stem cells.

면역학적 세포염색을 통한 확립된 유도 Established Induction Through Immunological Cytostaining 다능성Versatility 줄기세포 주의  Stem Cell Attention 전능성Omnipotence 검정 black

상기 세포주를 이용하여 줄기세포의 특성중의 하나인 배아체(embryonic body) 형성 유무를 조사하고자 4일 동안 박테리아 배양조에서 배양한 결과 도 7과 같이 줄기세포의 특성 중의 하나인 배아체를 형성할 수 있음을 확인하였다. In order to investigate the formation of embryonic body (embryonic body), one of the characteristics of stem cells using the cell line, as a result of culturing in a bacterial culture tank for 4 days, as shown in FIG. Confirmed that it can.

확립된 유도 Established induction 다능성Versatility 줄기세포의  Stem cell 삼배엽성Tricotyledonous 분화검정 Differentiation Test

확립된 유도 다능성 줄기세포를 이용한 배아체 형성으로부터 삼배엽성 으로의 분화를 유도한 결과 삼배엽성 (Ectoderm: Tuj1, Mesoderm: Brachury, Endoderm: HNF) 표지인자를 모두 발현함을 면역학적 세포염색을 통하여 확인할 수 있었으며. 또한 삼배엽성의 유전자의 발현양상을 조사한 결과 각각의 표지유전자가 발현되고 있는 것을 RT-PCR 방법을 통하여 확인할 수 있었다 (도 8). Induction of differentiation from embryonic body formation to trioderm using established induced pluripotent stem cells resulted in the expression of all three ectoderm (Ectoderm: Tuj1, Mesoderm: Brachury, Endoderm: HNF) markers through immunological cell staining. I could confirm it. In addition, as a result of examining the expression pattern of the trioderm genes, it was confirmed that each marker gene is expressed by the RT-PCR method (FIG. 8).

도 1은 재조합에 사용된 발현벡터의 구조를 나타낸 그림; 네가지의 유전자를 제조합하기 위해 사용된 pcDNA3 (도1a) 와 pds_XB GFP(도1b) 발현벡터의 모식도,1 is a diagram showing the structure of an expression vector used for recombination; Schematic diagram of the pcDNA3 (FIG. 1A) and pds_XB GFP (FIG. 1B) expression vectors used to synthesize four genes,

도 2는 MEF 세포에서의 IPS 유전자 발현 확인을 나타낸 사진; MEF 세포에서 나노입자를 사용하여 형질도입 후 48시간째 형광현미경하에서 관찰하였을 때 발현된 GFP 형광단백질을 통하여 IPS 유전자의 발현을 확인한 사진,Figure 2 is a photograph showing the confirmation of IPS gene expression in MEF cells; Photograph confirming the expression of the IPS gene through the expressed GFP fluorescence protein when observed under fluorescence microscope 48 hours after transduction using nanoparticles in MEF cells,

도 3은 MEF 세포로부터 형성된 iPS 세포 형태를 가지는 세포주 확립을 나타낸 사진; 나노입자를 사용하여 형질도입 후 STO 지지세포에서 계대배양후 생성된 여러 ips 세포주를 나타낸 사진,3 is a photograph showing cell line establishment having iPS cell morphology formed from MEF cells; Photo showing several ips cell lines generated after passage in STO support cells after transduction using nanoparticles,

도 4는 확립된 iPS 세포주에서 RT-PCR를 이용한 내외인성 유전자 발현분석를 나타낸 사진; 확립된 세포주에서 내외인성 IPS 관련 유전자들의 발현분석을 검정한 사진으로 상단좌측의 그림은 15번째 계대배양시 GFP 형광유전자가 발현되지 않는것 실험에 사용된 벡터를 대조군으로 검정한 사진이며, 상단 우측의 사진은 네가지의 내인성ips 관련유전자가 발현되는것을 RT-PCR을 통하여 검정한 사진이며 하단의 그림은 형질 도입된 유전자들이 8번째 계대배양시에 발현되는 것을 RT-PCR을 통하여 확인한 사진임,Figure 4 is a photograph showing the endogenous gene expression analysis using RT-PCR in the established iPS cell line; The top left picture shows the expression analysis of the endogenous IPS-related genes in the established cell line. The GFP fluorescent gene is not expressed at the 15th passage. Figure 4 shows the expression of four endogenous ips-related genes by RT-PCR. The picture below shows the expression of the transduced genes expressed at the 8th passage through RT-PCR.

