KR20090120347A - NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME - Google Patents

NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME Download PDF

Info

Publication number
KR20090120347A
KR20090120347A KR1020080046329A KR20080046329A KR20090120347A KR 20090120347 A KR20090120347 A KR 20090120347A KR 1020080046329 A KR1020080046329 A KR 1020080046329A KR 20080046329 A KR20080046329 A KR 20080046329A KR 20090120347 A KR20090120347 A KR 20090120347A
Authority
KR
South Korea
Prior art keywords
glucan
mut5
production
beta
polymyxa
Prior art date
Application number
KR1020080046329A
Other languages
Korean (ko)
Inventor
이태훈
홍주헌
박병권
박승춘
정희경
박치덕
황미현
Original Assignee
전진바이오팜 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전진바이오팜 주식회사 filed Critical 전진바이오팜 주식회사
Priority to KR1020080046329A priority Critical patent/KR20090120347A/en
Publication of KR20090120347A publication Critical patent/KR20090120347A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A method for producing a beta-glucan with a novel Paenibacillus polymyxa MUT5 is provided to optimize massive production process and reduce production cost. CONSTITUTION: A method for producing a beta-glucan comprises a step of fixing pH concentration of medium to 8.0 containing 0.15% of yeast extract as nitrogen source and 14% of sucrose as carbon source and a step of inoculating Paenibacillus polymyxa MUT5(deposit number KCCM 10943P) in a medium.

Description

신규한 패니바실러스 폴리믹사 MUT5 균주 및 이를 이용한 베타-글루칸의 생산방법{Novel Paenibacillus polymyxa MUT5 and method for production of β-glucan using the same}Novel Paenibacillus polymyxa MUT5 and method for production of β-glucan using the same

본 발명은 베타-글루칸 고생산성을 가지는 신규한 패니바실러스 폴리믹사 MUT5 균주 및 상기 균주를 이용하여 베타-글루칸을 생산하는 방법에 관한 것이다.The present invention relates to a novel F. Panaxillis polymyxa MUT5 strain having high beta-glucan productivity and a method for producing beta-glucan using the strain.

다당류는 식품의 가공과 보존을 위한 첨가제로 식품 분야, 토양보수, 육묘용 종자, 식물재배용 배지의 고형제 등으로 농업분야, 보습 및 피부개선을 위한 기능성 첨가물로서 화장품분야, 렌즈 인공관절, 피부 피복제, 생리활성제, 약물전달계, 대용혈청제제 등의 의약분야, 섬유, 필름, 종이, 페인트, 잉크의 공업 분야 등 광범위하게 이용되고 있다. Polysaccharides are additives for processing and preserving foods.They are functional additives for agriculture, moisturizing and skin improvement in the food sector, soil repair, seedlings for seedling, and plant cultivation media. It is widely used in pharmaceutical fields such as cloning, physiological active agents, drug delivery systems, and substitute serum agents, and in the industrial fields of fibers, films, paper, paints, and inks.

특히 다당류 중 β-1,3 글리코시드결합의 글루코오즈 중합체인 베타-글루칸(β-glucan)은 면역반응을 촉진할 뿐만 아니라 항암, 항염증과 항산화 등의 다양한 생리 활성을 가지고 있어 식품 산업이나 제약 산업에서의 이용이 계속적으로 증가되고 있다.In particular, β-glucan, a β-1,3 glycoside-linked glucose polymer, not only promotes immune response but also has various physiological activities such as anti-cancer, anti-inflammatory, and antioxidant. Usage in the industry continues to increase.

베타-글루칸은 식물, 버섯 및 효모의 세포벽으로부터 추출하여 이용되고 있 으나, 순도와 회수율이 낮은 것이 단점이다. 따라서 이러한 문제점을 극복하고자 세포외 다당으로 글루칸을 생산하는 미생물인 패니바실러스 폴리믹사(Paenibacillus polymyxa) JB115를 분리하여 세포외 다당류 생산을 시도하였다. Beta-glucan is extracted from cell walls of plants, mushrooms and yeasts, but has a low purity and low recovery rate. Therefore, in order to overcome these problems, an attempt was made to produce extracellular polysaccharides by separating Paenibacillus polymyxa JB115, a microorganism that produces glucan as extracellular polysaccharide.

