KR20090112955A - Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity - Google Patents

Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity Download PDF

Info

Publication number
KR20090112955A
KR20090112955A KR1020080038759A KR20080038759A KR20090112955A KR 20090112955 A KR20090112955 A KR 20090112955A KR 1020080038759 A KR1020080038759 A KR 1020080038759A KR 20080038759 A KR20080038759 A KR 20080038759A KR 20090112955 A KR20090112955 A KR 20090112955A
Authority
KR
South Korea
Prior art keywords
quercetin
extract
molokia
lps
fraction
Prior art date
Application number
KR1020080038759A
Other languages
Korean (ko)
Inventor
이인선
황보미향
김현정
김혁일
이상일
임남경
유미희
이지원
이효주
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020080038759A priority Critical patent/KR20090112955A/en
Publication of KR20090112955A publication Critical patent/KR20090112955A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts

Abstract

PURPOSE: A food containing Corchorus olitorius L. extract is provided to increase total polyphenol and flavonoid content at the same time exhibiting high DPPH and ABTS removal effect. CONSTITUTION: A food containing Corchorus olitorius L. extract is produced using a solvent, standard product, and experiment equipment. The solvent for use in extracting and fractioning a sample is methanol, n-hexane, chloroform, ethylacetate, or n-butanol. The standard product for use in HPLC is quercetin, chlorogenic acid, quercetin-3-glucoside, or quercetin-3-galactoside. DMEM, antibiotic, Fetal bovine serum(FBS) are used for cell cultivation. A reagent for use in RNA extraction is Trizol solution Molecular Research Center, or 1-bromo-3-chloro-propane.

Description

항염증 활성을 갖는 몰로키아 추출물을 함유하는 식품{Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity}Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity

본 발명은 몰로키아 추출물을 함유하는 식품에 관한 것으로서, 더욱 상세하게는 항염증 활성을 갖는 몰로키아 추출물을 함유하는 식품에 관한 것이다. The present invention relates to a food containing a molochia extract, and more particularly to a food containing a molochia extract having anti-inflammatory activity.

최근 우리나라는 경제성장과 식생활의 변화로 질병의 양상이 변화하여 동맥경화, 비만, 당뇨, 암 등과 같은 영양과잉이나 영양불균형에 기인된 만성 퇴행성 질환이 지속적으로 증가하고 있는 실정이다. 이러한 만성 질환의 주된 요인 중 하나가 활성산소종(reactive oxygen species, ROS)이다. 체내 ROS가 존재하면 생체 내의 제거시스템이나 환원기구의 작동에 의해 제거되지만, 제거량에 비해 생성량이 과다하여 체내 ROS에 의한 산화적 스트레스가 가해지면, DNA, 단백질, 지질 분자의 손상 및 생체막의 연쇄적 과산화반응을 일으킴으로써 세포손상을 야기하여 다양한 질병을 유발할 수 있다. Recently, the situation of disease has changed due to economic growth and dietary change, and chronic degenerative diseases caused by overnourishment or malnutrition such as arteriosclerosis, obesity, diabetes, and cancer are continuously increasing. One of the main factors of this chronic disease is reactive oxygen species (ROS). The presence of ROS in the body is eliminated by the operation of the body's elimination system or reduction mechanism.However, if the amount of production is excessive compared to the amount removed, oxidative stress caused by the ROS in the body can damage DNA, protein, lipid molecules, Peroxidation can lead to cell damage that can lead to a variety of diseases.

일반적으로 동맥경화란 동맥벽이 두꺼워지고 딱딱해져 결과적으로 탄력성을 잃게 되는 질환으로 흔히 죽상동맥경화를 지칭하며, 혈관내막과 중막 내부에 지방반이 쌓이는 질환으로 정의된다. 또한 동맥경화는 단순히 노화과정에 수반되는 질환이 아니라, 만성적인 염증성 질환으로 보고되고 있다. 동맥경화를 유발하는 요인으로는 혈중 콜레스테롤 농도의 상승, 고혈압, 당뇨, 비만, 스트레스, 흡연 등이 있으며, 특히 저밀도 지단백질(Low density lipoprotein, LDL)의 산화는 초기 동맥경화성 병변의 형성과 진전에 중요한 역할을 하는 것으로 알려져 있다.   In general, atherosclerosis is a disease in which the artery wall becomes thick and hard, resulting in loss of elasticity, and is commonly referred to as atherosclerosis, and is defined as a disease in which fatty plaques accumulate inside the endocardium and the media. Atherosclerosis is also reported to be a chronic inflammatory disease, not just a disease associated with the aging process. Factors that induce atherosclerosis include elevated blood cholesterol levels, hypertension, diabetes, obesity, stress, and smoking. Especially, oxidation of low density lipoprotein (LDL) is important for the formation and progression of early atherosclerotic lesions. It is known to play a role.

이러한 위험인자들이 혈관내피세포의 기능을 손상시켜 혈액 내 LDL을 내피조직으로 이동시키고, 이동된 LDL은 내피세포, 평활근세포, 대식세포 등에 의해 산화된다. 산화된 LDL(oxidized LDL)은 혈중 단핵구가 피하조직으로 이동하는데 필요한 부착물질인 VCAM-1(vascular cell adhesion molecule-1), ICAM-1(intracellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein-1), 사이토카인인 NFκB, IL-1, TNF-α 및 성장인자인 MCSF, PDGF 들을 발현시켜, 혈액중의 단핵구의 유입을 도와 동맥경화를 계속 진행시킨다.   These risk factors impair the function of vascular endothelial cells to move LDL in the blood to endothelial tissue, which is oxidized by endothelial cells, smooth muscle cells, macrophages and the like. Oxidized LDL (oxidized LDL) is a vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (IMC-1), and monocyte chemoattractant protein -1) by expressing cytokines NFκB, IL-1, TNF-α and growth factors MCSF and PDGF, help to induce monocytes in the blood to continue arteriosclerosis.

그리고 산화스트레스는 염증반응의 촉진, 세포독성뿐만 아니라 퇴행성 질환을 일으키는 특정세포의 유전자 발현을 조절한다. 그 중에서도 NFκB는 ROS, TNF-α, IL-1β와 같은 chemokine에 의해 IκB kinase가 활성화된 후 인산화와 일련의 분해과정을 통해 IκB가 분리되고 NFκB의 핵으로 전이가 일어난다. NFκB는 활성화된 후 핵으로 이동하여 염증반응을 유도하는 cytokine, iNOS, COX-2, VCAM-1, ICAM-1, MCP-1, E-selectin 등의 유전자 발현을 촉진시키는 것으로 알려져 있다. 그러므로 NFκB활성과 세포부착분자의 발현을 감소시키면 다양한 염증 관련 질환을 예방할 수 있다. Oxidative stress regulates gene expression in specific cells that cause degenerative diseases as well as promote inflammatory responses and cytotoxicity. Among them, NFκB activates IκB kinase by chemokines such as ROS, TNF-α, and IL-1β, and then, after phosphorylation and a series of degradation processes, isolates IκB and transfers them to the nucleus of NFκB. NFκB is known to promote the expression of genes such as cytokine, iNOS, COX-2, VCAM-1, ICAM-1, MCP-1, and E-selectin, which are activated and move to the nucleus to induce an inflammatory response. Therefore, reducing NFκB activity and expression of cell adhesion molecules can prevent various inflammation-related diseases.

한편 몰로키아(Corchorus olitorius L.)는 피나무과의 1년생 녹황색 채소로서, 원산지는 이집트의 지중해 연안에서 자생하는 식물이며 단백질, 조섬유, 회분, 비타민, 미네랄을 균형 있게 함유하며 특히 22.8%의 mucilage, 그리고 β-carotene과 lutein도 풍부하다. 또한 몰로키아는 페놀성 물질에 의한 항산화작용, 콜레스테롤 저하 효과 등의 생리활성이 보고된 바 있다. On the other hand, Corchorus olitorius L. is a year-old greenish-yellow vegetable of the barberry family , originating from the Mediterranean coast of Egypt, originating from the balanced balance of protein, crude fiber, ash, vitamins and minerals, especially 22.8% mucilage, and β-carotene and lutein are also abundant. In addition, Molochia has been reported to have physiological activities such as antioxidant activity and cholesterol lowering effect by phenolic substances.

본 발명의 일 구현예에서는 항염증 활성을 갖는 몰로키아 추출물을 포함하는 식품을 제공하고자 한다. In one embodiment of the present invention to provide a food comprising a molochia extract having anti-inflammatory activity.

본 발명의 일 구현예에서는 특히 항염증 활성이 우수한 몰로키아 추출물의 분획물을 포함하는 식품을 제공하고자 한다. In one embodiment of the present invention in particular to provide a food comprising a fraction of the molochia extract excellent in anti-inflammatory activity.

본 발명의 일 구현예에서는 산화 및 염증반응에 우수한 저해능을 갖는 몰로키아 추출물 및 분획물을 함유하는 식품을 제공하고자 한다. In one embodiment of the present invention to provide a food containing a molochia extract and fractions having excellent inhibitory ability to oxidative and inflammatory reactions.

본 발명의 일 구현예에서는 몰로키아 메탄올 추출물을 포함하는 항염증 활성 을 갖는 식품을 제공한다. In one embodiment of the present invention provides a food having an anti-inflammatory activity, including the Molochia methanol extract.

본 발명의 일 구현예에서는 또한 몰로키아 메탄올 추출물의 에틸아세테이트 분획물을 포함하는 항염증 활성을 갖는 식품을 제공한다.One embodiment of the present invention also provides a food having anti-inflammatory activity comprising an ethyl acetate fraction of the Molochia methanol extract.

본 발명의 일 구현예에서는 또한 몰로키아 유래의 쿼세틴-3-갈락토사이드를 함유하는 항염증 활성을 갖는 식품을 제공한다. One embodiment of the present invention also provides a food having anti-inflammatory activity containing quercetin-3-galactoside derived from molokia.

본 발명의 구현예들에 의한 식품은 NO(nitric oxide), PGE2(Prostagladin E2), 및 TNF-α(Tumor neroses factor-1) 생성을 억제하는 것일 수 있다. Food according to the embodiments of the present invention may be to suppress the formation NO (nitric oxide), PGE 2 (Prostagladin E 2), and TNF-α (Tumor neroses factor- 1).

본 발명의 구현예들에 의한 식품은, MCP-1(Monocyte chemotactic protein-1), iNOS(Inducible NOS), COX-2(Cyclooxygenase-2)의 mRNA 유전자 발현을 억제하는 것일 수 있다.Food according to embodiments of the present invention, may be to inhibit the mRNA gene expression of MCP-1 (Monocyte chemotactic protein-1), iNOS (Inducible NOS), COX-2 (Cyclooxygenase-2).

본 발명의 구현예들에 의한 식품은 COX-2(Cyclooxygenase-2), NFκB(Nuclear fator κB), IL-1β(Interleukine-1β)의 단백질 발현을 억제하는 것일 수 있다.Food according to embodiments of the present invention may be to inhibit the protein expression of COX-2 (Cyclooxygenase-2), NFκB (Nuclear fator κB), IL-1β (Interleukine-1β).

본 발명의 일 구현예에 의하면 몰로키아의 메탄올 추출물, 특히 에틸아세테이트 분획물은 총폴리페놀 함량이 높고, 총 플라보노이드 함량이 높으며, DPPH와 ABTS 소거활성능도 높아 우수한 항산화능을 가지고 있음을 확인하였다.According to one embodiment of the present invention, it was confirmed that the methanol extract, especially ethyl acetate fraction of Molochia, has high total polyphenol content, high total flavonoid content, high DPPH and ABTS scavenging activity, and has excellent antioxidant ability.

또한 본 발명의 다른 일 구현예에 의하면 산화적 스트레스를 유발시킨 RAW 264.7 세포주를 이용하여 몰로키아 추출물과 분획물이 산화 및 염증반응에 미치는 영향을 조사한 결과, 몰로키아 추출물 및 분획물의 50~250 μg/mL 농도에서 세포생존율, NO 생성, PGE2, TNF-α 생성능이 억제됨을 확인하였고, 특히 몰로키아 에틸아세테이트 분획물의 100 μg/mL 농도에서 세포생존율, NO 생성, PGE2, TNF-α 생성능이 가장 크게 억제됨을 확인하였다. 또한 에틸아세테이트 분획물 100 μg/mL 첨가 농도에서 MCP-1, iNOS, COX-2의 mRNA 유전자 발현을 억제하였고, NFκB, IL-1β의 단백질 발현도 저해하였다. In addition, according to another embodiment of the present invention using a RAW 264.7 cell line that caused oxidative stress, as a result of investigating the effects of the extract and fractions on the oxidation and inflammatory reaction, 50 ~ 250 μg / viability, NO production, PGE 2 at mL concentration It was confirmed that TNF-α production ability was inhibited, in particular, cell viability, NO production, PGE 2 , at a concentration of 100 μg / mL of the molokia ethyl acetate fraction. It was confirmed that the TNF-α generating ability was most suppressed. In addition, mRNA expression of MCP-1, iNOS, and COX-2 was inhibited at the concentration of 100 μg / mL of ethyl acetate fraction, and protein expression of NFκB and IL-1β was also inhibited.

이상의 결과로 몰로키아 추출물, 특히 몰로키아 메탄올 추출물의 에틸아세테이트 분획물은 우수한 항산화능을 가졌고, 항염증 활성을 가짐을 확인하였다. 그러므로 몰로키아 추출물 및 분획물은 항염증 활성을 갖는 우수한 식품소재라 할 것이다.As a result, it was confirmed that the ethyl acetate fraction of the Molokia extract, especially the Molokia methanol extract, had excellent antioxidant activity and had anti-inflammatory activity. Therefore, Molokia extracts and fractions will be said to be excellent food materials with anti-inflammatory activity.

염증반응은 체내에서 발생한 산화스트레스에 의해 촉진되는데, 산화스트레스는 세포사멸뿐만 아니라 퇴행성 질환을 일으키는 특정세포의 유전자 발현을 증가시켜 염증 반응을 개시하거나 악화시킨다. 그 중에서 NFκB는 세포 증식 및 성장, 염증 반응, 세포 부착 등을 조절하는 인자로서, 주로 저해 단백질인 IκB와 복합체를 이루어 불활성화 상태로 존재하다가 분열촉진 인자, 염증, 사이토카인, 자외선, 이온화, ROS, 세균 LPS 등의 자극을 받으면 IκB는 빠르게 인산화되어 분해된다. 이때 IκB로부터 분리된 NFκB는 활성화되어 핵으로 이동한 후 초기 염증반응에 관여 하는 여러 유전자를 조절하게 되는데 그 대표적인 것이 inducible NOS(iNOS), cyclooxigenase-2(COX-2)이다.Inflammatory responses are promoted by oxidative stress in the body, which triggers or worsens the inflammatory response by increasing the gene expression of specific cells that cause not only cell death but also degenerative diseases. Among them, NFκB is a factor that regulates cell proliferation and growth, inflammatory response, and cell adhesion.It is mainly in complex with inhibitory protein IκB and is present in an inactivated state, and it is a factor that promotes division, inflammation, cytokines, ultraviolet rays, ionization, ROS When stimulated by bacterial LPS, IκB is rapidly phosphorylated and degraded. At this time, NFκB isolated from IκB is activated and moved to the nucleus to regulate several genes involved in the initial inflammatory response. The representative ones are inducible NOS (iNOS) and cyclooxigenase-2 (COX-2).

활성산소종의 하나인 nitric oxide(NO-)는 L-arginine의 guanidine 질소와 산소로부터 nitric oxide synthase(NOS)에 의해 생성되며, 이 효소에는 endothelial NOS(eNOS), neuronal NOS(nNOS), iNOS 3가지의 이성체가 있다. 이중에서 동물 또는 사람의 동맥경화 초기와 진행된 병변 모두에서 iNOS의 mRNA가 발현되며, 특히 탐식세포가 많은 곳에서 iNOS mRNA와 oxLDL의 발현이 높으며, iNOS가 동맥경화에 관여한다. Radical nitric oxide (NO -), one of the species is produced by the nitric oxide synthase (NOS) from the guanidine nitrogen and oxygen in the L-arginine, the enzyme, the endothelial NOS (eNOS), neuronal NOS (nNOS), iNOS 3 There is an isomer of eggplant. Among these, iNOS mRNA is expressed in both early and advanced lesions of arteriosclerosis in animals or humans. In particular, iNOS mRNA and oxLDL are highly expressed in abundant phagocytes, and iNOS is involved in atherosclerosis.

