KR20090116393A - Method for forming zno thin film using ald - Google Patents

Method for forming zno thin film using ald Download PDF

Info

Publication number
KR20090116393A
KR20090116393A KR1020080042298A KR20080042298A KR20090116393A KR 20090116393 A KR20090116393 A KR 20090116393A KR 1020080042298 A KR1020080042298 A KR 1020080042298A KR 20080042298 A KR20080042298 A KR 20080042298A KR 20090116393 A KR20090116393 A KR 20090116393A
Authority
KR
South Korea
Prior art keywords
thin film
zinc
source
zinc oxide
oxide thin
Prior art date
Application number
KR1020080042298A
Other languages
Korean (ko)
Inventor
전형탁
정우호
이승준
방석환
전순열
권세명
박형호
장호정
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020080042298A priority Critical patent/KR20090116393A/en
Publication of KR20090116393A publication Critical patent/KR20090116393A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for forming zinc oxide thin film using atomic layer deposition is provided to control temperature so as to adjust the zinc oxide thin film's properties. CONSTITUTION: A method for forming zinc oxide thin film using atomic layer deposition comprises the following steps of: injecting zinc source at 100°C or less; removing unreacted zinc source and byproducts; injecting oxygen source to react to the zinc source; and removing the unreacted oxygen source and byproducts. The zinc source includes diethyl zinc. The oxygen source includes water. A processing temperature is 70°C~100°C. If the processing temperature is lower than 70°C, resistance can increase. If the processing temperature is higher than 100°C, the zinc oxide thin film does not exhibit desired properties. The zinc source is injected at low pressure of about 1Torr.

Description

원자층 증착법을 이용한 산화아연 박막의 형성방법{Method for forming ZnO thin film using ALD}Method for forming zinc oxide thin film using atomic layer deposition method {Method for forming ZnO thin film using ALD}

본 발명은 원자층 증착법을 이용한 산화아연 박막의 형성방법에 관한 것으로, 특히 100℃ 이하의 저온에서 산화아연 박막을 증착함으로써 별도의 도핑 없이 특성을 변화시킬 수 있는 기술에 관련한다.The present invention relates to a method for forming a zinc oxide thin film using an atomic layer deposition method, and more particularly to a technique that can change the characteristics without a separate doping by depositing a zinc oxide thin film at a low temperature of 100 ℃ or less.

종래 산화아연 박막을 형성하는 방법 중 화학적 방법은 원자층 증착법(Atomoic Layer Deposition; ALD)과 금속 유기물 화학 증착법(Metal Organic Chemical Vapor Deposition; MOCVD)으로 구분할 수 있다. 원자층 증착법은 아연 소스와 산소 소스를 교대로 공급하여 박막을 증착시키는 방법이고, 금속 유기물 화학 증착법은 금속 유기물 형태의 고체 또는 액체 상태의 소스를 사용하여 박막을 증착하는 방법이다.Chemical methods of forming a conventional zinc oxide thin film may be classified into atomic layer deposition (ALD) and metal organic chemical vapor deposition (MOCVD). The atomic layer deposition method is a method of depositing a thin film by alternately supplying a zinc source and an oxygen source, the metal organic chemical vapor deposition method is a method of depositing a thin film using a solid or liquid source in the form of a metal organic material.

이들 방법 중, 금속 유기물 화학 증착법은 원자층 증착법에 비해 산화아연 박막의 두께를 정확히 조절하기가 어렵고, 공정상에서 박막의 형성 온도가 상대적으로 높고, 표면의 거칠기가 크다는 등의 단점이 있다.Among these methods, the metal organic chemical vapor deposition method has a disadvantage in that it is difficult to precisely control the thickness of the zinc oxide thin film compared to the atomic layer deposition method, the formation temperature of the thin film is relatively high, and the surface roughness is large in the process.