세균 유래 글루칸의 생산은 균주 육종이나 발효조건의 최적화를 통해 생산 수율 증가가 가능하므로 안정적으로 대량의 글루칸을 생산할 수 있다. Bacterial-derived glucan can be produced in large quantities by optimizing strain breeding or fermentation conditions, thereby stably producing a large amount of glucan.

본 발명에서는 글루칸의 대량 생산시 수율 증대를 통한 생산비용절감을 위해 글루칸 생산균주인 패니바실러스 폴리믹사(Panebacillus polymyxa) JB115(KACC 91305P)에 인위적인 돌연변이를 가하여 글루칸 고생산 변이주를 선발하고, 이를 이용하여 최적화된 글루칸의 대량 생산방법을 완성하였다.In the present invention, the glucan production strain of Paniccillus polymixes ( Panebacillus) for reducing the production cost by increasing the yield in the mass production of glucan polymyxa ) JB115 (KACC 91305P) was added to artificial mutants to select high glucan mutant strains were used to complete the optimized glucan mass production method.

본 발명의 목적은 글루칸 생산균주인 패니바실러스 폴리믹사 JB115로부터 얻어진 신규한 베타-글루칸 고생산 변이주를 제공하는 것이다. It is an object of the present invention to provide a novel beta-glucan high production mutant obtained from the glucan producing strain Fanibacillus polymix yarn JB115.

본 발명의 또 다른 목적은 베타-글루칸의 생산시 수율 증대를 통하여 생산비용을 절감할 수 있는 신규한 패니바실러스 폴리믹사 MUT5 균주를 이용한 베타-글루칸의 생산방법을 제공하는 것이다. Still another object of the present invention is to provide a method for producing beta-glucan, using a novel Favabacillus polymyxa MUT5 strain that can reduce the production cost by increasing the yield in the production of beta-glucan.

본 발명은 베타-글루칸(β-glucan) 고생산성을 가지는 신규한 패니바실러스 폴리믹사 MUT5(Paenibacillus polymyxa MUT5) 균주(기탁번호: KCCM 10943P)를 제공한다. The present invention relates to a novel F. Panaxilas polymix yarn MUT5 ( Paenibacillus ) having high beta-glucan productivity. polymyxa MUT5 ) strain (Accession Number: KCCM 10943P).

또한, 본 발명은 탄소원으로 수크로스(sucrose), 질소원으로 이스트 추출물(yeast extract)를 포함하는 배지의 초기 pH를 8.0으로 고정한 후, 상기 신규한 패니바실러스 폴리믹사 MUT5 균주를 상기 배지에 접종하여 배양하는 것을 특징으로 하는 신규한 패니바실러스 폴리믹사 MUT5 균주를 이용한 베타-글루칸의 생산방법을 제공한다.In addition, the present invention, after fixing the initial pH of the medium containing sucrose (sucrose) as a carbon source, the yeast extract (yeast extract) as a nitrogen source to 8.0, and incubated by inoculating the novel F. Provided is a method for producing beta-glucan using a novel F. Panybacilli polymyxa MUT5 strain.

본 발명에 따르면 베타-글루칸의 대량 생산 공정을 최적화할 수 있어 베타-글루칸의 생산시 수율 증대를 통하여 생산비용을 절감할 수 있는 우수한 효과가 있다. According to the present invention it is possible to optimize the mass production process of beta-glucan has an excellent effect of reducing the production cost through increased yield in the production of beta-glucan.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 베타-글루칸 고생산 돌연변이주인 패니바실러스 폴리믹사 MUT5(Paenibacillus polymyxa MUT5) 균주(기탁번호: KCCM 10943P)에 관한 것이다.The present invention relates to a Paenibacillus polymyxa MUT5 strain (Accession No .: KCCM 10943P), a beta-glucan high production mutant.

본 발명에 따른 베타-글루칸의 최적 생산 조건은 탄소원으로 수크로스(sucrose), 질소원으로 이스트 추출물(yeast extract)를 포함하는 배지의 초기 pH를 8.0으로 고정한 후, 상기 베타-글루칸 고생산 돌연변이주인 패니바실러스 폴리믹사 MUT5를 상기 배지에 접종하여 배양하는 것을 특징으로 한다.Optimal production conditions of beta-glucan according to the present invention is fixed to the initial pH of the medium containing sucrose (sucrose) as a carbon source, the yeast extract (yeast extract) as a nitrogen source to 8.0, then the beta-glucan high production mutant Fanny It is characterized by inoculating Bacillus polymyxa MUT5 in the culture medium.