또한 COX-2는 아라키돈산으로부터 프로스타글라딘 생합성의 주요 조절 효소중의 하나로, 정상조직에서는 거의 검출되지 않고 종양유전자, 성장인자, 사이토카인 등에 의해 쉽게 유도된다. 특히 COX-2의 저해는 염증을 억제할 수 있어, COX-2는 염증에서 주요 조절인자가 된다. In addition, COX-2 is one of the major regulatory enzymes of prostaglandin biosynthesis from arachidonic acid, which is hardly detected in normal tissues and is easily induced by oncogenes, growth factors, and cytokines. In particular, inhibition of COX-2 can inhibit inflammation, so COX-2 is a major regulator of inflammation.

항산화제는 세포를 공격하기 전에 유리기를 안정화시키거나 불활성화시키는 물질로서 주로 비타민 C, 비타민 E, β-carotene, 폴리페놀 등을 의미한다. 그 중에서 폴리페놀 화합물은 강한 항산화 활성을 가지며, COX(cyclooxigenase)의 저해, NFκB 활성을 감소한다고 보고되었다. Antioxidants are substances that stabilize or inactivate free radicals before attacking cells, and mainly mean vitamin C, vitamin E, β-carotene, and polyphenols. Among them, polyphenol compounds have strong antioxidant activity, have been reported to inhibit COX (cyclooxigenase) and reduce NFκB activity.

NFκB 활성의 억제는 in vitroin vivo에서 염증 매개 인자의 방출을 저해함으로서 일어난다. 또한 폴리페놀 화합물은 핵내 인자인 AP-1의 활성을 억제하여 COX-2의 발현을 조절하고, 혈액내 HDL 관련 paraxonase -1(PON-1) 및 항산화 효 소들의 활성을 증가시키고, 인간 대동맥 상피세포에서 VEGF 발현을 감소시켜 정상 말초 혈액 내 단핵구와 대식세포에서 IFN-r, IL-4 유전자의 발현을 억제한다고 한다. Quercetin은 NFκB 활성을 저해함으로써 LPS로 유도된 IL-1β, TNF-α 등과 같은 cytokines의 생성을 억제하고, curcumin, resveratrol, theophylline, flavonols, 녹차의 폴리페놀들은 NFκB 활성의 억제하고, IL-1β, IL-8, TNF-α, iNOS 등의 초기 염증유전자의 발현을 저해하며, 그리고 COX와 lipoxygenase 경로를 저해하여 항염증 활성을 보였다(도 1 참조).Inhibition of NFκB activity occurs by inhibiting the release of inflammatory mediators in vitro and in vivo . In addition, the polyphenolic compound inhibits the activity of AP-1, a nuclear factor, regulates the expression of COX-2, increases the activity of HDL-related paraxonase-1 (PON-1) and antioxidants in the blood, and the human aortic epithelium. Reduction of VEGF expression in cells inhibits the expression of IFN-r and IL-4 genes in monocytes and macrophages in normal peripheral blood. Quercetin inhibits the production of LPS-induced cytokines such as IL-1β, TNF-α by inhibiting NFκB activity, and polyphenols of curcumin, resveratrol, theophylline, flavonols, and green tea inhibit NFκB activity, It inhibited the expression of early inflammatory genes such as IL-8, TNF-α and iNOS, and showed anti-inflammatory activity by inhibiting COX and lipoxygenase pathways (see FIG. 1).

한편 최근 폴리페놀의 섭취는 관상심장 질환 또는 허혈성 쇼크 사망률을 감소시킨다고 한다. 전통적으로 사용되어 온 천연식물 추출물은 폴리페놀화합물이 풍부하여 동물모델에서 동맥경화의 진전을 억제함을 확인할 수 있다. 포도씨, 포도주와 녹차의 폴리페놀 화합물이 동물모델에서 동맥경화가 진전되는 것을 예방하고 초기 동맥경화 병변부위에서 플라그가 생성되는 것을 지연하고, 특히 폴리페놀 화합물인 quercetin, catechin, caffeic acid, resveratrol 등에서 항염증 효과가 확인되었다. Recent intake of polyphenols has been shown to reduce coronary heart disease or ischemic shock mortality. Natural plant extracts, which have been used traditionally, are rich in polyphenolic compounds, which can inhibit the progression of arteriosclerosis in animal models. Polyphenolic compounds of grape seed, wine and green tea prevent the development of atherosclerosis in animal models and delay the formation of plaque in the early atherosclerotic lesions, especially in the polyphenol compounds quercetin, catechin, caffeic acid and resveratrol. Inflammatory effect was confirmed.

많은 식물체들은 phenolic acid와 flavonoids을 포함하는 폴리페놀 화합물을 가진다. 폴리페놀 중 flavonoid는 식물계에 널리 존재하는 화합물로, 주로 채소나 과일, 와인 등에 많이 함유되어 있다. 이들은 5,000여종 이상의 서로 다른 flavonoid로 플라보놀(flavonol), 플라본(flavone), 이소플라본(isoflavonol), 플라바놀(flavanol), 안토시아닌(anthocianin) 및 프로안토시아니딘(proanthocianidin)등으로 분류된다(도 2 참조).Many plants have polyphenolic compounds, including phenolic acid and flavonoids. Flavonoids among polyphenols are compounds that are widely present in plant systems, and are mainly contained in vegetables, fruits, and wines. They are classified into more than 5,000 different flavonoids such as flavonol, flavone, isoflavonol, flavanol, anthocianin and proanthocianidin (Fig. 2).

플라보놀은 식품 중에 가장 많이 존재하는 플라보노이드로 quercetin, kaempferol, myricetin 등이 이에 속한다. 특히 quercetin은 식물의 주요 페놀성분의 구성 요소이고 식이 플라보노이드 중 양적으로 가장 중요하다. 식품에 존재하는 quercetin은 대부분 당이 결합한 배당체(glycosides)형태로 되어 있으며, 일부 당이 결합하지 않은 free flavonoid가 존재하는데, 이는 aglycone이라 한다. Aglycone은 소장 점막에서 흡수되지만 식이로 섭취되는 대부분의 플라보노이드는 glycoside 형태로 큰 분자량을 가지고 있어 소장 점막에서는 거의 흡수가 되지 않는다.Flavonols are the most common flavonoids in foods, including quercetin, kaempferol and myricetin. In particular, quercetin is a major phenolic component of plants and is the most important quantity of dietary flavonoids. Most quercetin in foods is in the form of glycosides bound to sugar, and there are free flavonoids that some sugars do not bind to, called aglycone. Aglycone is absorbed by the small intestine mucosa, but most of the flavonoids in the diet are glycosides and have a large molecular weight, so they are hardly absorbed by the small intestine mucosa.

플라보노이드는 항산화, 항염증반응 및 항암 등과 같은 생리활성을 가진 것으로 알려져 있다. 푸른 채소와 토마토, 멜론은 대장 및 직장암 예방효과를 나타내며, 플라보노이드가 풍부한 과일 또는 채소를 많이 섭취한 사람들에 비해 과일이나 채소를 적게 섭취한 사람들에서 심장질환에 의한 사망률이 약 17% 높다고 보고하였다. 플라보노이드는 β-ring의 O- dihydroxyl기, C ring의 4-oxo기와 2,3 위치의 공액화된 이중결합 및 A와 C ring의 3,5-hydroxyl기와 같은 구조적 특징으로 인해 천연물에서 분리된 대표적인 항산화 물질로 알려져 있다. 또한 플라보노이드는 세포막 표면에서 chain-initiating radical을 소거하며 자유 라디칼 손상을 촉진하는 Fe2+, Cu2+ 등과도 안정적인 금속이온 복합체를 형성할 뿐만 아니라 superoxide anione, hydroxyl radical, peroxy radical과 같은 자유라디칼을 직접 제거하는 것으로 알려져 있다. Flavonoids are known to have physiological activities such as antioxidants, anti-inflammatory reactions and anticancer. Green vegetables, tomatoes, and melons prevent colon and rectal cancer, and people who eat less fruit or vegetables reported a 17 percent higher mortality rate from heart disease than those who consumed more flavonoid-rich fruits or vegetables. Flavonoids are typically isolated from natural products due to structural features such as O-dihydroxyl group of β-ring, 4-oxo group of C ring, conjugated double bond of 2,3 position, and 3,5-hydroxyl group of A and C ring. Known as an antioxidant. Flavonoids also form stable metal-ion complexes with Fe 2+ and Cu 2+ , which eliminate chain-initiating radicals on the cell membrane surface and promote free radical damage, and free radicals such as superoxide anione, hydroxyl radical and peroxy radical. It is known to remove it directly.

특히 플라보노이드는 대부분 친수성이라서 LDL 분자와 결합하지 않고, 유리기의 제거 또는 킬레이트제로서 작용하여 LDL 단편에서 비타민 E, carotene, lycophen을 보호해주고, 지질과산화물을 가수분해할 수 있는 혈액내의 paraoxonase 활성을 유지시켜 LDL 산화를 억제한다. 또한 몇몇 in vitro연구에서 폴리페놀은 산화로부터 LDL를 보호하고, 플라보노이드가 풍부한 천연 산물을 섭취할 경우에도 LDL의 산화를 감소할 수 있다고 보고되었다. Flavonoids, in particular, are mostly hydrophilic and do not bind to LDL molecules and act as a free radical chelating agent or chelating agent to protect vitamin E, carotene and lycophen from LDL fragments, and to maintain paraoxonase activity in the blood that can hydrolyze lipid peroxides. Inhibits LDL oxidation. In addition, several in vitro studies have reported that polyphenols protect LDL from oxidation and may reduce oxidation of LDL even when ingested with flavonoid-rich natural products.

본 발명의 일 구현예에서는 몰로키아의 항염증 효과를 규명하기 위해, 먼저 몰로키아 추출물 및 분획물을 제조하여 in vitro에서 항산화 효과, 염증반응의 NO, PGE2 및 TNF-α의 활성 측정, 그리고 산화 LDL에 의한 단핵구로의 이동에 필요한 부착물질인 VCAM-1, ICAM-1, MCP-1의 발현 양상을 확인하였다. 또한 몰로키아의 주요 항산화물질인 quercertin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside의 항염증 효과도 비교 분석하였다. In one embodiment of the present invention, in order to determine the anti-inflammatory effects of Molochia, first, the Molokia extract and fractions were prepared to measure the antioxidant effect in vitro , the activity of NO, PGE 2 and TNF-α of inflammatory reaction, and oxidation Expression patterns of VCAM-1, ICAM-1, and MCP-1, which are required for adhesion to monocytes by LDL, were identified. We also compared the anti-inflammatory effects of quercertin, chlorogenic acid, quercetin-3-galactoside and quercetin-3-glucoside.

이하에서는 이를 구체적으로 살핀다. This will be described in detail below.

1. 재료 및 방법1. Materials and Methods

1.1. 시약 및 기기1.1. Reagents and Instruments

1.1.1. 시약1.1.1. reagent

시료 추출 및 분획에 사용된 용매인 methanol, n-hexane, chloroform, ethylacetate 및 n-butanol은 J.T.Baker(Mallinckrodt Baker Inc., Philips- burg, USA)의 특급시약을 사용하였고, HPLC 측정에 사용된 표준품인 quercetin, chlorogenic acid, quercetin-3-glucoside, quercetin-3-galactoside 는 Sigma(St. Louis. Mo., USA)를 사용하였다. 세포배양에 사용된 DMEM, antibiotic, Fetal bovine serum(FBS), Trypsin-EDTA는 Gibco BRL (Rockville, USA)로부터 구입하였다. 세포독성에 측정된3-(4,5-dimethyl -thiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT)는 Amresco(Ohio, USA)로부터 구입하였다. PCR 실험에 사용된 Primer는 Bioneer(Daejeon, Korea)로부터, RNA추출을 위하여 사용한 시약은 Trizol solution Molecular Research Center(Ohio, USA), 1-bromo-3-chloro-propane은 Sigma(St. Louis. Mo., USA)의 제품을 사용하였으며, RT-PCR 측정은 Takara kit는 Takara(Shiga, Japan), DNA ladder는 Promega(Madison, WI, USA)의 제품을 구입하여 사용하였다. 그리고 western blot 분석에 사용된 trizma base(Tris-Cl), ethylenedinitro tetraacetic acid disodium salt(EDTA-2Na), triton X-100, N,N,N',N'-tetra-methylethylene diamine(TEMED), acrylamide, sodium dodecyl sulfate(SDS), ammonium persulfate(APS), tween-20, bicinchoninic acid kit 등은 모두 Sigma(St. Louis. Mo., USA)로부터 구입하였고, ECL Detection kit는 Amersham(Buckinghamshire, England), 그리고 immobilon-P transfer membrane은 Millipore(Billerica Massachucetts, USA), NFκB(p65), IL-1β, iNOS, COX-2는 Santacruz biotechnology(California, USA)로부터 구입하였다. The solvents used for sampling and fractionation, methanol, n- hexane, chloroform, ethylacetate and n- butanol, were prepared using JTBaker (Mallinckrodt Baker Inc., Philipsburg, USA). As quercetin, chlorogenic acid, quercetin-3-glucoside, and quercetin-3-galactoside, Sigma (St. Louis. Mo., USA) was used. DMEM, antibiotic, Fetal bovine serum (FBS) and Trypsin-EDTA used for cell culture were purchased from Gibco BRL (Rockville, USA). 3- (4,5-dimethyl-thiazol-2-yl) -2,5-diphenyltetrazoliumbromide (MTT) measured for cytotoxicity was purchased from Amresco (Ohio, USA). Primer used in the PCR experiment was from Bioneer (Daejeon, Korea), and the reagent used for RNA extraction was Trizol solution Molecular Research Center (Ohio, USA), and 1-bromo-3-chloro-propane was Sigma (St. Louis.Mo. , USA) and RT-PCR were measured by Takara kit for Takara (Shiga, Japan) and DNA ladder for Promega (Madison, WI, USA). And trizma base (Tris-Cl), ethylenedinitro tetraacetic acid disodium salt (EDTA-2Na), triton X-100, N, N, N ', N'-tetra-methylethylene diamine (TEMED), acrylamide , sodium dodecyl sulfate (SDS), ammonium persulfate (APS), tween-20, and bicinchoninic acid kit were all purchased from Sigma (St. Louis.Mo., USA), and ECL Detection kits were obtained from Amersham (Buckinghamshire, England), And immobilon-P transfer membrane was purchased from Millipore (Billerica Massachucetts, USA), NFκB (p65), IL-1β, iNOS, COX-2 from Santacruz biotechnology (California, USA).

1.1.2 기기1.1.2 Appliance

실험에 사용한 중요한 기기는 rotary vacuum evaporator(Buchi, R-3000, Germany), UV/visible spectrophotometer(Kontron, Uvikon 922, Italy), incubator(Forma Scientific, Model 3154, USA), HPLC (Shimadzu LC-10A prominence, Shimadzu, Japan), PCR machine(Bioneer, Mygenie 96, Korea), Mini-Protein electrophoresis system(BioRad Co., USA), microplate spectrophotometer(Molecular Devices, Spectra max 340PC, USA), microplate shaker(Finepcr ,Finemixer SH2000, Korea), ultracentrifuge (Hitachi, Model 695-7, Japan), cryotome(Leica CM 1850, Germany), micro haematocrit centrifuge(Hanshin HHC-24, Korea)를 본 실험에 사용하였다. Important instruments used in the experiments were rotary vacuum evaporator (Buchi, R-3000, Germany), UV / visible spectrophotometer (Kontron, Uvikon 922, Italy), incubator (Forma Scientific, Model 3154, USA), HPLC (Shimadzu LC-10A prominence , Shimadzu, Japan), PCR machine (Bioneer, Mygenie 96, Korea), Mini-Protein electrophoresis system (BioRad Co., USA), microplate spectrophotometer (Molecular Devices, Spectra max 340PC, USA), microplate shaker (Finepcr, Finemixer SH2000 , Korea), ultracentrifuge (Hitachi, Model 695-7, Japan), cryotome (Leica CM 1850, Germany), micro haematocrit centrifuge (Hanshin HHC-24, Korea) were used in this experiment.