반면, 원자층 증착법에 의한 경우, 공정 온도가 상대적으로 높아 녹는점이 낮은 기질의 사용이 어렵고, 반응부산물인 염화수소로 인해 반응기 등의 부식이 일어나며, 디에틸아연(DMZ)을 아연 소스로 사용하는 경우 보통 200℃ 정도의 온도에서 증착이 가능하지만, 형성되는 산화아연 박막이 다결정 면으로 성장한다는 단점을 갖는다.On the other hand, in the case of atomic layer deposition, it is difficult to use a substrate having a low melting point due to a relatively high process temperature, corrosion of the reactor occurs due to the reaction by-product hydrogen chloride, and when using diethyl zinc (DMZ) as a zinc source. Usually, deposition is possible at a temperature of about 200 ° C., but the zinc oxide thin film is formed to grow to a polycrystalline surface.

이러한 문제점을 해결하기 위해서, 한국특허 제0488852호에서는, a) 아연 원으로 알킬산알킬아연을 침착(deposition) 반응기에 공급하여 기질 위에 아연 함유 화학종을 흡착시키는 단계; b) 미반응 아연 원 및 반응 부산물을 반응기로부터 제거하는 제 1 정화 단계; c) 반응기에 산소 원을 공급하여 아연 함유 화학종이 흡착된 기질 상에 산소 함유 화학종을 흡착시키는 단계; 및 d) 미반응 산소 원과 반응 부산물을 반응기로부터 제거하는 제 2 정화 단계를 포함하는 산화아연 박막 제조방법을 개시하고 있다.In order to solve this problem, Korean Patent No. 0488852, comprising the steps of: a) supplying an alkyl zinc alkylate as a zinc source to a deposition reactor to adsorb zinc-containing species on a substrate; b) a first purification step of removing unreacted zinc sources and reaction byproducts from the reactor; c) supplying an oxygen source to the reactor to adsorb the oxygen containing species on the substrate to which the zinc containing species are adsorbed; And d) a second purge step of removing unreacted oxygen source and reaction by-products from the reactor.

그러나, 이 방법은 단순히 공정 온도를 100℃ 내지 300℃의 온도로 낮추기 위한 기술이며, 박막의 특성을 변화시키기 위한 기술은 아니다. 실질적으로, 박막의 특성을 변화시키기 위해서는 불순물을 첨가하거나 다른 원소, 가령 갈륨이나 인듐을 동시에 증착하여 산화아연화합물 박막을 형성하였다.However, this method is merely a technique for lowering the process temperature to a temperature of 100 ° C to 300 ° C, not a technique for changing the characteristics of the thin film. Substantially, in order to change the properties of the thin film, an zinc oxide compound thin film was formed by adding an impurity or depositing other elements such as gallium or indium at the same time.

따라서, 본 발명의 목적은 저온에서 원자층 증착법을 이용하여 산화아연 박막을 형성하여 별도의 도핑 없이 특성을 변화시킬 수 있도록 하는 것이다.Accordingly, it is an object of the present invention to form a zinc oxide thin film using atomic layer deposition at low temperature so that the characteristics can be changed without additional doping.

상기의 목적은, 원자층 증착법을 이용하여 산화아연 박막을 형성하는 방법으로서, 아연 소스를 100℃ 이하의 공정 온도에서 주입하는 단계; 미반응 아연 소스와 반응 부산물을 제거하는 단계; 산소 소스를 주입하여 상기 아연 소스와 반응시키는 단계; 및 미반응 산소 소스와 반응 부산물을 제거하는 단계를 포함하는 산화아연 박막의 형성방법에 의해 달성된다.The above object is a method of forming a zinc oxide thin film using atomic layer deposition, comprising the steps of: injecting a zinc source at a process temperature of less than 100 ℃; Removing unreacted zinc source and reaction byproducts; Injecting an oxygen source to react with the zinc source; And removing the unreacted oxygen source and the reaction by-products.

상기 아연 소스는 디에틸아연(DEZ)을 포함하고, 상기 산화 소스는 물을 포함할 수 있다.The zinc source may comprise diethylzinc (DEZ) and the oxidation source may comprise water.

바람직하게, 상기 공정온도는 70℃ 내지 100℃일 수 있다.Preferably, the process temperature may be 70 ℃ to 100 ℃.

상기의 구성에 의하면, 원자층 증착방법을 그대로 이용하면서 온도를 제어하여 별도의 도핑 없이 산화아연 박막의 특성을 제어할 수 있다.According to the above configuration, the temperature of the zinc oxide thin film can be controlled without any doping by controlling the temperature while using the atomic layer deposition method as it is.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention.

도 1은 본 발명에 따른 산화아연 형성방법의 공정도이다.1 is a process chart of the method for forming zinc oxide according to the present invention.

아연 소스, 가령 디에틸아연(DEZ)를 저온, 가령 100℃ 이하의 온도에서 1Torr 정도의 저기압을 유지하면서 주입하고, 불활성 기체인 질소나 아르곤을 퍼지하여 증착속도를 유지하면서 미반응 아연 소스와 반응 부산물을 제거한다. 다시, 산소 소스, 가령 물을 주입하여 디에틸아연과 반응시킨 후, 질소나 아르곤을 퍼지하여 미반응 산소 소스와 반응 부산물을 제거하여 산화아연 박막을 형성한다.A zinc source, such as diethyl zinc (DEZ), is injected at a low temperature, such as 100 ° C or less, while maintaining a low pressure of about 1 Torr, and reacted with an unreacted zinc source while purging the inert gas nitrogen or argon to maintain the deposition rate. Remove the byproducts. Again, an oxygen source, such as water, is injected to react with diethylzinc, and then purged with nitrogen or argon to remove the unreacted oxygen source and reaction by-products to form a zinc oxide thin film.

상기의 공정 온도는 100℃ 이하가 적절하지만, 70℃ 내지 100℃의 범위가 더 바람직하다. 가령 70℃보다 낮은 온도에서는 저항이 증가할 수 있으며, 100℃를 넘는 경우 원하는 특성을 얻지 못할 수 있다.Although 100 degreeC or less is suitable for said process temperature, the range of 70 degreeC-100 degreeC is more preferable. For example, the resistance may increase at a temperature lower than 70 ° C., and if the temperature exceeds 100 ° C., desired characteristics may not be obtained.

이때, 사이클 수를 적절히 설정함으로써, 형성되는 박막의 두께를 제어할 수 있다.At this time, the thickness of the thin film formed can be controlled by setting the number of cycles suitably.

이와 같은 방법으로 형성된 산화아연 박막은 비저항이 증가하고, 캐리어 농도가 감소하였으며, 온도에 따라 특성이 변화되었다.The zinc oxide thin film formed by the above method had an increase in specific resistance, a decrease in carrier concentration, and a change in properties with temperature.

이하에서는 이와 같이 증착온도에 따라 특성변화가 발생하는 원인 메커니즘을 설명한다.Hereinafter, a mechanism for causing the characteristic change to occur according to the deposition temperature will be described.

도 2는 온도 이외의 다른 조건이 일치하는 두 산화아연 박막 시편의 조성을 정량적으로 알 수 있는 RBS(Rutherford Backscattering Spectrometry) 자료이다. 도 2a는 70℃에서 증착한 시편이고, 도 2b는 200℃에서 증착한 시편이다. Figure 2 is a Rutherford Backscattering Spectrometry (RBS) data that can quantitatively determine the composition of two zinc oxide thin film specimens that match conditions other than temperature. Figure 2a is a specimen deposited at 70 ℃, Figure 2b is a specimen deposited at 200 ℃.