바람직하게는, 상기 베타-글루칸의 생산방법에 있어서 상기 탄소원과 질소원의 중량 비율(C:N)은 18:1일 수 있다.Preferably, in the method for producing beta-glucan, the weight ratio (C: N) of the carbon source and the nitrogen source may be 18: 1.

또한, 바람직하게는, 배지 총중량에 대하여 상기 수크로스는 14%, 상기 이스트 추출물은 0.15%일 수 있다.In addition, preferably, the sucrose may be 14% and the yeast extract may be 0.15% based on the total weight of the medium.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시하나, 하기 실시예 및 실험예에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, preferred examples and experimental examples are provided to aid in understanding the present invention, but the scope of the present invention is not limited by the following examples and experimental examples.

<실시예 1> 베타-글루칸 고생산 변이주의 선발Example 1 Selection of Beta-Glucan High Production Mutant

1. 사용배지 및 균주1. Use medium and strain

β-glucan 고생산 돌연변이주 개발을 위한 모균주는 Paenibacillus polymyxa JB115(KACC91305P)를 이용하였으며, 돌연변이주 선발을 위한 선발배지는 aniline blue agar medium(20g/L sucrose, 5g/L yeast extract, 20g/L agar, 0.05g/L aniline blue, 3g/L CaCO3)을 이용하였다. The parent strain for the development of β-glucan high-producing mutants is Paenibacillus. was used to polymyxa JB115 (KACC91305P), selection medium for the mutant selection are aniline blue agar medium (20g / L sucrose, 5g / L yeast extract, 20g / L agar, 0.05g / L aniline blue, 3g / L CaCO 3 ) Was used.

2. 돌연변이주의 분리2. Isolation of Mutantism

β-glucan 고생산성 변이주 유도를 위해 돌연변이는 UV 조사법을 이용하였다. 즉 P. polymyxa JB115의 균주를 nutrient borth에 18시간 배양 한 후 배양액을 10-3 mL로 희석한 후 이를 aniline blue agar medium에 100 μL씩 도말한 다음 20 cm 높이 UV lamp (504 nm)를 5분간 조사한 후 30℃에서 배양하고 생성된 콜로니들 중 짙은 파란색이 나타나는 것을 선발하여 nutrient agar에 계대 배양하였다.Mutation was UV irradiation to induce high β-glucan high mutant strains. That is, after incubating the strain of P. polymyxa JB115 for 18 hours in nutrient borth, diluting the culture solution to 10 -3 mL, smearing 100 μL in aniline blue agar medium, and then applying a 20 cm high UV lamp (504 nm) for 5 minutes. After irradiation, the cells were cultured at 30 ° C., and dark blue of the colonies generated was selected and subcultured to nutrient agar.

3. 모균주 및 돌연변이주의 글루칸 생산 시험3. Glucan production test of parent strain and mutant strain

β-glucan 생산 모균주인 P. polymyxa JB115와 돌연변이주의 β-glucan 생산을 위한 배지는 mineral salt medium (MSM, KH2PO4 1.74; CaCl2 ·H2O 0.015; K2HPO4 0.49; MnCl2 ·H2O 0.01; Na2SO4 ·H2O 3.7; Citrate 0.21; MgCl2 ·H2O 0.25; NH4Cl 1.5; FeClH2O 0.024, g/L)에 탄소원으로 10중량% sucrose를 첨가하여 이용하였으며, nutrient에서 약 18시간 전배양한 후 전배양액의 균체농도(OD600)가 1.5가 되게 멸균 증류수를 이용하여 희석한 후 이를 글루칸 생산 배지에 접종하여 3일간 30℃에서 배양시켜 글루칸을 생산하였다. β-glucan 분리는 배양액을 5,000 rpm에서 15분간 원심 분리하여 배양 상등액을 회수하고 배양 상등액에 3배 부피의 차가운 에탄올을 첨가한 다음 4℃에서 12시간 침전시켰다. 침전된 β-glucan은 상압가열건조법 즉, 후 105℃에서 24 시간 동안 건조시킨 건조 중량을 측정하여 나타내었다. P. polymyxa JB115, a β-glucan-producing parent strain, and the medium for β-glucan production of mutant strains were mineral salt medium (MSM, KH 2 PO 4 1.74; CaCl 2 · H 2 O 0.015; K 2 HPO 4 0.49; MnCl 2 · H 2 O 0.01; Na 2 SO 4 · H 2 O 3.7; Citrate 0.21; MgCl 2 · H 2 O 0.25; NH 4 Cl 1.5; FeCl 3 · H 2 O 0.024, 10 % by weight of a carbon source in g / L) Sucrose was added and used for about 18 hours pre-cultivation in nutrients and diluted with sterile distilled water so that the cell concentration (OD 600 ) of the preculture was 1.5, then inoculated into glucan production medium and incubated at 30 ° C. for 3 days. To produce glucan. β-glucan separation was carried out by centrifugation of the culture solution at 5,000 rpm for 15 minutes to recover the culture supernatant, and added three times the volume of cold ethanol to the culture supernatant and then precipitated at 4 ℃. Precipitated β-glucan was shown by measuring the dry weight of normal pressure heating, that is, dried at 105 ℃ for 24 hours.

