KR20090112695A - 시간-주파수 선택식 채널에 대한 서명 시퀀스들 및 방법 - Google Patents

시간-주파수 선택식 채널에 대한 서명 시퀀스들 및 방법 Download PDF

Info

Publication number
KR20090112695A
KR20090112695A KR1020097016770A KR20097016770A KR20090112695A KR 20090112695 A KR20090112695 A KR 20090112695A KR 1020097016770 A KR1020097016770 A KR 1020097016770A KR 20097016770 A KR20097016770 A KR 20097016770A KR 20090112695 A KR20090112695 A KR 20090112695A
Authority
KR
South Korea
Prior art keywords
sequence
sequences
delay
doppler
signature
Prior art date
Application number
KR1020097016770A
Other languages
English (en)
Inventor
지안-칭 궤이
Original Assignee
텔레폰악티에볼라겟엘엠에릭슨(펍)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 텔레폰악티에볼라겟엘엠에릭슨(펍) filed Critical 텔레폰악티에볼라겟엘엠에릭슨(펍)
Publication of KR20090112695A publication Critical patent/KR20090112695A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/14Generation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

채널을 통하여 무선 송신에 사용되는 서명 시퀀스가 검출되고 이용된다. 상기 서명 시퀀스는 기본 시퀀스의 딜레이-도플러 편이에 의해 형성된 시퀀스들의 세트로부터 선택된다. 바람직하지만 배타적이지 않게, 상기 시퀀스들의 세트는 기본 시퀀스의 순환 딜레이-도플러 편이들에 의해 형성된다. 기본 시퀀스는 예를 들어, m-시퀀스일 수 있다. 수신된 신호는 수신된 무선 송신으로부터 획득된다. 후보 시퀀스 선택기(90)는 시퀀스들의 세트 가운데에서 후보 시퀀스를 서명 시퀀스로서의 평가를 위해서 선택하며, 상기 시퀀스들의 세트는 시퀀스 세트 생성기(88)에 의해서 기본 시퀀스의 딜레이-도플러 편이들로서 형성되었다. 이미지 형성기(82)는 기본 시퀀스 및 수신된 신호를 사용하여 상기 후보 시퀀스에 관계있는 이미지 에어리어에 대한 딜레이-도플러 이미지를 형성한다. 메트릭 분석기(84)는 상기 후보 시퀀스와 관계있는 이미지 에어리어에 대한 메트릭을 계산하고 상기 서명 시퀀스가 상기 후보 시퀀스인지의 여부를 결정하기 위해 상기 메트릭을 이용한다. 시퀀스 이용 장치(76)는 무선 송신을 송신하였던 다른 송수신기를 식별하기 위해 서명 시퀀스를 사용할 수 있고/있거나 무선 송신을 송신하는 다른 송수신기 유닛과의 동기화를 위해 상기 서명 시퀀스를 사용할 수 있다.
OFDM, 상호 상관, 주파수 호핑, Zadoff-Chu 시퀀스, 딜레이-도플러 편이.

