KR20090116192A - Method of welding poor conductive metal pipes - Google Patents

Method of welding poor conductive metal pipes Download PDF

Info

Publication number
KR20090116192A
KR20090116192A KR1020080041984A KR20080041984A KR20090116192A KR 20090116192 A KR20090116192 A KR 20090116192A KR 1020080041984 A KR1020080041984 A KR 1020080041984A KR 20080041984 A KR20080041984 A KR 20080041984A KR 20090116192 A KR20090116192 A KR 20090116192A
Authority
KR
South Korea
Prior art keywords
metal
welding
titanium alloy
metal pipe
metal ring
Prior art date
Application number
KR1020080041984A
Other languages
Korean (ko)
Inventor
박동환
강봉용
강문진
Original Assignee
웰메이트 주식회사
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웰메이트 주식회사, 한국생산기술연구원 filed Critical 웰메이트 주식회사
Priority to KR1020080041984A priority Critical patent/KR20090116192A/en
Publication of KR20090116192A publication Critical patent/KR20090116192A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • B23K20/2275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer the other layer being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/22Ferrous alloys and copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/24Ferrous alloys and titanium or alloys thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE: A method for welding metal pipe with poor conductivity using a magnetic pulse welding mode is provided to enable a worker to perform a next process right after the welding process. CONSTITUTION: A method for welding metal pipe with poor conductivity comprises as follows. A metal ring(230) is placed on a contact site of a first metal pipe(210) and second metal pipe(220). The metal ring exhibits high conductivity. Eddy current is induced in the metal ring. The metal ring is instantaneously transformed by the repulsion generated by the eddy current. The transformed metal ring is welded as collided with the first and second metal pipes. The first and second metal pipes are made of titanium, SUS, or titanium alloy. The metal ring includes copper, aluminium, iron, or aluminium alloy.

Description

전기전도도가 낮은 금속관의 용접방법{Method of Welding Poor conductive Metal Pipes }Welding method of low electrical conductivity metal pipes {Method of Welding Poor conductive Metal Pipes}

본 발명은 전기전도도가 낮은 금속관의 용접방법에 관한 것으로서, 더욱 상세하게는 티타늄 합금관들을 자기펄스용접방식으로 용접하는 방법에 관한 것이다. The present invention relates to a method for welding metal tubes with low electrical conductivity, and more particularly, to a method for welding titanium alloy tubes by magnetic pulse welding.

일반적으로 자기펄스용접(Magnetic Pulse Welding)은 순간적으로 매우 큰 전자기력을 유도시켜서 금속 가공물을 유도된 자기력으로 변형시켜서 용접시키는 기술이다. In general, magnetic pulse welding (Magnetic Pulse Welding) is a technique that induces a very large electromagnetic force instantaneously transforms the metal workpiece into the induced magnetic force to weld.

자기펄스용접에서는 강자계를 발생하기 위하여 방전 커패시터, 성형코일, 필드세이퍼를 사용한다. 방전 커패시터에 충전된 전기 에너지를 매우 신속하게 성형코일로 방전시킴으로써 금속 가공물에 유도되는 맴돌이 전류에 의한 가공물과 성형코일 사이의 자기 척력을 이용하여 가공물에 변형을 일으켜 용접시키는 것이다. In magnetic pulse welding, a discharge capacitor, a forming coil, and a field saver are used to generate a ferromagnetic field. By discharging the electrical energy charged in the discharge capacitor to the molding coil very quickly, deformation and welding of the workpiece are performed by using the magnetic repulsion between the workpiece and the molding coil due to the eddy current induced in the metal workpiece.

따라서 순간적으로 전기 에너지를 방전시키기 위하여 대부분의 자기펄스는 약 10마이크로 초 내지 약 250마이크로 초 사이의 지속시간을 갖는다. Thus, most magnetic pulses have a duration between about 10 microseconds and about 250 microseconds to discharge electrical energy instantaneously.