4. 베타-글루칸 고생산 변이주 선발4. Selection of Beta-Glucan High Production Mutants

P. polymyxa JB115(KACC91305P)를 UV 조사한 후 aniline blue agar medium에서 육안상 짙은 푸른색을 띠는 4종의 균주를 선발하였다(도 1 참조). 돌연변이주 MUT5, MUT7, MUT8과 모균주인 P. polymyxa JB115(KACC91305P)를 한 백금이 취하여 nutrient broth에 전 배양한 후 각 전 배양액 1 mL(OD600:1.5)를 10중량% sucrose를 첨가한 mineral salt medium에 접종하여 3일간 배양 후 배양상등액에 생산된 베타-글루칸을 측정한 결과, MUT5, MUT7, MUT8은 모두 P. polymyxa JB115(KACC91305P)보다 베타-글루칸 생산성이 높았으며, 특히 P. polymyxa MUT5(KCCM10943P)의 경우 모균주 보다 150% 이상 글루칸 생산성이 향상되어 13.2 g/L으로 베타-글루칸 생산성이 가장 우수하였다(하기 표 1 참조).After UV irradiation with P. polymyxa JB115 (KACC91305P), four strains of visually dark blue color were selected from aniline blue agar medium (see FIG. 1). A mutant strain, MUT5, MUT7, MUT8, and P. polymyxa JB115 (KACC91305P), the parent strain, were pre-incubated in nutrient broth, and 1 mL (OD 600 : 1.5) of each preculture was added to 10 wt% sucrose mineral. After incubation in salt medium and incubated for 3 days, the beta-glucan produced in the culture supernatant was measured. MUT5, MUT7, and MUT8 showed higher beta-glucan productivity than P. polymyxa JB115 (KACC91305P), especially P. polymyxa. In the case of MUT5 (KCCM10943P), glucan productivity was improved by 150% or more than the parent strain, and the best beta-glucan productivity was 13.2 g / L (see Table 1 below).

StrainsStrains β-glucan (g/L)β-glucan (g / L) Paenibacillus poplymyxa JB115 (Wilde type) Paenibacillus poplymyxa JB115 ( Wilde type) 8.88.8 MUT5MUT5 13.213.2 MUT7MUT7 9.69.6 MUT8MUT8 10.510.5

<실험예 1> 베타-글루칸 생산 최적 조건 조사 및 회분식 배양에 의한 글루칸 생산시험 Experimental Example 1 Investigation of Optimal Conditions for Beta-Glucan Production and Production of Glucan by Batch Culture

1. 탄소원, 질소원 및 pH 조건의 조사1. Investigation of carbon source, nitrogen source and pH condition

선발된 돌연변이주의 글루칸 생산을 위한 최적 탄소원 조사는 mineral salt medium에 fructose, glucose, lactose, sucrose를 탄소원으로 2중량% 첨가하여 β-glucan 생산성을 측정하였으며, 최적 질소원은 mineral salt medium에서 NH4Cl 대신 무기질소원으로 NaNO3, NH4Cl, (NH4)2SO4를 사용하였고 유기질소원으로는 peptone, tryptone, yeast extract를 첨가하여 건조 중량법을 이용하여 β-glucan 생산을 조사하였다. 선발 돌연변이주의 β-glucan 생산을 위한 최적 pH조건은 초기 pH를 4-10까지 범위로 하여 β-glucan 생산량을 측정하였다. Optimal carbon irradiation by a carbon source for fructose, glucose, lactose, sucrose on mineral salt medium is added 2% by weight were measured and β-glucan productivity, optimum nitrogen source NH 4 Cl instead of in the mineral salt medium for the selected mutant attention glucan producing NaNO 3 , NH 4 Cl and (NH 4 ) 2 SO 4 were used as inorganic nitrogen sources, and peptone, tryptone, and yeast extract were added as organic nitrogen sources, and β-glucan production was investigated by dry weight method. The optimum pH condition for β-glucan production of the selected mutant strains was measured at the initial pH of 4-10.

