KR20090121001A - A rigidity measurement of the main spindle which uses magnetic force - Google Patents

A rigidity measurement of the main spindle which uses magnetic force Download PDF

Info

Publication number
KR20090121001A
KR20090121001A KR1020080047080A KR20080047080A KR20090121001A KR 20090121001 A KR20090121001 A KR 20090121001A KR 1020080047080 A KR1020080047080 A KR 1020080047080A KR 20080047080 A KR20080047080 A KR 20080047080A KR 20090121001 A KR20090121001 A KR 20090121001A
Authority
KR
South Korea
Prior art keywords
force
measuring device
main shaft
magnet
magnetic force
Prior art date
Application number
KR1020080047080A
Other languages
Korean (ko)
Inventor
이춘만
황영국
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020080047080A priority Critical patent/KR20090121001A/en
Publication of KR20090121001A publication Critical patent/KR20090121001A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/80Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating mechanical hardness, e.g. by investigating saturation or remanence of ferromagnetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/14Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means involving the displacement of magnets, e.g. electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Abstract

PURPOSE: A rigidity measuring device of a main shaft using magnetic force is provided to measure the change of rigidity due to the change of contact rate during the rotation of a main shaft using induction effect and repulsive power effect of a magnet. CONSTITUTION: A rigidity measuring device of a main shaft using magnetic force comprises a fixed block(10), a force measuring device(11), and a bracket. The force measuring device is formed on the fixed block. The bracket is installed on the top of the force measuring device. A magnet generating force pulling a main spindle system(14) is formed on the upper side of the bracket.

Description

자기력을 이용한 주축의 강성측정장치{A rigidity measurement of the main spindle which uses magnetic force}A rigidity measurement of the main spindle which uses magnetic force

본 발명은 자석의 흡인, 반발력 효과와 강자성체의 자기유도효과를 이용하여 주축계가 고속 회전시 원심력에 의한 접촉률 변화 효과를 고려할 수 있는 주축의 강성측정장치에 관한 것이다.The present invention relates to a stiffness measuring device of the spindle that can consider the effect of the contact rate change due to the centrifugal force when the spindle system rotates at high speed by using the magnet suction, repulsive force effect and the magnetic induction effect of the ferromagnetic material.

공작기계 산업은 전체 기계공업 산업발전을 주도하는 핵심기반사업이며, 특히 제품의 품질향상, 생산성 향상 및 관련 산업의 기술개발을 좌우하는 필수적인 분야이다.The machine tool industry is a core infrastructure that leads the development of the entire machine industry, and is an essential area that affects product quality improvement, productivity improvement and technology development in related industries.

최근 공작기계 기술개발 방향은 고정밀화, 고속화, 고성능화를 지향하고 있으며, 머시닝센터를 이용한 고속절삭 가공시 이들 욕구의 충족을 위하여 다양한 툴링기술의 연구가 요구되고 있다.Recently, the direction of machine tool technology development is aimed at high precision, high speed, and high performance, and research of various tooling technologies is required to satisfy these needs during high-speed cutting using a machining center.

머시닝센터에서 툴링은 기계본체와 절삭공구간의 인터페이스를 다루는 것으로써, 고속, 고정밀, 지능화, 다기능화, 무인화에 적용하기 위한 것이다.Tooling in the machining center deals with the interface between the machine body and the cutting tool, which is applied to high speed, high precision, intelligent, multifunctional and unmanned.

고속절삭가공을 위해서는 툴링 시스템의 강성을 높여 진동절감을 통한 양호한 주축구조가 설계되어야 하고 고속 회전마찰에 의한 발열억제문제가 해결되어야 한다.For high-speed cutting, a good spindle structure through vibration reduction should be designed to increase the rigidity of the tooling system, and the problem of heat suppression by high-speed rotational friction should be solved.

고속 가공용 툴링 시스템에 대한 문제로는 툴 홀더 생크(shank)의 형상문제, 주축과 공구의 클램핑(clamping) 문제가 주요 논의의 대상이 되고 있다.Problems with tooling systems for high speed machining include the problem of tool holder shank geometry and the clamping of the spindle and the tool.

즉, 공구를 공작기계에 얼마나 고정밀도로 부착시킬 것인가와 그 상태를 가공중에도 얼마만큼 유지시킬 수 있는가 하는 것이다.In other words, how precisely the tool is attached to the machine tool and how long can it be maintained during machining?