1.2 실험재료1.2 Experimental Materials

몰로키아(Corchorus olitorius L.)는 2006년 8월 하순에 채집한 잎을 50℃에서 12시간 저온건조시킨 후 100 mesh로 분쇄된 분말을 경기도 여주 몰로야 마을에서 구입하여 사용하였다. 분말 시료에 10배량의 80% 메탄올(v/v)을 가하여 3회 반복 추출한 다음, 추출액을 여과지를 사용하여 2회 여과하고 감압농축기로 농축하여 동결건조 후 메탄올추출물로 사용하였다. 메탄올추출물은 다시 n-hexane, chloroform, ethylacetate, n-butanol 및 water로 순차 분획하여 각각 농축, 건조하여 분획물을 제조하여 시료로 사용하였다. Mollocia ( Corchorus olitorius L.) was dried at 50 ℃ for 12 hours at the end of the leaves collected in late August 2006 and then used to buy the powder pulverized into 100 mesh village Yeoju, Gyeongju-do. 10 times 80% methanol (v / v) was added to the powder sample, and the extraction was repeated three times. The extract was then filtered twice using filter paper, concentrated in a vacuum condenser, lyophilized and used as a methanol extract. Methanol extract was further fractionated with n- hexane, chloroform, ethylacetate, n- butanol and water, concentrated and dried to prepare a fraction, which was used as a sample.

1.3 몰로키아의 항산화 효과1.3 Antioxidant Effects of Molokia

1.3.1 총 폴리페놀 함량1.3.1 Total Polyphenol Content

총 폴리페놀 함량은 Folin-Denis법을 응용하여 측정하였다. 각 메탄올 추출물 시료 1 mg을 증류수 1 mL에 용해시켜 10배 희석한 희석액 2 mL에 희석한 Folin 시약 2 mL을 첨가하여 혼합하고 3분간 방치한 후 2 mL의 10% Na2CO3를 가하고, 1시간동안 방치한 후 UV/visible spectro- photometer를 이용하여 700 nm에서 흡광도를 측정하였다. 총 폴리페놀 화합물은 tannic acid를 이용하여 작성한 표준곡선으로부터 함량을 구하였다.Total polyphenol content was measured by applying the Folin-Denis method. Dissolve 1 mg of each methanol extract sample in 1 mL of distilled water, add 2 mL of diluted Folin reagent to 2 mL of 10-fold dilution, mix, leave for 3 minutes, add 2 mL of 10% Na 2 CO 3 , and add 1 After standing for some time, the absorbance was measured at 700 nm using a UV / visible spectrophotometer. The total polyphenolic compound was determined from the standard curve prepared using tannic acid.

1.3.2 총 플라보노이드 함량1.3.2 Total Flavonoid Content

총 플라보노이드 함량은 Nieva Moreno 등(Nivea, M. M.; Sampietro, A. R.; Vattuone, M. A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109-114.)의 방법에 의해 측정하였다. 각 시료 용액을 10% ethanol로 10배 희석한 후 100 μL를 취하여 10% aluminum nitrate와 1 μM potassium acetate를 함유하는 80% ethanol 4.3 mL에 혼합하여 실온에서 40분 방치한 뒤 415 nm에서 흡광도를 측정하였다. 총 플라보노이드 함량은 quercetin을 이용하여 작성한 표준곡선으로부터 함량을 구하였다.Total flavonoid content was determined by Nieva Moreno et al. (Nivea, MM; Sampietro, AR; Vattuone, MA Comparison of the free radical-scavenging activity of propolis from several regions of Argentina.J. Ethnopharmacol. 2000 , 71 , 109-114.) Measured by Dilute each sample solution 10 times with 10% ethanol, take 100 μL, mix it with 4.3 mL of 80% ethanol containing 10% aluminum nitrate and 1 μM potassium acetate, and leave for 40 minutes at room temperature. Measure the absorbance at 415 nm. It was. Total flavonoid content was determined from the standard curve prepared using quercetin.

1.3.3 DPPH radical의 소거 활성1.3.3 Scavenging Activity of DPPH Radicals

DPPH 라디칼의 소거활성은 Blois(Blois, M. S. Antioxidant determinations by the use of a stable free radical. J. Agric. Food Chem. 1977, 25, 103-107.)의 방법에 따라 각 시료의 DPPH 라디칼에 대한 환원력을 측정하였다. 각 추출물을 농도별로 99% 메탄올에 녹인 후, 800 μL을 취하여 메탄올에 녹인 0.15 mM DPPH 용액 200 μL와 혼합하여 30분경과 후에 517 nm에서 흡광도를 측정하였다. 각 시료 추출물의 유리 라디칼 소거활성은 시료를 첨가하지 않은 대조구의 흡광도를 1/2로 환원시키는데 필요한 시료의 농도인 RC50 값으로 나타내었다.The scavenging activity of DPPH radicals was determined by Blois (Blois, MS Antioxidant determinations by the use of a stable free radical. J. Agric. Food Chem. 1977 , 25 , 103-107.). Was measured. Each extract was dissolved in 99% methanol by concentration, 800 μL was taken and mixed with 200 μL of a 0.15 mM DPPH solution dissolved in methanol, and then absorbance was measured at 517 nm after 30 minutes. The free radical scavenging activity of each sample extract was expressed by the RC 50 value, which is the concentration of the sample required to reduce the absorbance of the control group without the sample to 1/2.

1.3.4 ABTS radical 소거 활성1.3.4 ABTS radical scavenging activity

2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)(ABTS) radical을 이용한 항산화력 측정은 ABTS+˙ cation decolourisation assay(Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231-1237.)에 의하여 시행하였다. 7 mM ABTS와 2.45 mM potassium persulfate를 최종 농도로 혼합하여 실온인 암소에서 24시간 동안 방치하여 ABTS+˙을 형성시킨 후 732 nm에서 흡광도 값이 0.70(±0.02)이 되게 phosphate buffer saline(PBS, pH 7.4)로 희석하였다. 희석된 용액 990 μL에 sample 10 μL를 가하여 정확히 1분 동안 방치한 후 흡광도를 측정하였 다. 각 시료 추출물의 유리 라디칼 소거활성은 시료를 첨가하지 않은 대조구의 흡광도를 1/2로 환원시키는데 필요한 시료의 농도인 RC50 값으로 나타내었다.Antioxidant activity using 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical was measured by ABTS + ˙ cation decolourisation assay (Re, R .; Pellegrini, N .; Proteggente, A .; Pannala). , A .; Yang, M .; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radical Biol. Med. 1999 , 26 , 1231-1237. 7 mM ABTS and 2.45 mM potassium persulfate were mixed at the final concentration and left for 24 hours in the dark at room temperature to form ABTS + ˙. The absorbance value was 0.70 (± 0.02) at 732 nm (PBS, pH 7.4). Dilution). 10 μL of sample was added to 990 μL of the diluted solution, and the absorbance was measured after standing for exactly 1 minute. The free radical scavenging activity of each sample extract was expressed by the RC 50 value, which is the concentration of the sample required to reduce the absorbance of the control group without the sample to 1/2.

1.3.5 폴리페놀 화합물 성분 분석1.3.5 Polyphenol Compound Analysis

분석에 사용된 고성능 액체 크로마토그래프는 Shimadzu의 HPLC 10-A를 이용하였다. 각 성분을 분리하기 위한 컬럼은 ODS-HG5(4 mm, 4.6 i.d. x 150 mm)를 사용하였으며, 40℃로 유지되는 column oven에 장착하여 항온 조건에서 재현성 있게 분리되도록 하였다. 이동상은 두 가지의 buffer를 사용하였다. Buffer A는 2% acetic acid를 함유한 증류수이고, buffer B는 50% acetonitrile을 사용하였다. 분리를 위한 gradient 조건은 다음 표 1과 같으며, 0.9 mL/min의 유속으로 분석하였다. 검출은 UV-VIS detector (SPD-20A)를 사용하여 파장 295 nm에서 측정하였다. The high performance liquid chromatograph used for the analysis used Shimadzu's HPLC 10-A. ODS-HG5 (4 mm, 4.6 i.d. x 150 mm) was used as a column to separate each component, and it was mounted in a column oven maintained at 40 ° C to be reproducibly separated at constant temperature. The mobile phase used two buffers. Buffer A was distilled water containing 2% acetic acid, and buffer B was used 50% acetonitrile. Gradient conditions for separation are shown in Table 1 below, and analyzed at a flow rate of 0.9 mL / min. Detection was measured at a wavelength of 295 nm using a UV-VIS detector (SPD-20A).

Time (min)Time (min) Buffer A (%)Buffer A (%) Buffer B (%)Buffer B (%) 00 100100 00 0.30.3 9090 1010 5050 5555 4545 7070 00 100100 7979 1010 9090

1.4 NO 생성과 항염증 효과1.4 NO production and anti-inflammatory effects

1.4.1 세포 배양 및 처리1.4.1 Cell Culture and Treatment

Murine macrophage cell line인 RAW 264.7 cell은 Korean Cell Line Bank(KCLB)로부터 분양받았으며, 10% fetal bovine serum(FBS)과 1% antibiotics(penicillin/streptomycin)를 첨가한 DMEM 배지를 이용하여 5% CO2가 존재하는 37℃ incubator에서 1주일에 2~3회 계대 배양하였다. RAW 264.7 cells, a Murine macrophage cell line, were distributed from Korean Cell Line Bank (KCLB), and 5% CO 2 was added using DMEM medium containing 10% fetal bovine serum (FBS) and 1% antibiotics (penicillin / streptomycin). Passage was performed 2-3 times a week in a 37 ℃ incubator.

세포는 D60 culture dish(1ㅧ106 cells/dish) 및 24 well plate(1ㅧ105 cells /well)에 주입하여 부착시키고, 시료를 농도별로 처리하여 24시간 배양한 후, lipopolysaccharide(LPS) 1 μg/mL를 첨가하여 24시간 배양시킨 후 실험에 이용하였다. LPS를 처리하지 않은 실험구를 negative control로 하였으며, LPS를 처리한 것을 positive control로 하였다.Cells were inoculated in D60 culture dish (1 dish10 6 cells / dish) and 24 well plate (1 ㅧ 10 5 cells / well), adhered to the sample, incubated for 24 hours after treatment by concentration, and lipopolysaccharide (LPS) 1 After incubation for 24 hours by adding μg / mL was used in the experiment. The experimental group without LPS was used as a negative control, and the LPS treated as a positive control.

1.4.2 세포 생존률 측정1.4.2 Cell viability measurement

Cytokine에 의해 생성되는 NO가 RAW 264.7 cell에 미치는 영향을 관찰하기 위해 Green 등(Green, L. M.; Reade, J. L.; Ware, C. F. Rapid colometric assay for cell viability : Application to the quantitation of cytotoxic and growth inhibitory lympolines. J. Immuno. methods 1984, 70, 257-268.)의 방법에 준하여 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide(MTT) assay를 실시하였다. 배양한 cell은 0.4% trypan blue 염색법으로 세포수를 측정한 후 96 well plate에 각 well 5ㅧ104 ce11s/200 μL 농도로 분주하여, 24시간 배양 후 배지를 제거하고, 새로운 DMEM 배지 200 μL에 녹인 농도별 시료를 각 well에 첨가하여 24시간 배양한 후, LPS(1 μg/mL)를 첨가하여 다시 24시간 배양시켰다. 시료와 LPS가 첨가된 배양액에 MTT(5 mg/mL) 용액 10 μL를 각 well에 가하고 4시간 동안 배양하였다. 배양 종료 후 상등액을 제거하고 각 well에 100 μL의 DMSO를 첨가하여 생성된 formazan 결정을 용해시켜 ELISA reader로 550 nm에서 흡광도를 측정하였다. The NO produced by the Cytokine in order to observe the effect on RAW 264.7 cell Green, etc. (Green, LM; Reade, JL ; Ware, CF Rapid colometric assay for cell viability:. Application to the quantitation of cytotoxic and growth inhibitory lympolines J . Immuno. methods 1984, 70, 257-268.) the 3- (4,5-dimethylthiazol-2- yl ) -2,5-diphenyl tetrazolium bromide (MTT) assay was performed according to the method of. The cultured cells were counted by 0.4% trypan blue staining, and then dispensed into each well at 5 로 10 4 ce11s / 200 μL in 96 well plates. After 24 hours of incubation, the medium was removed and in 200 μL of fresh DMEM medium. The dissolved concentration samples were added to each well and incubated for 24 hours, followed by LPS (1 μg / mL) for 24 hours. 10 μL of MTT (5 mg / mL) solution was added to each well and the culture medium to which LPS was added, followed by incubation for 4 hours. After incubation, the supernatant was removed, and 100 μL of DMSO was added to each well to dissolve the formazan crystals, and the absorbance was measured at 550 nm with an ELISA reader.

1.4.3 Nitric oxide(NO) 생성 측정1.4.3 Nitric oxide (NO) production measurement

NO 생성정도를 Green 등(Green, L. C.; Wagner, D. A.; Glogowski, J. Analysis of nitrate, and nitrate in biological fluids. Anal. Biochem. 1982, 126, 131-138.)의 방법으로 NO 생성의 지표인 배지에 생성된 NO2 -양을 이용하여 측정하였다. RAW 264.7 cell을 DMEM를 이용하여 1ㅧ105 ce11s/mL 농도로 24 well plate에 분주한 후 시료를 농도별로 처리하여 24시간 배양한 후, LPS(1 μg/mL)를 첨가하여 다시 24시간 배양시켰다. 세포배양 상등액 100 μL와 Griess시약(1% sulfanilamide, 0.1% naphthylethylendiamine in 2.5% phosphoric acid) 100 μL를 혼합하여 96 well plates에서 10분간 반응시킨 후 ELISA reader를 이용하여 540 nm에서 흡광도를 측정하였다. NO2 - 표준곡선은 NaNO2를 농도별로 조제하여 사용하였다. The degree of NO production was determined by Green et al. (Green, LC; Wagner, DA; Glogowski, J. Analysis of nitrate, and nitrate in biological fluids.Anal . Biochem. 1982 , 126 , 131-138.). It was measured using the amount of NO 2 generated in the medium. After dispensing RAW 264.7 cells into a 24 well plate at a concentration of 1 ce10 5 ce11s / mL using DMEM, the samples were incubated for 24 hours by concentration, and then incubated again by adding LPS (1 μg / mL) for 24 hours. I was. 100 μL of the cell culture supernatant and 100 μL of Griess reagent (1% sulfanilamide, 0.1% naphthylethylendiamine in 2.5% phosphoric acid) were mixed for 10 minutes in 96 well plates, and the absorbance was measured at 540 nm using an ELISA reader. NO 2 -The standard curve was used to prepare NaNO 2 by concentration.

1.4.4 ProstaglandinE1.4.4 ProstaglandinE 22 (PGE(PGE 22 )) 측정Measure

RAW 264.7 cell을 DMEM를 이용하여 1ㅧ105 ce11s/mL 농도로 24 well plate에 분주한 후 시료를 농도별로 처리하여 24시간 배양한 후, LPS(1 μg/mL)를 첨가하여 다시 24시간 배양시켰다. 상층액으로 PGE2 생성량을 측정하였다. Antibody를 coating buffer와 함께 overnight precoating한 후 0.05%의 Tween-20을 함유한 0.01 M PBS로 씻고 blocking buffer와 함께 96 well plates에 배양하였다. Blocking buffer를 제거한 후 시료를 첨가한 다음 다시 배양하였다. 세척한 96 well plates에 이차 항체를 부착시키고 detection reagent, substrate, stopping reagent를 차례로 넣어 450 nm에서 흡광도를 측정하였다.After dispensing RAW 264.7 cells into a 24 well plate at a concentration of 1 ce10 5 ce11s / mL using DMEM, the samples were incubated for 24 hours by concentration, and then incubated again by adding LPS (1 μg / mL) for 24 hours. I was. PGE 2 production was measured by the supernatant. Antibodies were precoated overnight with coating buffer, washed with 0.01 M PBS containing 0.05% Tween-20 and incubated in 96 well plates with blocking buffer. After removing the blocking buffer, the sample was added and then cultured again. Secondary antibodies were attached to the washed 96 well plates, and then absorbance was measured at 450 nm by adding a detection reagent, a substrate, and a stopping reagent.