도 5는 확립된 iPS 세포주에서 Western blotting을 이용한 내인성 유전자 단백질 발현 분석을 나타낸 사진; 확립된 세포주에서 네 가지의 IPS 관련 유전자의 단백질 발현 분석을 Western blotting을 통하여 MEF 세포와 IPS 세포주에서 검정한 사진임,5 is a photograph showing endogenous gene protein expression analysis using Western blotting in established iPS cell lines; Analysis of protein expression of four IPS-related genes in established cell lines by Western blotting assayed in MEF cells and IPS cell lines.

도 6은 면역학적 세포염색을 통한 확립된 유도 다능성 줄기세포주의 전능성 검정을 나타낸 사진; 줄기세포의 전능성 마커인 oct4와 SSEA1 항체를 이용하여 면역학적 세포염색을 통하여 전능성을 검정한 사진,6 is a photograph showing an omnipotent assay of established induced pluripotent stem cell lines via immunological cell staining; Photopotential assay using immunological cell staining using oct4 and SSEA1 antibodies, which are omnipotent markers of stem cells,

도 7은 면역학적 세포염색을 통한 확립된 유도 다능성 줄기세포주의 배아체 형성능을 검정한 사진; 확립된 세포주의 배아체 형성능을 알아보기위하여 4일 동안 부유배양을 유도 하여 형성된 배아체의 형태를 나타낸 사진,7 is a photograph of the embryogenic formation ability of the established induced pluripotent stem cell line through immunological cell staining; Photograph showing the shape of the embryoid body formed by inducing suspension culture for 4 days to determine the embryonic body forming ability of the established cell line,

도 8은 확립된 유도 다능성 줄기세포의 삼배엽성 분화검정을 나타낸 사진.Figure 8 is a photograph showing the trioderm differentiation assay of the established induced pluripotent stem cells.

형성된 배아체로부터 외배엽,내배엽, 중배엽으로의 분화능을 검정하기위하여 4일 동안 부유배양 후 분화유도하여 형성된 세포들을 면역학적 세포염색을 통하여 검정한 사진(도8a)이며 하단의 사진은(도8b) 삼배엽성관련 유전자 발현을 RT-PCR을 통하여 검정한 사진임.In order to test the differentiation ability from the formed embryoid body to ectoderm, endoderm and mesoderm, cells formed by differentiation induction after floating culture for 4 days were assayed through immunological cell staining (FIG. 8A) and the bottom photo (FIG. 8B). Triploid gene expression was assayed by RT-PCR.

<110> Konkuk University Industrial Cooperation Corp. <120> Method of manufacturing iPS (induced pluripotent stem) cells using nonviral gene delivery system and use thereof <160> 21 <170> KopatentIn 1.71 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F-EcoRI <400> 1 gaattcatgg ctggacacct ggcttcag 28 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R-NotI <400> 2 gcggccgctt aaccccaaag ctccaggttc 30 <210> 3 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> F-EcoR1 <400> 3 gggaagaatt ctatgtataa catgatggag acggag 36 <210> 4 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> R-Sal I <400> 4 gggaagtcga ctcacatgtg cgacaggggc agtgtgcc 38 <210> 5 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> F-EcoR I <400> 5 gggaagaatt ctatgaggca gccacctggc gagtctgac 39 <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> R-Sal I <400> 6 gggaagtcga cttaaaagtg cctcttcatg tgtaag 36 <210> 7 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> F-EcoR I <400> 7 gggaagaatt ctctggattt cctttgggcg ttggaaacc 39 <210> 8 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> R-Sal I <400> 8 gggaagtcga cttatgcacc agagtttcgt cgaagctgtt c 41 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> HA <400> 9 tacccatacg atgttccaga ttacgct 27 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oct-4 <400> 10 ctctttggaa aggtgttcag 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oct-4 <400> 11 tcaggaaaag ggactgagta 20 <210> 12 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Nanog <400> 12 cagatgcaac tctcctc 17 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nanog <400> 13 aattcacctc caaatcactg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Brachyury <400> 14 gagagagcga gcctccaaac 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Brachyury <400> 15 gctgtgactg cctaccagaa tg 22 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Fectoprotein <400> 16 atgtatgccc cagccattct gtcc 24 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Fectoprotein <400> 17 gagataagcc ttcaggtttg acgc 24 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox1 <400> 18 agaaccccaa gatgcacaac 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox1 <400> 19 gccagcgagt acttgtcctt 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> G3PDH <400> 20 gtcgtggagt ctactggtgt 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> G3PDH <400> 21 gtcatcatac ttggcaggtt 20 <110> Konkuk University Industrial Cooperation Corp. <120> Method of manufacturing iPS (induced pluripotent stem) cells          using nonviral gene delivery system and use <160> 21 <170> KopatentIn 1.71 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F-EcoRI <400> 1 gaattcatgg ctggacacct ggcttcag 28 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R-NotI <400> 2 gcggccgctt aaccccaaag ctccaggttc 30 <210> 3 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> F-EcoR1 <400> 3 gggaagaatt ctatgtataa catgatggag acggag 36 <210> 4 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> R-Sal I <400> 4 gggaagtcga ctcacatgtg cgacaggggc agtgtgcc 38 <210> 5 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> F-EcoR I <400> 5 gggaagaatt ctatgaggca gccacctggc gagtctgac 39 <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> R-Sal I <400> 6 gggaagtcga cttaaaagtg cctcttcatg tgtaag 36 <210> 7 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> F-EcoR I <400> 7 gggaagaatt ctctggattt cctttgggcg ttggaaacc 39 <210> 8 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> R-Sal I <400> 8 gggaagtcga cttatgcacc agagtttcgt cgaagctgtt c 41 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> HA <400> 9 tacccatacg atgttccaga ttacgct 27 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oct-4 <400> 10 ctctttggaa aggtgttcag 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oct-4 <400> 11 tcaggaaaag ggactgagta 20 <210> 12 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Nanog <400> 12 cagatgcaac tctcctc 17 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nanog <400> 13 aattcacctc caaatcactg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Brachyury <400> 14 gagagagcga gcctccaaac 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Brachyury <400> 15 gctgtgactg cctaccagaa tg 22 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Fectoprotein <400> 16 atgtatgccc cagccattct gtcc 24 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Fectoprotein <400> 17 gagataagcc ttcaggtttg acgc 24 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox1 <400> 18 agaaccccaa gatgcacaac 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox1 <400> 19 gccagcgagt acttgtcctt 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> G3PDH <400> 20 gtcgtggagt ctactggtgt 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> G3PDH <400> 21 gtcatcatac ttggcaggtt 20  

Claims (10)

(a)유도 다능성과 관련된 유전자를 벡터에 클로닝하여 유도 다능성 관련 유전자 벡터를 준비하는 단계; 및 (a) cloning a gene associated with induction pluripotency into a vector to prepare an induced pluripotency related gene vector; And (b) 상기 유도 다능성 관련 유전자 벡터 및 조합된 벡터를 이용하여 유도 다능성 관련 유전자를 나노입자를 이용하여 세포에 도입시켜 유도 다능성 관련 유전자가 도입된 유도 다능성 줄기세포의 제조 방법.(b) A method of producing induced pluripotent stem cells into which an induced pluripotency related gene has been introduced by introducing an induced pluripotency related gene into a cell using nanoparticles using the induced pluripotency related gene vector and the combined vector. 제1항에 있어서, 상기 방법은 (b) 단계 이후에 LIF가 들어있는 줄기세포 배양액을 넣어준 후 배양기에서 배양하고, 상기 세포를 지지세포가 깔려있는 디쉬에 리플레이팅하는 단계를 더욱 포함하는 유도 다능성 줄기세포의 제조 방법.The method according to claim 1, wherein the method further comprises the step of (b) adding a stem cell culture medium containing LIF and culturing in an incubator and replating the cells in a dish on which support cells are laid. Method for producing pluripotent stem cells. 제 1항에 있어서, 상기 유도 다능성 관련 유전자는 Oct4, Sox2, Klf4, 또는 c-Myc인 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.The method of claim 1, wherein the induced pluripotency related gene is Oct4, Sox2, Klf4, or c-Myc. 제 1항에 있어서, 상기 세포는 섬유아세포인 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.The method of claim 1, wherein the cells are fibroblasts. 제 4항에 있어서, 상기 섬유아세포는 마우스 섬유아세포인 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.The method of claim 4, wherein the fibroblasts are mouse fibroblasts. 제 1항에 있어서, 상기 나노입자는 폴리머로 코팅된 마그네틱 산화철로 제조된 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.The method of claim 1, wherein the nanoparticles are made of magnetic iron oxide coated with a polymer. 제 6항에 있어서, 상기 폴리머는 양이온 폴리머 폴리에틸렌이민(PEI)인 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.The method of claim 6, wherein the polymer is a cationic polymer polyethyleneimine (PEI). 제 2항에 있어서, 상기 지지 세포는 생쥐의 STO 세포주(embryonic 3. The method of claim 2, wherein said support cell is an embryonic STO cell line (embryonic) fibroblast cell line), hES 세포(human embryonic stem cell, 인간 배아줄기세포), hNP 세포(human neural progenitor, 인간 신경줄기 또는 신경전구세포) 및 hNPST-1 세포(hNP와 STO가 결합된 세포)로 구성된 군으로부터 선택된 하나 이상의 세포인 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.fibroblast cell line), hES cells (human embryonic stem cells), hNP cells (human neural progenitors) or hNPST-1 cells (hNP and STO cells combined) Method for producing induced pluripotent stem cells, characterized in that at least one cell selected from the group. 제 8항에 있어서, 상기 지지 세포는 생쥐의 STO 세포주(embryonic fibroblast cell line)인 것을 특징으로 하는 유도 다능성 줄기세포의 제조 방법.The method of claim 8, wherein the support cell is an STO cell line (embryonic fibroblast cell line) of a mouse. 제1항 또는 제2항의 방법에 의하여 제조된 유도 다능성 줄기세포.Induced pluripotent stem cells produced by the method of claim 1 or 2.
KR1020080058406A 2008-06-20 2008-06-20 Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof KR20090132236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080058406A KR20090132236A (en) 2008-06-20 2008-06-20 Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080058406A KR20090132236A (en) 2008-06-20 2008-06-20 Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof

Publications (1)

Publication Number Publication Date
KR20090132236A true KR20090132236A (en) 2009-12-30

Family

ID=41691328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080058406A KR20090132236A (en) 2008-06-20 2008-06-20 Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof

Country Status (1)

Country Link
KR (1) KR20090132236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008306A (en) * 2013-07-12 2015-01-22 대한민국(관리부서 : 농림축산식품부 농림축산검역본부) Media composition comprising interferon-γ and method for producing iduced pluripotent stem cell having none-graft rejection
KR101508476B1 (en) * 2012-04-24 2015-04-06 부산대학교 산학협력단 Method for producing stem cell-like cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508476B1 (en) * 2012-04-24 2015-04-06 부산대학교 산학협력단 Method for producing stem cell-like cell
KR20150008306A (en) * 2013-07-12 2015-01-22 대한민국(관리부서 : 농림축산식품부 농림축산검역본부) Media composition comprising interferon-γ and method for producing iduced pluripotent stem cell having none-graft rejection

Similar Documents

Publication Publication Date Title
US20200333326A1 (en) Human trophoblast stem cells and uses thereof
US11261426B2 (en) Pluripotent stem cell that can be isolated from body tissue
JP2020058385A (en) Pluripotent stem cells that can be isolated from living tissue
EP2982747B1 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2
Kennea et al. Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype
US20120128655A1 (en) Induced pluripotent stem cells
JP3953399B2 (en) Immortalized bone marrow mesenchymal stem cells
Kang et al. Induced pluripotent stem cells (iPSCs)—a new era of reprogramming
CN107075504B (en) Schwann&#39;s cell and its preparing process
Liu et al. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy
Hu et al. Derivation, expansion, and motor neuron differentiation of human-induced pluripotent stem cells with non-integrating episomal vectors and a defined xenogeneic-free culture system
KR20130133703A (en) A metabolites for the generation, maintenance, prolonged undifferentiated growth of pluripotent stem cells, composition comprising the same and method of culturing pluripotent stem cell using the same
WO2012133942A1 (en) Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body
CN107893049A (en) Produce induced multi-potent stem cell and the method for noble cells
KR20160063066A (en) Graphene oxide-polyethylenimine complex for gene delivery and uses thereof
JP6040494B2 (en) Method for producing pluripotent cells using bacteria having fermentation ability
KR20090132236A (en) Method of manufacturing ips (induced pluripotent stem) cells using nonviral gene delivery system and use thereof
WO2016076507A1 (en) Composition for reprogramming somatic cells into induced pluripotent stem cells, containing reptin, and method for reprogramming somatic cells into induced pluripotent stem cells by using same
Angel et al. Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells——Nanog transdifferentiates mesenchymal stem cells
KR101548534B1 (en) method for dedifferentiating adult cell to induced pluripotent stem cell using electromagnetic field
KR20120134360A (en) Composition for improving dedifferentiation of cells and method for producing induced pluripotent stem cells
Kwon et al. Generation of human neural stem cells by direct phenotypic conversion
CN114958767B (en) Preparation method of neural stem cell preparation constructed based on hiPSC cells
Xu et al. Road to future: iPSC clinical application in Parkinson’s disease treatment
AlHomoudi Generation of Neural Stem Cells (NSCs) from Human Fibroblasts Using QQ-Modified Sox2 and NeuroD1 Proteins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application