산화아연 박막의 특성을 좌우하는 큰 요인 중 하나가 산소와 아연의 비율인데, 결합률이 1:1에 가까울수록 잔여 캐리어가 적어지므로, 전도도 등에 영향을 미친다. 도 2의 두 그래프를 비교하면, 70℃에서 증착한 시편의 경우 결합률이 1:0.97인 반면, 200℃에서 증착한 시편의 경우 결합률이 1:0.75로, 저온에서 증착 할수록 1:1 비율에 가까워짐을 확인할 수 있다. One of the major factors that determine the properties of the zinc oxide thin film is the ratio of oxygen and zinc. The closer the bonding ratio is to 1: 1, the less the residual carriers, thus affecting the conductivity and the like. Comparing the two graphs of FIG. 2, the bonding ratio is 1: 0.97 for the specimen deposited at 70 ° C., while the bonding ratio is 1: 0.75 for the specimen deposited at 200 ° C., and closer to 1: 1 when deposited at low temperature. can confirm.

이는 증착 중에 낮은 온도가 충분한 활동 에너지를 공급하지 못하여 산화 소스로 사용하는 H2O에서 분리된 OH-기가 충분히 퍼지되지 못하여 아연(Zn)과 결합할 수 있는 OH-기가 충분히 공급되어 결합률이 높아진 것으로 예상된다. 이러한 결과는 옥사이드 베이컨시(oxide vacancy) 양을 줄여주므로 트랩 전자도 적어져 낮은 캐리어 농도의 원인이 된다.This low temperature is sufficient activity mothayeo not supply energy separated from H 2 O to use as an oxidation source OH during deposition - group is OH may be combined with enough mothayeo be purged zinc (Zn) - the groups sufficiently supplied to bonding ratio is increased It is expected. These results reduce the amount of oxide vacancy, which results in fewer trap electrons, leading to lower carrier concentrations.

도 3은 증착 온도별 시편의 구조 분석을 위한 XRD(X-ray Diffractometer) 데이터이고, 도 4는 성장 방향별 표면 에너지를 나타낸 표이다.3 is X-ray diffractometer (XRD) data for structural analysis of specimens according to deposition temperatures, and FIG. 4 is a table showing surface energy according to growth directions.

도 3의 XRD 데이터를 보면, 저온인 70℃와 90℃에서는 (002) 피크가 우세한 결과를 보이지만, 고온에서는 금속 아연 (101), (100) 피크의 강도가 증가함을 알 수 있다.The XRD data of FIG. 3 show that the (002) peak predominates at low temperatures of 70 ° C. and 90 ° C., but the strength of the metal zinc (101) and (100) peaks increases at high temperatures.

이러한 결과가 나타나는 이유는 (002)의 결합 에너지(Bonding Energy)가 다른 결정 방향보다 가장 작으므로 저온에서는 충분한 열에너지가 제공되지 못하기 때문에 대부분 (002) 방향으로 성장한다. 하지만 고온으로 갈수록 결합 에너지가 증가함으로 다른 방향으로도 성장하는 것이다.The reason for this result is that the bonding energy of (002) is smaller than that of the other crystal directions, and thus grows mostly in the (002) direction because sufficient thermal energy is not provided at low temperature. However, as the temperature increases, the binding energy increases, so that it grows in the other direction.

이러한 성장방향의 차이는 비저항에 영향을 미치는데 그 이유는 (002) 방향이 가장 원자가 밀집되어 있어 저항이 가장 크기 때문이다. 즉, 저온에서 성장한 (002) 위주의 산화아연은 고온에서의 다방향 성장보다 더 큰 비저항을 가진다. 이는 특별한 도핑 공정 없이도 증착 온도를 조절하여 그 성장방향의 분포에 따른 비 저항을 제어할 수 있음을 뜻한다.This difference in growth direction affects the resistivity because the (002) direction is most densely packed with atoms and the largest resistance. That is, (002) oriented zinc oxide grown at low temperature has a higher resistivity than multidirectional growth at high temperature. This means that the specific temperature can be controlled by controlling the deposition temperature without a special doping process.

상기와 같은 방법으로 형성되는 산화아연 박막은 TFT 소자의 채널로 적용될 수 있다. 가령, 도 5에 나타낸 TFT 소자의 채널층으로 산화아연 박막을 적용하는 경우, 도 6a와 같이 150℃에서 형성한 박막을 채널층으로 사용할 때와, 도 6b와 같이 90℃에서 형성한 박막을 채널층으로 사용할 때를 비교하면, 도 6b의 경우가 포화가 잘 되어 소자로서의 특성이 잘 나타난다.The zinc oxide thin film formed by the above method can be applied to the channel of the TFT device. For example, when the zinc oxide thin film is applied to the channel layer of the TFT device shown in FIG. 5, the thin film formed at 90 ° C. as shown in FIG. 6A is used as the channel layer, and the thin film formed at 90 ° C. as shown in FIG. 6B is used as the channel layer. In comparison with the case of the layer, the case of FIG. 6B is well saturated, and the characteristics of the device are well represented.

본 발명에 따라 제조되는 산화아연 박막은 종래의 불투명한 전극이나 소자에 사용되는 금속 등의 무기물을 대체하여 양방향 디스플레이와 같은 투명소자가 필요한 제품에 적용할 수 있다.The zinc oxide thin film manufactured according to the present invention can be applied to a product requiring a transparent device such as a bidirectional display by replacing inorganic materials such as metals used in conventional opaque electrodes or devices.

도 1은 본 발명에 따른 산화아연 형성방법의 공정도이다.1 is a process chart of the method for forming zinc oxide according to the present invention.

도 2는 온도 이외의 다른 조건이 일치하는 두 산화아연 박막 시편의 조성을 정량적으로 알 수 있는 RBS(Rutherford Backscattering Spectrometry) 자료로서, 도 2a는 70℃에서 증착한 시편이고, 도 2b는 200℃에서 증착한 시편이다. Figure 2 is a Rutherford Backscattering Spectrometry (RBS) data that can quantitatively determine the composition of two zinc oxide thin film specimens that match conditions other than temperature, Figure 2a is a specimen deposited at 70 ℃, Figure 2b is deposited at 200 ℃ It is a psalm.

도 3은 증착 온도별 시편의 구조 분석을 위한 XRD(X-ray Diffractometer) 데이터이다.3 is X-ray diffractometer (XRD) data for structural analysis of specimens at different deposition temperatures.

도 4는 성장 방향별 표면 에너지를 나타낸 표이다.4 is a table showing surface energy for each growth direction.

도 5에 나타낸 산화아연 박막을 채널층으로 적용한 TFT 소자를 나타낸다.The TFT element which applied the zinc oxide thin film shown in FIG. 5 as a channel layer is shown.

도 6은 TFT 소자 특성을 나타내는 그래프로, 도 6a은 150℃에서 형성한 박막을 채널층으로 사용하는 경우, 도 6b는 90℃에서 형성한 박막을 채널층으로 사용하는 경우를 각각 나타낸다.6 is a graph showing TFT device characteristics, and FIG. 6A shows a case where a thin film formed at 150 ° C. is used as a channel layer, and FIG. 6B shows a case where a thin film formed at 90 ° C. is used as a channel layer.

Claims (4)