1.4.5 TNF-α1.4.5 TNF-α 측정Measure

RAW 264.7 cell을 DMEM를 이용하여 1ㅧ105 ce11s/mL 농도로 24 well plate에 분주한 후 시료를 농도별로 처리하여 24시간 배양한 후, LPS(1 μg/mL)를 첨가하여 다시 24시간 배양시켰다. 상층액으로 TNF-α 생성량을 측정하였다. Antibody를 coating buffer와 함께 overnight precoating한 후 0.05%의 Tween-20을 함유한 0.01 M PBS로 씻고 blocking buffer와 함께 96 well plates에 배양하였다. Blocking buffer를 제거하고 시료를 첨가한 다음 다시 배양하였다. 세척한 96 well plates에 이차 항체를 부착시키고 detection reagent, substrate, stopping reagent를 차례로 첨가하여 450 nm에서 흡광도를 측정하였다.After dispensing RAW 264.7 cells into a 24 well plate at a concentration of 1 ce10 5 ce11s / mL using DMEM, the samples were incubated for 24 hours by concentration, and then incubated again by adding LPS (1 μg / mL) for 24 hours. I was. The amount of TNF-α production was measured with the supernatant. Antibodies were precoated overnight with coating buffer, washed with 0.01 M PBS containing 0.05% Tween-20 and incubated in 96 well plates with blocking buffer. Blocking buffer was removed, sample was added, and then incubated again. The secondary antibody was attached to the washed 96 well plates, and the absorbance was measured at 450 nm by adding a detection reagent, a substrate, and a stopping reagent.

1.5 동맥경화 관련 유전자의 발현1.5 Expression of Atherosclerosis-related Genes

1.5.1 RT-PCR 법에 의한 유전자 발현 조사 1.5.1 Gene Expression Survey by RT-PCR Method

RNA는 D60 culture dish에 RAW 264.7 cell(1ㅧ106 cells/mL)을 split하여 4 mL의 배지에서 24시간 배양한 다음, 몰로키아 메탄올 추출물 및 그 분획물을 농도별로 첨가하고, 다시 1 μg/mL의 LPS 1 μL를 첨가하여 24시간 동안 배양하였다. RNA의 분리를 위해서 D60의 media를 제거하고 PBS (pH 7.4) 1 mL로 3회 세척한 후 TRI reagent를 처리하였다. 이를 멸균된 1.5 mL tube에 1 mL씩 첨가하고 1-bromo-3-chloropropane을 200 μL 첨가하여 30초간 vortex하여 층이 분리될 때까지 얼음에 방치한 뒤 원심분리(15,000 rpm, 20분, 4℃)하여 상등액을 취해 새로운 tube에 옮겼다. 여기에 동량의 isopropanol을 첨가하여 -20℃에서 2시간 이상 방치하여 원심 분리(15,000 rpm, 20분, 4℃)한 후 상등액을 제거하였다. 침전물에 75% 에탄올을 첨가하여 제거한 후 diethyl pyrocarbonate(DEPC) 처리된 증류수를 첨가하여 65℃ 수조에서 10분간 반응시켜 침전물을 녹였다. 분리된 RNA는 UV/visible spectrophotometer와 2% agarose gel 전기영동을 이용하여 확인하고 정량하였다.RNA was incubated for 24 hours in 4 mL of medium by splitting RAW 264.7 cells (1 ㅧ 10 6 cells / mL) into a D60 culture dish, and then adding Molokia methanol extract and its fractions by concentration, and again 1 μg / mL. 1 μL of LPS was added and incubated for 24 hours. To remove RNA, the media of D60 was removed, washed three times with 1 mL of PBS (pH 7.4), and treated with TRI reagent. Add 1 mL of this to a sterile 1.5 mL tube, add 200 μL of 1-bromo-3-chloropropane, vortex for 30 seconds, leave on ice until the layers separate, and centrifuge (15,000 rpm, 20 minutes, 4 ℃). The supernatant was taken and transferred to a new tube. The same amount of isopropanol was added thereto, left at -20 ° C for at least 2 hours, centrifuged (15,000 rpm, 20 minutes, 4 ° C), and the supernatant was removed. 75% ethanol was added to the precipitate, and then distilled water treated with diethyl pyrocarbonate (DEPC) was added thereto to react for 10 minutes in a 65 ° C. water bath to dissolve the precipitate. The isolated RNA was identified and quantified by UV / visible spectrophotometer and 2% agarose gel electrophoresis.

분리한 total RNA 2 μg, RNA PCR kit을 혼합하여 42℃에서 90분간 반응시킨 후 70℃에서 10분간 가열하여 반응을 종결시켰다. The total RNA 2 μg separated, RNA PCR kit was mixed and reacted at 42 ℃ for 90 minutes and then heated at 70 ℃ for 10 minutes to terminate the reaction.

Total RNA를 역전사 시켜 생성된 cDNA는 다음 표 2의 primer들을 이용한 PCR 방법으로 증폭하였다. PCR의 반응은 2.5 U Taq polymerase (Takara Ex.), 2 mM MgCl2, 0.2 mM dNTP를 첨가하여 각각의 primer에 맞는 조건으로 실시하였다. Amplification profile로서 94℃에서 2분 30초 동안 initial step을 수행 후 95℃에서 40초간 denaturation, 각각의 annealing temperature에서 1분 20초간 annealing, 72℃에서 2분간 polymerization을 30 cycle 수행하고 최종 cycle에서는 72℃에서 10분간 반응을 더 연장한 후 5℃에 보관하였다. 여기에서 사용된 primer는 ICAM-1, VCAM-1, MCP-1, iNOS, COX-2, GAPDH 등으로 다음 표 2와 같다.CDNA generated by reverse transcription of total RNA was amplified by PCR using the primers of Table 2 below. PCR reaction was performed under the conditions for each primer by adding 2.5 U Taq polymerase (Takara Ex.), 2 mM MgCl 2 and 0.2 mM dNTP. As an amplification profile, the initial step was performed at 94 ° C for 2 minutes and 30 seconds, followed by denaturation at 95 ° C for 40 seconds, annealing at each annealing temperature for 1 minute and 20 seconds, and 30 cycles of polymerization for 2 minutes at 72 ° C. The reaction was further extended for 10 minutes at and stored at 5 ° C. The primers used here are ICAM-1, VCAM-1, MCP-1, iNOS, COX-2, GAPDH and the like, as shown in Table 2 below.

GeneGene Fragment size(bp)Fragment size (bp) OligonucleotidesOligonucleotides ICAM-1ICAM-1 170170 F 5ㅄ-AAC TCT TCC AGA ACA CCT CG-3ㅄ R 5ㅄ-AGC ACC AGC TAG ACC TTA GC-3ㅄF 5 ㅄ -AAC TCT TCC AGA ACA CCT CG-3 ㅄ R 5 ㅄ -AGC ACC AGC TAG ACC TTA GC-3 ㅄ VCAM-1VCAM-1 206206 F 5ㅄ-TCA TCC CCA CCA CTG AAG AT-3ㅄ R 5ㅄ-GCC ATT GCT AGA GCA TGT CA-3ㅄF 5 ㅄ -TCA TCC CCA CCA CTG AAG AT-3 ㅄ R 5 ㅄ -GCC ATT GCT AGA GCA TGT CA-3 ㅄ MCP-1MCP-1 267267 F 5ㅄ-GTG CCT GCT ACT CAC AGT AG-3ㅄ R 5ㅄ-GGA ATT TGG TTT TTC TTG TT-3ㅄF 5 ㅄ -GTG CCT GCT ACT CAC AGT AG-3 ㅄ R 5 ㅄ -GGA ATT TGG TTT TTC TTG TT-3 ㅄ iNOSiNOS 920920 F 5ㅄ-GCC TTC AAC ACC AAG GTT GTC TGC A-3ㅄ R 5ㅄ-TCA TTG TAC TCT GAG GGC TGA CAC A-3ㅄ F 5 ㅄ -GCC TTC AAC ACC AAG GTT GTC TGC A-3 ㅄ R 5 ㅄ -TCA TTG TAC TCT GAG GGC TGA CAC A-3 ㅄ COX-2COX-2 490490 F 5ㅄ-TGG GCA AAG ATG CAA ACA TC-3ㅄ R 5ㅄ-CAG CAA ATC CTT GCT GTT CC-3ㅄF 5 ㅄ -TGG GCA AAG ATG CAA ACA TC-3 ㅄ R 5 ㅄ -CAG CAA ATC CTT GCT GTT CC-3 ㅄ GAPDHGAPDH 514514 F 5ㅄ-GGA AGG CCA TGC CAG TGA-3ㅄ R 5ㅄ-TGA GAA CGG GAA GCT TGT CA-3ㅄF 5 ㅄ -GGA AGG CCA TGC CAG TGA-3 ㅄ R 5 ㅄ -TGA GAA CGG GAA GCT TGT CA-3 ㅄ

1.5.2. Western blot에 의한 단백질 발현 조사 1.5.2. Investigation of protein expression by Western blot

몰로키아 메탄올 추출물 및 그 분획물이 염증 관련 유전자 조절 인자인 NFκB, IL-1β의 단백질 발현에 미치는 영향을 조사하기 위하여 western blot을 실시하였다. RAW 264.7 cell (1ㅧ106 cells/mL)에 DMEM 배지를 이용하여 5% CO2 항온기에서 24시간 배양 후 배지를 제거하고 새로운 배지를 첨가하여 전 배양과 동일 조건에서 배양하였다. 세포를 2~3회 PBS로 세척 후 1 mL의 lysis buffer를 첨가, 30분~1시간 동안 용해시킨 후 13,000 rpm에서 10분간 원심분리하여 세포막 성분 등을 제거하였다. 단백질 농도는 bovine serum albumin(BSA)을 표준화 한 Bio-Rad Protein Assay Kit를 사용하여 정량하였다. 4℃에서 13,000 rpm으로 10분간 원심분리한 상등액은 단백질을 정량한 후 10% running gel과 4.5% stacking gel을 이용하여 125 V에서 SDS-polyacrylamide gel 전기영동을 실시하였다.Western blot was performed to investigate the effects of Molokia methanol extract and its fractions on protein expression of inflammation-related gene regulators NFκB and IL-1β. After incubation in RAW 264.7 cells (1mL10 6 cells / mL) for 24 hours using a DMEM medium in a 5% CO 2 incubator, the medium was removed and cultured under the same conditions as the pre-culture. After washing the cells with PBS 2-3 times, 1 mL of lysis buffer was added, dissolved for 30 minutes to 1 hour, and centrifuged at 13,000 rpm for 10 minutes to remove cell membrane components. Protein concentration was quantified using the Bio-Rad Protein Assay Kit standardized to bovine serum albumin (BSA). The supernatant centrifuged at 13,000 rpm for 10 minutes at 4 ℃ was subjected to SDS-polyacrylamide gel electrophoresis at 125 V using a 10% running gel and 4.5% stacking gel.

전기영동으로 분리한 단백질은 immobilon-P transfer membrane과 transfer buffer (20% methanol, 25 mM Tris-HCl, 192 mM glycine)를 사용하여 350 mA에서 120분간 transfer시켰다. 단백질이 이동된 membrane은 fast green solution으로 transfer의 유무를 확인한 후, 5% non-fat skim milk solution으로 blocking하였다. 4℃에서 일차 항체인 NFκB, IL-1β의 발현 양을 검토하기 위하여 anti-rabbit, anti-mouse를 TTBS 용액에 1 : 1000으로 희석하여 24시간 반응시킨 후 TTBS로 3회 세정하였다. 2차 항체로는 HRP(Horse Radish Peroxidase)가 결합된 anti-mouse 또는 anti-rabbit IgG를 1 : 5000으로 희석하여 2시간 반응 시킨 후 TST(100 mM Tris-HCl, 1.5 M NaCl, 0.5% tween-20)를 이용하여 10분 간격으로 3회 세척하였다. 항체와 반응한 membrane에 ECL 진단 kit의 발색시액 Ⅰ과 Ⅱ를 40 : 1로 섞은 혼합액을 가해 확인하였다. Proteins isolated by electrophoresis were transferred for 120 minutes at 350 mA using immobilon-P transfer membrane and transfer buffer (20% methanol, 25 mM Tris-HCl, 192 mM glycine). The protein-translated membrane was blocked with 5% non-fat skim milk solution after confirming the transfer to the fast green solution. In order to examine the expression levels of primary antibodies NFκB and IL-1β at 4 ° C, anti-rabbit and anti-mouse were diluted 1: 1000 in TTBS solution for 24 hours, and then washed three times with TTBS. As a secondary antibody, HRP (Horse Radish Peroxidase) conjugated anti-mouse or anti-rabbit IgG was diluted 1: 5000 and reacted for 2 hours, followed by TST (100 mM Tris-HCl, 1.5 M NaCl, 0.5% tween-). 20) was washed three times at 10 minute intervals. To the membrane reacted with the antibody, a mixed solution containing 40: 1 of the colorants I and II of the ECL diagnostic kit was added.

1.6. 통계분석1.6. Statistical analysis

실험결과는 SAS program(SAS institute, Inc. SAS/SAAT user's Guide. version 6, 4th ed. Cary, NC, USA. 1998.)을 이용하여 분산 분석한 후 유의차가 있는 항목에 대해서는 Duncan's multiple range test로 p<0.05 수준에서 시료간의 유의차를 검정하였다.The experimental results were analyzed by ANOVA using SAS program (SAS Institute, Inc. SAS / SAAT user's Guide.version 6, 4th ed.Cary, NC, USA. 1998.) and then Duncan's multiple range test for significant differences. Significant differences between the samples were tested at the p <0.05 level.

2. 결과 및 고찰2. Results and Discussion

2.1 몰로키아의 조성 2.1 Composition of Molokia

2.1.1 몰로키아의 일반성분2.1.1 General Constituents of Molokia

몰로키아 분말의 일반성분을 분석한 결과는 다음 표 3과 같다. 탄수화물 55%, 조지방 2.5%, 조단백 17%, 수분 6.1%, 조회분 12.9%, 조섬유 6.5%이었다. The results of analyzing the general components of the Molochia powder are shown in Table 3 below. Carbohydrate 55%, crude fat 2.5%, crude protein 17%, moisture 6.1%, crude ash 12.9%, crude fiber 6.5%.

ConstituentConstituent Content (%)Content (%) MoistureMoisture 6.1 6.1 CarbohydrateCarbohydrate 55.055.0 Crude fatCrude fat 2.52.5 Crude proteinCrude protein 17.017.0 Crude ashCrude ash 12.912.9 Crude fiberCrude fiber 6.56.5

2.1.2 몰로키아 추출물의 계통적 분획 수율  2.1.2 Systematic Fraction Yield of Molokia Extract

몰로키아 메탄올 추출물을 n-hexane, chloroform, ethylacetate, n-butanol 및 water로 극성에 따라 순차적으로 분획했을 때의 수율은 다음 표 4와 같다. The yield of the methanol extract of Molochia was sequentially divided according to polarity with n- hexane, chloroform, ethylacetate, n- butanol and water as shown in Table 4 below.

Weight(g) of fraction recovered(%)Weight (g) of fraction recovered (%) ExtractExtract FractionsFractions MethanolMethanol n-Hexane n -Hexane ChloroformChlororoform EthylacetateEthylacetate n-Butanol n -Butanol WaterWater 25.025.0 2.12.1 1.21.2 16.116.1 27.427.4 45.645.6

*Percentage of each fractions to methanol extract content(100g)Percentage of each fractions to methanol extract content (100 g)

2.2 몰로키아의 항산화 효과2.2 Antioxidant Effect of Molokia

2.2.1 총 폴리페놀 함량과 총 플라보노이드 함량   2.2.1 Total Polyphenol Content and Total Flavonoid Content

몰로키아 추출물 및 분획물에 존재하는 총 폴리페놀 및 플라보노이드 함량을 tannic acid 및 quercetin을 기준물질로 하여 비교 측정하여 그 결과를 다음 표 5에 나타내었다. 그 결과 몰로키아 ethylacetate 분획물, chloroform 분획물 및 butanol 분획물에서 각각 295.03, 108.53, 103.54 μg/mg으로 매우 높은 폴리페놀 함량이 나타났다. 또한 총 플라보노이드의 함량은 ethylacetate 분획물에서 230.92 μg/mg로 가장 높게 나타났다.  The total polyphenol and flavonoid contents in the molokia extracts and fractions were compared and measured using tannic acid and quercetin as reference materials, and the results are shown in Table 5 below. As a result, the polyphenol content was very high at 295.03, 108.53 and 103.54 μg / mg in ethylacetate, chloroform and butanol fractions, respectively. The total flavonoid content was the highest in the ethylacetate fraction of 230.92 μg / mg.

SampleSample Total phenolics1) (μg/g)Total phenolics 1) (μg / g) Total flavonoids2) (μg/g)Total flavonoids 2) (μg / g) Methanol ext.Methanol ext. 79.81 ± 8.8879.81 ± 8.88 35.93 ± 0.4635.93 ± 0.46 n-Hexane fr. n -Hexane fr. 55.88 ± 1.6555.88 ± 1.65 55.82 ± 0.4655.82 ± 0.46 Chloroform fr.Chloroform fr. 108.53 ± 9.10108.53 ± 9.10 50.05 ± 1.0450.05 ± 1.04 Ethylacetate fr.Ethylacetate fr. 295.03 ± 32.00295.03 ± 32.00 230.92 ± 13.47230.92 ± 13.47 n-Butanol fr. n -Butanol fr. 103.54 ± 12.27103.54 ± 12.27 29.78 ± 7.3329.78 ± 7.33 Water fr.Water fr. 34.29 ± 5.5134.29 ± 5.51 4.93 ± 0.464.93 ± 0.46

1)Total phenolics is expressed as tannic acid equivalents. 1) Total phenolics is expressed as tannic acid equivalents.

2)Total flavonoids is expressed as quercetin equivalents. 2) Total flavonoids is expressed as quercetin equivalents.

2.2.2 DPPH radical 소거활성  2.2.2 DPPH radical scavenging activity

DPPH는 짙은 자색을 띄는 비교적 안정한 free radical로서 cysteine, glutathione과 같은 함황아미노산과 ascorbic acid, aromatic amine 등에 의해 환원되어 탈색되므로 항산화 물질 측정에 많이 이용되고 있다. ROS는 체내 방어기전에 의해 대부분 제거되지만 제거되지 못할 경우 생체분자들과 신속하게 반응하여 단백질의 변성이나 생체막의 지질 과산화, DNA 손상 등을 일으키며, 세포 내로 확산되거나 혈류를 통해 이동된 지질 과산화물은 새로운 radical 반응을 촉진시켜 각종 만성질환과 노화의 원인으로 작용한다. DPPH is a relatively stable free radical with a deep purple color, which is reduced and decolorized by sulfuric acid amino acids such as cysteine and glutathione, ascorbic acid, and aromatic amines. ROS is mostly eliminated by the body's defense mechanisms, but when it is not removed, it reacts rapidly with biomolecules, causing protein denaturation, biofilm lipid peroxidation, DNA damage, and the like. Lipid peroxides that diffuse into cells or migrate through the bloodstream are new radicals. It promotes the reaction and acts as a cause of various chronic diseases and aging.

몰로키아 추출물 및 분획물과 butylated hydroxyanisole(BHA)의 DPPH 소거활성을 농도별로 측정하여 비교한 결과는 도 3과 같다. 표준물질로 이용한 BHA 25 μg/mL에서 90% 정도의 항산화능을 나타내었고, 몰로키아 ethylacetate 분획물, chloroform 분획물, butanol 분획물 및 methanol 추출물 각 200 μg/mL 농도에서 94% 정도의 우수한 소거활성능이 있었다. 그리고 ethylacetate 분획물과 butanol 분획물의 RC50 값은 각각 17.22 μg/mL, 57.95 μg/mL으로 나타났다. The results of comparing the DPPH scavenging activity of the Molochia extract and fractions with butylated hydroxyanisole (BHA) by concentration are shown in FIG. 3. The antioxidant activity was about 90% at 25 μg / mL of BHA used as a standard, and the scavenging activity was about 94% at 200 μg / mL of each of the Molokia ethylacetate, chloroform, butanol and methanol extracts. . The RC 50 values of ethylacetate and butanol fractions were 17.22 μg / mL and 57.95 μg / mL, respectively.

도 3에 있어서, M: 메탄올 추출물, H: n-hexane 분획물, C: chloroform 분획물, E: ethylacetate 분획물, B: n-butanol 분획물, W: 물 분획물을 나타낸다. In Figure 3, M: methanol extract, H: n- hexane fraction, C: chloroform fraction, E: ethylacetate fraction, B: n -butanol fraction, W: water fraction.

2.2.3 ABTS radical 소거 활성  2.2.3 ABTS radical scavenging activity

ABTS와 potassium persulfate를 암소에 방치하여 생성된 ABTS+·가 추출물의 항산화력에 의해 소거되어 radical 특유의 색인 청록색이 탈색되는 정도를 측정함으로써 추출물의 ABTS+· 소거능을 관찰할 수 있다. 혈장에서 ABTS 양이온 라디칼의 흡광도가 항산화제에 의해 억제되는 것에 기초하여 개발된 ABTS 라디칼 소거법은 표준물질인 Trolox의 값과 비교하여 나타낼 수 있으며, in vivo에서 항산화능 측정뿐만 아니라 in vitro에서도 항산화능을 측정하기 위한 방법으로 널리 이용되고 있다.ABTS + · produced by leaving ABTS and potassium persulfate in cows was eliminated by the antioxidant power of the extract, and the ABTS + · scavenging ability of the extract can be observed by measuring the degree of decolorization of the index-specific blue-green color. The ABTS radical scavenging method, developed on the basis of the fact that the absorbance of ABTS cationic radicals in plasma is inhibited by antioxidants, can be compared with the standard value of Trolox and can be used to measure antioxidant activity in vivo as well as in vitro . It is widely used as a method for measuring.

몰로키아 추출물 및 분획물의 ABTS+·소거 활성을 Trolox와 비교하여 농도별로 측정한 결과 도 4와 같이, 100 μg/mL의 농도에서 몰로키아 ethylacetate 분획물, chloroform 분획물, butanol 분획물 및 methanol 추출물에서 90% 이상의 우수한 소거활성능이 있었고, 50 μg/mL의 처리농도에서는 몰로키아 ethylacetate 분획물의 경우 90% 이상의 소거 활성능을, chloroform 분획물은 80% 이상의 소거 활성능을 보였으며, butanol 분획물 및 methanol 추출물에서도 60~70%의 소거활성능이 있었다. 그러나 몰로키아 heaxane 및 water 분획물의 경우 100 μg/mL 이상의 농도에서 소거 활성능을 보였다. 특히 ABTS+·소거활성이 우수한 몰로키아 ethylacetate 분획물과 chloroform분획물의 RC50 값은 각각 7.42 μg/mL, 30.04 μg/mL으로 나타났다. 이 결과는 몰로키아 추출물 및 분획물이 우수한 DPPH· 소거 활성을 나타낸 것과 유사하게 ABTS+·소거 활성도 우수함을 알 수 있었다  As a result of measuring the ABTS + scavenging activity of the Molochia extract and fractions compared to Trolox, as shown in FIG. 4, the Molokia ethylacetate fraction, the chloroform fraction, butanol fraction and methanol extract were superior to 90% at the concentration of 100 μg / mL. The scavenging activity was shown to be greater than 90% for the molokia ethylacetate fraction and over 80% for the chloroform fraction at the treatment concentration of 50 μg / mL, and 60 ~ 70 for the butanol fraction and the methanol extract. There was a scavenging activity of%. However, molochia heaxane and water fractions showed scavenging activity at concentrations of 100 μg / mL or more. In particular, the RC50 values of the molokia ethylacetate fraction and chloroform fraction with excellent ABTS + and scavenging activity were 7.42 μg / mL and 30.04 μg / mL, respectively. The results showed that the extracts and fractions of Molokia showed superior ABTS + and scavenging activity, similar to those showing excellent DPPH scavenging activity.

도 4에 있어서, M: 메탄올 추출물, H: n-hexane 분획물, C: chloroform 분획물, E: ethylacetate 분획물, B: n-butanol 분획물, W: 물 분획물을 나타내며, 다만 *H, W: 100, 250, 500 μg/m, Trolox: 15 μM 농도이다.In Figure 4, M: methanol extract, H: n- hexane fraction, C: chloroform fraction, E: ethylacetate fraction, B: n -butanol fraction, W: water fraction, but * H, W: 100, 250 , 500 μg / m, Trolox: 15 μM concentration.

이를 요약하면 다음 표 6과 같다. This is summarized in Table 6 below.

SampleSample RC50 1)(μg/mL)RC 50 1) (μg / mL) DPPHDPPH ABTSABTS Methanol ext.Methanol ext. 58.42 ± 4.9558.42 ± 4.95 46.93 ± 3.1546.93 ± 3.15 n-Hexane fr. n -Hexane fr. 170.69 ± 11.23   170.69 ± 11.23 69.63 ± 2.7169.63 ± 2.71 Chloroform fr.Chloroform fr. 70.60 ± 6.7070.60 ± 6.70 30.04 ± 0.8630.04 ± 0.86 Ethylacetate fr.Ethylacetate fr. 17.22 ± 2.2117.22 ± 2.21 7.42 ± 0.627.42 ± 0.62 n-Butanol fr. n -Butanol fr. 57.95 ± 1.2557.95 ± 1.25 36.02 ± 1.4036.02 ± 1.40 Water fr.Water fr. 152.14 ± 16.42152.14 ± 16.42 144.41 ± 8.22144.41 ± 8.22

1)Concentration required for 50% reduction of DPPH and ABTS+ㆍat 1 min after starting the reaction 1) Concentration required for 50% reduction of DPPH and ABTS + · at 1 min after starting the reaction

2)Each value represent the mean ± S.D. from 3 independent experiments 2) Each value represent the mean ± SD from 3 independent experiments

*p〈0.05 * p <0.05

2.2.4 폴리페놀 화합물의 성분 정량  2.2.4 Component Determination of Polyphenolic Compounds

몰로키아에 함유된 폴리페놀화합물 중 chlorogenic acid, quercetin-3 -glucoside, quercetin -3-galactoside, quercetin 성분의 변화를 알아보기 위해 몰로키아 추출물 및 분획물에 대해 HPLC를 이용하여 함량 분석을 하였으며 그 결과를 다음 표 7로 나타내었다. 다음 표 7에 있어서 단위는 mg/100 g이다.  To determine the changes of chlorogenic acid, quercetin-3 -glucoside, quercetin-3-galactoside, and quercetin in the polyphenolic compounds in Molokia, the content of Molokia extracts and fractions was analyzed using HPLC. It is shown in Table 7 below. In the following Table 7, the unit is mg / 100 g.

Compound Compound Methanol ext.Methanol ext. Ethylacetate fr.Ethylacetate fr. Hexane fr.Hexane fr. Chloroform fr.Chloroform fr. Chlorogenic acid Chlorogenic acid 646.5646.5 203.2203.2 2.12.1 1.11.1 Quercetin-3-glucoside Quercetin-3-glucoside 70.2170.21 175.2175.2 0.70.7 0.40.4 Quercetin-3-galactosideQuercetin-3-galactoside 82.1582.15 216.6216.6 0.80.8 0.70.7 Quercetin Quercetin 22.3422.34 00 2.02.0 0.20.2

그 결과 몰로키아 추출물은 chlorogenic acid 646.5 mg, quercetin-3-glucoside 70.2 mg, quercetin-3-galactoside 82.15 mg, quercetin 22.3 mg/100 g로 나타났다.  As a result, the extract of Molochia was 646.5 mg of chlorogenic acid, 70.2 mg of quercetin-3-glucoside, 82.15 mg of quercetin-3-galactoside, and 22.3 mg / 100 g of quercetin.

특히 ethylacetate분획물은 chlorogenic acid 203.2 mg, quercetin-3 -glucoside 175.2 mg, quercetin-3-galactoside 216.6 mg/100g로 가장 높은 폴리페놀화합물 함량을 나타내었다. 그러나 hexane 및 chloroform 분획물에서는 폴리페놀 화합물이 미량 함유되어 있었다.In particular, the ethylacetate fraction showed the highest content of polyphenolic compounds (203.2 mg of chlorogenic acid, 175.2 mg of quercetin-3 -glucoside, and 216.6 mg / 100 g of quercetin-3-galactoside). But The hexane and chloroform fractions contained trace amounts of polyphenol compounds.

몰로키아 ethylacetate 분획물에서는 폴리페놀 화합물중 quercetin-3- galactoside가 가장 높은 함량을, methanol 추출물에서는 chlorogenic acid가 가장 높은 함량을 나타냄을 확인하였다.  In the ethylacetate fraction, the highest content of quercetin-3-galactoside was found in the polyphenolic compounds, and the highest content of chlorogenic acid in methanol extracts.

도 5에는 몰로키아로부터 분리된 페놀성 항산화제의 화학구조를 도시하였다. Figure 5 shows the chemical structure of phenolic antioxidants isolated from Molokia.

한편 도 6에는 몰로키아 메탄올 추출물의 HPLC 크로마토그램을 도시하였는바, 도 6에서 1: chlorogenic acid, 2: quercetin-3-glucoside 3: quercetin-3-galactoside, 4: quercetin을 나타낸다.Meanwhile, FIG. 6 shows an HPLC chromatogram of the Molokia methanol extract. In FIG. 6, 1: chlorogenic acid, 2: quercetin-3-glucoside 3: quercetin-3-galactoside, and 4: quercetin are shown.

2.3 몰로키아 추출물의 항염증 효과2.3 Anti-inflammatory Effects of Molokia Extract

2.3.1 세포생존율  2.3.1 Cell survival rate

Lipopolysaccharide(LPS)는 Gram 음성 세균의 세포벽 물질로서 면역 세포를 자극하여 NO의 생성을 증가시킨다고 보고되고 있다. LPS로 산화적 스트레스를 유발한 RAW 264.7 cell에서 몰로키아 추출물 및 분획물을 농도별로 처리하여 일정시간 배양하였을 때 세포 생존을 도 7에 나타내었다. LPS에 의해 자극된 RAW 264.7 cell의 생존율은 LPS를 처리하지 않은 대조구에 비해 감소되었지만, 몰로키아 추출물 및 분획물 농도를 25~250 μg/mL 처리한 경우 butanol 분획물을 제외한 다른 시료 처리구들은 50% 이상의 세포 생존율을 보였다. 그러나 가장 높은 농도인 500 μg/mL 처리 시에는 몰로키아 메탄올 추출물과 ethylacetate 분획물에서만 50~68% 정도의 세포생존율을 보였다. Lipopolysaccharide (LPS) is a cell wall material of Gram-negative bacteria, which has been reported to stimulate immune cells to increase NO production. In the RAW 264.7 cells induced oxidative stress with LPS, the cell survival is shown in Fig. 7 when the Morocea extract and fractions were treated by concentrations and cultured for a predetermined time. Survival rate of RAW 264.7 cells stimulated by LPS was reduced compared to non-LPS-treated controls, but when treated with 25-250 μg / mL of the Molochia extract and fraction concentrations, the other treatments except for butanol fractions were more than 50% cells. Survival rate was shown. At the highest concentration of 500 μg / mL, however, cell viability of 50-68% was observed only in Molokia methanol extract and ethylacetate fraction.

도 7에 있어서 M: methanol extract, H: n-hexane fraction, C: chloroform fraction, E: ethylacetate fraction, B: n-butanol fraction, LPS: alone, Con: control을 나타낸다. In Figure 7, M: methanol extract, H: n- hexane fraction, C: chloroform fraction, E: ethylacetate fraction, B: n -butanol fraction, LPS: alone, Con: control.

2.3.2 NO 생성조건 및 생성량  2.3.2 NO Formation Conditions and Amount

RAW 264.7 cell에 산화적 스트레스 유발에 필요한 LPS처리 농도와 시간을 결정하기 위하여 배양액에 LPS 처리 농도와 배양시간에 따른 NO 생성량을 측정함과 동시에 몰로키아 추출물의 NO 생성에 미치는 영향을 관찰하여 그 결과를 도 8에 나타내었다. LPS의 농도를 0~6 μg/mL, 처리시간을 6, 12, 18, 24, 48 hr로 처리하면 LPS의 처리 농도가 1 μg/mL 이상에서는 NO 생성량이 10배 정도 증가하였고 농도에 따른 차이는 없었다. 그리고 LPS를 1 μg/mL 처리하여 배양시간을 달리하여 NO 생성량을 확인하면 24 hr에서 NO의 생성량이 10배 정도 증가함을 확인하였다. 따라서 본 실험에서는 LPS 처리농도를 1 μg/mL, 배양시간을 24 hr으로 결정하였다. In order to determine the concentration and time of LPS treatment required to induce oxidative stress in RAW 264.7 cells, we measured NO production according to LPS treatment concentration and culture time and observed the effect on NO production of Molokia extract. Is shown in FIG. 8. When LPS concentration was 0 ~ 6 μg / mL and treatment time was 6, 12, 18, 24, 48 hr, NO production increased by 10 times when LPS treatment concentration was over 1 μg / mL. Was not. In addition, the NO production amount was increased by varying the incubation time by treating LPS with 1 μg / mL, and the production amount of NO was increased by about 10 times at 24 hr. Therefore, in this experiment, LPS treatment concentration was determined to be 1 μg / mL and incubation time to 24 hr.