Description

시간-주파수 선택식 채널에 대한 서명 시퀀스들 및 방법{SIGNATURE SEQUENCES AND METHODS FOR TIME-FREQUENCY SELECTIVE CHANNEL}
본 발명은 무선 전기통신에 관한 것이고, 특히 무선 인터페이스를 통해 송신되는 정보의 검출에 관한 것이다.
통상의 셀룰러 무선 시스템에서, 무선 단말기는 무선 액세스 네트워크(RAN)를 통해 하나 이상의 코어 네트워크들에 통신한다. 무선 단말기는 이동 전화("셀룰러" 폰) 및 이동 종단을 갖는 랩탑과 같은 이동국일 수 있고, 그러므로 예를 들어, 무선 액세스 네트워크로서 음성 및/또는 데이터를 통신할 수 있는 휴대용, 포켓용, 소형, 컴퓨터-일체형, 또는 차량 탑재형 이동통신 장치일 수 있다. 대안으로, 무선 단말기는 무선 국지 루프(local loop) 등의 일부인 고정 무선 장치, 예를 들어 고정 셀룰러 장치/단말기일 수 있다.
무선 액세스 네트워크는 셀 에어리어(area)들로 분할되는 지리적 에어리어들을 커버하고, 각각의 셀 에어리어는 기지국에 의해 서비스된다. 셀은 무선 기지국 장비에 의해 기지국 사이트에서 무선 커버리지(coverage)가 제공되는 지리적 에어리어이다. 각각의 셀은 상기 셀에서 브로드캐스트되는 고유 식별 번호에 의해 식별된다. 기지국은 무선 인터페이스를 통해서(예를 들어, 무선 주파수) 기지국의 범위 내의 무선 단말기들과 통신한다. 무선 액세스 네트워크에서, 여러 기지국들은 통상적으로 무선 네트워크 제어기(RNC)에 접속된다(예를 들어, 지상선 또는 마이크로파에 의해). 때로는 기지국 제어기(BSC)라고 또한 칭해지는 무선 네트워크 제어기는, 접속되어 있는 복수의 기지국들의 다양한 활동들을 감독하고 조정한다. 무선 네트워크 제어기들은 통상적으로 하나 이상의 네트워크들에 접속된다.
그러므로, 무선 통신은 무선 또는 공중 인터페이스를 통해 송신기국(station)에서 수신기국까지의 정보의 송신을 포함한다. 예를 들어, 이동통신 송신기국(예를 들어 이동국)은 업링크 채널에서 기지국과 같은 수신기 유닛으로 메시지를 송신할 수 있다. 역으로, 기지국 형태의 송신기 유닛은 다운링크 채널에서 이동국의 수신기로, 또는 심지어 복수의 이동국들 내의 수신기로 메시지를 송신할 수 있다.
일부의 예들에서 국들 사이의 송신은 특정한 시퀀스의 샘플들을 포함한다. 상기 시퀀스는 특정 송신국을 식별하고/하거나 하나의 국의 송신 유닛 및 다른 국의 수신 유닛 사이의 동기화를 용이하게 하기 위해서 사용될 수 있다. 이와 같은 목적을 위해서 특정한 국과 연관될 때, 상기 시퀀스는 "서명 시퀀스"로서 공지되어 있다. 예를 들어, 기지국은, 상기 특정 기지국을 신호들이 이동국들에 의해 또한 수신될 수 있는 다른 기지국들과 구분하기 위해서 특정 송신들에 포함된 특정한 서명 시퀀스를 가질 수 있다. 유사하게, 이동국에는 적어도 임시적으로(예를 들어, 지정된 셀에 있는 동안, 접속 당) 특정 서명 시퀀스가 할당될 수 있어서, 상기 서명 시퀀스가 기지국 노드(node)로의 업링크 상에서 무선 송신에 포함될 때, 기지국 노드는 상기 송신들이 기지국 노드의 셀에서 다른 이동국들이 아닌 그 이동국으로부터 방사되었는지를 결정할 수 있다.
자기 및 상호 상관(auto and cross correlation)을 갖는 서명 시퀀스의 설계는 무선 통신 및 레이터(radar)를 포함하는 광범위한 어플리케이션들에서 연구되었다. 동기화 및 장치 식별을 위해 많은 고유 시퀀스들을 설계할 필요성은 상기에 간략하게 말한 바와 같이 무선 통신에서 특수한 관심사이다. Barker 시퀀스, 첩-라이크(chirp-like) 시퀀스, m-시퀀스 및 그것으로부터 유도되는 Gold 시퀀스가 예로 포함된다. 레이터 신호 설계에서, 상이한 딜레이-도플러 편이(delay-Doppler Shift)로써 타깃들을 검출하기 위한 양호한 특성들을 갖는 시퀀스들에 대하여 풍부한 문헌들이 존재한다.
식별 목적을 위한 기지국으로의 딜레이-도플러 편이를 도입하는 일반적 원리는 본원에 전체가 참조되어 있는, "HOPPING PILOT PATTERN FOR TELECOMMUNICATIONS"라는 제목의 2005년 12월 5일자 미국 특허 출원 11/292,415에 개시된다.
서명 시퀀스들의 쌍의 서로 구분하기 위한 능력은 식 (1)에 의해 정의된 상호 상관 함수에 의해서 흔히 측정되는데, 여기서 N은 시퀀스 길이이다.
Figure 112009049019084-PCT00001
시분산(주파수 선택식) 채널에서, 양호한 서명 시퀀스는 또한 자신의 다중경로 반향(echo)으로부터 자신을 구별할 수 있을 필요가 있다. 이는 τ=0,...,N-1에 대해서 식 (2)에 의해 규정된 자체의 자기 상관 함수에 의해 측정된다.
Figure 112009049019084-PCT00002
달리 지정되지 않으면, 본원에 사용된 모든 인덱싱(indexing) 및 오프세팅(offsetting)은 모듈로(modulo) N이다. 이는 실제로 OFDM(Orthogonal Frequency Division Multiplexing; 직교 주파수 분할 멀티플렉싱) 시스템에서 흔히 보이는 적절한 길이의 주기 전치 부호(cyclic prefix)를 도입함으로써 달성될 수 있는 순환 연산을 발생시킨다.
그러므로, 시분산 채널에서 시퀀스 설계를 위해 가장 흔히 사용되는 메트릭(metric)은 식 (3)에 의한 바와 같이 정의되는 단지 상호 상관 함수이다.
Figure 112009049019084-PCT00003
Figure 112009049019084-PCT00004
인 경우에 상호-상관 함수는 자기 상관 함수가 된다. 그 다음에 양호한 시퀀스 세트는 모든 지연(lag)에서 임의의 쌍의 시퀀스들 간의 작은 상호 상관 및 모든 개별 시퀀스들에 대한 비-제로 지연에서 작은 자기 상관을 가져야만 한다. 시스템이 시퀀스 길이까지 동기화되는 경우, 상대 순환 편이가 채널의 최대 딜레이 확산보다 더 크다면 동일한 시퀀스는 하나 이상의 장치로 순환하여 편이되고 할당될 수 있다. CDMA2000에 대한 공통 파일럿(pilot) 코드가 그와 같은 예다.
양호한 자기 및 상호 상관 함수를 갖는 시퀀스 세트의 한 예는 본원에 참조 되어 있고 식 (4)에 의해 정의되는, 1997년 5월 19일자 제 3 세대 이동통신 시스템에 대한 CDMA 기술 및 응용에 관한 IEEE 세미나에서 B.M. Popovic의, "Spresding Sequences for Multi-Carrier CDMA Systems"에 기재된 Zadoff-Chu 시퀀스이다.
Figure 112009049019084-PCT00005
식 (4)에서, n=0,1,...,N-1이며, 시퀀스 인텍스 u는 또한 범위가 0부터 N-1까지이다. 임의의 개별적인 Zadoff-Chu 스퀀스의 자기 상관 함수는 영 지연을 제외하고 영이고(그때는 N이다) 임의의 특이(distinctive) Zadoff-Chu 시퀀스들의 쌍은 모든 지연들에 대해
Figure 112009049019084-PCT00006
이다. 식별을 위해, 본원에 참조되어 있는, 2006년 3월 27 - 31일, 그리스 안테네의 TSG-RAN WG1 #44bis, R1-060998, 3GPP에서의 롱텀 진화(Long Term Evolution), "E-UTRA Random Access Preamble Design"에 제안된 바와 같이, 장치에는 고유 시퀀스 인덱스 u 및 순환 편이 k가 할당될 수 있다.
다른 예는,
Figure 112009049019084-PCT00007
의 최대 상호 상관을 갖는 우선 m-시퀀스들의 쌍으로부터 유도되고 1989년 McGraw Hill, J.G.Proakis의 "Digital Communication 2nd Edition"의 pp.834-835에 기재되고 본원에 참조되어 있는 N+2 Gold 시퀀스들의 세트이다.
상술한 기준 설계들의 양호한 상관 특성들은 통신 환경에서 주파수 불확실성이 존재하지 않는 경우에만 유효하다. 실제로, 채널은 도플러 확산으로 인해 시간-선택식(또는 주파수 분산)일 수 있다. 또한 비동기화 오실레이터(oscillator)들로 인해 통신 장치들 사이에서 주파수 오프셋이 존재할 수 있다. 이러한 주파수 비확 실성은, 채널의 시분산과 함께, 식 (5)에 의해 제공되는 채널 출력부에서의 (잡음 없는) 수신된 신호로써 가장 양호하게 기술된다.
Figure 112009049019084-PCT00008
식 (5)에서,
Figure 112009049019084-PCT00009
는 채널의 딜레이-도플러 응답으로, 상기 응답은 최대 딜레이-도플러 확산
Figure 112009049019084-PCT00010
을 갖는다. 주파수 오프셋은 상기 채널의 도플러 확산에 통합되는 것을 주의하라.
그리고나서, 시퀀스를 검출하기 위해서, 수신기는 수신된 신호를 전제적인 미지의 딜레이-도플러 확산과 정합할 필요가 있다. 이는 식 (6)에 의해 제공되는 2차원 딜레이-도플러 상관기에 의해 달성된다.
Figure 112009049019084-PCT00011
Figure 112009049019084-PCT00012
식 (6)에서, 식 (7)은 (순환) 모호성 함수(ambiguity function)이다.
그러므로, 시간-주파수 선택식 채널에서 고유하게 식별되는 시퀀스의 능력의 척도는 식 (7)에 의해 제공되는 2차원의 모호성 함수이어야 한다. 이상적인 시퀀스는 원점에서 급격한 정점을 갖고 고르게 분포된 낮은 측부를 갖는 압정과 유사한 모호성 함수를 가져야만 한다. 종래에 서명 시퀀스 특성을 측정하는데 사용되는 1 차원 자기 및 상호 상관 함수들은 주파수 불확실성이 존재할 때 시퀀스들의 특성을 나타내지 못한다.
도 16은 길이 u=6을 갖는 N=29 Zadoff-Chu 시퀀스의 모호성 함수이다. υ=0(주파수 불확실성이 없는)에 대해서, 상관 특성이 이상적인 것은 명확하다. 그러나, (τ=24, υ=1) 및 (τ=5, υ=28)에서의 2개의 정점이 존재한다. 이는 상기 시퀀스는 시간 및 주파수에서 자체가 대응하는 양으로 편이된 것과 동일하다는 것을 의미한다. 그러므로, ±1/N의 주파수 불확실성이 존재하는 경우에, τ=24 및 τ=5 주변에서 검출된 정점들이 영의 시간-주파수 편이를 갖는 시퀀스의 자기 영상 및 τ=5 및 τ=24의 순환 편이가 할당된 다른 장치에 대응하는지의 여부를 결정하는 것이 불가능하다.
Gold 시퀀스의 모호성 함수는 Zadoff-Chu 시퀀스만큼 불량하지는 않다. 그러나, 세트 내에 N+2 시퀀스들만이 존재하고 최대 상호 상관값
Figure 112009049019084-PCT00013
은 Zadoff-Chu 시퀀스의 값보다 더 불량하다.
따라서 본 발명은 서명 시퀀스를 형성하고 검출하는 개선된 방법, 장치, 시스템, 및 기술을 희망하고 목적으로 한다.
상기 기술의 양상은 채널을 통해 무선 송신에 사용되는 서명 시퀀스의 이용 및/또는 검출에 관한 것이다. 상기 서명 시퀀스는 기본 시퀀스의 딜레이-도플로 편이들에 의해 형성되는 시퀀스들의 세트로부터 선택된다. 배타적이지 않지만 바람직하게, 상기 시퀀스들의 세트는 상기 기본 시퀀스의 순환 딜레이-도플러 편이들에 의해 형성된다. 상기 기본 시퀀스는 예를 들어 m-시퀀스일 수 있다.
(l, m)이 상기 선택된 시퀀스와 관련된 인덱스인 하나의 예시적인 구현예에서, 상기 시퀀스들의 세트는
Figure 112009049019084-PCT00014
에 의해 표현되며, 여기서 N은 상기 기본 시퀀스 s[n]이고, (τdd)는 임의의 도출 시퀀스들의 쌍 사이의 최소 딜레이-도플러 분리이며, 상기 최소 딜레이-도플러 (τdd) 분리는 상기 채널의 최대 딜레이-도플러 확산보다 더 크게 선택된다.
그 양상들 중 하나에서, 상기 기술은 채널을 통해서 상기 서명 시퀀스를 무선 송신과 같이 사용하도록 구성된 송수신기 유닛에 관한 것이다. 하나의 예시적인 실시예에서, 상기 송수신기 유닛은 다른 송수신기와의 상기 무선 송신의 동기화를 위해 상기 서명 시퀀스를 이용하도록 구성된다. 다른 예시적인 실시예에서, 상기 송수신기 유닛은 상기 다른 송수신기 유닛의 식별을 위해 상기 서명 시퀀스를 이용하도록 구성된다.
하나의 예시적인 구현예에서, 상기 송수신기 유닛은 기지국 노드를 포함하고 상기 기지국 노드는 상기 기지국 노드로의 송신을 위한 무선 송신에서 상기 서명 시퀀스를 포함하도록 구성된 무선 단말기로부터 상기 무선 송신을 수신한다. 다른 예시적인 구현예에서, 상기 송수신기 유닛은 상기 무선 송신에서 상기 서명 시퀀스를 포함하고 상기 무선 송신을 상기 무선 단말기로 송신하도록 구성된 기지국으로부터 상기 무선 송신을 수신하는 무산 단말기를 포함한다.
예시적인 구현예에서, 상기 송수신기 유닛은 송수신기; 가정 시퀀스 선택기; 이미지 형성기; 및 메트릭 분석기를 포함한다. 상기 송수신기는 상기 서명 시퀀스를 포함한 상기 무선 송신으로부터 수신된 신호를 획득하도록 구성된다. 가정 시퀀스 선택기는 평가를 위한 상기 시퀀스들의 세트 중에서 후보 시퀀스를 서명 시퀀스로 선택하도록 구성된다. 상기 이미지 형성기는 상기 기본 시퀀스 및 상기 수신된 신호를 사용하여 상기 후보 시퀀스와 관계있는 이미지 에어리어에 관한 딜레이-도플러 이미지를 형성하도록 구성된다. 상기 메트릭 분석기는 상기 후보 시퀀스와 관계있는 관련된 상기 이미지 에어이러에 대한 메트릭을 계산하고 상기 서명 시퀀스가 상기 후보 시퀀스인지의 여부를 결정하는데 사용되도록 구성된다.
상기 송수신기 유닛은 서명 시퀀스 유틸라이저(utilizer)를 더 포함한다. 상기 서명 시퀀스 유틸라이저는 예를 들어 상기 무선 송신을 송신하였던 다른 송수신기를 식별하도록 구성된 식별 유닛 또는 상기 송수신기 유닛 및 상기 다른 송수신기 유닛 사이의 동기화를 촉진하도록 구성된 동기화 유닛을 포함할 수 있다.
자체의 다른 양상에서 본 기술은 무선 네트워크를 운영하는 방법에 관한 것이다. 상기 방법은 송수신기 유닛에서, 수신된 무선 송신으로부터 수신된 신호를 획득하는 단계; 평가를 위해 시퀀스들의 세트(상기 시퀀스들의 세트는 기본 시퀀스의 딜레이-도플러 편이들에 의해 형성되었다) 중에서 후보 시퀀스를 서명 시퀀스로 선택하는 단계; 상기 기본 시퀀스 및 상기 수신된 신호를 이용하여 상기 후보 시퀀스에 관한 이미지 에어리어에 관한 딜레이-도플러 이미지를 형성하는 단계; 상기 후보 시퀀스에 관한 상기 이미지 에어리어에 대하여 메트릭을 계산하는 단계; 및 상기 메트릭을 이용하여 상기 서명 시퀀스가 상기 후보 시퀀스인지를 결정하는 단계를 포함한다.