원자층 증착법을 이용하여 산화아연 박막을 형성하는 방법으로서,A method of forming a zinc oxide thin film using an atomic layer deposition method, 아연 소스를 100℃ 이하의 공정 온도에서 주입하는 단계;Injecting a zinc source at a process temperature of 100 ° C. or less; 미반응 아연 소스와 반응 부산물을 제거하는 단계;Removing unreacted zinc source and reaction byproducts; 산소 소스를 주입하여 상기 아연 소스와 반응시키는 단계; 및Injecting an oxygen source to react with the zinc source; And 미반응 산소 소스와 반응 부산물을 제거하는 단계를 포함하는 것을 특징으로 하는 원자층 증착법을 이용한 산화아연 박막의 형성방법.A method of forming a zinc oxide thin film using atomic layer deposition, comprising removing an unreacted oxygen source and reaction byproducts. 청구항 1에 있어서,The method according to claim 1, 상기 아연 소스는 디에틸아연(DEZ)을 포함하는 것을 특징으로 하는 원자층 증착법을 이용한 산화아연 박막의 형성방법.The zinc source is a method of forming a zinc oxide thin film using the atomic layer deposition method characterized in that it comprises diethyl zinc (DEZ). 청구항 1 또는 2에 있어서,The method according to claim 1 or 2, 상기 산화 소스는 물을 포함하는 것을 특징으로 하는 원자층 증착법을 이용한 산화아연 박막의 형성방법.The method of forming a zinc oxide thin film using an atomic layer deposition method, characterized in that the oxidation source comprises water. 청구항 1에 있어서,The method according to claim 1, 상기 공정온도는 70℃ 내지 100℃인 것을 특징으로 하는 원자층 증착법을 이용한 산화아연 박막의 형성방법.The process temperature is a method of forming a zinc oxide thin film using an atomic layer deposition method, characterized in that 70 ℃ to 100 ℃.
KR1020080042298A 2008-05-07 2008-05-07 Method for forming zno thin film using ald KR20090116393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080042298A KR20090116393A (en) 2008-05-07 2008-05-07 Method for forming zno thin film using ald

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080042298A KR20090116393A (en) 2008-05-07 2008-05-07 Method for forming zno thin film using ald

Publications (1)

Publication Number Publication Date
KR20090116393A true KR20090116393A (en) 2009-11-11

Family

ID=41601168

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080042298A KR20090116393A (en) 2008-05-07 2008-05-07 Method for forming zno thin film using ald

Country Status (1)

Country Link
KR (1) KR20090116393A (en)

Similar Documents

Publication Publication Date Title
TWI754775B (en) Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US11624112B2 (en) Synthesis and use of precursors for ALD of molybdenum or tungsten containing thin films
JP7095172B2 (en) Atomic layer deposition of rhenium-containing thin film
US20210066080A1 (en) Methods and apparatus for depositing a chalcogenide film and structures including the film
EP3085810B1 (en) Composition for layered transition metal chalcogenide compound layer and method of forming layered transition metal chalcogenide compound layer
JP2020084323A (en) Method for depositing transition metal chalcogenide film on substrate by cyclic deposition process
US20160265110A1 (en) Atomic layer deposition of metal phosphates and lithium silicates
KR102564874B1 (en) Method for forming W containing thin film on a substrate
Nam et al. Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition
KR20170107323A (en) Transition metal dichalcogenides alloy and manufacturing the same
JP2014507794A (en) Thin film transistor and manufacturing method thereof
KR20130087354A (en) Indium-containing oxide film and producing method thereof
KR20130092352A (en) Doping method of atomic layer deposition
Genevée et al. Study of the aluminum doping of zinc oxide films prepared by atomic layer deposition at low temperature
US20190006586A1 (en) Chalcogenide films for selector devices
JP2017508883A (en) Atomic layer deposition of germanium or germanium oxide
CN112020504A (en) Precursor compounds for Atomic Layer Deposition (ALD) and Chemical Vapor Deposition (CVD) and ALD/CVD processes using the same
US11643728B2 (en) Atomic layer deposition and etching of transition metal dichalcogenide thin films
KR100721055B1 (en) Fabrication Method for p-Type Zinc Oxide Thin Films by Atomic Layer Deposition
KR20090116393A (en) Method for forming zno thin film using ald
US20090324821A1 (en) Methods for forming thin films comprising tellurium
KR100699362B1 (en) Atomic Layer Deposition Method using Plasma
KR20200083340A (en) Precursor For Forming A Thin Film, Method For Preparing Thereof, Method For Preparing The Thin Film, and The Thin Film
US20130082219A1 (en) Method for Producing Highly Conformal Transparent Conducting Oxides
KR20130091615A (en) Preparation of zinctin oxide thin films

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20101103

Effective date: 20110630