자기펄스용접에 관련된 종래 기술로는 공개특허 제2000-64506호(금속물의 전자기전합 또는 용접방법 및 장치) 및 공개특허 제2006-25608호(용기를 봉합하기 위 한 자기펄스용접방법 및 장치와 봉합된 용기) 등에 개시되어 있다.Conventional techniques related to magnetic pulse welding include Patent Publication Nos. 2000-64506 (Method and Apparatus for Electromagnetic Electrolysis or Welding of Metals) and Patent Publication No. 2006-25608 (magnetic pulse welding method and apparatus for sealing containers and Sealed containers) and the like.

자기펄스용접은 아크 용접등과 같이 기존의 다른 용접과는 달리 용접부위가 고온에 의해 변색되거나 용접흔적이 남거나 하는 문제가 없기 때문에 외관이 깨끗하게 용접되므로 매우 유용한 용접방식 중의 하나이다. Unlike other conventional welding such as arc welding, magnetic pulse welding is one of the very useful welding methods because the welding part has no problem of discoloration due to high temperature or welding trace remains.

그러나 자기펄스용접은 용접 대상에 전류를 유도하기 때문에 반드시 전기전도도 좋은 금속재질에 대해서만 용접이 가능하였다. 그러므로 전기전도도가 낮은 금속재질을 가진 제품에 대해서는 사용할 수 없었다.However, magnetic pulse welding induces a current to the welding target, so welding is possible only for metal materials having good electrical conductivity. Therefore, it could not be used for products with low electrical conductivity metals.

최근에 티타늄은 가볍고 고강도이면서 내식성이 우수하여 항공, 해양, 화학, 민수용품 등 산업계 전반에 널리 사용되고 있다. 그러나 티타늄 합금은 전기전도도가 매우 낮아 자기펄스용접을 사용하지 못하고 가스텅스텐아크용접을 주로 사용하고 있다.Recently, titanium is light, high strength, and excellent in corrosion resistance, and is widely used in aerospace, marine, chemical, and civilian industries. However, titanium alloys have very low electrical conductivity, so magnetic pulse welding is not used, and gas tungsten arc welding is mainly used.

상기 문제점을 해결하기 위한 본 발명의 목적은 전기전도도가 낮은 금속관들을 자기펄스용접방식으로 용접할 수 있는 방법을 제공하는 데 있다. An object of the present invention for solving the above problems is to provide a method capable of welding metal tubes with low electrical conductivity by magnetic pulse welding.

특히 본 발명은 티타늄 합금관을 자기펄스용접하는 방법을 제공하는 데 있다. In particular, the present invention provides a method for magnetic pulse welding a titanium alloy tube.

상기 목적을 달성하기 위한 본 발명의 용접방법은 서로 일정 간격을 두고 제1금속관과 제2금속관이 겹치는 부분에 전기전도도가 높은 금속링을 위치시키고, 금속링에 순간적으로 강한 맴돌이 전류를 유도시키는 단계를 구비한다. 그러므로 이 맴돌이 전류에 의해 발생된 척력에 의해 상기 금속링이 순간적으로 변형되면서 상기 제1금속관과 제2금속관의 겹치는 부위가 충돌에 의해 용접된다. The welding method of the present invention for achieving the above object is a step of placing a metal ring with a high electrical conductivity in the overlapping portion of the first metal pipe and the second metal pipe at a predetermined interval from each other, inducing a strong eddy current in the metal ring instantaneously It is provided. Therefore, the metal ring is instantaneously deformed by the repulsive force generated by this eddy current, and the overlapping portions of the first metal pipe and the second metal pipe are welded by collision.

여기서 제1 및 제2금속관은 전기전도도가 낮은 티타늄, 서스 및 티타늄 합금 중 어느 하나의 재질이고, 금속링은 전기전도도가 높은 구리, 알루미늄, 철 및 알루미늄 합금 중 어느 하나의 재질일 수 있다. Here, the first and second metal pipes may be any one of titanium, sus, and titanium alloys having low electrical conductivity, and the metal rings may be any one of copper, aluminum, iron, and aluminum alloys having high electrical conductivity.