상기 방법은 상기 서명 시퀀스를 이용하여 상기 무선 송신을 송신하는 다른 송수신기 유닛을 식별하는 단계, 및/또는 상기 서명 시퀀스를 이용하여 상기 무선 송신을 송신하는 다른 송수신기와 동기화하는 단계를 더 포함할 수 있다.
예시적인 모드에서 상기 송수신기 유닛은 무선 단말기를 포함하고, 상기 방법은 기지국 노드로부터 상기 무선 단말기로 상기 서명 시퀀스를 포함하는 상기 무선 송신을 송신하는 단계를 더 포함한다. 다른 예시 모드에서 상기 송수신기 유닛은 기지국 노드를 포함하고, 상기 방법은 무선 단말기로부터 상기 기지국 노드로 상기 서명 시퀀스를 포함하는 상기 무선 송신을 송신하는 단계를 더 포함한다.
본 발명의 앞에서 언급한 그리고 다른 목적들, 특징들, 및 장점들은 첨부 도면들에 도시된 바와 같은 바람직한 실시예들의 다음의 보다 특정한 설명으로부터 명확해질 것이며, 도면들에서 참조 문자들은 다양한 도면을 통해서 동일한 파트들을 언급한다. 상기 도면들은 반드시 비율대로 된 것은 아니고, 대신에 본 발명의 원리를 설명하는 부분이 강조된다.
도 1은 하나 이상의 무선 단말기들에 의해 송신된 서명 시퀀스를 결정하기 위해서 시퀀스 검출기를 포함하는 기지국 노드를 도시한 무서 액세스 네트워크의 개략도.
도 2는 하나 이상의 기지국 노드들에 의해 송신된 서명 시퀀스를 결정하기 위해 시퀀스 검출기를 포함하는 무선 단말기를 도시한 무선 액세스 네트워크의 개 략도.
도 3은 제 1 예시적인 실시예에 따른 예시적인 수신국의 개략도.
도 4는 N=255에 대한 m-시퀀스의 모호성 함수를 도시한 3차원 그래프.
도 5는 2개의 상이한 딜레이-도플러 편이들의 시퀀스들이 상기 시스템에 존재하는 예를 도시한 3차원 그래프.
도 6은 도 3의 수신국을 포함하는 무선 네트워크를 운영하는 예시적인 방법에 포함되는 대표적인, 기본 동작들 또는 단계들을 도시한 흐름도.
도 7은 균등하게 이격된 시퀀스들의 세트를 도시한 개략도.
도 8은 순환 편이 경우 및 비-순환의 경우 이 둘의 방식을 대조하여 도시하는 개략도.
도 9는 제 2 예시적인 실시예에 따른 예시적인 수신국의 개략도.
도 10은 도 9의 수신국을 포함하는 무선 네트워크를 운영하는 예시적인 방법에 포함되는 대표적인, 기본 동작들 또는 단계들을 도시한 흐름도.
도 11은 소정의 δυ의 서브세트로 제한되는 주파수 호핑(frequency hopping) 시퀀스에 대한 예시적인 시퀀스 할당의 개략도.
도 12는 다른 예시적인 실시예에 따른 예시적인 수신국의 개략도.
도 13은 도 12의 수신국을 포함하는 무선 네트워크를 운영하는 예시적인 방법에 포함되는 대표적인, 기본 동작들 또는 단계들을 도시한 흐름도.
도 14는 소정의 δυ에서 시간-주파수 호핑 패턴에 대하여 딜레이-도플러 상관기로 수행할 수 있는 예시적인 편이의 개략도.
도 15는 딜레이-도플러 이미지를 설명하는데 유용한 그리드(grid)의 개략도.
도 16은 u=6을 갖는 길이 N=29 Zadoff-Chu 시퀀스의 모호성 함수를 도시한 3차원 그래프.
설명을 목적으로 하지만 제한하지 않는 다음의 설명에서, 본 발명의 철저한 이해를 제공하기 위해서 특정 아키텍처들, 인터페이스들, 기술들과 같은 특정한 세목들이 설명될 것이다. 그러나, 본 발명은 이러한 특정 세목으로부터 벗어나지 않는 다른 실시예들에서 실행될 수 있음은 당업자들에게는 자명할 것이다. 즉, 당업자들은 본원에서 명시적으로 설명되거나 도시되지 않을지라도, 본 발명의 원리들을 구현하고 본 발명의 정신 및 범위 내에 포함되는 다양한 배열들을 발명할 수 있을 것이다. 일부 예들에서, 충분히 공지된 장치들, 회로들, 및 방법들의 상세한 설명은 불필요한 세목으로 본 발명의 설명을 불명료하지 않게 하기 위해서 생략된다. 본원에서 본 발명의 특정 예들뿐만 아니라 이의 원리들, 양상들 및 실시예들을 기술하는 모든 진술들은 본 발명의 구조적 및 기능적 모두의 등가물들을 포함하도록 의도된다. 추가하여, 이와 같은 등가물들은 현재 인지된 등가물들뿐만 아니라 미래에 개발될 등가물 이 둘 모두, 즉 구조에 상관없이 동일한 기능을 수행하는 개발되는 임의의 요소들을 포함하도록 의도된다.
그러므로, 예를 들어, 본원에서의 블록도들은 본 기술의 원리를 구현하는 예시적인 회로 소자의 개념적 도면들을 나타낼 수 있음이 당업자에 의해 인식될 것이다. 유사하게, 임의의 흐름도들, 상태 전이도들, 의사 코드(pseudocode) 등은 다양 한 프로세스들을 표현하며, 이 프로세스들은 컴퓨터 판독 가능 매체에서 실질적으로 표현되고 그래서 컴퓨터 또는 프로세서에 의해서(이와 같은 컴퓨터 및 프로세서가 명시적으로 도시되든지 도시되지 않든 간에) 실행될 수 있음이 인식될 것이다.
다양한 양상들에서 본 기술은 채널에 대한 무선 송신에 사용되는 서명 시퀀스의 이용 및/또는 검출에 관한 것이다. 서명 시퀀스의 예시적인 사용을 설명하는 2개의 비제한적이며 명확한 시나리오들은 도 1 및 도 2에 도시된다.
도 1은 기지국 노드(28) 및 무선 단말기(301 - 30k)를 포함하는 무선 액세스 네트워크(24)에서 서염 시퀀스의 사용의 제 1 에시 시나리오를 도시한다. 기지국 노드(28), 또는 다른 네트워크 노드는 시퀀스 할당 관리기(32)를 포함한다. 시퀀스 할당 관리기는 차례로 선택적으로 서명 스퀀스 생성기(33)를 포함한다. 기지국 노드(28)는 하나 이상의 송수신기(34)를 더 포함한다. 각각의 송수신기(34)는 송신 유닛(36) 및 수신 유닛(38)을 포함한다. 수신 유닛(38)은 서명 시퀀스 검출기(40)를 포함한다.
각각의 무선 단말기(30)는 안테나(45)와 접속된 송수신기(44)를 포함한다. 각각의 송수신기(44)는 차례로 송수신 유닛(46) 및 수신 유닛(48)을 포함한다. 각각의 무선 단말기(30)는 서명 시퀀스 메모리(50)를 더 포함한다.
시퀀스 할당 관리기(32)는 서명 시퀀스(바람직하게는 고유 시퀀스)를 무선 단말기들(301 - 30k) 각각에 할당하는 역할을 한다. 통상적으로 서명 시퀀스는 임시로 할당되는데, 예를 들면 서명 시퀀스는, 무선 단말기(30)를 포함하는 접속 지속 기간 중에, 또는 가능하면 무산 단말기(30)가 기지국 노드(28)에 의해 서비스되는 셀에 존재하는 동안에 설정된 호출 시에 할당된다. 일단 할당되면, 특정 무선 단말기(30)에 대한 서명 시퀀스는 기지국 노드(28)의 송신 유닛(36)에 의해서 무선 인터페이스(42)를 통해 특정 무선 단말기(30)로 송신된다. 예를 들어, 도 1은 화살표(521)로써 고유 서명 시퀀스의 할당 및 상기 고유 서명 시퀀스의 무선 단말기(301)로의 송신을 도시하고; 도 1은 화살표(522)로써 고유 서명 시퀀스의 할당 및 상기 고유 서명 시퀀스의 무선 단말기(302)로의 송신을 도시한다; 등등. 자신의 할당관 서명 시퀀스의 수신 시에, 각각의 무선 단말기(30)는 서명 시퀀스 메모리(50)에 자체의 할당된 서명 시퀀스를 저장한다.
도 1은 무선 단말기(302)로부터 기지국 노드(28)로의 메시지 또는 무선 송신의 생성 및 송신을 화살표(54)로 더 도시한다. 화살표(54)에 의해 표시되는 특정 메시지는 무선 단말기(302)의 서명 시퀀스를 포함한다. 이를 위해, 무선 단말기(302)에 할당되는 서명 시퀀스는 메시지 내에 포함되기 위해 서명 시퀀스 메모리(50)로부터 불려온다. 메시지(무선 단말기(302)용 서명 시퀀스를 포함하는)는 무선 단말기(302)의 송신 유닛(46)에 의해 무선 인터페이스(42)를 통해 기지국 노드(28)로 송신된다. 기지국 노드(28)에서 수신 유닛(38)을 포함하는 시퀀스 검출기(40)는 수신 신호를 분석하고 메시지 내에 포함된 서명 시퀀스를 검출한다. 그리고 나서 시퀀스 검출기(40)에 의해 검출된 서명 시퀀스는 어떤 여러 목적을 위해, 예를 들면, 화살표(54)의 메시지가 발산하는 특정 무선 단말기를 결정하기 위해 사용된다. 기지국 노드(28)는 통상적으로 복수의 무선 단말기들로부터 메시지들을 수신하고, 이와 같은 메시지를 필수적으로 동시에 수신할 수 있다. 그러므로 서명 시퀀스는 특정 메시지가 어떤 메시지로부터 송신되었는지를 결정하는데 필요한 팩터로서 역할을 할 수 있다. 수신된 신호에서 서명 시퀀스를 검출할 때, 서명 시퀀스 메모리(50)는 시퀀스 할당 관리기(32)를 참조하여 메시지를 송신하는 특정 무선 단말기(30)의 식별을 획득할 수 있다. 다른 구현예에서, 화살표(54)에 의해 도시된 메시지에 포함된 서명 시퀀스는 기지국 노드(28) 및 무선 단말기(302) 간 동기화를 위해 대안으로 또는 추가하여 사용될 수 있다.
도 2는 서명 시퀀스의 사용의 제 2 예시적인 시나리오를 도시하고, 간소화를 위해 필수적으로 동일한 무선 액세스 네트워크(24)를 도시한다. 이와 같이, 도 2 및 도 2 이 둘의 공동적인 구성 요소들은 동일한 참조 기술 어구를 갖는다. 도 2는 무선 액세스 네트워크(24)는 통상적으로 복수의 기지국 노드들, 예를 들어 기지국 노드(281) 및 기지국 노드(282)를 포함하는 것으로 도시한다. 무선 액세스 네트워크(24)는 2개 이상의 기지국 노드들을 포함할 수 있으나, 도 2에서는 간소화를 위해 단지 2개의 그와 같은 노드들만이 도시된다. 도 2에서, 각각의 기지국 노드(28)는 기지국에 관련된 또는 할당된 서명 시퀀스가 저장된 서명 시퀀스 메모리를 더 포함하고 있는 것이 도시된다. 더욱이, 도 2의 전형적인 무선 단말기(30)는 시퀀스 검출기(58) 및 기지국 시퀀스 테이블(59)을 더 포함한다. 기지국 시퀀스 테이 블(59)은 연관된 서명 시퀀스를 각각의 기지국 노드들로 저장하는데, 예를 들어, 기지국 노드(281)에 대한 서명 시퀀스의 저장은 기지국 노드(281)에 대한 서명 시퀀스를 기지국 노드(281)과 연관되는 방식이고, 기지국 노드(282)에 대한 서명 시퀀스의 저장은 기지국 노드(282)에 대한 서명 시퀀스가 기지국 노드(282)와 연관되는 방식이다. 예를 들어, 기지국 시퀀스 테이블(59)은 특정 서명 시퀀스를 서명 시퀀스가 할당되는 기지국 노드와 연관시키기 위해 메모리에 저장된 테이블일 수 있다.
도 2 시나리오에서, 기지국 노드(281)와 같은 기지국 노드는 화살표(60)에 도시된 바와 같이, 메시지 또는 무선 송신을 무선 인터페이스(42)를 통해서 무선 단말기(30)로 송신한다. 화살표(60)의 특정 메시지는 기지국 노드(281)에 할당되고 기지국 노드(281)의 서명 시퀀스 메모리(56)에 저장된 서명을 포함한다. 무선 단말기(30)의 송수신기(44)에 의한 수신 시에, 화살표(60)의 수신된 메시지는 내부에 포함된 서명 시퀀스를 획득하기 위해 시퀀스 검출기(58)에 의해 분석된다. 일단 화살표(60)의 메시지에 포함된 서명 시퀀스가 시퀀스 검출기(58)에 의해 검출되면, 어느 기지국 노드(28)로부터 메시지가 발산되었는지를 결정하기 위해 기지국 시퀀스 테이블(59)이 참조된다.
다음의 논의는 도 1의 시나리오에서의 기지국 노드(28)의 시퀀스 검출기(40)와 같은 시퀀스 검출기 및 도 2의 시나리오에서의 무선 단말기(30)의 시퀀스 검출기(58)에 의해 수신된 신호에 포함된 소명 시퀀스의 사용을 포함하여, 서명 시퀀스 의 내용 및 사용에 관한 것이다. 시퀀스 검출기(40) 및 시퀀스 검출기(58)가 상이한 국들 내에 있는 것을 제외하고, 시퀀스 검출기(40) 및 시퀀스 검출기(58)의 구성 및 동작은 실질적으로 동일하다. 그러므로, 컨텍스트에 의해 달리 지시되지 않으면, "수신국"을 후속하여 언급하는 것이 일반적이고 따라서 기지국 노드(28) 또는 무선 단말기(30) 중 하나로 응용 가능한 것이 이해되어야 한다. 유사하게, 컨텍스트에 의해 달리 지지되지 않으면, "시퀀스 검출기"를 후속하여 언급하는 것이 일반적이고 따라서 시퀀스 검출기(40) 또는 시퀀스 검출기(58) 중 하나로 응용 가능한 것이 이해되어야 한다.
도 3은 제 1 예시적인 실시예에 따른 수신국(70)을 도시한다. 수신국(70)은 RF 수신기 전단(72)(또한 송수신기(72)로 공지된); 시퀀스 검출기(74); 및 시퀀스 이용 장치(76)를 포함한다. RF 수신기 전단(72)은 안테나(78)에 접속되고 예를 들어 증폭 및 필터링과 같은 종래의 전단 프로세싱을 수행한다. RF 수신기 전단(72)은 신호 r[n]을 제 1신호로서 시퀀스 검출기(74)로 출력한다.
시퀀스 검출기(74)는 시퀀스 관리기(80); 이미지 형성기(82); 및 메트릭 분석기(84)를 포함한다. 시퀀스 관리기(80)는 기본 시퀀스 메모리 또는 저장소(86); 시퀀스 세트 발생기(88); 및 후보 시퀀스 선택기(90)를 포함한다. 기본 시퀀스 메모리(86) 내에 저장된 기지국 시퀀스 s[n]은 제 2 입력으로서 시퀀스 검출기(74)에 적용된다.
본 발명의 양상들 중 하나에서, 본 기술은 채널을 통해서 무선 송신 내에 사용된 서명 시퀀스를 이용하고/하거나 검출하는 것을 포함한다. 서명 시퀀스는 기본 시퀀스의 딜레이-도플러 편이들에 의해 형성된 시퀀스들의 세트로부터 선택된다. 기본 시퀀스는 기본 시퀀스 메모리(86)에 저장된다. 기본 시퀀스는 예를 들어 m-시퀀스일 수 있다. 기본 시퀀스는 이후에 기술되는 예시적인 방식으로 기본 시퀀스의 딜레이-도플러 편이들에 의해 형성되는 시퀀스들의 세트를 형성하는 시퀀스 세트 생성기(88)에 적용된다. 바람직하지만 배타적이지 않게, 시퀀스 세트 생성기(88)에 의해 형성된 시쿼스들의 세트는 기본 시퀀스의 순환 딜레이-도플러 편이에 의해 형성된다.
기본 시퀀스는 길이-N의 임의의 기본 시퀀스들일 수 있다. 이 기본 시퀀스로부터, 시퀀스들의 세트는, 식 (8)에 따라 순환 딜레이-도플러 편이를 기본 시퀀스로 도입함으로써 시퀀스 세트 생성기(88)에 의해서 도출된다.
Figure 112009049019084-PCT00015
식 (8)에서,
Figure 112009049019084-PCT00016