LPS 처리구는 LPS를 처리하지 않은 대조구보다 NO의 생성량이 증가하는데 이는 LPS가 산화적 스트레스를 유발한다는 보고와 일치하였다. LPS에 의해 세포내 산화적 스트레스가 유발되었을 때 NO 생성량은 유의적으로 증가하였으며, 몰로키아 추출물 및 분획물을 첨가하였을 때 NO의 생성이 억제되었으며 이를 도 8에 나타내었다. 이러한 결과로 보아 몰로키아 추출물 및 분획물은 초기 염증반응시에 대식세포에서 NO의 생성을 억제함으로써 NADPH oxidase에 의해 생성된 superoxide anion(O2 -)과 NO의 반응으로 강력한 산화제인 peroxynitrite(ONOO-)가 생성되는 것을 저해하여 세포독성과 LDL 산화를 억제할 수 있을 것으로 보인다.The LPS treatment increased NO production than the control without LPS, which is consistent with the report that LPS causes oxidative stress. When intracellular oxidative stress was induced by LPS, NO production was significantly increased, and NO production was inhibited when Molokia extract and fractions were added. The results seen in moles Escherichia extract and fractions is the superoxide anion generation by the NADPH oxidase to inhibit the production of NO in macrophages during the initial inflammatory reaction (O 2 -) and the peroxynitrite (ONOO -) a strong oxidant in the reaction of NO May inhibit cytotoxicity and LDL oxidation.

정상적인 생리 상태에서 NO는 혈관의 항상성 등 중요한 생리적인 기능을 매개하지만 고지혈증과 동맥경화상태에서는 과잉의 superoxide와 NO가 반응하여 생성된 peroxynitrite에 의해 산화적인 스트레스가 유발되어 thiol group 또는 전이금속 함유 단백질과 반응하여 단백질의 기능을 손상시키거나, 세포 보호를 위한 유전자의 발현을 자극하여 세포손상이나 세포사멸을 유발하게 된다.  In normal physiological state, NO mediates important physiological functions such as blood vessel homeostasis, but in hyperlipidemia and atherosclerosis state, oxidative stress is induced by peroxynitrite produced by the reaction of excess superoxide and NO. In response, it impairs the function of proteins or stimulates the expression of genes for cell protection, leading to cell damage or cell death.

몰로키아의 hexane, chloroform 및 ethylacetate 분획물 각 50 μg/mL에서 약 50% 정도의 NO 생성을 저해하였으며, 특히 ethylacetate 분획물에서는 50% 이상의 높은 저해효과를 보였으며, 이를 도 9로 도시하였다. 따라서 몰로키아 ethylacetate 분획물이 가장 우수한 NO 생성 억제능을 가진 것으로 보이며, 이는 몰로키아 분획물 중 ethylacetate 분획물이 가장 많은 polyphenol류를 함유하고 있는 것과 관련이 있을 것으로 보인다. At 50 μg / mL of each of hexane, chloroform and ethylacetate fractions of Molochia, about 50% of NO production was inhibited. In particular, ethylacetate fraction showed a high inhibitory effect of more than 50%, which is illustrated in FIG. 9. Therefore, the molokia ethylacetate fraction seems to have the highest NO inhibitory activity, which may be related to the ethylacetate fraction of the molokia fraction containing the most polyphenols.

도 9에 있어서 M: methanol extract, H: n-hexane fraction, C: chloroform fraction, E: ethylacetate fraction, B: n-butanol fraction, LPS: alone, Con: control.을 나타낸다.9, M: methanol extract, H: n- hexane fraction, C: chloroform fraction, E: ethylacetate fraction, B: n- butanol fraction, LPS: alone, and Con: control.

2.3.3 PGE  2.3.3 PGE 2 2 생성 억제 Suppress generation

NO는 PGE2의 생합성을 촉진하여 염증을 심화시키는 것으로 알려져 있다. 그리고 천연물에서 분리한 iNOS 저해제들 중에서는 COX-2 저해활성과 PGE2의 생성 억제효과를 동시에 가지는 것들이 많으며, 또한 전사인자인 NFκB의 조절에 의해 COX-2와 iNOS의 발현을 억제시킨다고 보고되고 있다. NO is known to promote PGE 2 biosynthesis and intensify inflammation. In addition, many of the iNOS inhibitors isolated from natural products have both COX-2 inhibitory activity and PGE 2 inhibitory effect, and have been reported to inhibit the expression of COX-2 and iNOS by regulating the transcription factor NFκB. .

몰로키아 추출물 및 분획물이 LPS로 처리한 RAW 264.7 cell에서 PGE2의 생성을 억제한다는 사실을 확인하였다. 도 10에서와 같이 몰로키아 hexane, chloroform, ethylacetate 분획물 100 μg/mL 처리시에 약 50% 정도의 PGE2 생성이 억제되었고, 특히 ethylacetate 분획물의 경우는 50 μg/mL 처리농도에서도 50% 이상의 억제 활성을 보여 가장 큰 억제 활성을 보였다. 따라서 몰로키아 분획물은 PGE2의 생성을 억제하여 염증을 저해 혹은 경감시켜 줄 수 있을 것으로 생각된다It was confirmed that the Molochia extract and fraction inhibited the production of PGE 2 in RAW 264.7 cells treated with LPS. As shown in FIG. 10, PGE 2 production was inhibited by about 50% when 100 μg / mL of hexane, chloroform, and ethylacetate fractions were treated. In particular, ethylacetate fractions had an inhibitory activity of 50% or more even at a concentration of 50 μg / mL. Showed the greatest inhibitory activity. Therefore, it is thought that Molochia fraction can inhibit or reduce inflammation by inhibiting PGE 2 production.

도 10에 있어서, M: methanol extract, H: n-hexane fraction, C: chloroform fraction, E: ethylacetate fraction, LPS: alone, Con: control.을 나타낸다.In FIG. 10, M: methanol extract, H: n- hexane fraction, C: chloroform fraction, E: ethylacetate fraction, LPS: alone, and Con: control.

2.3.4 TNF-α 생성억제  2.3.4 Inhibition of TNF-α Production

염증성 cytokine의 일종인 TNF-α는 혈관 내피세포의 NFκB를 활성화시켜 VCAM 및 ICAM 등의 부착물질과 결합하게 함으로서 동맥경화를 유발시키는 인자로 알려져 있다.   TNF-α, a type of inflammatory cytokine, is known as a factor that induces atherosclerosis by activating NFκB of vascular endothelial cells to bind to adhesion materials such as VCAM and ICAM.

몰로키아 추출물 및 분획물을 LPS로 자극한 RAW 264.7 cell에서 TNF-α의 생성억제활성을 확인하였다. 도 11과 같이 LPS에 의해 증가된 TNF-α가 몰로키아 메탄올추출물 및 hexane, chloroform, ethylacetate 분획물의 첨가 농도에 반비례하여 생성이 저해되었으며, 특히 chloroform과 ethylacetate 분획물에서 현저하게 TNF-α의 생성이 억제되었다. 몰로키아 ethylacetate 분획물의 경우는 25 μg/mL 처리농도에서도 40% 이상의 TNF-α의 생성이 억제되어 가장 높은 TNF-α의 생성 억제능을 보였다.   The inhibitory activity of TNF-α production was confirmed in RAW 264.7 cells stimulated with Molokia extract and fractions. As shown in FIG. 11, TNF-α increased by LPS was inhibited in inverse proportion to the addition concentrations of Molokia methanol extract and hexane, chloroform, and ethylacetate fractions. In particular, the production of TNF-α was significantly inhibited in the chloroform and ethylacetate fractions. It became. In the case of the Molochia ethylacetate fraction, more than 40% of TNF-α production was inhibited even at 25 μg / mL treatment concentration, showing the highest inhibitory activity of TNF-α production.

도 11에서 M: methanol extract, H: n-hexane fraction. C: chloroform fraction, E: ethylacetate fraction, LPS: alone, Con: control을 나타낸다.In Figure 11 M: methanol extract, H: n- hexane fraction. C: chloroform fraction, E: ethylacetate fraction, LPS: alone, and Con: control.

2.3.5 동맥경화 관련 유전자의 발현에 미치는 효과  2.3.5 Effects on the Expression of Atherosclerosis-related Genes

2.3.5.1 VCAM-1, ICAM-1 발현   2.3.5.1 VCAM-1, ICAM-1 Expression

LPS로 산화적 스트레스를 유발한 RAW 264.7 cell에 몰로키아 추출물이 adhesion molecule의 생성에 미치는 영향을 관찰하고자, 동맥경화의 초기 현상에 관여하는 soluble VCAM-1, ICAM-1의 유전자 발현을 RT-PCR법으로 확인하였으며 그 결과를 도 12에 나타내었다. 몰로키아 메탄올 추출물을 농도별로 처리했을 때 VCAM-1 및 ICAM-1의 발현은 처리농도가 증가할수록 유전자의 발현이 감소되었다. 그러나 이들 유전자의 발현에 사용된 mRNA 양을 표준화하기 위하여 선택된 glyceraldehyde-3-phosphate dehydrogenase(GAPDH)의 발현은 시료 처리 농도에 따른 차이를 보이지 않아 LPS 처리가 목표 유전자 발현에 영향을 미치지 않음을 알 수 있었다.    To observe the effect of Molokia extract on the production of adhesion molecules in RAW 264.7 cells induced oxidative stress with LPS, RT-PCR expression of soluble VCAM-1 and ICAM-1 involved in the early development of atherosclerosis It confirmed by the method and the result is shown in FIG. When the Molochia methanol extract was treated by concentration, the expression of VCAM-1 and ICAM-1 decreased with the increase of treatment concentration. However, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) selected to standardize the amount of mRNA used to express these genes showed no difference according to the concentration of sample treatment, indicating that LPS treatment did not affect target gene expression. there was.

염증이 일어나는 초기단계에는 내피세포의 표면에 VCAM-1, ICAM-1과 같은 세포부착 물질의 발현이 증가하여 혈액 속을 순환하고 있던 백혈구, 단핵구를 내피 속으로 유인함으로서 동맥경화를 심화시키고 LPS에 의한 염증성 cytokine과 IL-1 등이 혈관내피의 세포부착물질들의 발현을 증가시키게 된다. 그러므로 몰로키아의 메탄올 추출물은 세포부착물질의 유전자 발현을 현저히 감소시킴으로서 동맥경화 초기 발생과정을 효과적으로 억제할 수 있을 것으로 생각된다.In the early stages of inflammation, the expression of cell-adhesive substances such as VCAM-1 and ICAM-1 increases on the surface of endothelial cells, attracting leukocytes and monocytes circulating in the blood to deepen the atherosclerosis and Inflammatory cytokine and IL-1 increase the expression of cell adhesion substances in the vascular endothelium. Therefore, Methanol extract of Molochia is thought to be able to effectively inhibit the early development of atherosclerosis by significantly reducing the gene expression of cell adhesion material.

2.3.5.2 MCP-1, iNOS, COX-2 발현   2.3.5.2 MCP-1, iNOS, COX-2 Expression

최근 대식세포나 연골세포에서 사이토카인 및 LPS가 유도한 iNOS 발현을 조절하는 NFκB 활성을 억제하는 폴리페놀 화합물에 대한 연구는 매우 활발하다. 이에 몰로키아 내에 함유된 폴리페놀 화합물인 quercetin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside와 LPS를 처리한 RAW 264.7 cell에서 monocyte chemotactic protein-1(MCP-1), inducible NOS(iNOS) 및 COX-2 유전자 발현에 미치는 영향을 RT-PCR법으로 확인하였다.  Recently, studies on polyphenol compounds that inhibit NFκB activity that modulates cytokine and LPS-induced iNOS expression in macrophages and chondrocytes are very active. Therefore, monocyte chemotactic protein-1 (MCP-1) and inducible NOS (iNOS) in RAW 264.7 cells treated with quercetin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside and LPS ) And the effect on COX-2 gene expression were confirmed by RT-PCR method.

MCP-1은 동맥경화증 병변형성의 초기단계에서 대식세포에 의해 주로 발현되는 것으로 알려져 있으며, 또한 평활근에 의해서도 발현된다고 한다. 몰로키아 메탄올 추출물에서는 100 μg/mL이상에서 MCP-1 유전자 발현이 감소되었고, iNOS에서는 500 μg/mL에서 현저히 감소하였다. 이를 도 13에 나타내었다.    MCP-1 is known to be expressed mainly by macrophages in the early stages of atherosclerosis lesions and is also expressed by smooth muscle. In Molochia methanol extract, MCP-1 gene expression was reduced above 100 μg / mL, and iNOS significantly decreased at 500 μg / mL. This is shown in FIG. 13.

그리고 각 몰로키아 폴리페놀 화합물별 처리 농도는 세포생존률 실험결과를 토대로 독성이 없는 농도를 설정하여 실험을 수행하였다. iNOS에서의 유전자 발현을 살펴본 결과, quercetin은 25 μg/mL에서 iNOS의 유전자 발현이 감소하였고, chlorogenic acid는 변화가 없었으며, quercetin-3-galactoside에서는 10 μg/mL, quercetin-3-glucoside에서는 5 μg/mL이상에서 iNOS 유전자 발현이 감소하였다. 그 결과를 도 14에 나타내었다.    In addition, the treatment concentration for each molokia polyphenol compound was performed by setting the concentration without toxicity based on the cell viability test results. Gene expression in iNOS showed that quercetin decreased iNOS gene expression at 25 μg / mL, chlorogenic acid was not changed, 10 μg / mL at quercetin-3-galactoside, and 5 at quercetin-3-glucoside. iNOS gene expression decreased over μg / mL. The results are shown in FIG.

COX-2 발현에서는 quercetin과 chlorogenic acid의 25 μg/mL 농도에서 각각 유전자 발현이 감소되었고, quercetin-3-galactoside은 10 μg/mL에서 현저히 감소하였다. 반면, quercetin-3-glucoside는 COX-2 유전자 발현에 영향이 없었다. 그 결과를 도 15에 나타내었다. In COX-2 expression, gene expression was decreased at 25 μg / mL of quercetin and chlorogenic acid, respectively, and quercetin-3-galactoside was significantly decreased at 10 μg / mL. In contrast, quercetin-3-glucoside had no effect on COX-2 gene expression. The results are shown in FIG.

혈관이완과 혈소판응집, 심혈관 항상성의 조절기전에 관련이 있는 NO 생성 유도 효소인 iNOS의 경우도 LPS 처리구에 비해 몰로키아 메탄올 추출물과 몰로키아 폴리페놀 화합물을 농도별로 처리하였을 때 도 14에서 보는 바와 같이 quercetin, quercetin-3-galactoside, quercetin-3-glucoside에서 감소되었다.   INOS, a NO production inducing enzyme involved in the regulation of vascular relaxation, platelet aggregation and cardiovascular homeostasis, was also treated with quercetin as shown in FIG. , quercetin-3-galactoside and quercetin-3-glucoside.