여기서 자기력은 미리 설계된 값을 가진다. 구체적으로 금속링이 제1금속관을 밀어서 제2금속관의 용접면까지 이동하는 동안 제1 및 제2금속관이 서로 용접될 만큼의 속도를 얻을 수 있을 정도의 값을 가져야 한다. The magnetic force here has a predesigned value. Specifically, the metal ring should have a value such that the first and the second metal pipes can be welded to each other while the first metal pipe is moved to the welding surface of the second metal pipe.

본 발명의 일 실시예에 따른 용접방법은 전기전도도가 낮은 티타늄 합금관들 을 자기펄스용접방식으로 용접할 수 있으므로 금속관들의 용접부위가 매끈하므로 별도의 후처리 공정이 필요 없고 용접 후에도 용접부위의 온도가 저온이므로 즉시 후속 공정작업이 가능하므로 생산성을 향상시킬 수 있다. The welding method according to an embodiment of the present invention can weld titanium alloy tubes having low electrical conductivity by magnetic pulse welding, so that the welding portions of the metal tubes are smooth, so that no additional post-treatment process is required and the temperature of the welding portion is maintained even after welding. Because of the low temperature, it is possible to immediately follow-up and improve productivity.

이하, 첨부된 도면들을 참조하여 본 발명의 실시예들에 따른 용접방법에 대하여 상세하게 설명하지만, 본 발명이 하기의 실시예들에 제한되는 것은 아니며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다. Hereinafter, the welding method according to the embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to the following embodiments, and those skilled in the art will appreciate The present invention may be embodied in various other forms without departing from the spirit of the invention.

도 1은 본 발명의 일 실시예에 따른 전기전도도가 낮은 티타늄 합금관의 용접 전의 상태를 나타낸 도면이고, 도 2는 본 발명의 일 실시예에 따른 전기전도도가 낮은 티타늄 합금관의 용접 후의 상태를 나타낸 도면이다. 1 is a view showing a state before welding of a low electrical conductivity titanium alloy tube according to an embodiment of the present invention, Figure 2 is a state after welding of a low electrical conductivity titanium alloy tube according to an embodiment of the present invention. The figure shown.

도 1을 참조하면, 본 발명의 용접장치는 상용교류를 입력하여 고전압 대전류의 펄스 에너지를 발생하는 펄스전원장치(100)로 구성된다. 펄스전원장치(100)는 충전회로부(110), 커패시터 뱅크(120), 대전류 스위치(130), 유도코일(140)을 포함한다. Referring to Figure 1, the welding apparatus of the present invention is composed of a pulse power supply device 100 for generating a pulse energy of a high voltage high current by inputting a commercial alternating current. The pulsed power supply device 100 may include a charging circuit unit 110, a capacitor bank 120, a large current switch 130, and an induction coil 140.

충전회로부(110)는 통상의 정류회로와 인버터회로로 구성되어 상용교류를 정류하고 정류된 전압을 인버터 승압하여 고전압의 직류를 출력한다. 충전회로부(110)는 대략 3 내지 4초 정도에 커패시터 뱅크(120)를 충전시킨다. The charging circuit unit 110 is composed of a normal rectifier circuit and an inverter circuit to rectify the commercial alternating current, and boosts the rectified voltage to output a high voltage direct current. The charging circuit unit 110 charges the capacitor bank 120 in about 3 to 4 seconds.

커패시터 뱅크(120)는 대용량의 커패시터들을 4개 또는 8개 단위로 병렬로 연결하여 충전회로부(110)로부터 제공된 직류를 충전한다. 125㎌/10kV의 커패시터 4개를 병렬로 연결하여 구성한다. 커패시터 뱅크(120)는 펄스폭을 최소화하기 위하여 저 임피던스로 설계된다. The capacitor bank 120 charges the direct current provided from the charging circuit unit 110 by connecting large capacity capacitors in parallel in four or eight units. Four capacitors of 125㎌ / 10kV are connected in parallel. The capacitor bank 120 is designed with low impedance to minimize the pulse width.