는 임의의 쌍의 도출된 시퀀스들 사이의 최소 딜레이-도플러 분리이고, (l, m)은 도출된 시퀀스와 관련된 고유 식별 인덱스가다. 시퀀스 세트에서의 주파수 분해능은 1/N이다. 그러므로 이 시퀀스는 "A NOVEL SIGNATURE SEQUENCE DESIGN FOR TIME-FREQUENCY SELECTIVE CHANNEL"이라는 제목으로 2007년 1월 12일자로 제출된 미국 가출원 특허 출원 60/884,703의 분해능과는 상이한데, 상기 출원에서는 시퀀스는 길이 M의 여러 세그먼트(segment)들로 분해되고 주파수 분해능은 K/M이다.
선택된 기본 시퀀스가 이상적인 모호성 함수를 가지는 경우, 상기 세트에서 의 각각의 시퀀스는, 최소 딜레이-도플러 분리 (τd, υd)가 채널의 최대 딜레이-도플러 확산 (τmax, υmax) 보다 더 크면 시간-주파수 선택식 채널을 통과한 이후에도 고유하게 식별될 수 있다. 다음에는 이와 같은 이상적인 시퀀스의 특정한 예가 개시된다.
BPSK(±1)에 의해 변조된 m-시퀀스 s[n]는 s[n]s*[n-τ]가 임의의 영이 아닌 정수 τ에 대한 또다른 m-시퀀스라는 특수한 특성을 갖는다. 더욱이, m-시퀀스의 이산 푸리에 변환(Discrete Fourier Transform : DFT)은 식 (10)으로 제공된다.
Figure 112009049019084-PCT00017
그러므로, N=255에 대해서 도 4에 도시된 바와 같이, 영 딜레이 및 영 도플러를 따른 2개의 축은 상기 시퀀스가 이상적이기 때문에 제외하면, m-시퀀스의 모호성 함수는 전체 딜레이-도플러 평면에 걸쳐 식 (10)에 명시된 바와 같은 메인로브(mainlobe) 대 사이드로브(sidelobe) 비율을 갖는다.
Figure 112009049019084-PCT00018
즉, 길이-N의 m-시퀀스로부터 도출된 N2의 별개의 시퀀스들의 세트에서 임의의 쌍의 시퀀스들의 상호 상관은 최대가
Figure 112009049019084-PCT00019
이고, 그러그모 Zadoff-Chu 시퀀스 세트의 상호 상관과 본질적으로 동일하지만 주파수 모호성은 존재하지 않는다. 이는 또는
Figure 112009049019084-PCT00020
의 최대 상호-상관을 갖는 바람직한 한 쌍의 m-시퀀스들로부터 도출 되는 N+2 Gold 시퀀스들에 대한 더욱 양호한 대안이 된다.
식 (6)으로부터, 시간-주파수 선택식 채널은 딜레이-도플러 도메인에서 모호성 메인로브를 신장시킨다. 도 5는 상이한 도플러 편이들의 2개의 시퀀스들이 본 시스템에 존재하는 예를 도시한다. 보기에, 다수의 시퀀스들의 딜레이-도플러 이미지 영상들이 서로 중첩되지 않는 한, 그것들은 고유하게 구별되고 식별될 수 있다. 그러므로 이용 가능한 모호성이 존재하지 않는 시퀀스들의 수효는 N2/(τmax×υmax)로써 제한된다. 실제로, 상기 시스템에서 장치들의 최대 수효를 여러번 커버할만큼 충분하게 긴 길이의 시퀀스를 선택하여 시퀀스들의 서브세트들이 다수의 인접한 시스템에 의해 재사용될 수 있는 것이 때로는 바람직하다.
시퀀스 세트 생성기(88)에 의해 수행되는 시퀀스들의 세트의 생성이 기술되었으므로, 스퀀스 검출기(74)를 구비한 수신국(70)을 포함하는 무선 네트워크를 동작하는 예시적인 방법에 수반되는 대표적인, 기본, 동작들 또는 단계들을 도시하는 도 6으로 주의를 환기한다. 도 6의 예시적인 방법은 동작(6-1)으로서, 송수신기 유닛에서, 수신된 무선 송신으로부터 수신된 신호 r[n]을 획득하는 단계를 포함한다. 도 3은 RF 전단(72)으로부터 제 1 입력으로 이미지 형성기(82)로 적용되는 수신 신호 r[n]를 도시한다.
동작(6-2)은 서명 시퀀스로서의 평가를 위해 시퀀스들의 세트(이미 설명된 방식으로 기본 시퀀스 메모리(86)로부터 시퀀스 세트 생성기(88)에 의해 생성된) 가운데서 후보 시퀀스를 선택하는 단계를 포함한다. 세트들의 시퀀스들 중 어느 것 이 수신된 신호 r[n]에서의 패턴과 정합하는지를 평가하거나 결정하기 위해서 시퀀스 세트 생성기(88)에 의해 생성된 시퀀스들의 세트를 포함하는 시퀀스들이 하나씩 후보 또는 "가정" 시퀀스로서 사용된다.
동작(6-3)은 후보 시퀀스와 관계있는 이미지 에어리어에 관하여 딜레이-도플러 이미지를 형성하기 위해 기본 시퀀스 및 수신된 신호를 사용하는 단계를 포함한다. 딜레이-도플러 이미지의 형성은 기본 시퀀스 메모리(86)로부터 자신의 제 2 입력으로서 기본 시퀀스 s[n]을 수신하는 이미지 생성기(82)에 의해 수행된다.
동작(6-4)은 후보 시퀀스와 관계있는 이미지 에어리어에 대한 메트릭을 계산하는 메트릭 분석기(84)를 포함한다. 메트릭은 후보 시퀀스로서 시도되는 세트의 각각의 시퀀스에 대해 계산된다. 각각의 후보 시퀀스에 대해 관련있는 이미지 부분은 후보 대 후보가 상이하다.
동작(6-5)은 서명 시퀀스가 후보 시퀀스인지의 여부를 결정하기 위해 메트릭을 사용하는 단계를 포함한다. 필수적으로, 동작(6-5)은 후보 시퀀스에 대한 계산된 메트릭을 수신된 신호 r[n]에서의 패턴 및 후보 시퀀스 사이의 정합을 표시하는 임계 또는 소정의 값과 비교하는 메트릭 분석기(84)를 포함하고, 성공적인 정합은 후보 시퀀스가 수신된 신호에 포함된 서명 시퀀스임을 표시한다.
선택적인 동작(6-6)에 의해서 표시되는 바와 같이, 상기 방법은 서명 시퀀스를 사용하는 시퀀스 이용 장치(76)에 의해 표현되는 수신국(70)의 장치 또는 기능을 더 포함할 수 있다. 이 목적을 위해, 도 6은 대안적이거나 또는 결합하거나 하여 선택적으로 수행될 수 있는 서브동작(6-6-1) 및 서브동작(6-6-2)을 도시한다. 서브동작(6-6-1)은 무선 송신을 송신한 다른 송수신기 유닛을 식별하기 위해 신호 시퀀스를 사용하는 단계를 포함한다. 예를 들어 도 1의 시나리오에서, 서브동작(6-6-1)은 어느 무선 단말기(30)가 무선 송신을 송신했는지를 식별하기 위해서 서명 시퀀스를 사용하는 기지국 노드(28)를 포함한다. 도 2의 시나리오에서, 서브동작(6-6-1)은 어느 기지국 노드(28)가 무선 송신을 송신했는지를 식별하기 위해서 서명 시퀀스를 사용하는 무선 단말기(30)를 포함한다. 서브동작(6-6-2)은 무선 송신을 송신하는 다른 송수신기 유닛과의 동기화를 위해 서명 시퀀스를 이용하는 단계를 포함하다.
메트릭의 전개에서, 메트릭 분석기(84)는 생성된 우도(likelihood) 함수를 이용한다. 이용 가능한 채널 정보만이 최대 딜레이-도플러 확산(τmax, υmax)이라고 가정하면, 단일 시퀀스의 최상의 검출은 모든 가정의 [l, m]에 대해 식 (12)의 생성된 우도 함수를 평가하는 것이다.
Figure 112009049019084-PCT00021
Figure 112009049019084-PCT00022
식 (12)에서, 식 (13)은 0≤τ<N, 0≤υ<N에 대해서 정의된 딜레이-도플러 이미지다. 그러므로 이미지 생성기(82)는 식 (13)에 따라 딜레이-도플러 이미지를 형성하도록 구성된다. 메트릭 분석기(84)는 필수적으로 후보 시퀀스와 관계있는 이미지 부분에서의 수들의 합인 수를 형성함으로써 메트릭을 필수적으로 계산한다. 메트릭 분석기(84)는 가장 큰 로그(log) 우도를 갖는 가정(예를 들어 후보 시퀀스)을 송신된 시퀀스로 사용한다. 도 3에 도시된 바와 같이, 메트릭 분석기(84)는 서명 시퀀스로 선택된 후보 시퀀스를 시퀀스 이용 장치(76)로 출력한다. 게다가, 그리고 부수적인 관심으로, 메트릭 분석기(84)는 또한 타이밍 오프셋 추정 및 주파수 오프셋 추정의 형태로 출력을 제공할 수 있다.
식 (12)에 제공된 메트릭은 시스템에 정확하게 존재할 때만 최선일지라도, 적절한 표준화 및 임계화가 사용되는 경우 다수의 시퀀스들을 검출하는데 또한 사용될 수 있다.
그러므로, 도 3의 예시적인 실시예는 시간-주파수 선택식 무선 채널에 적합한 신규 서명 시퀀스 설계를 수반한다. 달리 말하면, 예시적인 구현예에서 도 3의 실시예 및 도 6의 예시적인 방법은 길이 N의 적절한 기본 시퀀스를 선택하는 단계(특히 m-시퀀스가 바람직한 선택이다); 식 (8)에 의해 기술된 바와 같은 순화 딜레이-도플러 편이를 도입함으로써 N2 시퀀스들의 세트를 형성하는(예를 들어 시퀀스 세트 생성기(88)를 사용하여) 단계; 딜레이-도플러 간격(τd, υd)을 채널의 최대 딜레이-도플러 확산보다 더 크도록 선택하는 단계; 및 각각의 장치에 고유 인덱스 쌍(l, m)을 갖는 시퀀스를 할당하는 단계를 수반하거나 포함한다. 그러므로 송신 장치는 식 (12)를 참조하여 이해되었던 것과 같이 2차원 딜레이-도플러 상관기를 사용하여 식별되고 검출된다.
도 1의 서명 시퀀스 생성기(33)에 의해서와 같이, 국으로의 할당을 위한 서 명 시퀀스들의 생성은 시퀀스 세트 생성기(88)에 의해 생성된 시퀀스들의 세트의 형성에 관하여 상술한 것과 본질적으로 동일한 방식으로 수행된다는 것이 인식될 것이다.
도 3의 예시적인 실시예 및 도 6의 예시적인 실시예는 종래의 실행된 것에 비해 많은 장점을 갖는다. 이와 같은 장점은 필수적으로 주파수 모호성을 포함하지 않고(시간-주파수 선택식 채널에 대해서 완벽함), 아주 맣은 시퀀스딜에 세트(N2) 내에 존재하여, 많은 국들에서 사용을 용이하게 하며; 그리고 어떤 지연에서 임의의 쌍의 시퀀스들 사이의 이상적이고 일정한 상관 상보성을 포함한다.
순환 딜레이-도플러 편이를 도입하는 것이 참조되었다. 도 8은 순환 편이의 경우 및 비순환의 경우 둘 모두를 대조 방식으로 도시한다.
본원에 기술된 부가적인 실시예들은, 예를 들어 더 단순한 검출기 구조의 사용을 용이하게 함으로써 서명 시퀀스의 검출을 간소화하는 시퀀스들의 서브세트를 획득하는 단계(시퀀스 세트 생성기에 의해 생성된 시퀀스들의 세트로부터)를 포함한다. 그러므로, 이러한 부가적인 실시예들의 제 1 양상은 검출 메트릭의 더 효율적인 계산을 용이하게 하도록 설정된 특수 구조된 딜레이-도플러 편이된 시퀀스의 N2 시퀀스들의 서브세트의 선택에 관한 것이다. 제 1 양상에 의해 용이해진 이러한 부가적인 실시예들의 제 2 양상은 이와 같은 분별 있는 시퀀스 할당 전략을 활용하는 대수 기법들(이산 푸리에 변환(DFT)과 같은)의 구현에 관한 것이다. 유용한 변형으로서, 동일 길이의 사인 곡선의 세크먼트들에 의해서 표현될 수 있는 기본 시 퀀스들의 특정 클래스에 대해, 딜레이-도플러 상관을 따라서 분리하고 후속 중첩하는 세그먼트들에서 지나간 결과를 재사용함으로써 상당한 복잡성의 감소가 달성될 것이다.
그러므로, 다음의 예시적인 실시예들의 기술의 제 1 양상은 시퀀스들의 세트의 서브세트로부터 후보 시퀀스를 선택하는 단계를 수반하며, 상기 세퀀스들의 세트는 기본 시퀀스의 딜레이-도플러 편이에 의해 도출된다(예를 들어 본질적으로 이전에 기술된 방식으로). 예시적인 실시예 및 모드에서, 서브세트는 세트 중에서 동일하게 이격된 시퀀스들을 포함하는 것이 바람직하다. 도 7의 x-축은 딜레이(τ)에 대응하고, 도 7의 y-축은 도플러(주파수)(υ)에 대응한다. 그러므로 도 7의 각각의 도플러 주파수값은 시퀀스를 나타낸다. 그러나, 도 7은 단지 선택된 동일하게 이격된 시퀀스들(도 7에서 검은 수평선들에 대응하는)만이 예시적인 구현예에 따라 시퀀스들의 서브세트용으로 선택되는 것을 도시한다.
특별 구성된 세트로부터 선택되는 시퀀스들의 서브셋이 단지 도플러 인덱스들 및 각각의 유효한 도플러 인덱스에서의 이용 가능한 딜레이 인덱스들의 작은 서브세트만을 포함하는 경우, 주파수 도메인에서 검출 메트릭들을 계산하는 것이 더 표율적일 수 있다. 개념
Figure 112009049019084-PCT00023
을 도입함으로써, 식 (6)은 식 (14)로서 고쳐쓸 수 있다.
Figure 112009049019084-PCT00024
식 (14)는
Figure 112009049019084-PCT00025
Figure 112009049019084-PCT00026
사이의 (순환) 컨볼루션(convolution)을 도시한다. 딜레이 τ에 대한 식 (14)의 DFT를 취하면 식 (15)가 제공된다.
Figure 112009049019084-PCT00027
식 (15)에서 R[k] 및 S[k]는 각각 r[n] 및 s[n]이다. 그러므로 소정의 도플러 인덱스 υ에서, 딜레이-도플러 이미지는 이산 주파수 도메인에서 계산되고 식 (16)에 의해 도시된 바와 같은 역 DFT(IDFT)으로 딜레이 도메인으로 역변환될 수 있다.
Figure 112009049019084-PCT00028
도 9는 채널에 대해서 무선 송신과 공동으로 서명 시퀀스를 검출하고, 후보 시퀀스가 수신된 신호에서 서명 시퀀스로 수신되었는지의 여부를 결정하기 위해 주파수 도메인에서 딜레이-도플러 이미지에 대한 검출 메트릭을 계산하도록 구성된 송수신기 유닛(70(9)) 또는 수신국의 예시적인 실시예를 도시한다. 수신국/송신기 유닛(70(9))은 송수신기 또는 RF 종단(72); 가정(또는 후보) 시퀀스 선택기(90(9)); 이미지 형성기(82(9)); 및 메트릭 분석기(84)를 포함한다. 도 3의 송수신기의 컴포넌트들 또는 유닛들과 동일하거나 유사하게 번호가 병기된 참조 번호들을 갖는 수신국/송신기 유닛(70(9))의 컴포넌트들 또는 유닛들은 본원에 달리 진술되거나 문맥에서 명백하지 않으면, 동일하거나 또는 유사한 기능을 갖는다고 이해 되어야 한다.
송수신기 또는 송수신기 유닛(70(9))의 RF 전단(72)은 서명 시퀀스를 포함하는 무선 송신으로부터 수신된 신호를 획득하도록 구성된다. 송수신기 또는 RF 수신기 전단(72)은 안테나(78)에 접속되고 예를들어 증폭 및 필터링과 같은 종래의 종단 프로세싱을 수행한다. RF 수신기 전단(72)은 수신된 신호 r[n]를 제 1 입력으로 시퀀스 검출기(74(9))로 출력한다.
시퀀스 검출기(74(9))는 시퀀스 관리기(80(9)); 이미지 형성기(82(9)); 및 메트릭 분석기(84)를 포함한다. 시퀀스 관리기(80(9))는 기본 시퀀스 메모리 또는 저장소(86); 시퀀스 세트 생성기(88); 후보 시퀀스 선택기(90); 및 서브세트 생성기(100)를 포함한다. 기본 시퀀스 메모리(90)에 저장된 기본 시퀀스 s[n]는 제 2 입력으로서 시퀀스 검출기(74(9))로 적용된다. 시퀀스 세트 생성기(88)는 기본 시퀀스 메모리(86)에 저장된 기본 시퀀스로부터, 이전에 설명된 방식으로(예를 들어 도 3과 관련하여) 서브세트를 획득한다. 서브세트 생성기(100)는 시퀀스들의 서브세트로부터, 후보 시퀀스가 수신된 신호에서 서명 시퀀스로서 수신되었는지를 결정하는 것의 일환으로, 시퀀스들의 서브세트, 그리고 특히 주파수 도메인에서, 이미지 형성기(82)에 의해 형성된 딜레이-도플러 이미지에 대한 검출 메트릭의 계산을 용이하게 하는 시퀀스들의 서브세트를 추출한다.