β-glucan 생산을 위한 글루칸 돌연변이주의 최적 탄소원을 조사하기 위해 glucose 등 4종의 탄소원을 2중량%농도에서 β-glucan 생산성을 조사한 결과, 세포외 다당 합성에 fructose, lactose은 기질로 적합하지 못하다는 보고와는 다르게 P. polymyxa MUT5(KCCM10943P)는 fructose, glucose lactose, sucrose에서 모두 양호한 β-glucan 생산성을 나타내었다. 특히, P. polymyxa MUT5(KCCM10943P)는 sucrose에서 4.6 g/L로 β-glucan 생산성이 우수하였다(도 2 참조). Pseudomonas mendocina, Agrobacterium sp.에서도 sucrose는 세포외 다당체 생산을 위한 적합한 기질로 보고되었다. Sucrose는 다른 carbon source보다 값이 저렴하여 산업용 대량 발효시 기질로서도 경제적이어서 P. polymyxa MUT5(KCCM10943P)의 β-glucan의 대량생산 기질로 적합하였다. P. polymyxa MUT5(KCCM10943P)의 β-glucan 생산을 위한 최적 질소원은 yeast extract로 9.3 g/L의 β-glucan을 생산하였다. 또한 peptone을 제외하고 유기 질소원에서 β-glucan 생산성은 더 우수하였으며, 유기질소원 사용시 세포외 다당의 생산이 더 양호하다는 보고와 일치하였다(도 3 참조).In order to investigate the optimal carbon source for glucan mutant strains for β-glucan production, we investigated the productivity of β-glucan at 2 wt% concentrations of four carbon sources, including glucose, indicating that fructose and lactose are not suitable as substrates for the synthesis of extracellular polysaccharides. Contrary to reports, P. polymyxa MUT5 (KCCM10943P) showed good β-glucan productivity in fructose, glucose lactose, and sucrose. In particular, P. polymyxa MUT5 (KCCM10943P) was excellent in β-glucan productivity at 4.6 g / L in sucrose (see FIG. 2). Sucrose has also been reported as a suitable substrate for the production of extracellular polysaccharides in Pseudomonas mendocina and Agrobacterium sp. Sucrose is cheaper than other carbon sources and is economical as a substrate for industrial fermentation. Therefore, sucrose is suitable for mass production of β-glucan of P. polymyxa MUT5 (KCCM10943P). The optimal nitrogen source for β-glucan production of P. polymyxa MUT5 (KCCM10943P) was yeast extract, which produced 9.3 g / L of β-glucan. In addition, β-glucan productivity was better in the organic nitrogen source except for peptone, which was consistent with the report that the production of extracellular polysaccharide was better when using the organic nitrogen source (see FIG. 3).

2. 글루칸 생산에 미치는 pH의 영향 조사2. Investigation of pH Effect on Glucan Production

pH에 따른 P. polymyxa MUT5(KCCM10943P)의 β-glucan 생산은 pH 6에서부터 β-glucan 생산은 증가되어 pH 8에서 최고였으며, 그 이후에 감소하였다(도 4 참조). Agrobcaterium sp.는 초기 pH가 6 이하시에 생산량이 양호한 것으로 보고되고 있어 P. polymyxa MUT5(KCCM10943P)는 이 보고와 차이가 있었다. 그러나 Bacillus sp.에서 pH 7.5에서 β-glucan 생산성이 최고라는 보고와는 유사하여 β-glucan 생산에 있어 pH는 생산균주별로 차이가 있음을 확인할 수 있었다.β-glucan production of P. polymyxa MUT5 (KCCM10943P) with pH increased from pH 6 to β-glucan production and peaked at pH 8, and then decreased (see FIG. 4). Agrobcaterium sp. Was reported to have a good yield when the initial pH was below 6, and P. polymyxa MUT5 (KCCM10943P) was different from this report. However, similar to the report that β-glucan productivity was the highest at pH 7.5 in Bacillus sp., PH of β-glucan production was different by production strain.