도 14에서 1: control, 2: LPS: alone, Q(3-5): 5, 15, 25 μg, CA(3-5): 10, 25, 50 μg, Qgc(3-5): 1, 5, 10 μg Qgu(3-5): 1, 5, 10 μg, Q: Quercetin, CA: Chlorogenic acid, Qgc: Quercetin-3-galactoside, Qgu: Quercetin-3-glucoside를 나타낸다.   In Fig. 14 1: control, 2: LPS: alone, Q (3-5): 5, 15, 25 μg, CA (3-5): 10, 25, 50 μg, Qgc (3-5): 1, 5, 10 μg Qgu (3-5): 1, 5, 10 μg, Q: Quercetin, CA: Chlorogenic acid, Qgc: Quercetin-3-galactoside, Qgu: Quercetin-3-glucoside.

iNOS는 평소에는 세포내 존재하지 않으나 유도되면 장시간 동안 다량의 NO를 생성하며, 염증상태에서 iNOS에 의해 생성된 NO는 혈관투과성, 부종 등의 염증반응을 촉진시킬 뿐만 아니라, 염증매개체의 생합성을 촉진하여 염증을 심화시키는 것으로 알려져 있다. NO는 염증과 암의 발생에 관여하며, iNOS의 발현은 NFκB 활성으로 유도되며, 이는 macrophage에서 LPS나 cytokine에 의해 염증성 매개물들이 과잉 생산되는 중요한 메카니즘이 된다. 몇 가지 천연 항산화 물질인 polyphenol 화합물들은 직접적으로 NFκB 의존성 cytokine과 iNOS 유전자의 발현을 저해하여 염증을 억제하는 것으로 알려져 있다. RAW 264.7 cell에서 LPS(1 μg/mL)를 사용하여 NO의 생성을 유도한 후 몰로키아 추출물과 폴리페놀 화합물을 농도별로 처리하였을 때 iNOS 유전자 발현이 처리농도가 클수록 감소되었으며, COX-2의 생성 및 활성이 억제됨으로써 몰로키아 폴리페놀 화합물들이 항염증 효과가 있을 것으로 보인다.    iNOS does not normally exist intracellularly, but when induced, it produces a large amount of NO for a long time, and NO produced by iNOS in inflammatory state not only promotes inflammatory reactions such as vascular permeability and edema, but also promotes biosynthesis of inflammatory mediators. It is known to deepen inflammation. NO is involved in the development of inflammation and cancer, and iNOS expression is induced by NFκB activity, which is an important mechanism by which LPS or cytokine is overproduced by macrophage. Several natural antioxidants, polyphenol compounds, are known to inhibit inflammation by directly inhibiting the expression of NFκB-dependent cytokine and iNOS genes. Induction of NO production using LPS (1 μg / mL) in RAW 264.7 cells and iNOS gene expression decreased as the treatment concentration was increased by the concentration of Molochia extract and polyphenol compounds. Inhibition of activity and the anti-Molochia polyphenol compounds are expected to have an anti-inflammatory effect.

COX는 arachidonic acid를 prostaglandinE2(PGE2)로 전환시키는 효소로 COX-1과 COX-2로 분류된다. COX-1은 체내에서 혈소판을 형성, 위벽보호, 신장 기능의 유지 등 정상적인 생체기능에 작용한다. 많은 염증 억제 약물들의 작용기전은 prostaglandin 합성 억제를 나타내며, 이는 COX-2의 생성 및 활성저해에 의한 것이다. RAW 264.7 cell에 LPS(1 μg/mL)를 사용하여 COX-2의 생성을 유도한 후 몰로키아 폴리페놀 화합물을 농도별로 처리하였을 때 이들 시료에서 처리농도가 증가할수록 유전자 발현이 억제되는 것을 확인하였으며, 그 결과를 도 15로 나타내었다. COX is an enzyme that converts arachidonic acid to prostaglandinE 2 (PGE 2 ). It is classified as COX-1 and COX-2. COX-1 acts on normal biological functions such as platelet formation, gastric wall protection, and renal function maintenance. The mechanism of action of many anti-inflammatory drugs suggests inhibition of prostaglandin synthesis, which is due to the production and deactivation of COX-2. Induction of COX-2 production by using LPS (1 μg / mL) in RAW 264.7 cells was confirmed that gene expression was inhibited as the treatment concentration increased in these samples when treated with concentrations of molokia polyphenol compounds. The results are shown in FIG. 15.

도 15에서 1: control, 2: LPS: alone, Q(3-5): 5, 15, 25 μg, CA(3-5): 10, 25, 50 μg, Qgc(3-5): 1, 5, 10 μg, Qgu(3-5): 1, 5, 10 μg, Q: Quercetin, CA: Chlorogenic acid, Qgc: Quercetin-3-galactoside, Qgu: Quercetin-3-glucoside를 나타낸다.   15: 1, control, 2: LPS: alone, Q (3-5): 5, 15, 25 μg, CA (3-5): 10, 25, 50 μg, Qgc (3-5): 1, 5, 10 μg, Qgu (3-5): 1, 5, 10 μg, Q: Quercetin, CA: Chlorogenic acid, Qgc: Quercetin-3-galactoside, Qgu: Quercetin-3-glucoside.

따라서 COX-2에 의한 PGE2의 합성은 염증반응을 촉진하는 것으로 생각되며, COX-2의 생성 및 활성을 억제하는 몰로키아 항산화 물질들이 항염증 효과가 있음을 확인하였다. Therefore, the synthesis of PGE 2 by COX-2 is thought to promote the inflammatory response, and it was confirmed that Molochia antioxidants that inhibit the production and activity of COX-2 have an anti-inflammatory effect.

이상의 결과들을 토대로 몰로키아 추출물과 몰로키아의 폴리페놀 화합물들이 LPS에 의하여 증가된 MCP-1, iNOS, COX-2의 mRNA 발현을 억제함으로써 염증 예방 물질로 작용할 수 있을 것으로 보인다.Based on the above results, Molochia extract and polyphenolic compounds of Molokia seem to be able to act as anti-inflammatory agents by inhibiting the mRNA expression of MCP-1, iNOS, COX-2 increased by LPS.

2.3.5.3 NFκB의 단백질 발현    2.3.5.3 NFκB Protein Expression

NFκB는 cytokine반응, 염증, 세포 성장 조절과 같은 다양한 단계에 관여하는 전사인자로, 최근 연구는 inducible NFκB가 죽상동맥경화 발병에 관여함을 강하게 암시하고 있다. 여러 세포에서 NFκB는 세포질로부터 핵으로의 다양한 신호 전달에 관여하는 redox-sensitive transcription factor로 세포질속에서 p50, p65, IκB subunit의 trimer로 존재하며, 산화적 스트레스에 의해 IκB가 분해되면 p50, p65 heterodimer가 핵 속으로 이동하여 연속적인 DNA 결합을 초래하는 것으로 알려져 있다.     NFκB is a transcription factor involved in various stages such as cytokine response, inflammation, and cell growth regulation. Recent studies strongly suggest that inducible NFκB is involved in the development of atherosclerosis. In many cells, NFκB is a redox-sensitive transcription factor that is involved in various signal transduction from the cytoplasm to the nucleus, and is present as a trimer of p50, p65, and IκB subunits in the cytoplasm. When IκB is degraded by oxidative stress, p50, p65 heterodimer Is known to migrate into the nucleus resulting in continuous DNA binding.

LPS로 산화적 스트레스를 유발한 RAW 264.7 cell에 몰로키아 추출물과 분획물, 그리고 quercertin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside가 NFκB 활성에 미치는 영향을 확인해 보았다. 그 결과, LPS만 처리하면 NFκB의 활성이 유도되었지만, 몰로키아 메탄올 추출물을 처리하면 LPS 처리구에 비해 처리농도가 증가할수록 NFκB의 활성이 억제되었는바, 이를 도 16으로 나타내었다. 그리고 몰로키아 추출물 250 μg/mL, ethylacetate 분획물 100 μg/mL첨가 농도에서 LPS 처리구보다 약 3배 정도의 NFκB 활성이 감소되었으며, 특히 ethylacetate 분획물 100 μg/mL 농도에서 NFκB 활성이 가장 크게 저해되었으며, 이를 도 17로 나타내었다. 또한 세포생존률 측정 시에 독성이 없는 농도인 quercertin 25 μg/mL, chlorogenic acid 50 μg/mL, quercetin- 3-galactoside 10 μg/mL, quercetin-3-glucoside 10 μg/mL의 농도로 처리하였다. 이들 처리구에서 LPS 처리구에 비해 NFκB 활성이 약 4배 정도 감소되었으며 이를 도 18로 나타내었다.   Molecular extracts and fractions, and the effects of quercertin, chlorogenic acid, quercetin-3-galactoside and quercetin-3-glucoside on LPS-induced oxidative stress in RAW 264.7 cells were investigated. As a result, NPSκB activity was induced only by treatment with LPS, but NFκB activity was inhibited as the treatment concentration increased compared to the LPS treatment when the Molochia methanol extract was treated. At the concentration of 250 μg / mL of extract of Molokia and 100 μg / mL of ethylacetate fraction, NFκB activity was reduced by about three times compared to that of LPS treatment, and NFκB activity was most inhibited at 100 μg / mL of ethylacetate fraction. It is shown in FIG. In addition, the cell viability was measured at a concentration of 25 μg / mL quercertin, 50 μg / mL chlorogenic acid, 10 μg / mL quercetin-3-galactoside, and 10 μg / mL quercetin-3-glucoside. In these treatments, NFκB activity was reduced by about four times as compared to LPS treatment, which is shown in FIG. 18.

이러한 결과로부터 몰로키아 methanol 추출물, ethylacetate 분획물 그리고 quercertin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside 등의 폴리페놀 화합물도 산화적 스트레스 혹은 염증의 전사인자인 NFκB 활성을 억제시킴을 확인할 수 있다.   From these results, it was confirmed that Mollocia methanol extract, ethylacetate fraction and polyphenol compounds such as quercertin, chlorogenic acid, quercetin-3-galactoside and quercetin-3-glucoside also inhibited NFκB activity, a transcription factor of oxidative stress or inflammation. have.

도 17에서 M250: methanol extract 250 μg/mL, E100: ethylacetate fraction 100 μg/mL, C50: chloroform fraction 50 μg/mL, H50: hexane fraction 50 μg/mL을 나타낸다. In FIG. 17, M250: methanol extract 250 μg / mL, E100: ethylacetate fraction 100 μg / mL, C50: chloroform fraction 50 μg / mL, and H50: hexane fraction 50 μg / mL.

또한 도 18에 있어서 Q25: quercetin 25 μg/mL, CA50: chlorogenic acid 50 μg/mL, Qgc10: quercetin-3-galactoside 10 μg/mL, Qgu10: quercetin-3-glucoside 10 μg/mL을 나타낸다.In Fig. 18, Q25: 25 μg / mL of quercetin, CA50: 50 μg / mL of chlorogenic acid, Qgc10: 10 μg / mL of quercetin-3-galactoside, and 10 μg / mL of Qgu10: quercetin-3-glucoside.

2.3.5.4 IL-1β의 단백질 발현     2.3.5.4 Protein Expression of IL-1β

IL-1β는 TNF-α와 함께 작용하여 감염이나 종양이 있을 때 나타나는 면역반응에서 inflammatory cytokine으로 작용한다. 또한 염증반응에 있어서 TNF-α는 혈액과 조직사이의 구조물인 내피세포를 자극하여 ICAM-1, VCAM-1과 같은 부착물질들의 생산을 촉진하여 각종 백혈구들을 염증부위로 이동시키는 역할도 한다. 이러한 기전들을 통하여 염증부위에 축적된 백혈구는 각종 cytokine을 지속적으로 분비하여 미생물과 종양세포에 대한 독성을 유지하기도 하며, 염증반응을 유발시켜 조직을 손상시키기도 한다.     IL-1β works in conjunction with TNF-α to act as an inflammatory cytokine in the immune response in the presence of infection or tumors. In addition, TNF-α stimulates the production of adhesion substances such as ICAM-1 and VCAM-1 by stimulating endothelial cells, which are structures between blood and tissues, and move various leukocytes to inflammatory sites. Through these mechanisms, white blood cells accumulate in the inflammatory site, which constantly secrete various cytokines to maintain toxicity to microorganisms and tumor cells, and induce inflammatory reactions to damage tissues.

LPS로 산화적 스트레스를 유발한 RAW 264.7 cell에 몰로키아 추출물과 분획물 및 폴리페놀 화합물인 quercertin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside가 interleukine-β(IL-1β) 활성에 미치는 영향을 관찰하였다. 그 결과, 몰로키아 메탄올 추출물은 LPS 처리구에 비해 처리농도가 증가할수록 IL-1β의 활성이 더 크게 억제되었는바, 그 결과를 도 19로 나타내었다. 그리고 ethylacetate 분획물 100 μg/mL, hexane 분획물 50 μg/mL 첨가 농도에서 LPS 처리구보다 IL-1β활성이 약 3배 정도 감소되었으며, 특히 ethylacetate 분획물 100 μg/mL 농도에서 가장 큰 IL-1β 활성 저해를 보였는바, 그 결과를 도 20으로 나타내었다.     Effects of Molokia Extracts and Fractions and Polyphenol Compounds quercertin, Chlorogenic Acid, Quercetin-3-galactoside, and Quercetin-3-glucoside on Interleukine-β (IL-1β) Activity in RAW 264.7 Cells Induced Oxidative Stress with LPS The effect was observed. As a result, the Molokia methanol extract was significantly inhibited IL-1β activity as the treatment concentration increases compared to the LPS treatment, the results are shown in Figure 19. At the concentration of 100 μg / mL of ethylacetate fraction and 50 μg / mL of hexane fraction, IL-1β activity was reduced by 3 times compared to LPS treatment. Especially, 100 μg / mL of ethylacetate fraction showed the greatest inhibition of IL-1β activity. The result is illustrated in FIG. 20.

또한 세포 독성이 없는 농도인 quercetin 25 μg/mL chlorogenic acid 50 μg/mL quercetin-3-galactoside 10 μg/mL, quercetin- 3-glucoside 10 μg/mL으로 처리한 결과, LPS 처리구에 비해 chlorogenic acid 및 quercetin -3-galactoside 처리구는 약 3배 정도의 IL-1β활성이 감소되었고, quercetin 및 quercetin-3-glucoside를 처리했을 때는 약 2배 정도 IL-1β 활성이 저해되었는바, 그 결과를 도 21로 나타내었다.    In addition, chlorogenic acid and quercetin were treated with quercetin 25 μg / mL chlorogenic acid 50 μg / mL quercetin-3-galactoside 10 μg / mL and quercetin-3-glucoside 10 μg / mL. In the -3-galactoside treatment, IL-1β activity was decreased by about three times, and the treatment of quercetin and quercetin-3-glucoside was inhibited by about two times, and the result is shown in FIG. 21. It was.

이처럼 몰로키아 methanol 추출물, ethylacetate 분획물 그리고 quercetin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside 등도 RAW 264.7 cell 에서 IL-1β가 유도한 iNOS 발현의 전사단계인 NFκB 활성을 차단하여 NO 생성을 억제함으로써 몰로키아의 폴리페놀 화합물이 IL-1β 활성을 억제시킴을 알 수 있다.As such, Molokia methanol extract, ethylacetate fraction and quercetin, chlorogenic acid, quercetin-3-galactoside, quercetin-3-glucoside also block NO production by blocking NFκB activity, a transcriptional step of IL-1β-induced iNOS expression in RAW 264.7 cells. By inhibiting, it can be seen that the polyphenolic compound of molokia inhibits IL-1β activity.

한편 도 20에 있어서, M250: methanol extract 250 μg/mL, E100: ethylacetate fraction 100 μg/mL, C50: chloroform fraction 50 μg/mL, H50: n-hexane fraction 50 μg/mL.를 나타낸다.Meanwhile, in FIG. 20, M250: methanol extract 250 μg / mL, E100: ethylacetate fraction 100 μg / mL, C50: chloroform fraction 50 μg / mL, H50: n- hexane fraction 50 μg / mL.

도 21에 있어서, Q25: quercetin 25 μg/mL, CA50: chlorogenic acid 50 μg/mL, Qgc10: quercetin-3-galactoside 10 μg/mL, Qgu10: quercetin-3-glucoside 10 μg/mL를 나타낸다.In Fig. 21, Q25: 25 μg / mL of quercetin, CA50: 50 μg / mL of chlorogenic acid, Qgc10: 10 μg / mL of quercetin-3-galactoside, and 10 μg / mL of Qgu10: quercetin-3-glucoside.

한편 몰로키아 추출물을 첨가할 수 있는 식품으로는, 예를 들어, 각종 식품류, 육류, 음료수, 초콜렛, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류, 알콜음료류, 비타민 복합제, 건강보조식품류 등을 들 수 있으나, 이에 한정되는 것은 아니다. On the other hand, foods to which the extract may be added include, for example, various foods, meats, beverages, chocolates, snacks, confections, pizzas, ramen noodles, other noodles, gums, ice creams, alcoholic beverages, vitamin complexes, and health supplements. Foods, etc., but is not limited thereto.

이와 같이 식품에 적용하게 되면 성인 및 노인층의 광범위한 계층에 이르기까지 늘 간편하게 몰로키아 추출물을 간편하게 섭취할 수 있어 지속적인 음용 효과를 기대할 수 있다. When applied to foods like this, it is possible to easily consume the molochia extract all the time, from a wide range of adults and the elderly to expect a continuous drinking effect.