또한, 가정 시퀀스 선택기로서 공지된 후보 시퀀스 선택기(90(9))는 서브세트의 시퀀스들 중 하나를 하나씩 선택하도록 구성되어, 선택된 것은 서명 시퀀스로서의 평가를 위해서 후보 시퀀스가 된다. 즉, 도시된 예시적인 실시예에서, 서브세 트의 복수의 시퀀스들은 후보 시퀀스가 되도록 후보 시퀀스 선택기(90(9))에 의해 한번씩 개별적으로 그리고 연속적으로 선택되고, 메트릭 분석기(84)는 그렇게 연속적으로 선택된 각각의 시퀀스에 대해, 각각의 후보 시퀀스와 관련된 딜레이-도플러 이미지의 에어리어에 관한 대응하는 검출 메트릭을 획득할 수 있다.
이미지 형성기(82(9))는 수신된 신호를 기반하여 딜레이-도플러 이미지를 형성하도록 구성된다. 도 9에 도시된 특정한 예시적인 실시예에서, (1)후보 시퀀스가 도출하였던 기본 시퀀스의 이산 푸리에 변환의 복소 공액, 및 (2) 수신된 신호의 이산 푸리에 변환형의 적(product)의 역 이산 푸리에 변환을 결정함으로써 수신된 신호에 기반한 딜레이-도플러 이미지를 형성한다. 이 목적을 위해, 이미지 형성기(82(9))는 기본 시퀀스 메모리(86)로부터 기본 시퀀스 s[n]을 수신하고 변환된 시퀀스 S[k]를 출력하는 이상 푸리에 변환 유닛(102); 자신의 변환된 입력의 복소 공액 S*[k]을 형성하고 복소 공액 S*[k]를 제 1 입력으로서 승산기(multiplier)(106)로 적용하는 복수 공액 형성기(104)를 포함한다. 이미지 형성기(82(9))는 RF 수신기 전단(72)으로부터 수신된 신호 r[n]을 수신하고 변환된 시퀀스 R[k]를 출력하는 이산 푸리에 변환 유닛(112); 변환된 시퀀스 R[k]의 순환 편이를 형성할 수 있고 가능성 있는 편이된 변환 시퀀스 R[k]를 승산기(106)의 제 2 입력으로 적용하는 시퀀스 편이기(114)를 더 포함한다. 그러므로 승산기(106)는 R[k] 및 S*[k]의 적을 형성하고, 그리고 R[k]S*[k]의 적을 역 이산 푸리에 변환 유닛(118)의 입력부로 출력한다. 역 이산 푸리에 변환 유닛(118)은 딜레이-도플러 이미지를 계산하기 위해 식 (16)을 평가하도록 구성된다.
메트릭 분석기(84)는 후보 시퀀스가 수신된 신호에서 서명 시퀀스로서 수신되었는지의 여부를 결정하기 위해서 딜레이-도플러 이미지에 대한 검출 메트릭을 주파수 도메인에서의 적어도 일부에서 계산하도록 구성된다. 메트릭 분석기(84)는 식 (12)에 따른 각각의 후보 (서브) 시퀀스에 대한 검출 메트릭을 계산하도록 구성된다. 본원에서 이후에 설명되는 바와 같이, 각각의 후보 (서브)시퀀스에 대한 메트릭을 계산했던 메트릭 분석기(84)는 가장 양호한 검출 메트릭을 갖는 특정 후보 (서브) 시퀀스를 서명 시퀀스로 선택하도록 구성된다.
도 9의 예시적인 송수신기 유닛(70(9))은 서명 시퀀스 이용기(76)를 더 포함한다. 하나의 예시적인 구현예에서, 서명 시퀀스 이용기(76)는 서명 시퀀스를 포함하는 무선 송신을 송신하는 다른 송수신기 유닛을 식별하도록 구성된 식별 유닛을 포함한다. 예를 들어, 도 1의 시나리오에서, 기지국 노드의 시퀀스 이용 장치(76)는 무선 단말기(30)가 무선 송신을 송신하는 서명 시퀀스를 이용한다. 도 2의 시나리오에서, 무선 단말기(30)의 시퀀스 이용 장치(76)는 어느 기지국 노드(28)가 무선 송신을 송신했는지를 식별하기 위해서 서명 시퀀스를 이용한다. 다른 또는 동일한 실시예에서, 서명 시퀀스 이용 장치(76)는 대안으로 또는 추가적으로 송수신기 유닛 및 서명 시퀀스를 포함하는 무선 송신을 송신했던 다른 송수신기 유닛 사이의 동기화를 촉진하도록 구성된 동기화 유닛을 더 포함한다.
도 10은 자체의 스퀀스 검출기(74(9))를 구비한 수신국(70(9))을 포함하는 무선 네트워크를 동작하는 예시적인 방법에 수반되는 대표적인, 기본, 동작들 또는 단계들을 도시한다. 동작(10-1)은 서명 시퀀스 검출 프로세스를 시작하는 단계를 도시하며, 이는 송수신기 유닛(70(9))에서, (예를 들어)수신된 무선 송신으로부터 수신된 신호 r[n]을 획득하면서 시작할 수 있다. 도 9는 RF 수신기 전단(72)으로부터 제 1 입력으로서 이미지 형성기(82(9))에, 특히 이산 푸리에 변환 유닛(112)에 인가되는 수신된 신호 r[n]를 도시한다.
동작(10-2)은 변환된 시퀀스 R[k]를 획득하기 위해서 수신기 신호 r[n]에 이산 푸리에 변화를 수행하는 단계(이산 푸리에 변환 유닛(112))를 도시한다. 동작(10-3)은 기본 시퀀스 메모리(86)로부터 획득된 기본 시퀀스 s[n]에 이산 푸리에 변환을 수행하는 단계(이산 푸리에 변환 유닛(122)에 의해)를 도시한다.
동작(10-4)은 후보 서브시퀀스를 서명 시퀀스로 평가하기 위해 선택하는 후보 시퀀스 선택기(90(9))를 포함한다. 특히, 동작(10-4)에서 개시하는 루프(이하, "루프")의 제 1 실행 중에, 동작(10-4)은 서브세트 생성기(100)에 의해서 생성된 서브세트의 제 1 후보 시퀀스를 선택하는 단계를 포함한다. 동작(10-4)에서 개시하는 루프의 후속 실행 중에, 서브세트로부터 다음 후보 시퀀스가 평가를 위해 선택된다. 그러므로, 시퀀스들의 서브세트를 포함하는 시퀀스들은, 서브세트의 스퀀스들 중 어느 것이 수신된 신호 r[n]에서의 패턴과 정합하는지를 평가하거나 결정하는 것의 일환으로 하나씩 후보 또는 "가정" 시퀀스로서 이용된다. 서브시퀀스는 시퀀스들의 세트(이미 설명된 방식으로 시퀀스 세트 생성기(88)에 의해 기지국 메모리(86)로부터 생성되는) 가운데서 서브세트 생성기(100)에 의해 생성된다.
동작(10-5)은 루프의 특정한 실행 중에 선택된 관심 후보 시퀀스에 대해, 딜레이-도플러 이미지의 관계있는 에어리어를 복소 공액 S*[k] 및 R[k]의 편이된 버 전의 적으로서 형성하는 단계를 포함한다. 도 9로부터 이해되는 바와 같이, 복수 공액 S*[k]는 복수 공액 형성기(104)의 출력으로서 획득되고 R[k]의 편이된 버전은 시퀀스 편이기(114)로부터 획득된다. 복수 공액 S*[k] 및 R[k]의 편이된 버전의 곱은 승산기(106)에 의해 수행되어 역 이산 푸리에 변환 유닛(118)으로 출력된다. 역 이산 푸리에 변환 유닛(118)은 식 (16)에 따라 딜레이-도플러 이미지를 형성한다.
동작(10-6)은 딜레이-도플러 이미지의 관계있는 에어리어, 예를 들어 현재 루프의 실행 중에 평가되고 있는 특정 후보 서브시퀀스와 관련된 딜레이-도플러 이미지에 대한 검출 메트릭을 획득하는 메트릭 분석기(84)를 포함한다. 메트릭 분석기(84)는 예를 들어 식 (12)를 사용하여 검출 메트릭을 결정한다.
동작(10-7)은 서브세트의 모든 시퀀스들이 자신의 각각의 이미지 에머리어가 형성되도록 하였는지 검출 메트릭들이 계산되도록 하였는지의 여부를 결정하기 위해서 체크하는 단계를 포함한다. 서브세트의 시퀀스들이 이미지 형성 및 메트릭 평가를 위해서 남아 있는 경우에, 루프의 다른 실행이 동작(10-4)으로 회귀 분기함으로써 수행된다. 서브세트의 모든 시퀀스들이 자신의 메트릭들을 계산되도록 한 후에, 동작(10-8)처럼 메트릭 분석기(84)는 가장 양호한 검출 메트릭을 가지는 후보를 수신된 신호에 대한 서명 시퀀스로서 선택한다.
동작(10-9)은 이전에 논의된 바와 같이, 식별자로서이거나 또는 동기화 목적들을 위해서이거나, 서명 시퀀스를 사용하는 송신기 유닛(70(9))의 선택적 동작을 도시한다.
그러므로, 관심 에어리어에 대한 딜레이-도플러 이미지들의 계산은 다음을 수반한다:
1. 시간 도메인 수신된 샘플들 r[n] 내지 R[k]를 주파수 도메인으로 변환하는 길이-N의 DFT.
2. 각각의 도플러 인덱스 υ에 대해
(a) 식 (15)에서 k = 0, 1, ‥, N-1에 대한 N번의 곱
(b) 식 (16)에서 길이-N의 IDFT
딜레이-도플러 이미지를 평가하는 것 외에, 검출기(예를 들어 메트릭 분석기(84))는 각각의 가정에 대하여 대응하는 에어리어에 대한 이미지의 크기를 합산하는 것이 필요하다. 이는 딜레이-도플러 이미지를 계산하는데 수반되는 많은 수의 곱셈들보다 훨씬 간소화된 연산이다. 그래서 곱셈들의 수는 도플러 지점의 수에 의해서 곱해지는 대략
Figure 112009049019084-PCT00029
이다.
그러므로 이전에는 딜레이-도플러의 의해 편이된 서명 시퀀스들의 검출의 복잡성을 감소시키기 위한 여러 방법들이 개시된다. 다음은 연산 단계의 예시적인 동작들의 개요이다:
1. 단지 도플러 인덱스들의 작은 서브세트 및 각각의 유효한 도플러 인덱스에서의 모든 이용가능한 딜레이 인덱스들만을 포함하는 시퀀스 세트를 선택하는 단계.
2. 시퀀스 검출기(74(9))가 기본 시퀀스 s[n]의 DFT인 S[k]를 계산하고 저장하는 단계.
3. 시퀀스 검출기(74(9))가 수신된 샘플들 r[n]의 DFT인 R[k]를 계산하고 저 장하는 단계.
4. 딜레이-도플러 이미지는, 이미지 형성기(82(9))에 의해서 식 (16)에 따라 R[k]의 편이된 버전 밑 S[k]의 복수 공액 사이의 적의 IDFT로서 계산된다.
5. 그리고나서 검출 메트릭들은 메트릭 분석기(84)에 의해서 식 (12)에 따라 딜레이-도플러 이미지의 크기로부터 계산된다.
결과적으로,
Figure 112009049019084-PCT00030
곱들은 전체 딜레이-도플러 이미지에 대한
Figure 112009049019084-PCT00031
곱들 대신에, 도플러 인덱스마다 수행된다.
도 9의 "서브세트' 실시예의 변형에서, 아주 큰 복잡성의 감소와 같은 장점들은 기본 시퀀스들의 특별 클래스를 사용하여 서브세트가 선택되는 시퀀스들의 세트를 생성함으로써 성취될 수 있다. 특히, 특별 클래스의 기본 시퀀스들은 동일 길이의 사인 곡선들의 세그먼트들에 의해서 표현될 수 있는 것들이다. 동일 길이의 사인 공석들의 세그먼트들에 의해 표현될 수 있는 기본 시퀀스를 사용함으로써 후속하는 중첩 세그먼트들에서 지나간 결과를 재사용하는 것이 용이해진다.
이상적인 Costas 시퀀스("HOPPING PILOT PATTERN FOR TELECOMMUNICATIONS"라는 제목으로 2005년 12월 2일자로 제출된 미국 특허 출원 11/292,415에서 이용되는(본원에 이의 전체가 참조되어 있다))와 같은 주파수 호핑(hopping) 세그먼트들을 포함하는 특별 구조의 시퀀스들은 매우 큰 복잡성 감소를 가능하게 한다. 식 (17)에 도시되는 바와 같이 각각의 길이가 Q인 사인 곡선의 L 세그먼트들을 구성하는 길이 N=LQ의 시퀀스를 고려하자.
Figure 112009049019084-PCT00032
Figure 112009049019084-PCT00033
식 (17)에서, 항 p[n]은 식 (18)에 의해 정의된다. 식 (17)에서 υl은 0과 Q-1 사이의 범위인 임의의 호핑 패턴일 수 있다. Costas 시퀀스는 υl이 어떤 특성을 갖는 Q개의 연속 정수{0,...,Q-1}의 고유 순열인 특수한 경우이다.
시퀀스의 사인 곡선 구조를 이용하기 위해서, 딜레이-도플러 인덱스는 식 (19)로 분해될 수 있다.
Figure 112009049019084-PCT00034
식 (19)에서 0≤i≤L, 0≤δτ≤Q, 0≤m≤Q 및 0≤δυ≤L이다. 그 후에 딜레이-도플러 이미지는 식 (20)으로 제공된다.
Figure 112009049019084-PCT00035
Figure 112009049019084-PCT00036
식 (20)에서, 식 (21)은 0≤n≤Q에 대해서 정의된 인덱스 n의 시퀀스이다. 그리고 나서 주어진
Figure 112009049019084-PCT00037
에 대해
Figure 112009049019084-PCT00038
의 길이 Q DFT는 식 (22)에 의해 도시 된 바와 같이 모든 0≤l≤L에 대한 시간 인덱스 n에 대해서 계산된다.
Figure 112009049019084-PCT00039
Figure 112009049019084-PCT00040
(i, m)의 모든 결합들에 대한 딜레이-도플러 상관이, 소정의 (δτ, δυ)에 대한 조건이 될 때에 R에서 L 메트릭들의 대응하는 서브세트를 선택하고 합산함으로써 평가될 수 있음을 식 (23)이 나타낸다. 상기 계산은 주어진 (δτ, δυ)에 대한 L 길이-Q DFT를 취하기 때문에, 딜레이-도플러 평면 상의 모든 지점들을 평가하는 곱들의 전체 수는 Q가 2의 제곱이라고 가정하면 약
Figure 112009049019084-PCT00041
이다.
최종적으로, 식 (22)를 주의하여 조사함으로써, 인덱스 δτ가 진행함에 따라 DFT가 슬라이딩 윈도우(sliding window)에 대해 실행되는 것이 주목될 수 있다. 그러므로, 복잡성은 식 (24)의 슬라이딩 DFT를 사용함으로써 더 감소될 수 있다.
Figure 112009049019084-PCT00042
즉, 윈도의 세그먼트의 DFT는 단순한 추가 연산들 및 위상 회전으로써 이전 중복 세그먼트들의 DFT로부터 도출될 수 있다. 필요한 계산은 모든 δυ에 대한 길 이 Q의 N 슬라이딩 DFT 또는 약 N×Q×L=N2 곱들을 수행하는 것과 유사하다. 도 11에 도시되는 바와 같이, 시퀀스 할당이 소정의 δυ의 서브세트로 제한되는 경우, 단지 적은 수의 δυ만이 채널의 도플러 확산을 커버하기 위해서 평가될 필요가 있다.
유용한 변형에 따르면, 기본 시퀀스는 주파수 호핑 세그먼트들을 갖지는 주파수 호핑 패턴을 포함하도록 선택된다. 선택된 기본 시퀀스(주파수 호핑 패턴을 가지는)로부터, 시퀀스들의 세트는 이전에 설명된 바와 같이 딜레이-도플러 편이에 의해서 생성되고, 그리고 나서 시퀀스들의 상기 세트로부터 서브세트가 더 선택된다. 기본 시퀀스에 대한 주파수 호핑 패턴의 사용으로 적절하게 딜레이-도플러 상관을 분리하고 후속 중첩 세그먼트들에서 이전 결과를 재사용하여 매우 큰 복잡성 감소가 제공된다.