3. Sucrose와 yeast extract 농도가 글루칸 생산에 미치는 영향 조사3. Influence of Sucrose and Yeast Extract Concentration on Glucan Production

최적 탄소원인 sucrose 농도에 따른 β-glucan 생산량을 조사한 결과, sucrose 14중량%, 질소원인 yeast extract 0.15중량%에서 23.2 g/L로 최고였다(도 5 및 도 6 참조). 세포외 다당의 생산은 C와 N의 비율에 따라 조절되는데, P. polymyxa MUT5는 β-glucan 생산성은 최대시에 C와 N의 중량 비율은 18:1로 질소원이 제한될 때 β-glucan 생산성은 촉진되어 타 보고와 유사하였다. 질소원 제한에 따른 β-glucan 생합성 증가는 균체 증식이 감소되기 시작함에 따라 isoprenoid lipid가 세포 구성을 위한 다당을 합성하는 대신 세포외 다당의 합성에 이용되어 β-glucan 생합성을 증가시키는 것으로 보고되어지고 있다. 따라서 질소원의 결핍이 β-glucan 생산성을 증가시키기 위한 필수적인 현상이며, 본 연구에서도 이를 확인할 수 있었다.As a result of investigating β-glucan production according to sucrose concentration, which is an optimal carbon source, sucrose was the highest at 23.2 g / L at 14 wt% of sucrose and 0.15 wt% of nitrogen-containing yeast extract (see FIGS. 5 and 6). The production of extracellular polysaccharides is controlled by the ratio of C and N. P. polymyxa MUT5 has a β-glucan productivity of up to 18: 1 at a maximum weight ratio of C and N. It was promoted and similar to other reports. Increased β-glucan biosynthesis due to nitrogen source restriction has been reported to increase β-glucan biosynthesis as isoprenoid lipids are used for the synthesis of extracellular polysaccharides instead of synthesizing polysaccharides for cell composition as cell growth begins to decrease. . Therefore, the deficiency of nitrogen source is an essential phenomenon to increase β-glucan productivity.

4. 회분식 배양에 의한 5L jar fermenter에서 글루칸 생산실험 4. Experiment of Glucan Production in 5L Jar Fermenter by Batch Culture

선발된 돌연변이주의 산업적 이용을 위해 β-glucan 생산의 재현성을 확인하고자 5L jar ferment에서 상기 조사된 β-glucan 최적 배지조건으로 121℃에서 20분간 멸균한 후, 상기 조사된 최적 pH에서 3일간 회분식 배양을 실시하였다. 이때 pH는 조절하지 않았으며, 교반속도는 200 rpm,통기량은 2.0 vvm으로 조절하였다. 또한 거품을 제거하기 위해 antifoam으로 silica-antifoam(Sigma, USA)을 사용하였다. In order to confirm the reproducibility of β-glucan production for the industrial use of the selected mutant strains, sterilization at 121 ° C. for 20 minutes in the optimum β-glucan medium condition investigated in 5L jar ferment, and then batch culture for 3 days at the optimum pH Was carried out. At this time, the pH was not adjusted, the stirring speed was 200 rpm, the air flow was adjusted to 2.0 vvm. Also, silica-antifoam (Sigma, USA) was used as antifoam to remove the foam.

탄소원으로 sucrose 14중량%, 질소원은 amonium chloride 대신 yeast extract를 0.15중량% 첨가하고, 초기 pH를 8.0으로 고정한 다음 5L jar fermenter에서 글루칸 고생산 돌연변이주인 P. polymyxa MUT5(KCCM10943P) 전배양액을 1% 농도로 접종하고 30℃에서 5일간 배양하면서, β-glucan 생산성을 조사하였다. 그 결과 P. polymyxa MUT5(KCCM10943P)로부터 β-glucan 생산성은 3일째 23.8 g/L로 최고였으며(도 7 참조), 상기 flask 배양에서의 β-glucan 생산성과 유사하여 산업적으로 글루칸 배양시에도 재현성이 있음을 확인할 수 있었다.Sucrose was added 14% by weight as carbon source and 0.15% by weight of yeast extract instead of amonium chloride, and the initial pH was set at 8.0. P. polymyxa, a high-glucan mutant, was produced in 5L jar fermenter. MUT5 (KCCM10943P) preculture was inoculated at 1% concentration and incubated at 30 ° C. for 5 days, and β-glucan productivity was examined. As a result P. polymyxa The β-glucan productivity from MUT5 (KCCM10943P) was the highest at 23.8 g / L on the 3rd day (see FIG. 7), and similar to the β-glucan productivity in the flask culture, it was confirmed that the industrial glucan was reproducible. .

도 1은 패니바실러스 폴리믹사 JB115(야생형, CON)과 베타-글루칸 생산 변이 박테리아에 의한 베타-글루칸 생산을 보여주는 사진이다.FIG. 1 is a photograph showing beta-glucan production by Fanibacilli polymyxa JB115 (wild type, CON) and beta-glucan production mutant bacteria.

도 2는 탄소원이 변이주인 패니바실러스 폴리믹사 MUT5에 의한 베타-글루칸의 생산에 미치는 영향을 보여주는 그래프이다.Figure 2 is a graph showing the effect of the carbon source on the production of beta-glucan by the mutant strains of Pa.

도 3은 질소원이 변이주인 패니바실러스 폴리믹사 MUT5에 의한 베타-글루칸의 생산에 미치는 영향을 보여주는 그래프이다.Figure 3 is a graph showing the effect of the nitrogen source on the production of beta-glucan by the mutant strain of Pa.

도 4는 pH가 변이주인 패니바실러스 폴리믹사 MUT5에 의한 베타-글루칸의 생산에 미치는 영향을 보여주는 그래프이다.FIG. 4 is a graph showing the effect of pH on the production of beta-glucan by the mutant strain of Pannibacillus polymix MUT5.

도 5는 수크로스 농도가 변이주인 패니바실러스 폴리믹사 MUT5에 의한 베타-글루칸의 생산에 미치는 영향을 보여주는 그래프이다.FIG. 5 is a graph showing the effect of sucrose concentration on the production of beta-glucan by the mutant strain of Pannibacillus polymix MUT5.

도 6은 이스트 추출물의 농도가 변이주인 패니바실러스 폴리믹사 MUT5에 의한 베타-글루칸의 생산에 미치는 영향을 보여주는 그래프이다.6 is a graph showing the effect of the concentration of yeast extract on the production of beta-glucan by the mutant strains of Pannivacillus polymyxa MUT5.

도 7은 배양시간이 변이주인 패니바실러스 폴리믹사 MUT5에 의한 베타-글루칸의 생산에 미치는 영향을 보여주는 그래프이다.Figure 7 is a graph showing the effect of the incubation time on the production of beta-glucan by the mutant strain of Pannibacillus polymix MUT5.

Claims (4)

베타-글루칸(β-glucan) 고생산성을 가지는 신규한 패니바실러스 폴리믹사 MUT5(Paenibacillus polymyxa MUT5) 균주(기탁번호: KCCM 10943P).Beta-glucan (β-glucan) and the novel Bacillus Waist poly miksa MUT5 (Paenibacillus polymyxa has a productivity MUT5 ) strain (Accession Number: KCCM 10943P). 탄소원으로 수크로스(sucrose), 질소원으로 이스트 추출물(yeast extract)를 포함하는 배지의 초기 pH를 8.0으로 고정한 후, 청구항 1의 균주를 상기 배지에 접종하여 배양하는 것을 특징으로 하는 신규한 패니바실러스 폴리믹사 MUT5 균주를 이용한 베타-글루칸의 생산방법.After the initial pH of the medium containing sucrose as a carbon source and the yeast extract as a nitrogen source is fixed to 8.0, the novel F. ni. Polysaccharide is characterized by inoculating the culture of the strain of claim 1 on the medium. Method for producing beta-glucan using the MIX Corporation MUT5 strain. 청구항 2에 있어서, 상기 탄소원과 질소원의 중량 비율(C:N)은 18:1인 것을 특징으로 하는 신규한 패니바실러스 폴리믹사 MUT5 균주를 이용한 베타-글루칸의 생산방법.The method of claim 2, wherein the weight ratio (C: N) of the carbon source and the nitrogen source is 18: 1. 청구항 2에 있어서, 배지 총중량에 대하여 상기 수크로스는 14%, 상기 이스트 추출물은 0.15%인 것을 특징으로 하는 신규한 패니바실러스 폴리믹사 MUT5 균주를 이용한 베타-글루칸의 생산방법.The method of claim 2, wherein the sucrose is 14% and the yeast extract is 0.15% based on the total weight of the medium.
KR1020080046329A 2008-05-19 2008-05-19 NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME KR20090120347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080046329A KR20090120347A (en) 2008-05-19 2008-05-19 NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080046329A KR20090120347A (en) 2008-05-19 2008-05-19 NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME

Publications (1)

Publication Number Publication Date
KR20090120347A true KR20090120347A (en) 2009-11-24

Family

ID=41603691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080046329A KR20090120347A (en) 2008-05-19 2008-05-19 NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME

Country Status (1)

Country Link
KR (1) KR20090120347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020078467A1 (en) * 2018-10-18 2020-04-23 浙江大学 Paenibacillus elgii strain for producing polysaccharide with effect of after-sun repair and application thereof
CN115197866A (en) * 2022-05-16 2022-10-18 南京南方元生物科技有限公司 Paenibacillus, hemostatic polysaccharide produced by same and application of hemostatic polysaccharide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020078467A1 (en) * 2018-10-18 2020-04-23 浙江大学 Paenibacillus elgii strain for producing polysaccharide with effect of after-sun repair and application thereof
CN115197866A (en) * 2022-05-16 2022-10-18 南京南方元生物科技有限公司 Paenibacillus, hemostatic polysaccharide produced by same and application of hemostatic polysaccharide
CN115197866B (en) * 2022-05-16 2023-10-13 南京南方元生物科技有限公司 Paenibacillus, hemostatic polysaccharide produced by same and application of hemostatic polysaccharide

Similar Documents

Publication Publication Date Title
Akhter et al. Production of pectinase by Aspergillus niger cultured in solid state media
Behailu et al. Isolation, production and characterization of amylase enzyme using the isolate Aspergillus niger FAB-211
Ariyo et al. Alginate oligosaccharides as enhancers of penicillin production in cultures of Penicillium chrysogenum
CN100451106C (en) Sphingomonaspaucimobilis of high-yield gellan gum and use therefor
US20160222367A1 (en) Enzyme composition and process of preparation thereof
Kumar et al. Optimization of process parameters for the production of inulinase from a newly isolated Aspergillus niger AUP19
US10053680B2 (en) Strain and a method to produce cellulase and its use
CN102796670B (en) Aspergillus niger strain and application thereof
Pandya et al. Gibberellic acid production by Bacillus cereus isolated from the rhizosphere of sugarcane
Dasri et al. Optimization of indole-3-acetic acid (IAA) production by rhizobacteria isolated from epiphytic orchids
KR20090120347A (en) NOVEL PAENIBACILLUS POLYMYXA MUT5 AND METHOD FOR PRODUCTION OF beta-GLUCAN USING THE SAME
CN107118980A (en) Solution keratan microbacterium MCDA02 and its enzyme producing method and product from ocean
Song et al. Optimal production of exopolysaccharide by Bacillus licheniformis KS-17 isolated from kimchi
CN109825446A (en) A kind of industrialized preparing process of high yield bacillus subtilis
Kawaroe et al. Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production
van Rijssel et al. Fermentation of pectin by a newly isolated Clostridium thermosaccharolyticum strain
CN108728370A (en) The salmon subfamily Renibacterium bacterial strain QD-01 and its fermentation process of one plant height effect production chitosan enzyme and application
RU2514224C1 (en) Strain of filamentous fungus aspergillus oryzae - producer of maltogenic alpha-amylase
Fernandes et al. Penicillium expansum SK16 as a novel inulinase-producing strain isolated from decomposed dahlia tubers
Dutta et al. L-asparaginase and l-glutaminase from Pseudomonas aeruginosa: production and some physicochemical properties
KR102610015B1 (en) Bacillus aerolacticus produces L-lactic acid or its salts from various carbon sources
Nashima et al. Production and optimization of lipase from wild and mutant strains of Bacillus sp. and Pseudomonas sp
Yopi et al. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production
CN105112489B (en) A kind of recycled wood materials produce the acidizing pretreatment method of biogas
CN110195081A (en) Soybean protein solution zymotechnique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application