본 발명에서 이와 같은 몰로키아 추출물, 특히 활성이 우수한 몰로키아 추출물의 에틸아세테이트 분획물을 식품에 적용하는 경우 전체 조성물에 대해 적어도 0.01중량% 이상 함유하는 것이 효과적인 측면에서 바람직하다. 몰로키아 추출물의 경우 그 함량이 과량으로 포함되더라도 독성을 나타내지는 않으므로 그 첨가량의 상한을 설정하는 것은 각별한 의미가 없다 할 것이다.In the present invention, when the ethyl acetate fraction of the molokia extract, particularly the molokia extract having excellent activity, is applied to food, it is preferable to contain at least 0.01% by weight or more based on the total composition in terms of its effectiveness. In the case of Molokia extract, even if the content is included in excess, it does not show toxicity, so it is not particularly meaningful to set an upper limit of the added amount.

식품으로의 제조의 일예를 보면 다음과 같을 수 있으나 각 식품 조성에 한정이 있는 것이 아님은 물론이다. An example of manufacturing into food may be as follows, but each food composition is not limited.

(1) 기능성 음료의 제조(1) Preparation of functional drinks

몰로키아 메탄올 추출물의 에틸아세테이트 분획물 0.01중량%, 식용색소 0.05중량%, 오렌지 에센스 0.05중량%, 과다 7.0중량%, 구연산 0.1중량%, 비타민 C 0.05중량%를 포함하는 일반 기능성 음료 베이스를 첨가한 조성물을 제조한 다음, 정제수를 가하여 음료를 제조하였다.A composition containing a general functional beverage base comprising 0.01% by weight ethyl acetate fraction, Methanol 0.05%, orange essence 0.05%, excess 7.0%, citric acid 0.1%, and vitamin C 0.05% by weight of Molokia methanol extract To prepare a beverage by adding purified water.

(2) 약술의 제조(2) the manufacture of medicine

탈취 정제된 40중량%의 알코올을 증류수로 희석하고, 몰로키아 메탄올 추출물의 에틸아세테이트 분획물 0.01중량%를 첨가하고, 스테비오사이드, 고과당, 아미노산, 구연산, 소금 등을 첨가하여 알코올 함유 농도 15 내지 30중량%로 제조하였다.The deodorized purified 40% by weight of alcohol is diluted with distilled water, 0.01% by weight of ethyl acetate fraction of the Molochia methanol extract is added, and stevioside, high fructose, amino acid, citric acid, salt and the like are added to the alcohol content concentration of 15 to 30. Made by weight percent.

(3) 건강 식품의 제조(3) manufacture of healthy foods

몰로키아 메탄올 추출물의 에틸아세테이트 분획물 1,000mg, 적량의 비타민 혼합물(비타민 A 아세테이트 70㎍, 비타민 E 1.0mg, 비타민 B1 0.13mg, 비타민 B2 0.15mg, 비타민 B6 0.5mg, 비타민 B12 0.2㎍, 비타민 C 10mg), 비오틴 10㎍, 니코틴산아미드 1.7mg, 엽산 50㎍, 판토텐산 칼슘 0.5mg, 적량의 무기질 혼합물(황산제1철 1.75mg, 산화아연 0.82mg, 탄산마그네슘 25.3mg, 제1인산칼륨 15mg, 제2인산칼슘 55mg, 구연산칼륨 90mg, 탄산칼슘 100mg, 염화마그네슘 24.8mg)을 혼합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강식품 조성물 제조에 사용한다.1,000 mg ethylacetate fraction of Molokia methanol extract, a suitable vitamin mixture (70 μg vitamin A acetate, 1.0 mg vitamin E, 0.13 mg vitamin B1, 0.15 mg vitamin B2, 0.5 mg vitamin B6, 0.2 μg vitamin B12, vitamin C 10 mg) ), 10 μg biotin, 1.7 mg nicotinic acid amide, 50 μg folic acid, 0.5 mg calcium pantothenate, an appropriate amount of inorganic mixture (1.75 mg ferrous sulfate, 0.82 mg zinc carbonate, 25.3 mg magnesium carbonate, 15 mg potassium phosphate monobasic 55 mg of calcium phosphate, 90 mg of potassium citrate, 100 mg of calcium carbonate, 24.8 mg of magnesium chloride) are mixed, and then granules are prepared and used for preparing a health food composition according to a conventional method.

도 1은 항산화제의 가능한 활성부위의 모식도.1 is a schematic of possible active sites of antioxidants.

도 2는 폴리페놀류의 주요 분류.2 is the main classification of polyphenols.

도 3은 부틸레이티드 하이드록시아니솔(BHA), 몰로키아 메탄올 추출물 및 분획물들의 DPPH 라디칼 소거활성. Figure 3 shows the DPPH radical scavenging activity of butylated hydroxyanisole (BHA), Molokia methanol extract and fractions.

도 4는 트롤록스(Trolox), 몰로키아 메탄올 추출물 및 분획물들의 ABTS 라디칼 소거활성. 4 shows ABTS radical scavenging activity of Trolox, Molokia methanol extracts and fractions.

도 5는 몰로키아로부터 분리된 페놀성 항산화제의 화학구조. 5 is the chemical structure of a phenolic antioxidant isolated from Molokia.

도 6은 몰로키아 메탄올 추출물 및 분획물의 HPLC 크로마토그램들.Figure 6 HPLC chromatograms of Molokia methanol extract and fractions.

도 7은 몰로키아 메탄올 추출물 및 분획물의 RAW 264.7 cells 증식에 미치는 효과. 7 is an effect on the proliferation of RAW 264.7 cells of the methanol extract and fractions Molokia.

도 8은 RAW 264.7 cells 내에서 NO 생성에 대한 LPS 농도에 따른 효과(A) 및 항온 온도에 따른 효과(B)를 나타낸 그래프.FIG. 8 is a graph showing the effect of LPS concentration on NO production in RAW 264.7 cells (A) and the effect of constant temperature (B). FIG.

도 9는 몰로키아 메탄올 추출물 및 분획물의 LPS-처리 RAW 264.7 cells내에서 NO 생성에의 영향을 본 그래프.FIG. 9 is a graph showing the effect of Molokia methanol extract and fractions on NO production in LPS-treated RAW 264.7 cells.

도 10은 몰로키아 메탄올 추출물 및 분획물들이 LPS-유도 PGE2 생성에 미치는 영향을 본 그래프. 10 is a graph showing the effect of Molokia methanol extract and fractions on LPS-induced PGE 2 production.

도 11은 몰로키아 메탄올 추출물과 분획물이 RAW 264.7 cells내에서 LPS-유도 TNF-α 생성에 미치는 영향을 본 그래프.FIG. 11 is a graph showing the effect of Molokia methanol extract and fractions on LPS-induced TNF-α production in RAW 264.7 cells.

도 12는 LPS-induced RAW 264.7 cells내에서 몰로키아 메탄올 추출물의 VCAM-1 저해효과(A) 및 ICAM-1 저해효과(B)를 본 그래프.12 is a graph showing the VCAM-1 inhibitory effect (A) and ICAM-1 inhibitory effect (B) of Molokia methanol extract in LPS-induced RAW 264.7 cells.

도 13은 LPS-induced RAW 264.7 cells내에서 몰로키아 메탄올 추출물의 MCP-1 저해효과(A) 및 iNOS 저해효과(B)를 본 그래프.Figure 13 is a graph showing the MCP-1 inhibitory effect (A) and iNOS inhibitory effect (B) of Molokia methanol extract in LPS-induced RAW 264.7 cells.

도 14는 LPS-induced RAW 264.7 cells내에서 몰로키아 화합물들의 iNOS 저해효과를 본 그래프.FIG. 14 is a graph showing the iNOS inhibitory effects of molokia compounds in LPS-induced RAW 264.7 cells. FIG.

도 15는 LPS-induced RAW 264.7 cells내에서 몰로키아 화합물들의 COX-2 저해효과를 본 그래프.FIG. 15 is a graph showing the effect of COX-2 inhibition of Molochia compounds in LPS-induced RAW 264.7 cells. FIG.

도 16은 몰로키아 메탄올 추출물이 LPS-induced RAW 264.7 cells 내에서 NF-κB 생성에 미치는 영향을 본 그래프.16 is a graph showing the effect of Molokia methanol extract on NF-κB production in LPS-induced RAW 264.7 cells.

도 17은 몰로키아 분획물들이 LPS-induced RAW 264.7 cells 내에서 NF-κB 생성에 미치는 영향을 본 그래프.FIG. 17 is a graph showing the effect of Molokia fractions on NF-κB production in LPS-induced RAW 264.7 cells.

도 18은 LPS-induced RAW 264.7 cells내에서 몰로키아 화합물들의 NF-κB 저해효과를 본 그래프.FIG. 18 is a graph showing the NF-κB inhibitory effect of Molochia compounds in LPS-induced RAW 264.7 cells. FIG.

도 19은 몰로키아 메탄올 추출물이 LPS-induced RAW 264.7 cells 내에서 IL-1β생성에 미치는 영향을 본 그래프.19 is a graph showing the effect of Molokia methanol extract on IL-1β production in LPS-induced RAW 264.7 cells.

도 20은 몰로키아 분획물들이 LPS-induced RAW 264.7 cells 내에서 IL-1β 생성에 미치는 영향을 본 그래프.FIG. 20 is a graph showing the effect of the molokia fractions on IL-1β production in LPS-induced RAW 264.7 cells.

도 21은 LPS-induced RAW 264.7 cells내에서 몰로키아 화합물들의 IL-1β 저해효과를 본 그래프.FIG. 21 is a graph showing the IL-1β inhibitory effect of the molokia compounds in LPS-induced RAW 264.7 cells. FIG.

Claims (6)

몰로키아 메탄올 추출물을 포함하는 항염증 활성을 갖는 식품. Food with anti-inflammatory activity, including Molokia methanol extract. 몰로키아 메탄올 추출물의 에틸아세테이트 분획물을 포함하는 항염증 활성을 갖는 식품.A food having anti-inflammatory activity comprising an ethyl acetate fraction of Molokia methanol extract. 몰로키아 유래의 쿼세틴-3-갈락토사이드를 함유하는 항염증 활성을 갖는 식품. A food having anti-inflammatory activity containing quercetin-3-galactoside derived from Molokia. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, NO(nitric oxide), PGE2(Prostagladin E2), 및 TNF-α(Tumor neroses factor-1) 생성을 억제하는 것을 특징으로 하는 식품. The food according to any one of claims 1 to 3, which inhibits nitric oxide (NO), PGE 2 (Prostagladin E 2 ), and Tumor neroses factor-1 (TNF-α) production. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, MCP-1(Monocyte chemotactic protein-1), iNOS(Inducible NOS), COX-2(Cyclooxygenase-2)의 mRNA 유전자 발현을 억제하는 것을 특징으로 하는 식품. The method according to any one of claims 1 to 3, characterized by inhibiting mRNA gene expression of Monocyte chemotactic protein-1 (MCP-1), Inducible NOS (iNOS), Cyclooxygenase-2 (COX-2). food. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, COX-2(Cyclooxygenase-2), NFκB(Nuclear fator κB) 및 IL-1β(Interleukine-1β)의 단백질 발현을 억제하는 것을 특징으로 하는 식품. The food according to any one of claims 1 to 3, which inhibits protein expression of Cyclooxygenase-2 (COX-2), Nuclear fator κB (NFκB) and Interleukine-1β (IL-1β).
KR1020080038759A 2008-04-25 2008-04-25 Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity KR20090112955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080038759A KR20090112955A (en) 2008-04-25 2008-04-25 Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080038759A KR20090112955A (en) 2008-04-25 2008-04-25 Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity

Publications (1)

Publication Number Publication Date
KR20090112955A true KR20090112955A (en) 2009-10-29

Family

ID=41554100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080038759A KR20090112955A (en) 2008-04-25 2008-04-25 Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity

Country Status (1)

Country Link
KR (1) KR20090112955A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158368B1 (en) * 2010-04-08 2012-06-22 봉화군 Composition for anti-inflammatory activity Containing sweetfish proteins and it's peptides and Method Thereof
KR101464406B1 (en) * 2012-09-03 2014-11-27 제주대학교 산학협력단 Composition containing extracts or fractions of tilia taquetii schneid as an active ingredient and its use
CN104857038A (en) * 2015-05-07 2015-08-26 同济大学 Preparation method of corchorus olitorius seed extract and application
KR20180090198A (en) * 2017-02-02 2018-08-10 한국식품연구원 Composition comprising the extract of Molokia leaf for immune activity
CN110658282A (en) * 2019-10-29 2020-01-07 广东一方制药有限公司 Construction method of UPLC characteristic spectrum of fresh herba Houttuyniae standard decoction and detection method of fresh herba Houttuyniae preparation
CN110672751A (en) * 2019-10-29 2020-01-10 广东一方制药有限公司 UPLC characteristic spectrum establishing method and detecting method for fresh houttuynia cordata medicinal material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158368B1 (en) * 2010-04-08 2012-06-22 봉화군 Composition for anti-inflammatory activity Containing sweetfish proteins and it's peptides and Method Thereof
KR101464406B1 (en) * 2012-09-03 2014-11-27 제주대학교 산학협력단 Composition containing extracts or fractions of tilia taquetii schneid as an active ingredient and its use
CN104857038A (en) * 2015-05-07 2015-08-26 同济大学 Preparation method of corchorus olitorius seed extract and application
KR20180090198A (en) * 2017-02-02 2018-08-10 한국식품연구원 Composition comprising the extract of Molokia leaf for immune activity
CN110658282A (en) * 2019-10-29 2020-01-07 广东一方制药有限公司 Construction method of UPLC characteristic spectrum of fresh herba Houttuyniae standard decoction and detection method of fresh herba Houttuyniae preparation
CN110672751A (en) * 2019-10-29 2020-01-10 广东一方制药有限公司 UPLC characteristic spectrum establishing method and detecting method for fresh houttuynia cordata medicinal material
CN110658282B (en) * 2019-10-29 2022-03-11 广东一方制药有限公司 Construction method of UPLC characteristic spectrum of fresh herba Houttuyniae standard decoction and detection method of fresh herba Houttuyniae preparation

Similar Documents

Publication Publication Date Title
Esposito et al. Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro
Nile et al. Edible berries: Bioactive components and their effect on human health
US7897182B2 (en) Composition comprising bamboo extract and the compounds isolated therefrom showing treating and preventing activity for inflammatory and blood circulation disease
Gawlik-Dziki et al. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts–in vitro study
Chu et al. Bilberry (vaccinium myrtillus L.)
Mushtaq et al. Polyphenols and human health-A review
Schulz et al. Composition and potential health effects of dark-colored underutilized Brazilian fruits–A review
Bortolini et al. Biological potential and technological applications of red fruits: An overview
Bangar et al. Bioactive potential of beetroot (Beta vulgaris)
WO2011108487A1 (en) Muscular atrophy inhibitor
KR20090112955A (en) Food comprising Corchorus olitorius L. extract and its fractions having anti-inflammation activity
Bilawal et al. A review of the bioactive ingredients of berries and their applications in curing diseases
US20170080040A1 (en) Decoction of olive leaves
Zhor et al. Effects of polyphenols and their metabolites on age-related diseases
Maksimović et al. Composition, nutritional, and therapeutic values of fruit and berry wines
Khoo et al. Cranberry polyphenols: Effects on cardiovascular risk factors
Vasiliki et al. In vitro antioxidant, antithrombotic, antiatherogenic and antidiabetic activities of Urtica dioica, Sideritis euboea and Cistus creticus water extracts and investigation of pasta fortification with the most bioactive one
KR100794610B1 (en) Compositions for cancer chemoprevention and treatment containing dibenzo-p-dioxine derivatives and health supplementary foods containing the same
Son et al. Comparison of anti-obesity effects of sprit vinegar and natural fermented vinegar products on the differentiation of 3T3-L1 cells and obese rats fed a high-fat diet
KR20090112954A (en) Food comprising Corchorus olitorius L. extract and its fractions having atherosclerosis effects
D’Archivio et al. Role of protocatechuic acid in obesity-related pathologies
KR101900480B1 (en) Antioxidant Composition Using an Extract of Polygonum amphibium
KR102573074B1 (en) Sirtuin-1 activation agent and skin cosmetic for activating sirtuin 1
KR102628997B1 (en) Composition Comprising the Extract of Senna Alata for Preventing or Inhibiting Vascular Aging
US11173187B2 (en) Concentrated oil-based polyphenol composition and a method of producing the oil-based polyphenol composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application