도 12는 후보 시퀀스를 형성하기 위한 주파수 호핑 시퀀스 및 주파수 호핑 시퀀스의 용법을 이용한 간소화된 이미지 형성기(82(12))를 사용함으로써 도 9의 수신국과 상이한 송수신기 유닛(70(12)) 또는 수신국의 예시적인 실시예를 도시한다. 송수신기 유닛(70(12))은 차례로, 이미지 형성기(82(12)); 및 메트릭 분석기(84(12))를 포함하는 시퀀스 검출기(74(12))를 포함한다. 도 9의 송수신기 유닛(70(9))의 컴포넌트들 또는 유닛들과 동일하거나 유사하게 번호가 병기된 참조 번호들을 갖는 수신국/송신기 유닛(70(9))의 컴포넌트들 또는 유닛들은 본원에 달리 진술되거나 문맥에서 명백하지 않으면, 동일하거나 또는 유사한 기능을 갖는다 고 이해되어야 한다.
도 13은 수신국(70(12))을 포함하는 무선 네트워크를 동작하는 예시적인 방법에 수반되는 대표적인, 기본, 동작들 또는 단계들, 특히 이미지 형성기(82(12)) 및 메트릭 분석기(84(12))에 의해 실행되는 동작들을 도시한다. 예시적인 실시예에서, 동작(13-1) 내지 동작(13-5)은 이미지 형성기(82(12))에 의해 수행될 수 있고, 반면에 동작(13-6) 내지 동작(13-7)은 메트릭 분석기(84(12))에 의해 수행될 수 있다.
도 13의 동작들은 또한 도 14 및 도 15를 참조하여 이해된다. 도 15는 딜레이-도플러 이미지를 설명하는데 유용하고, 따라서 수평 또는 딜레이(τ) 축 및 수직 또는 도플러(υ) 축을 갖는다. 도 15에는 특히 16개의 직각 에어리어들(A), 예를 들어 에어리어들(A1 에서 A16)을 위에서 차단하는 그리드가 도시되는데, 각각의 에어리어(A)는 상이한 후보 시퀀스에 대한 이미지 에어리어에 대응한다. 16개의 에어리어들(A)을 갖는 도 15의 그리드는 예를 위한 것이고, 다른 시나리오들에서는 더 많거나 더 적은 에어리어들(및 그러므로 더 많거나 더 적은 후보 시퀀스들)이 제공될 수 있음이 인식될 것이다. 더욱이, 도 15의 각각의 에어리어(A)는 상기 에어리어를 형성하기 위해서 직각 패턴으로 배열된 더 작은 서브에어리어들(D)을 더 포함한다. 도 15에 도시된 예에서, 12개의 서브에어리어들(D)이 에어리어(A) 를 형성하도록 되어 있다. 예를 들어, 에어리어(A1)는 서브에어리어들(D11.1 내지 D14,3)을 가지며, 에어리어(A2)는 서브에어리어들(D21,1 내지 D24,3)을 가지며 기타 마찬가지 다. 서브에어리어들의 수는 다른 시나리오들에서 상이할 수 있고(예를 들어 더 크거나 더 작은), 여기서 선택된 수 12는 단지 설명을 목적으로 한다. 그러므로 각 에어리어(A)의 서브에어리어들(D)은 한 쌍의 하부첨자, 즉, 딜레이(τ) 축에 따른 상대적인 위치에 대응하는 상기 쌍의 첫 하부첨자 및 도플러(υ) 축을 따른 상대적인 위치에 대응하는 상기 쌍의 두번째 하부첨자에 의해서 표시되는데, 이 둘 모두는 각 에어리어(A)의 하부 좌측의 서브에어리어에 대해서 표시된다. 그렇게 표시되어, 각각의 서브에어리어는 오프셋(δτ, δυ)에 의해 각각의 에어리어(A)의 하부 좌측 서브에어리어에 관해서 언급된다는 것이 인식될 것이다.
그러므로, 딜레이-도플러 이미지 상의 각각의 지점(또는 픽셀)은 자신의 자표인 딜레이-도플러 인덱스를 갖는다. 각각의 서명 시퀀스는 기본 시퀀스의 딜레이-도플러에 의해 편이된 버전이기 때문에, 각각의 서명은 이 고유 편이에 의해서 편리하게 표시될(또는 인덱싱) 수 있다. 상술한 바와 같이, 딜레이-도플러 이미지 어레이(array)는 복수의 에어리어들(D)을 포함하고, 각각은 에어리어(D)는 고유 후보 시퀀스에 대응하고 따라서 고유 딜레이 인덱스(τ) 도플러 인덱스(υ)를 갖는다. 각각의 에어리어(D)는 복수의 서브에어리어들(DX)을 더 갖는다. 각각의 서브에어리어(DX)는 딜레이-도플러 오프셋(δτ, δυ)에 의해서 동일한 에어리어의 하부 좌측 서브에어리어에 대해서 기술된다.
동작(13-1)은 이산 푸리에 변환(DFT)를 이용하는 프로세스를 시작하여 식 (22)에 따라 소정의 딜레이-도플러 오프셋에 대한 DFT 윈도우 세그먼트들의 2차원 시간-주파수 어레이를 형성한다. 각각의 세그먼트는 도 14의 하부 절반에서 정사각형에 의해 표시된다. 동작(13-1)은 특히 소정의 도플러 오프셋 δυ=1, 및 소정의 딜레이 오프셋 δτ=1에 대하여 DFT 윈도우 세그먼트들의 2차원 어레이를 형성하는 단계를 포함한다.
동작(13-2)은, 도 14에 의해 설명된 방식으로 주파수 호핑 패턴을 정합하는 소정의 딜레이 오프셋에 대한 DFT 윈도우 세그먼트들의 2차원 어레이에서 원소들을 합산함으로써 소정의 딜레이 오프셋에 대한 딜레이-도플러 이미지의 적어도 일부를 결정하는 단계를 포함한다. 즉, 도 15의 에어리어들(A1 - A16) 각각에 대해서, τ축을 따른 제 1 서브에어리어에 대한 딜레이-도플러 이미지는 예를 들어 에어리어(A1)에 대한 서브에어리어(D11.1), 에어리어(A2)에 대한 서브에어리어(D21.1), 등등으로 에어리어(D16)에 대한 서브에어리어(D161,1)까지 형성된다.
동작(13-3)은 식 (24)에 따라 슬라이딩 DFT를 사용하여 이전의 딜레이 오프셋의 DFT 윈도우 세그먼트들의 2차원 어레이로부터 다음 딜레이 오프셋에 대한 DFT 윈도우 세그먼트들의 다음 2차원 어레이를 도출하는 단계를 포함한다.
동작(13-4)은 도 14로써 설명된 방식으로 주파수 호핑 패턴을 정합하는 현재 딜레이 오프셋에 대한 DFT 윈도우의 2차원 어레이에서 원소들을 합산함으로써 현재 소정의 딜레이 오프셋에 대한 딜레이-도플러 이미지의 적어도 일부를 결정하는 단계를 포함한다. 즉, 다음의 딜레이 오프셋(지금의 현재 딜레이 오프셋)은 δτ,=2이 고, τ 축을 따르는 제 2 서브에어리어의 딜레이-도플러 이미지는, 예를 들어 에어리어(A1)에 대한 서브에어리어(D12,1); 에어리어(A2)에 대한 서브에어리어(D22,1), 등등으로 에어리어(D16)에 대한 서브에어리어(D162,1)까지, 각각의 에어리어(A)에 대해서 형성된다.
동작(13-5)은 딜레이-도플러 이미지의 부분들이 소정의 도플러 오프셋의 모든 딜레이 오프셋들에 대해서 결정되었을 때까지 연속적인 다음 딜레이-오프셋들에 대한 동작들(13-3 및 13-4)을 반복하는 단계를 포함한다. 즉, 도플러 오프셋이 δυ=1이고, 동작(13-3 및 13-4)은 δυ= 1, δυ= 2, δυ= 3, δυ = 4의 각각에 대해서 수행된다. 이것은, 동작들(13-3 및 13-4)의 다음 반복 중에 τ 축을 따르는 제 3 서브에어리어가, 에어리어(A1)에 대한 서브에어리어(D13,1), 에어리어(A2)에 대한 서브에어리어(D23,1), 등등으로 에어리어(D16)에 대한 서브에어리어(D163,1)까지 각각의 에어리어(A)에 대해 형성된다는 것을 의미한다. 동작들(13-3 및 13-4)의 다른 부가적인 반복에서, τ 축에 따르는 제 4 서브에어리어는, 에어리어(A1)에 대한 서브에어리어(D14,1), 에어리어(A2)에 대한 서브에어리어(D24,1), 등등으로 에어리어(D16)에 대한 서브에어리어(D164,1)까지 각각의 에어리어(A)에 대해 형성된다.
동작(13-6)은 후보 시퀀스들과 관계있는 딜레이-도플러 이미지에서의 모든 서브에어리어들이 결정될 때까지 모든 연속적인 도플러 오프셋들에 대하여 동작 들(13-1 내지 13-5)을 반복하는 단계들을 포함한다. 즉, 도 15의 예시적인 시나리오에 대해서, 동작(13-6)은 먼저 도플러 오프셋 δυ=2에 대하여 동작들(13-1 내지 13-5)을 반복하는 단계를 포함하여 서브에어리어들(DX1,2 내지 DX4,2)에 대한 딜레이-도플러 이미지가 16개의 에어리어들 각각에 대해서 연속해서 형성된다. 도플러 오프셋의 3가지의 가능한 값들이 존재하므로, 동작(13-6)은 오프셋 δυ=3에 대하여 동작들(13-1 내지 13-5)을 반복하는 단계를 더 포함하여 서브에어리어들(DX1,3 내지 DX4,3)이 이미지가 16개의 에어리어들 각각에 대해서 연속해서 형성된다.
동작(13-7)은 각각의 후보 딜레이-도플러 인덱스를 위해서 그러므로 각각의 후보 시퀀스를 위해서 대응하는 후보 딜레이-도플러 인덱스에 대한 딜레이-도플러 이미지의 일부에 관한 검출 메트릭을 결정하는 단계를 포함한다. 즉, 메트릭 분석기는 도 15의 각각의 에어리어(A)에 관한 검출 메트릭, 즉, 에어리어(A1)에 대한 하나의 메트릭, 에어리어(A2)에 대한 다른 메트릭, 등등을 계산한다.
동작(13-8)은 어느 후보 딜레이-도플러 인덱스가 가장 양호한 검출 메트릭을 가지고 있는지를 결정하고, 따라서 가장 양호한 검출 메트릭을 갖는 후보 딜레이-도플러 인덱스에 대응하는 후보 시퀀스를 서명 시퀀스가 되도록 결정하는 단계를 포함한다.
도 14는 소정의(그렇지만 지정되지 않은) 오프셋(δυ)에서 Q=6 및 L=7을 갖는 시간-주파수 호핑 패턴에 대한 딜레이-도플러 상관기의 선택된 양상들(예를 들 어 시퀀스 검출기(74(12))의 예를 도시한다. 전체 범위에 걸쳐서 딜레이-도플러 이미지를 평가하기 위해서, 도 14에 도시된 동일한 연산은 δυυ= 0,...,6)의 L = 7 각각에 대해 수행될 필요가 있다. 처음에, 수신된 샘플들(r[n])은
Figure 112009049019084-PCT00043
에 의해회전되는 제 1 위상이다. δτ= 0에서, 길이-6의 DFT는 도 14의 상부 절반에 도시된 바와 같이, 길이 6의 7의 연속적인 세그먼트들 각각에 대해 수행된다(도 13에서의 동작(13-1)을 참조하라). 그 결과의 주파수 도메인 샘플들의 어레이는 식 (23)에 따른 소정의 (δτ, δυ)에 대한 모든 (i, m)의 조합에서 딜레이-도플러 이미지를 평가하는데 필요한 모든 값들을 포함한다(도 13의 동작(13-2)을 참조하라). 그리고 나서, 도 13의 동작(13-3 및 13-4)에 의해 지시된 바와 같이, DFT 윈도우들을 하나의 샘플만큼 우측으로 순환하여 슬라이딩함으로써 도 14의 하부 절반에 도시된 바와 같이, δτ = 1에 대해서 동일한 절차가 수행된다. 새로운 윈도우 위치에 대한 DFT가 새로운 샘플들로부터 직접 계산될 수 있을지라도, 식 (24)에 지적된 바와 같이, 이전 윈도우의 DFT로부터 DFT를 도출하는 것이 보다 효율적이다.
일단 딜레이-도플러 이미지 I[τ,υ]가 희망하는 에어리어에 대해서 평가되면, 동작(13-6)처럼, 다수의 가정들에 대한 검출 메트릭들이 식 (12)에 따라 딜레이-도플러 이미지의 크기를 합산함으로써 계산될 수 있다.
그러므로, 시간-주파수 호핑 패턴에 대해, 상기 방법은 다음을 포함할 수 있다:
1. 도 Q의 예로써 도시된 바와 같이, 가능성 있는 오프셋(δυ)을 갖는, L의 배수인 도플러 인덱스들만을 포함하는 시퀀스 세트를 선택.
2. 검출기(74(12))는, 소정의 δτ 및 δυ에 대한 식 (19)에 의해서 그리드 상에 형성된 딜레이-도플러 이미지를 평가.
(a) 소정의 (δτ, δυ)에 대해, 2차원 시간-주파수 어레이는 DFT를 사용하여 식 (22)에 따라 계산됨(도 13의 동작(13-1)을 참조하라).
(b) 그리드 상의 딜레이-도플러 이미지는 식 (23)에 따라 시간-주파수 호핑 패턴을 정합하는 어레이에서 원소들을 합산함으로써 계산됨(도 13의 동작(13-2)을 참조하라).
(c) 딜레이 오프셋(δτ)에 대한 2차원 시간-주파수 어레이는 식 (24)에 따라 슬라이딩 DFT를 사용하여 자신의 이전 딜레이 오프셋에 대응하는 어레이로부터 계산됨(도 13의 동작(13-3) 및 동작(13-4)을 참조하라).
3. 그리고나서, 검출 메트릭들은 식 (12)에 따라 딜레이-도플러 이미지의 크기로부터 계산됨(도 13의 동작(13-6)을 참조하라).
유용하게도, 검출기(74(12))는 직접 계산과 비교하여 곱셈의 감소에 있어서 계수가
Figure 112009049019084-PCT00044
인 도플러 오프셋 당 단지 N번의 곱만을 필요로 한다.
본원에 기술된 다양한 컴포넌트들의 기능은 프로세서 또는 제어기에 의해 수행될 수 있음이 인식되어야 한다. 예를 들어, 시퀀스 관리기들, 이미지 형성기들, 및 메트릭 분석기들의 다양한 실시예들의 기능(개벌적으로 또는 결합하여)을 포함 하는, 본원에 기술된 시퀀스 검출기들의 다양한 실시예들의 기능들은, 하나 이상의 프로세서들 및/또는 하나 이상의 제어기들에 의해 수행될 수 있다. "프로세서" 또는 "제어기"의 기능들은 소프트웨어를 실행할 수 있는 하드웨어뿐만 아니라 적절한 소프트웨어와 연관된 전용 하드웨어의 사용을 통해서 제공될 수 있다. 프로세서에 의해 제공되면, 상기 기능은 단일 전용 프로세서에 의해, 단일 공유 프로세서, 또는 일부가 공유되거나 분배될 수 있는 복수의 개별 프로세서들에 의해 제공될 수 있다. 게다가, 용어 "프로세서" 또는 "제어기"의 명시적인 사용은 소프트웨어를 실행할 수 있는 하드웨어를 배타적으로 언급하는 것으로 해석되어서는 안 되고, 제한 없이, 디지털 시그널 프로세서(digital signal processor : DSP) 하드웨어, 소프트웨어를 저장하는 롬(ROM), 램(RAM), 및 다른 비휘발성 저장매체를 포함할 수 있다.
상술한 내용들이 많은 특수한 것들을 포함하고 있을지라도, 이것들은 본 발명의 범위를 제한하는 것으로 해석되지 않고 단지 본 발명의 현재의 바람직한 실시예들 중 일부에 대한 설명을 제공하는 것으로 해석되어야 한다. 본 발명의 범위는 당업자에게 명백해질 수 있는 다른 실시예들을 충분히 포함하고, 따라서 본 발명의 범위는 제한되지 않는다는 것이 인식될 것이다. 첨부된 청구항들에서, 단수의 요소들을 언급한 것은 명시적으로 언급되지 않은 경우에 "하나 및 단 하나"를 의미하고자 한 건 아니며, 오히려 "하나 이상"이 의도된다. 당업자에게 공지된 상술한 바람직한 실시예들의 요소들에 대한 모든 구조적, 화학적, 기능정 등가물들은 명백하게 본원에 참조되어 있고 이에 의해서 포함되도록 의도된다. 게다가, 장치 또는 방법이 본 발명에 의해 해결되고자 연구한 각각의 그리고 모든 문제점들을 언급하는 것 이 필요한 것은 아니며, 그것이 이에 의해 포함되는 것이 필요하다. 더욱이, 본 명세에서의 요소, 컴포넌트, 또는 방법 단계는 요소, 컴포넌트, 또는 방법 단계가 청구항들에 명백하게 인용되는지의 여부와 관계없이 일반에 제공되는 것이 의도되지 않는다.