이를 위해 HSK, KM, BBT 생크 등 다양한 이면구속 툴링 시스템 및 클램핑 방법들이 연구, 개발되어 지고 있다.To this end, various backing tooling systems and clamping methods such as HSK, KM and BBT shanks have been researched and developed.

또한 주축 제작시 주축 끝단의 직경을 기준치수보다 조금 적게 하여 초기접촉 면압을 증대시켜 고속회전시의 결합 면압이 유지되게 하여 접촉 강성을 증대시키는 방법을 사용하고 있으며, 테이퍼 형상에 의한 쐐기효과를 이용하여 결합력의 증폭을 도모하고 있다.In addition, the diameter of the end of the spindle is slightly smaller than the standard dimension when the spindle is manufactured, so that the initial contact surface pressure is increased to maintain the mating surface pressure during high-speed rotation, thereby increasing the contact rigidity. To increase the binding force.

그러나 부적절한 툴 홀더 생크, 가공여유 및 결합력이 선정될 경우 결합정밀도 및 굽힘 강성이 저하되어 가공정밀도에 악영향을 줄 수 있고, 베어링 부위 등 주축에 직접적인 손상을 줄 수 있으므로 적절한 툴 홀더 생크, 가공여유, 결합력의 선정은 대단히 중요하다.However, if an inappropriate tool holder shank, machining margin and coupling force are selected, the coupling accuracy and bending stiffness may be deteriorated, which may adversely affect the machining accuracy and may directly damage the spindle such as the bearing part. The choice of binding force is very important.

이를 위해서는 일차적으로 절삭가공 중 공작기계 주축 인터페이스부의 정강성 변화 및 그에 영향을 미치는 인자들을 파악하는 것이 중요하다.For this purpose, it is important to understand the change in the rigidity of the spindle interface of the machine tool during cutting and the factors influencing it.

일반적으로 굽힘 하중에 따른 축변형을 표시하면 아래 그림과 같고, 굽힘하 중 F₁을 작용시켰을 때 하중점의 변위δ는 식(1)과 같다.In general, the axial deformation according to the bending load is shown in the figure below. When the bending load F 때 is applied, the displacement δ of the load point is shown in equation (1).

Figure 112008036037001-PAT00001
Figure 112008036037001-PAT00001

δ=δ₁+δ₂+δ₃ (1)δ = δ₁ + δ₂ + δ₃ (1)

여기서, δ₁은 기준면에서 테이퍼축심의 반경방향변위, δ₂는 기준면에서 테이퍼축심의 경사에 의한 변위, δ₃는 공구원통부의 탄성변형에 의한 변위이다.Here, δ₁ is the radial displacement of the tapered shaft core at the reference plane, δ₂ is the displacement due to the inclination of the tapered shaft core at the reference plane, and δ₃ is the displacement due to the elastic deformation of the tool cylinder portion.

일반적으로 δ₃는 공구의 기하학적 형상 및 재질에 의해서 결정되어진다.In general, δ₃ is determined by the geometry and material of the tool.

따라서 δ₁+δ₂를 결합부의 존재에 의해서 생긴 변위로 볼 수 있으며, δ₁은 많은 경우 무시할 수 있는 작은 값이므로 결합부의 존재에 따른 최대영향은 δ₂로 표시된다.Therefore, δ₁ + δ₂ can be regarded as the displacement caused by the presence of the bond, and δ₁ is a negligible value in many cases, so the maximum effect of the presence of the bond is represented by δ₂.

현재 절삭가공 중 공작기계 주축 인터페이스부의 정강성 특성변화를 정량적으로 파악하지 못하고 있는 실정이므로 가공여유, 결합력 등의 선정은 대부분 설계자 및 작업자의 경험에 의해 이루어지고 있다.Currently, it is not possible to quantitatively grasp the change in the rigidity characteristics of the spindle interface of the machine tool during cutting, and the selection of the machining margin, the coupling force, etc. is mostly made by the experience of the designer and the operator.

현재의 테스트 바 및 플러그테이퍼 게이지를 이용한 실험적 방법에 의한 주축의 강성평가는 원심력의 효과에 대한 고찰이 불가능하여 주축이 고속화될수록 그 오차가 더욱 커져 실제 거동특성을 제대로 파악할 수 없다는 문제점이 있다.The stiffness evaluation of the main shaft by the experimental method using the current test bar and plug taper gauge is impossible to consider the effect of the centrifugal force, the problem is that the error becomes larger and the actual behavior characteristics can not be properly grasped as the spindle speeds up.