대전류 스위치(130)는 이그나이트론, 아크 간극 스위치 또는 스파크 간극 스위치 등으로 구성되어 통상시에는 오프상태를 유지하고 동작시에는 게이트에 인가되는 제어전압에 응답하여 통전되어 순간적으로 수십 kA ~ 수백 kA의 대전류를 유도코일(140)에 제공한다. 대전류 스위치(130)는 수십 kV의 고전압에 견디면서 제어성이 보장되어야 하고 주변 동작조건 변화에 관계없이 일정한 동작특성을 가져야 하며, 스위치를 통과하는 대전류 펄스는 번개와 같은 섭씨 수만 도의 고온의 아크 형태이기 때문에 이로 인한 전극의 손상을 극복할 수 있는 구조로 형성된다. 여기서 발생되는 펄스의 폭은 수 내지 수십 마이크로초로 설계된다. The high current switch 130 is composed of an ignitron, an arc gap switch, or a spark gap switch. The high current switch 130 is normally kept off and energized in response to a control voltage applied to a gate. The large current is provided to the induction coil 140. The high current switch 130 must withstand high voltages of tens of kV and controllability and have a constant operating characteristic regardless of the change in the surrounding operating conditions.The high current pulse passing through the switch has the shape of a high temperature arc of tens of thousands of degrees Celsius such as lightning. Because of this it is formed in a structure that can overcome the damage of the electrode thereby. The width of the pulses generated here is designed to be several to tens of microseconds.

유도코일(140)은 1내지 수회의 턴 수를 가진 것으로 그리스문자 "Ω'형상으로 구성된다. 턴수는 용접부위에 가하고자 하는 자기력의 세기에 따라서 결정된다. 또한 유도코일(140)은 유도코일에 자기적으로 결합되는 필드 세이퍼를 포함할 수도 있다. The induction coil 140 has a turn number of 1 to several times and is formed in the Greek letter "Ω". The number of turns is determined according to the strength of the magnetic force to be applied to the welded portion. In addition, the induction coil 140 is connected to the induction coil. It may also include a magnetic field-coupled field saver.

티타늄 합금관(210)의 일단을 티타늄 합금관(220)의 확관된 일단에 삽입하고 겹쳐진 부위에 알루미늄 링(230)을 위치시킨 상태에서 유도코일(140)의 내부에 삽입시킨다. 여기서 도 1에 도시한 바와 같이 삽입된 티타늄 합금관(210)은 티타늄 합금관(220)과 수 mm의 간격을 유지한다. 알루미늄 링(230)에 티타늄 합금관(220)은 간격없이 꼭 맞게 삽입된다. 여기서 티타늄 합금관(220)의 확관된 부위에 알루 미늄 관(230)을 끼우고 나서 티타늄 합금관(210)을 티타늄 합금관(220)에 삽입하여 두 관(210, 220) 사이에 일정 간격을 유지하도록 위치시킬 수도 있다. One end of the titanium alloy tube 210 is inserted into the expanded end of the titanium alloy tube 220 and inserted into the induction coil 140 while the aluminum ring 230 is positioned at the overlapped portion. Here, the titanium alloy tube 210 inserted as shown in FIG. 1 maintains a gap of several millimeters with the titanium alloy tube 220. Titanium alloy tube 220 is inserted into the aluminum ring 230 without gaps. Here, the aluminum tube 230 is inserted into the expanded portion of the titanium alloy tube 220, and then the titanium alloy tube 210 is inserted into the titanium alloy tube 220 to form a predetermined gap between the two tubes 210 and 220. It can also be positioned to hold.

이 상태에서 대전류 스위치(130)를 턴온시키면 커패시터 뱅크(120)에 충전된 수백 kA의 대전류가 대전류스위치(130), 유도코일(140)을 통해 수 마이크로초 이내에 방전된다. In this state, when the large current switch 130 is turned on, a large current of several hundred kA charged in the capacitor bank 120 is discharged within a few microseconds through the large current switch 130 and the induction coil 140.

이때 유도코일(140)에 흐르는 방전전류에 의해 알루미늄 링(230)에는 맴돌이 전류(eddy current)가 유도되어 유도코일에 흐르는 전류와 반대방향으로 흐르게 된다. 그러므로 유도코일(140)에서 형성된 전자기장과 반대의 전자기장이 형성되므로 유도된 두 전자기장은 서로 척력(펄스화된 자기력)을 발생하게 되므로 알루미늄 링(230)은 초속 수백 m 정도의 고속도로 이동 수축하게 된다. At this time, a eddy current is induced in the aluminum ring 230 by the discharge current flowing in the induction coil 140 to flow in the opposite direction to the current flowing in the induction coil. Therefore, since the electromagnetic field opposite to the electromagnetic field formed in the induction coil 140 is formed, the two induced electromagnetic fields generate repulsive force (pulsed magnetic force) from each other, so that the aluminum ring 230 contracts and moves at highway speeds of several hundreds of meters per second.

따라서 티타늄 합금관(220)의 확관된 부분이 알루미늄 링(230)의 수축력에 밀려서 수축되어 티타늄 합금관(210)의 표면에 도 2에 도시한 바와 같이 용접되게 된다. Therefore, the expanded portion of the titanium alloy tube 220 is contracted by the contracting force of the aluminum ring 230 is welded to the surface of the titanium alloy tube 210 as shown in FIG.

여기서 자기력은 미리 설계된 값을 가진다. 구체적으로 알루미늄 링(230)이 티타늄 합금관(220)을 밀어서 티타늄 합금관(210)의 용접면까지 이동하는 동안 티타늄 합금관(220)과 티타늄 합금관(210)이 서로 용접될 만큼의 속도를 얻을 수 있을 정도의 값을 가져야 한다. The magnetic force here has a predesigned value. In detail, while the aluminum ring 230 pushes the titanium alloy tube 220 to move to the welding surface of the titanium alloy tube 210, the titanium alloy tube 220 and the titanium alloy tube 210 may be welded to each other. It should have enough value to get it.

자기력 F 는 자속밀도 B와 맴돌이 전류 i의 벡터곱으로 얻어진다. The magnetic force F is obtained by the vector product of the magnetic flux density B and the eddy current i.

전류 i와 압력 p는 다음 수식에 의해 얻어질 수 있다.The current i and the pressure p can be obtained by the following formula.

[수학식1][Equation 1]

∇ × i = - κ(∂B / ∂t)∇ × i =-κ (∂B / ∂t)

[수학식2][Equation 2]

p = (B2 o - B2 i)/2μ = (B2 o/2μ)(1-e-2x/δ)p = (B 2 o -B 2 i ) / 2μ = (B 2 o / 2μ) (1-e -2x / δ )

δ = √(2/ωκμ)(표면효과의 깊이)δ = √ (2 / ωκμ) (depth of surface effect)

여기서 κ는 전기전도도, μ는 자기 투자율, B2 o 알루미늄 링 외주면 자속밀도, B2 i알루미늄 링 내주면 자속밀도, ω는 자기장의 각주파수를 나타낸다. Where κ is the electrical conductivity, μ is the magnetic permeability, magnetic flux density of the outer peripheral surface of the B 2 o aluminum ring, magnetic flux density of the inner peripheral surface of the B 2 i aluminum ring, and ω is the angular frequency of the magnetic field.

방전전류가 유도코일에 흐르게 되면 유도코일과 알루미늄 링(230)사이에 척력이 작용하여 250m/s 내지 400m/s의 속도로 알루미늄 링(230) 및 티타늄 합금관(220)이 간격을 이동하여 티타늄 합금관(210)에 충돌하게 된다. 충돌된 두 면은 강력한 충돌에너지에 의해 용접된다. When the discharge current flows through the induction coil, the repulsive force acts between the induction coil and the aluminum ring 230 to move the interval between the aluminum ring 230 and the titanium alloy tube 220 at a speed of 250 m / s to 400 m / s. It will collide with the alloy pipe 210. The two collided surfaces are welded by strong collision energy.

일 실시예에서 티타늄 합금관(220)보다 길게 돌출된 알루미늄 링(230)의 일부분은 티타늄 합금관(210)에 충돌되어 용접된다. In one embodiment, a portion of the aluminum ring 230 protruding longer than the titanium alloy tube 220 is collided and welded to the titanium alloy tube 210.

도 3은 다른 실시예의 충돌전 상태를 나타낸 것이고 도 4는 다른 실시예의 충돌 후 알루미늄 링(240)을 제거한 상태를 나타낸다. 다른 실시예는 일 실시예 알루미늄 링(230)과 비교하여 알루미늄 링(240)이 티타늄 합금관(220)의 에지보다 돌출되지 않게 구성한 점이 다르다. 그러므로, 충돌 후에 티타늄 합금관(220) 상에 위치한 알루미늄 링(240)을 제거하여 티타늄 합금관들만의 용접상태로 만들 수 있다. 그러므로 부식되는 알루미늄 링을 제거하여 내식성이 강한 티타늄 합금관만 남 길 수 있다. 3 shows a pre-collision state of another embodiment, and FIG. 4 shows a state in which the aluminum ring 240 is removed after the collision of another embodiment. Another embodiment is different from the aluminum ring 230 in one embodiment is configured so that the aluminum ring 240 does not protrude more than the edge of the titanium alloy tube 220. Therefore, after the collision, the aluminum ring 240 located on the titanium alloy tube 220 may be removed to weld only the titanium alloy tubes. Therefore, only corrosion-resistant titanium alloy tubes can be left by removing corroded aluminum rings.

본 발명에 따르면, 전기전도도가 낮은 티타늄 및 티타늄 합금이나 서스(SUS) 등의 재질로 된 금속관을 자기펄스 용접할 수 있으므로 산업계 전반에 걸쳐서 티타늄을 사용한 배관이나 튜브 형상 제작에 매우 유용하며 생산성을 향상시킬 수 있다. According to the present invention, it is possible to perform magnetic pulse welding of metal tubes made of titanium, titanium alloy or sus such as low electrical conductivity, which is very useful for producing pipes or tubes using titanium throughout the industry and improving productivity. You can.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although described with reference to the embodiments above, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the invention described in the claims below. You will understand.

도 1은 본 발명의 일 실시예에 따른 전기전도도가 낮은 금속관의 용접 전의 상태를 나타낸 도면이다. 1 is a view showing a state before welding of a low electrical conductivity metal tube according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 전기전도도가 낮은 금속관의 용접 후의 상태를 나타낸 도면이다. 2 is a view showing a state after welding of a low electrical conductivity metal tube according to an embodiment of the present invention.

도 3은 다른 실시예의 충돌전 상태를 나타낸 것이다.3 shows a pre-collision state of another embodiment.

도 4는 다른 실시예의 충돌 후 알루미늄 링(240)을 제거한 상태를 나타낸다.4 shows a state in which the aluminum ring 240 is removed after the collision of another embodiment.

Claims (3)

전기전도도가 낮은 제1금속관과 제2금속관을 용접하는 방법에 있어서,In the method of welding the first metal pipe and the second metal pipe having low electrical conductivity, 서로 일정 간격을 두고 상기 제1금속관과 제2금속관이 겹치는 부분에 전기전도도가 높은 금속링을 위치시키는 단계; 및Placing a metal ring having high electrical conductivity at a portion where the first metal pipe and the second metal pipe overlap with each other at a predetermined interval; And 상기 금속링에 순간적으로 강한 맴돌이 전류를 유도시키는 단계를 구비하여 Inducing an instantaneously strong eddy current in the metal ring 이 맴돌이 전류에 의해 발생된 척력에 의해 상기 금속링이 순간적으로 변형되면서 상기 제1금속관과 제2금속관의 겹치는 부위가 충돌에 의해 용접되는 것을 특징으로 하는 전기전도도가 낮은 금속관의 용접방법. The metal ring is instantaneously deformed by the repulsive force generated by the eddy current, and the overlapping portion of the first metal pipe and the second metal pipe is welded by a collision. 제1항에 있어서, 상기 제1 및 제2금속관은 티타늄, 서스 또는 티타늄 합금 재질인 것을 특징으로 하는 전기전도도가 낮은 금속관의 용접방법. The method of claim 1, wherein the first and second metal pipes are made of titanium, sus, or titanium alloy. 제1항에 있어서, 상기 금속링은 구리, 알루미늄, 철 또는 알루미늄 합금 재질인 것을 인 것을 특징으로 하는 전기전도도가 낮은 금속관의 용접방법.The method of claim 1, wherein the metal ring is made of copper, aluminum, iron, or an aluminum alloy.
KR1020080041984A 2008-05-06 2008-05-06 Method of welding poor conductive metal pipes KR20090116192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080041984A KR20090116192A (en) 2008-05-06 2008-05-06 Method of welding poor conductive metal pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080041984A KR20090116192A (en) 2008-05-06 2008-05-06 Method of welding poor conductive metal pipes

Publications (1)

Publication Number Publication Date
KR20090116192A true KR20090116192A (en) 2009-11-11

Family

ID=41600990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080041984A KR20090116192A (en) 2008-05-06 2008-05-06 Method of welding poor conductive metal pipes

Country Status (1)

Country Link
KR (1) KR20090116192A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508228B1 (en) * 2013-07-17 2015-04-07 한국생산기술연구원 Cable lug joint forming device and method using electromagnetic force
CN105014224A (en) * 2015-08-14 2015-11-04 哈尔滨工业大学 High-speed deformation connecting method and device for dissimilar metal sheets
CN108270139A (en) * 2018-02-07 2018-07-10 金杯电工股份有限公司 The attachment device and method of a kind of aluminium alloy harness and copper tip
JP2019022898A (en) * 2017-07-24 2019-02-14 トヨタ自動車株式会社 Method for manufacturing pipe with fixed member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508228B1 (en) * 2013-07-17 2015-04-07 한국생산기술연구원 Cable lug joint forming device and method using electromagnetic force
CN105014224A (en) * 2015-08-14 2015-11-04 哈尔滨工业大学 High-speed deformation connecting method and device for dissimilar metal sheets
JP2019022898A (en) * 2017-07-24 2019-02-14 トヨタ自動車株式会社 Method for manufacturing pipe with fixed member
US10857584B2 (en) 2017-07-24 2020-12-08 Toyota Jidosha Kabushiki Kaisha Method of manufacturing pipe assembly
CN108270139A (en) * 2018-02-07 2018-07-10 金杯电工股份有限公司 The attachment device and method of a kind of aluminium alloy harness and copper tip

Similar Documents

Publication Publication Date Title
Kapil et al. Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique
Mishra et al. 40 kJ magnetic pulse welding system for expansion welding of aluminium 6061 tube
US2337294A (en) Fabrication method
Jassim Magnetic pulse welding technology
KR20090116192A (en) Method of welding poor conductive metal pipes
DE502007006364D1 (en) A method of arc joining with AC with joints of the arc during at least every fifth positive pulse current phase through one or more external magnetic fields
Pablo Reis et al. Arc interruptions in Tandem pulsed gas metal arc welding
Gharghabi et al. Impact of metal thickness and field shaper on the time-varying processes during impulse electromagnetic forming in tubular geometries
Faraji et al. Experimental study and numerical modeling of arc and weld pool in stationary GTA welding of pure aluminum
Zhou et al. Evaluation model of electromagnetic pulse welding effect based on Vc-β trajectory curve
CN108698157B (en) Method and apparatus for manufacturing joined member
Nescoromniy et al. Development of methods and research on high voltage capacitor welding
Michałowska et al. Empirical assessment of the MAG welder's exposure to an electromagnetic field
US10625328B2 (en) System of electro hydro clinching
Batygin et al. Pulsed electromagnetic attraction processes for sheet metal components
Sharma et al. Electromagnetic welding of tubular joints for nuclear applications
Kumar et al. Characterisation of electromagetic welding equipment
Kumar et al. Experimental studies on the effect of different field shaper geometries on magnetic pulse crimping in cylindrical configuration
Ogino et al. Heat input and pressure distribution of TIG arc on groove surface
Aizawa Magnetic pressure seam welding method for aluminium sheets
Desai et al. Improvement of performance of Electromagnetic welding process by use of driver materials
Desai et al. Analysis of the effect of collision velocity in electromagnetic welding of aluminum strips
Kore et al. Magnetic pulse welding
Kumar et al. Finite element modeling and analysis of electro-magnetic pulse welding of aluminium tubes to steel bars
US20170304930A1 (en) Coil for the magnetic-pulse welding of tubular parts and related welding method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application