Claims (29)

  1. 채널을 통해 무선 송신과 함께 서명 시퀀스를 이용하도록 구성된 송수신기(70)에 있어서:
    상기 서명 시퀀스는 기본 시퀀스의 딜레이-도플로 편이들에 의해 형성되는 시퀀스들의 세트로부터 선택되는 것을 특징으로 하는 송수신기 유닛.
  2. 제 1 항에 있어서,
    상기 기본 시퀀스는 m-시퀀스인 것을 특징으로 하는 장치.
  3. 제 1 항에 있어서,
    상기 시퀀스들의 세트는 상기 기본 시퀀스의 순환 딜레이-도플러 편이들에 의해 형성되는 것을 특징으로 하는 장치.
  4. 제 1 항에 있어서,
    상기 송수신기 유닛(70)은 상기 시퀀스들의 세트를 생성하도록 구성된 생성기(88)를 포함하는 것을 특징으로 하는 장치.
  5. 제 1 항에 있어서,
    상기 송수신기 유닛(70)은 상기 무선 송신에서의 사용을 위해 상기 시퀀스들 의 세트 가운데서 상기 선택 서명 시퀀스를 생성하도록 구성된 시퀀스 선택기(90)를 더 특징으로 하는 장치.
  6. 제 1 항에 있어서,
    상기 시퀀스들의 세트는, 상기 세트의 임의의 쌍의 도출된 시퀀스들 사이의 분리가 상기 채널의 최대 딜레이-도플러 확산보다 더 크도록 선택되는 것을 특징으로 하는 장치.
  7. 제 1 항에 있어서,
    (l, m)이 상기 선택된 시퀀스와 관련된 인덱스이고, 상기 시퀀스들의 세트는
    Figure 112009049019084-PCT00045
    에 의해 표현되는데,
    N은 상기 기본 시퀀스의 길이 s[n]이고;
    (τ,υ)는 임의의 쌍의 도출된 시퀀스들 사이의 최소 딜레이-도플러 분리인 것을 특징으로 하는 장치.
  8. 제 7 항에 있어서,
    상기 최소 딜레이-도플러 (τdd) 분리는 상기 채널의 최대 딜레이-도플러 확산보다 더 크도록 선택되는 것을 특징으로 하는 장치.
  9. 제 1 항에 있어서,
    상기 송수신기 유닛(70)은 다른 송수신기 유닛(70)과의 무선 송신의 동기화 또는 다른 송수신기 유닛의 식별을 위해 상기 서명 시퀀스를 이용하도록 구성되는 것을 특징으로 하는 장치.
  10. 제 9 항에 있어서,
    상기 송수신기 유닛(70)은 기지국 노드(28)를 포함하고, 상기 다른 송수신기 유닛은 무선 단말기(30)를 포함하고, 상기 무선 단말기(30)는 상기 기지국 노드(28)로 상기 서명 시퀀스를 송신하도록 구성된 송수신기(44)를 포함하는 것을 특징으로 하는 장치.
  11. 제 9 항에 있어서,
    상기 송수신기 유닛(70)은 무선 단말기를 포함하고, 상기 다른 송수신기 유닛은 기지국 노드(28)를 포함하고, 기지국 노드(28)는 상기 무선 단말기(30)로 상기 서명 시퀀스를 송신하도록 구성된 송신기(34)를 포함하는 것을 특징으로 하는 장치.
  12. 제 1 항에 있어서,
    상기 송수신기 유닛(70)은:
    상기 서명 시퀀스를 포함하는 상기 무선 송신으로부터 수신된 신호를 획득하 도록 구성된 송수신기(34);
    평가를 위한 상기 시퀀스들의 세트 중에서 후보 시퀀스를 서명 시퀀스로 선택하도록 구성된 가정 시퀀스 선택기(90);
    상기 기본 시퀀스 및 상기 수신된 신호를 사용하여 상기 후보 시퀀스와 관계있는 이미지 에어리어에 관한 딜레이-도플러 이미지를 형성하도록 구성된 이미지 형성기(82); 및
    상기 후보 시퀀스와 관련있는 상기 이미지 에어이러에 대한 메트릭을 계산하고 상기 서명 시퀀스가 상기 후보 시퀀스인지의 여부를 결정하는데 사용되도록 구성된 메트릭 분석기(84)를 포함하는 것을 특징으로 하는 장치.
  13. 제 12 항에 있어서,
    서명 시퀀스 유틸라이저(76)를 더 포함하고, 상기 서명 시퀀스 유틸라이저(76)는 상기 무선 송신을 송신하였던 다른 송수신기를 식별하도록 구성된 식별 유닛 또는 상기 송수신기 유닛(70) 및 상기 다른 송수신기 유닛 사이의 동기화를 촉진하도록 구성된 동기화 유닛을 포함하는 것을 특징으로 하는 장치.
  14. 무선 네트워크를 운영하는 방법에 있어서:
    송수신기 유닛(70)에서, 수신된 무선 송신으로부터 수신된 신호를 획득하는 단계;
    평가를 위해 시퀀스들의 세트 중에서 후보 시퀀스를 서명 시퀀스로 선택하는 단계로서, 상기 시퀀스들의 세트는 기본 시퀀스의 딜레이-도플러 편이들에 의해 형성되는, 후보 시퀀스를 선택하는 단계;
    상기 기본 시퀀스 및 상기 수신된 신호를 이용하여 상기 후보 시퀀스에 관한 이미지 에어리어에 관한 딜레이-도플러 이미지를 형성하는 단계;
    상기 후보 시퀀스에 관한 상기 이미지 에어리어에 대하여 메트릭을 계산하는 단계; 및
    상기 메트릭을 이용하여 상기 서명 시퀀스가 상기 후보 시퀀스인지를 결정하는 단계를 포함하는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  15. 제 14 항에 있어서,
    상기 서명 시퀀스를 이용하여 상기 무선 송신을 송신하였던 다른 송수신기 유닛을 식별하는 단계를 더 포함하는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  16. 제 14 항에 있어서,
    상기 무선 송신을 송신하는 다른 송수신기와 동기화하기 위해 상기 서명 시퀀스를 이용하는 단계를 더 포함하는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  17. 제 14 항에 있어서,
    상기 기본 시퀀스는 m-시퀀스인 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  18. 제 14 항에 있어서,
    상기 시퀀스들의 세트는 상기 기본 시퀀스의 순환 딜레이-도플러 편이들에 의해 형성되는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  19. 제 14 항에 있어서,
    상기 시퀀스들의 세트는, 상기 세트의 임의의 쌍의 도출된 시퀀스들 사이의 분리가 상기 채널의 최대 딜레이-도플러 확산보다 더 크도록 선택되는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  20. 제 14 항에 있어서,
    (l, m)이 상기 선택된 시퀀스와 관련된 인덱스이고, 상기 시퀀스들의 세트는
    Figure 112009049019084-PCT00046
    에 의해 표현되는데,
    N은 상기 기본 시퀀스의 길이 s[n]이고;
    (τ,υ)는 임의의 쌍의 도출된 시퀀스들 사이의 최소 딜레이-도플러 분리인 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  21. 제 21 항에 있어서,
    상기 최소 딜레이-도플러 (τdd) 분리는 상기 채널의 최대 딜레이-도플러 확산보다 더 크도록 선택되는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  22. 제 14 항에 있어서,
    상기 송수신기 유닛(70)은 무선 단말기(30)를 포함하고, 상기 서명 시퀀스를 포함하는 상기 무선 송신을 기지국 노드(28)로부터 상기 무선 단말기(30)로 송신하는 단계를 더 포함하는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  23. 제 14 항에 있어서,
    상기 송수신기 유닛(70)은 기지국 노드(28)를 포함하고, 상기 서명 시퀀스를 포함하는 상기 무선 송신을 무선 단말기(30)로부터 상기 기지국 노드(28)로 송신하는 단계를 더 포함하는 것을 특징으로 하는 무선 네트워크를 운영하는 방법.
  24. 무선 네트워크에 있어서:
    송수신기 유닛(70)에서, 수신된 무선 송신으로부터 수신된 신호를 획득하는 수단;
    평가를 위해 시퀀스들의 세트 중에서 후보 시퀀스를 서명 시퀀스로 선택하는 수단으로서, 상기 시퀀스들의 세트는 기본 시퀀스의 딜레이-도플러 편이들에 의해 형성되는, 후보 시퀀스를 선택하는 수단(90);
    상기 기본 시퀀스 및 상기 수신된 신호를 이용하여 상기 후보 시퀀스에 관한 이미지 에어리어에 관한 딜레이-도플러 이미지를 형성하는 수단(82);
    상기 후보 시퀀스에 관한 상기 이미지 에어리어에 대하여 메트릭을 계산하는 수단(84); 및
    상기 메트릭을 이용하여 상기 서명 시퀀스가 상기 후보 시퀀스인지를 결정하는 수단(76)을 포함하는 것을 특징으로 하는 무선 네트워크.
  25. 제 24 항에 있어서,
    상기 서명 시퀀스를 이용하여 상기 무선 송신을 송신하였던 다른 송수신기 유닛을 식별하는 수단을 더 포함하는 것을 특징으로 하는 무선 네트워크.
  26. 제 24 항에 있어서,
    상기 무선 송신을 송신하는 다른 송수신기와 동기화하기 위해 상기 서명 시퀀스를 이용하는 수단을 더 포함하는 것을 특징으로 하는 무선 네트워크.
  27. 제 24 항에 있어서,
    상기 시퀀스들의 세트는 상기 기본 시퀀스의 순환 딜레이-도플러 편이들에 의해 형성되는 것을 특징으로 하는 무선 네트워크.
  28. 제 24 항에 있어서,
    상기 송수신기 유닛(70)은 무선 단말기(30)를 포함하고, 상기 서명 시퀀스를 포함하는 상기 무선 송신을 기지국 노드(28)로부터 상기 무선 단말기(30)로 송신하는 것을 더 포함하는 것을 특징으로 하는 무선 네트워크.
  29. 제 24 항에 있어서,
    상기 송수신기 유닛(70)은 기지국 노드(28)를 포함하고, 상기 서명 시퀀스를 포함하는 상기 무선 송신을 무선 단말기(30)로부터 상기 기지국 노드(28)로 송신하는 것을 더 포함하는 것을 특징으로 하는 무선 네트워크.
KR1020097016770A 2007-01-12 2007-12-18 시간-주파수 선택식 채널에 대한 서명 시퀀스들 및 방법 KR20090112695A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US88470307P 2007-01-12 2007-01-12
US60/884,703 2007-01-12
US11/760,654 US8295325B2 (en) 2007-01-12 2007-06-08 Signature sequences and methods for time-frequency selective channel
US11/760,654 2007-06-08
PCT/SE2007/051027 WO2008085102A2 (en) 2007-01-12 2007-12-18 Signature sequences and methods for t ime -frequency selectiv channel.