본 발명은 자석의 흡인, 반발력 효과와 강자성체의 자기유도효과를 이용하여 주축이 고속으로 회전시 테이퍼 접촉률변화로 인한 강성의 변화를 측정할 수 있게 하는 주축의 강성측정장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a stiffness measuring device of the main shaft that can measure the change in stiffness due to the change of taper contact rate when the main shaft rotates at high speed by using the magnet attraction, repulsive force effect and the magnetic induction effect of the ferromagnetic material. .

본 발명은 고정용 블록에 힘측정장치를 결합시키고, 힘측정장치의 상부에는 자석설치를 위한 브라켓을 구성시키고, 브라켓의 상부면에는 주축계를 끌어당기는 힘을 발생시키는 자석을 설치한다.The present invention is coupled to the force measuring device to the fixing block, the upper portion of the force measuring device to configure a bracket for the magnet, the upper surface of the bracket is installed a magnet for generating a force to pull the main shaft system.

본 발명은 주축회전수 변화에 따른 주축 인터페이스부의 접촉률변화를 고려하여 강성을 측정할 수 있으므로 주축의 강성 특성평가가 실제 가공상황과 유사한 환경에서 이루어져 종래보다 오차가 적은 강성 특성평가가 이루어져 가공부품의 정밀도와 생산성을 향상시킬 수 있는 효과가 있다.The present invention can measure the stiffness in consideration of the change in the contact rate of the spindle interface according to the change in the spindle speed, so that the stiffness characteristic evaluation of the main shaft is made in a similar environment to the actual machining situation, the stiffness characteristics evaluation with less error than the prior art is made This has the effect of improving precision and productivity.

이하에서 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 주축계가 저속회전할 때의 상태도이고, 도 2는 주축계가 고속회전할 때의 상태도이다.1 is a state diagram when the spindle system rotates at low speed, and FIG. 2 is a state diagram when the spindle system rotates at high speed.

도면에 도시된 바와 같이 고정용 블록(10)에는 힘측정장치(11)가 결합구비된다.As shown in the figure, the force measuring device 11 is coupled to the fixing block 10.

힘측정장치(11)로는 로드셀, 트랜스게이지 등이 이용될 수 있다.As the force measuring device 11, a load cell, a transgauge, or the like may be used.

힘측정장치(11)의 상부에는 자석설치를 위한 브라켓(12)을 구비시키고, 브라켓(12)의 상부면에는 힘을 발생시키는 자석(13)을 설치한다.The upper portion of the force measuring device 11 is provided with a bracket 12 for magnet installation, and the magnet 13 for generating a force is installed on the upper surface of the bracket 12.

일반적으로 주축회전수가 20000rpm이하의 저속에서는 접촉률이 일정 이상으로 유지되어 테이퍼 축심의 경사에 대한 변위인 δ₂가 크게 증가하지 않으나, 25000rpm이상의 고속에서는 주축 인터페이스부(15)의 접촉률이 급격히 감소하여 δ₂가 크게 증가한다는 것은 실험에 의해 규명된 사실이다.In general, the contact rate is maintained above a certain rate at a low speed of less than 20000rpm, so the displacement δ₂, which is the displacement of the tapered shaft core, does not increase significantly.However, at a high speed of 25000rpm or more, the contact rate of the spindle interface 15 decreases rapidly, so The large increase is a fact identified by experiment.

쿨롱의 법칙(Coulomb's law)은 전하를 가진 두 물체 사이에 작용하는 힘에 대한 기본법칙으로서 만유인력과 같이 거리제곱에 반비례하는 힘이지만 전하의 극성에 따라 인력 혹은 척력이 작용된다.Coulomb's law is the basic law of the force acting between two charged objects. It is a force inversely proportional to the square of distance, like universal gravitational force, but attraction or repulsive force is applied depending on the polarity of the charge.

쿨롱의 법칙에 의한 두 전하 m₁,m₂ 사이에 작용하는 자기력(F)는 다음과 같이 표시된다.The magnetic force (F) acting between two charges m₁, m₂ by Coulomb's law is expressed as

F(N)=S(m₁·m₂)/r²-----식(1)F (N) = S (m₁m₂) / r² ----- Equation (1)

여기서, m₁,m₂: 자극의 세기, r:양 자극 사이의 거리, S:비례상수Where m₁, m₂: stimulus intensity, r: distance between positive stimuli, S: proportional constant

식(1)에서 S,m₁,m₂는 주어진 값이므로 양 자극 사이의 거리 r을 구하면 힘F가 구해진다.In Eq. (1), S, m₁, m₂ are given values, so the force F is obtained by finding the distance r between both magnetic poles.

공작기계 강성의 평가에 사용되는 일정의 굽힘하중에 미치는 강성을 구하는 식인Equation to find the stiffness on the constant bending load used for the evaluation of machine tool stiffness

κ=F/δ(kN/㎛)-----식(2)κ = F / δ (kN / μm) ----- Formula (2)

에 의해 강성을 구할 수 있다.The rigidity can be obtained by.

주축계(14)의 저속회전시 테이퍼축심의 경사에 대한 변위인 δ₂의 작은 증가로 인해 자석과 주축계 사이의 거리는 r₁으로 줄어들며, 힘측정장치에 의해 자기력 F₁이 구해지면 식(1)에 F₁을 대입시켜 r₁을 구하고, 이 힘F₁과 r₁을 식(2)에 대입하면 주축계의 강성κ₁는 다음과 같이 구해진다.Due to the small increase of δ₂, which is the displacement of the tapered shaft core at the inclination of the spindle system 14 at low speed rotation, the distance between the magnet and the spindle system is reduced to r₁, and when the magnetic force F₁ is obtained by the force measuring device, F₁ in equation (1) R r is obtained by substituting ,, and stiffness κ 의 of the main shaft system is obtained by substituting these forces F ₁ and r 에 in equation (2).

κ₁=F₁/(r-r₁)κ₁ = F₁ / (r-r₁)

주축계(14)의 고속회전시에는 주축 인터페이스부(15)의 접촉률이 급격히 감소하여 δ₂가 크게 증가되므로 r₂의 값은 많이 줄어들며, 결과적으로 자기력F₂가 증가된다.During high speed rotation of the main shaft system 14, the contact ratio of the main shaft interface unit 15 decreases rapidly, so that δ 2 is greatly increased, and the value of r 2 is greatly reduced, and consequently, the magnetic force F 2 is increased.

힘측정장치에 의해 구해진 F₂와 r₂값을 식(2)에 대입하면 주축계의 저속회전 때보다 줄어든 강성값 κ₂를 구할 수 있다.Substituting the F 2 and r 2 values obtained by the force measuring device into Eq.

κ₂=F₂/(r-r₂)κ₂ = F₂ / (r-r₂)

이상에서 살펴본 바와 같이 본 발명은 원심력에 의한 주축 인터페이스부(15)의 접촉률변화 효과를 고려하여 주축의 강성을 측정할 수 있어 기존의 주축이 정지상태에서의 강성평가보다 실제 가공상황과 유사한 환경에서 강성측정이 이루어져 가공부품의 정밀도와 생산성을 향상시킬 수 있다.As described above, the present invention can measure the stiffness of the main shaft in consideration of the effect of changing the contact ratio of the main spindle interface unit 15 by the centrifugal force, so that the existing main shaft is in an environment similar to the actual processing situation rather than the stiffness evaluation in the stationary state. Rigidity measurements can be made to improve the precision and productivity of machined parts.

도 1은 주축계가 저속회전할 때의 상태도1 is a state diagram when the main shaft system rotates at a low speed

도 2는 주축계가 고속회전할 때의 상태도2 is a state diagram when the main shaft system rotates at a high speed;

※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing

10. 고정용 블록 11. 힘측정장치10. Block for fixing 11. Force measuring device

12. 브라켓 13. 자석12. Bracket 13. Magnet

14. 주축계 15. 인터페이스부14. Spindle System 15. Interface

Claims (2)

공작기계 주축의 강성측정장치에 있어서,In the rigidity measuring device of the machine tool spindle, 고정용 블록(10)에 힘측정장치(11)를 결합형성시키고, 힘측정장치(11)의 상부에는 자석설치를 위한 브라켓(12)을 구비시키고, 브라켓(12)의 상부면에는 주축계를 끌어당기는 힘을 발생시키는 자석(13)을 구비하는 것을 특징으로 하는 자기력을 이용한 주축의 강성측정장치.The force measuring device 11 is coupled to the fixing block 10, and a bracket 12 for magnet installation is provided on the upper part of the force measuring device 11, and a main shaft system is provided on the upper surface of the bracket 12. Stiffness measurement apparatus of the main shaft using a magnetic force, characterized in that it comprises a magnet (13) for generating a pulling force. 제 1항에 있어서, 자석(13)과 주축계(14) 사이의 거리는 힘{F(N)}=비례상수(S){자극의 세기(m₁)·자극의 세기(m₂)}/자석과 주축계 사이의 거리의 제곱(r²)에 의해 구하는 것을 특징으로 하는 자기력을 이용한 주축의 강성측정장치.The distance between the magnet 13 and the main shaft system 14 is the force {F (N)} = proportionality constant (S) {intensity of stimulus (m₁) and intensity of stimulus (m2)} / magnet A stiffness measuring device of a main shaft using a magnetic force, characterized in that obtained by the square of the distance between the main axis system (r²).
KR1020080047080A 2008-05-21 2008-05-21 A rigidity measurement of the main spindle which uses magnetic force KR20090121001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080047080A KR20090121001A (en) 2008-05-21 2008-05-21 A rigidity measurement of the main spindle which uses magnetic force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080047080A KR20090121001A (en) 2008-05-21 2008-05-21 A rigidity measurement of the main spindle which uses magnetic force

Publications (1)

Publication Number Publication Date
KR20090121001A true KR20090121001A (en) 2009-11-25

Family

ID=41604162

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080047080A KR20090121001A (en) 2008-05-21 2008-05-21 A rigidity measurement of the main spindle which uses magnetic force

Country Status (1)

Country Link
KR (1) KR20090121001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175436A (en) * 2010-12-31 2011-09-07 西安瑞特快速制造工程研究有限公司 Method for testing dynamic stiffness of machine tool spindle based on MEMS (micro electro mechanical systems)
CN103674504A (en) * 2012-08-31 2014-03-26 沈阳机床(集团)有限责任公司 Main shaft performance testing platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175436A (en) * 2010-12-31 2011-09-07 西安瑞特快速制造工程研究有限公司 Method for testing dynamic stiffness of machine tool spindle based on MEMS (micro electro mechanical systems)
CN103674504A (en) * 2012-08-31 2014-03-26 沈阳机床(集团)有限责任公司 Main shaft performance testing platform

Similar Documents

Publication Publication Date Title
KR100786526B1 (en) A static rigidity measurement device of a ultra speed main spindle
CA2645665C (en) Chuck body for a chuck, chuck and method for determining a clamping force on such a chuck
US7547168B1 (en) High speed spindle system and centrifugal chuck
CN104385058B (en) Digit Control Machine Tool Static stiffness device for fast detecting and method
CN105738276B (en) It is a kind of pre- to repair the secondary high-speed lubrication performance aircraft of friction and its application
KR20090121001A (en) A rigidity measurement of the main spindle which uses magnetic force
US11022530B2 (en) System and method for determining structural characteristics of a machine tool
Matsubara et al. Non-contact measurement of dynamic stiffness of rotating spindle
CN108414169A (en) A kind of high speed rotation shafting dynamic axial load stiffness test method and device
CN105651635B (en) A kind of spherical mounted point repairs the high-speed friction test method of ferrous metal friction pair in advance
CN106885662A (en) Footpath axial composite-rotor Non-contact loader and machine tool chief axis rigidity testing system
CN105628534A (en) High-speed friction testing method of diamond knife pre-maintenance nonferrous metal friction pair
CN1935435A (en) Electric discharge machining apparatus
Anand et al. Static and dynamic analysis of lathe spindle using ANSYS
JP2017140687A (en) Smart tool holder
CN102785097A (en) Top device for automatically locating crankshaft in axial direction
CN105628533B (en) A kind of CBN cutter repairs the high-speed friction test method of ferrous metal friction pair in advance
CN105547996B (en) It is a kind of pre- to repair the secondary high-speed friction testing machine of friction and its application
Chang et al. Chatter analysis and stability prediction of milling tool based on zero-order and envelope methods for real-time monitoring and compensation
KR101168527B1 (en) A rigidity measurement of the main spindle
Wang et al. Tool condition monitoring with current signals for a low-power spindle
RU2587371C1 (en) High-speed motor spindle for metal cutting machines
TWI666391B (en) Gas bearing spindles and method of sensing load in gas bearing spindles
CN112828679B (en) Online measuring system and method for cutting force of main shaft
CN108414202A (en) A kind of high speed rotation shafting dynamic radial load stiffness test method and device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application