Publications (1)

Publication Number Publication Date
KR20090112695A true KR20090112695A (ko) 2009-10-28

Family

ID=39609162

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097016770A KR20090112695A (ko) 2007-01-12 2007-12-18 시간-주파수 선택식 채널에 대한 서명 시퀀스들 및 방법

Country Status (6)

Country Link
US (1) US8295325B2 (ko)
EP (1) EP2119164A4 (ko)
JP (1) JP4950305B2 (ko)
KR (1) KR20090112695A (ko)
AU (1) AU2007342732B2 (ko)
WO (1) WO2008085102A2 (ko)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295311B2 (en) * 2006-09-11 2012-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Detection of time-frequency hopping patterns
EP1971097B1 (en) 2007-03-16 2014-03-12 LG Electronics Inc. Method of generating random access preambles in wireless communication system
US8526524B2 (en) * 2007-03-27 2013-09-03 Qualcomm Incorporation Orthogonal reference signal permutation
US7940848B2 (en) * 2007-04-02 2011-05-10 Infineon Technologies Ag System having an OFDM channel estimator
US7876865B2 (en) * 2007-06-08 2011-01-25 COM DEV International Ltd System and method for decoding automatic identification system signals
AU2013200747B2 (en) * 2007-06-08 2014-12-04 Exactearth Ltd System and Method for Decoding Automatic Identification System Signals
CN101394226A (zh) * 2007-09-18 2009-03-25 Nxp股份有限公司 蜂窝电话系统的具有多Zadoff-Chu序列的随机接入前同步码
US8811331B2 (en) * 2008-04-10 2014-08-19 Telefonaktiebolaget L M Ericsson (Publ) Pilot design using costas arrays
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
US8730925B2 (en) 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
US9002354B2 (en) * 2009-06-12 2015-04-07 Google Technology Holdings, LLC Interference control, SINR optimization and signaling enhancements to improve the performance of OTDOA measurements
US8483707B2 (en) * 2009-06-26 2013-07-09 Motorola Mobility Llc Wireless terminal and method for managing the receipt of position reference singals for use in determining a location
US20110039583A1 (en) * 2009-08-17 2011-02-17 Motorola, Inc. Muting time masks to suppress serving cell interference for observed time difference of arrival location
WO2011025198A2 (ko) * 2009-08-25 2011-03-03 한국전자통신연구원 무선 통신을 위한 프레임 생성/전송 방법 및 장치, 무선 통신을 위한 동기 추정 방법
US8780788B2 (en) * 2009-09-25 2014-07-15 Com Dev International Ltd. Systems and methods for decoding automatic identification system signals
US8374633B2 (en) 2009-10-05 2013-02-12 Motorola Mobility Llc Muting indication to enable improved time difference of arrival measurements
US20110176440A1 (en) * 2010-01-15 2011-07-21 Motorola-Mobility, Inc. Restrictions on autonomous muting to enable time difference of arrival measurements
US8509102B2 (en) 2010-02-24 2013-08-13 Motorola Mobility Llc Threshold determination in TDOA-based positioning system
US9203489B2 (en) 2010-05-05 2015-12-01 Google Technology Holdings LLC Method and precoder information feedback in multi-antenna wireless communication systems
US9331774B2 (en) 2010-06-09 2016-05-03 Exactearth Ltd. Systems and methods for segmenting a satellite field of view for detecting radio frequency signals
US8428022B2 (en) 2010-08-27 2013-04-23 Motorola Mobility Llc Method and apparatus for transmitting positioning reference signals in a wireless communication network
KR20120069174A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 무선통신시스템에서 임의 접근 신호 수신 장치 및 방법
US9015567B2 (en) 2012-04-12 2015-04-21 Com Dev International Ltd. Methods and systems for consistency checking and anomaly detection in automatic identification system signal data
US9813262B2 (en) 2012-12-03 2017-11-07 Google Technology Holdings LLC Method and apparatus for selectively transmitting data using spatial diversity
US9591508B2 (en) 2012-12-20 2017-03-07 Google Technology Holdings LLC Methods and apparatus for transmitting data between different peer-to-peer communication groups
US9979531B2 (en) 2013-01-03 2018-05-22 Google Technology Holdings LLC Method and apparatus for tuning a communication device for multi band operation
US10229697B2 (en) 2013-03-12 2019-03-12 Google Technology Holdings LLC Apparatus and method for beamforming to obtain voice and noise signals
US9641303B2 (en) * 2013-09-09 2017-05-02 Huawei Technologies Co., Ltd. System and method for increasing low density signature space
US9386542B2 (en) 2013-09-19 2016-07-05 Google Technology Holdings, LLC Method and apparatus for estimating transmit power of a wireless device
US9549290B2 (en) 2013-12-19 2017-01-17 Google Technology Holdings LLC Method and apparatus for determining direction information for a wireless device
US9491007B2 (en) 2014-04-28 2016-11-08 Google Technology Holdings LLC Apparatus and method for antenna matching
US9478847B2 (en) 2014-06-02 2016-10-25 Google Technology Holdings LLC Antenna system and method of assembly for a wearable electronic device
WO2017173160A1 (en) * 2016-03-31 2017-10-05 Cohere Technologies Channel acquisition using orthogonal time frequency space modulated pilot signal
WO2018131985A1 (en) * 2017-01-16 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for performing random access
KR102625779B1 (ko) * 2017-02-09 2024-01-17 한국전자통신연구원 협대역 물리 랜덤 액세스 채널 검출 방법 및 장치

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537397A (en) * 1994-06-07 1996-07-16 Aloha Networks, Inc. Spread aloha CDMA data communications
JPH0865264A (ja) * 1994-08-17 1996-03-08 Nippon Motorola Ltd スペクトル拡散変調を用いたcdma方式の通信方法及び通信装置
US6088416A (en) * 1998-04-21 2000-07-11 Trw Inc. Method for reducing interference and increasing spectral efficiency
US20070127553A1 (en) * 1999-08-13 2007-06-07 Viasat, Inc. Code Reuse Multiple Access For Satellite Return Link
US6233270B1 (en) * 1999-09-28 2001-05-15 Telefonaktiebolaget Lm Ericsson (Publ) Interference diversity in synchronized networks
US6246676B1 (en) * 1999-12-13 2001-06-12 Motorola, Inc. Method and apparatus for implementing PN masks for a truncated M-sequence
US6556621B1 (en) * 2000-03-29 2003-04-29 Time Domain Corporation System for fast lock and acquisition of ultra-wideband signals
FI20000819A (fi) * 2000-04-06 2002-01-25 Nokia Mobile Phones Ltd Menetelmä vastaanottimessa ja vastaanotin
US6407699B1 (en) * 2000-04-14 2002-06-18 Chun Yang Method and device for rapidly extracting time and frequency parameters from high dynamic direct sequence spread spectrum radio signals under interference
GB0011761D0 (en) * 2000-05-16 2000-07-05 Koninkl Philips Electronics Nv A method of despreading a spread spectrum signal
US7418043B2 (en) * 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
US6842487B1 (en) * 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US6990153B1 (en) * 2001-02-06 2006-01-24 Agency For Science, Technology And Research Method and apparatus for semi-blind communication channel estimation
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US6985498B2 (en) * 2002-08-26 2006-01-10 Flarion Technologies, Inc. Beacon signaling in a wireless system
US20040257979A1 (en) * 2003-06-18 2004-12-23 Samsung Electronics Co., Ltd. Apparatus and method for tranmitting and receiving a pilot pattern for identification of a base station in an OFDM communication system
US7209529B2 (en) * 2003-07-10 2007-04-24 Sandbridge Technologies, Inc. Doppler compensated receiver
KR100913874B1 (ko) * 2003-10-27 2009-08-26 삼성전자주식회사 직교주파수분할다중 시스템에서 부채널 간 간섭 제거 방법
KR20050040988A (ko) * 2003-10-29 2005-05-04 삼성전자주식회사 주파수도약 직교 주파수 분할 다중화 기반 셀룰러시스템을 위한 통신방법
KR100929103B1 (ko) * 2004-08-17 2009-11-30 삼성전자주식회사 직교주파수다중분할 이동통신시스템에서 고속 순방향 패킷 데이터 서비스를 지원하기 위한 주파수 할당 장치 및 방법
US7852746B2 (en) * 2004-08-25 2010-12-14 Qualcomm Incorporated Transmission of signaling in an OFDM-based system
US8331216B2 (en) * 2005-08-09 2012-12-11 Qualcomm Incorporated Channel and interference estimation in single-carrier and multi-carrier frequency division multiple access systems
KR100809413B1 (ko) * 2005-12-08 2008-03-05 한국전자통신연구원 광검출기를 구비한 수직 공진 표면방출레이저 및 그제조방법
US7634033B1 (en) * 2006-02-10 2009-12-15 L-3 Communications, Corp. Spread spectrum detection system and method

Also Published As

Publication number Publication date
AU2007342732B2 (en) 2011-03-03
AU2007342732A1 (en) 2008-07-17
WO2008085102A2 (en) 2008-07-17
JP2010516169A (ja) 2010-05-13
JP4950305B2 (ja) 2012-06-13
WO2008085102A3 (en) 2008-09-12
EP2119164A4 (en) 2014-10-15
US8295325B2 (en) 2012-10-23
EP2119164A2 (en) 2009-11-18
US20080170608A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
KR20090112695A (ko) 시간-주파수 선택식 채널에 대한 서명 시퀀스들 및 방법
EP2158737B1 (en) Method and apparatus for complexity reduction in detection of delay and doppler shifted signature sequences
JP6031137B2 (ja) 無線通信システムにおける距離範囲拡大のための構成可能なランダム・アクセス・チャネル構造
CN101536336B (zh) 用于快速小区搜索的方法和装置
JP4820941B2 (ja) 高速なセル探索の方法および装置
CN109076609B (zh) 用于前导码检测和到达时间估计的方法和接收器
US8254344B2 (en) Reference sequence construction for fast cell search
CN101507347B (zh) 随机接入信道中接入突发的检测
US8976773B2 (en) Cell identifier encoding and decoding methods and apparatus
US7561628B2 (en) Apparatus and method for cell acquisition and downlink synchronization acquisition in a wireless communication system
US8064546B2 (en) Random access preamble detection for long term evolution wireless networks
US20160156493A1 (en) Method and device for estimating frequency offset of reception signal
JP2007312377A (ja) 高速セルサーチのための方法及び装置
US20090011717A1 (en) Mobile communication system and its signal transfer method
US20090170508A1 (en) Method of searching code sequence in mobile communication system
US20080130766A1 (en) Systems and methods for rapid uplink air interface synchronization
US20050141474A1 (en) Uplink ranging system and method in OFDMA system
KR100933345B1 (ko) 이동통신시스템 및 이의 신호전송방법
CN102124699B (zh) 无线通信系统的测距请求/检测方法和设备、基站和终端设备
CN107566310B (zh) 电子设备及前导信号生成、发送、接收方法及装置
Pitaval On Enlarged 5G PRACH Preamble Set Using Alltop Cubic-Phase Sequences
CN111935051B (zh) 同步信号块的序号检测方法、装置、终端及存储介质
KR20070090519A (ko) 광대역 무선접속 통신시스템에서 프레임 동기 획득 장치 및방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid