KR20090109930A - A vapor gas discharging structure for a hybrid electric vehicle - Google Patents

A vapor gas discharging structure for a hybrid electric vehicle Download PDF

Info

Publication number
KR20090109930A
KR20090109930A KR1020080035428A KR20080035428A KR20090109930A KR 20090109930 A KR20090109930 A KR 20090109930A KR 1020080035428 A KR1020080035428 A KR 1020080035428A KR 20080035428 A KR20080035428 A KR 20080035428A KR 20090109930 A KR20090109930 A KR 20090109930A
Authority
KR
South Korea
Prior art keywords
gas
canister
solenoid valve
valve
fuel tank
Prior art date
Application number
KR1020080035428A
Other languages
Korean (ko)
Inventor
김창현
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080035428A priority Critical patent/KR20090109930A/en
Publication of KR20090109930A publication Critical patent/KR20090109930A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/05Reducing production costs, e.g. by redesign
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0845Electromagnetic valves

Abstract

PURPOSE: An evaporative gas exhaust structure of a hybrid vehicle is provided to discharge evaporative gas from a fuel tank part efficiently during operation of a motor. CONSTITUTION: An evaporative gas exhaust structure of a hybrid vehicle comprises a vapor line(30) which induces evaporative gas between a fuel tank(10) with a fuel pump and a vent valve(12) and a canister(20), and a purge line(60) which is connected to the canister to deliver evaporative gas to the engine. The canister is equipped with a first and a second outlet nipple(21,22) to discharge evaporative gas. A CCV valve(70) is mounted on the first outlet nipple, and a solenoid valve(80) is mounted on the second outlet nipple. The solenoid valve is connected to an exhaust pipe(90) in which a catalyst(100) is provided.

Description

하이브리드 차량의 증발가스 배출구조 {a vapor gas discharging structure for a hybrid electric vehicle}{A vapor gas discharging structure for a hybrid electric vehicle}

본 발명은 하이브리드 차량의 증발가스 배출구조에 관한 것으로, 더 자세하게는 모터 작동구간에서 연료탱크 내부의 증발가스를 안전하게 배출할 수 있도록 한 것에 관한 것이다.The present invention relates to a boil-off gas exhaust structure of a hybrid vehicle, and more particularly, to a safe discharge of the boil-off gas in the fuel tank in the motor operating section.

일반적으로 엔진과 모터를 사용하는 하이브리드 차량(HEV; Hybrid Electric Vehicle)을 설계할 때에 연료시스템에서 가장 문제되는 사항은 엔진 정지구간에서 연료탱크에서 방출되는 증발가스를 외부로 어떻게 방출하느냐 하는 것이다.In general, when designing a hybrid electric vehicle (HEV) using an engine and a motor, the most problematic problem in the fuel system is how to discharge the boil-off gas emitted from the fuel tank to the outside in the engine stop section.

도 1에는 본 발명이 관계하는 하이브리드 차량의 주행모드 예시도가 도시되어 있다.1 shows an exemplary driving mode of a hybrid vehicle according to the present invention.

가솔린시스템은 엔진이 작동되면 연료와 함께 캐니스터에서 증발가스가 엔진으로 송출된다.In gasoline systems, when the engine is running, evaporative gas is sent from the canister together with fuel to the engine.

하이브리드 시스템은 도 1과 같이 중/저속 및 아이들 상태에서 모터로 구동 되며, 이때 엔진이 정지되므로 캐니스터에서 엔진으로 유입되는 증발가스 퍼지량은 0이 되지만 연료탱크 내부의 연료는 끊임없이 증발가스를 방출하게 되므로 연료탱크에서 캐니스터로 유입된 증발가스가 퍼지라인으로 방출되지 못하게 되면 에어 출구를 통해 대기로 방출된다.The hybrid system is driven by a motor in the medium / low speed and idle state as shown in FIG. 1, and since the engine is stopped, the amount of evaporated gas purge flowing from the canister to the engine becomes zero, but the fuel in the fuel tank continuously discharges the evaporated gas. Therefore, when the boil-off gas from the fuel tank to the canister cannot be discharged to the purge line, it is discharged to the atmosphere through the air outlet.

따라서 배출가스 규제 법규를 만족하지 못하게 되고, 냄새 등의 상품성 문제를 야기시키게 된다.As a result, emission regulation regulations may not be satisfied and commodity problems such as odor may be caused.

도 2에는 종래의 하이브리드 차량의 증발가스 배출구조의 구성도가 도시되어 있다.2 is a block diagram of a boil-off gas exhaust structure of a conventional hybrid vehicle.

상기의 문제를 해결하기 위해 종래에는 도 2와 같이 연료탱크를 증발가스의 과도한 압력에도 견딜 수 있도록 두께가 두꺼운 고장력 강판으로 구성하고, 연료탱크(10')와 캐니스터(20')의 사이에 마련되는 베이퍼라인(30')에 솔레노이드밸브(40')를 장착하며, 캐니스터(20')의 출구니플(21')에 가압식 OBD 밸브(50')를 장착한 형태의 하이브리드 차량의 증발가스 배출구조가 제안되었다.In order to solve the above problem, conventionally, the fuel tank is composed of a high-tension steel plate thick so as to withstand excessive pressure of the evaporation gas, and is provided between the fuel tank 10 'and the canister 20' as shown in FIG. The solenoid valve 40 'is mounted on the vapor line 30' and the evaporated gas discharge structure of the hybrid vehicle is equipped with a pressurized OBD valve 50 'on the outlet nipple 21' of the canister 20 '. Was proposed.

상기 종래의 하이브리드 차량의 증발가스 배출구조에 있어서 모터 작동시 퍼지가 없을 때 증발가스 흐름은 다음과 같다.In the conventional evaporative gas discharge structure of the hybrid vehicle, the evaporative gas flow is as follows when there is no purge when the motor is operated.

즉, 상기 종래의 하이브리드 차량의 증발가스 배출구조에 있어서는 아이들 또는 저속 구간 엔진이 정지되고, 모터가 작동하게 되면 베이퍼라인(30')의 솔레노이드밸브(40')를 차단하게 되며, 그에 따라 연료탱크(10') 내부의 증발가스가 캐니스터(20')로 유입되지 못하고 연료탱크(10') 내부에 머물게 된다.That is, in the boil-off structure of the conventional hybrid vehicle, the idle or low speed engine is stopped, and when the motor is operated, the solenoid valve 40 'of the vapor line 30' is shut off, and thus, the fuel tank. The boil-off gas inside the 10 'may not flow into the canister 20' and remain inside the fuel tank 10 '.

그리고 가속 구간에서 엔진이 가동되면 베이퍼라인(30')의 솔레노이드밸 브(40')를 개방하게 되며, 이 때에는 연료탱크(10') 내부의 증발가스가 베이퍼라인(30')을 통해 캐니스터(20')로 유입되고, 캐니스터(20')에 접속되는 퍼지라인(60')을 따라 엔진으로 송출된다.When the engine is operated in the acceleration section, the solenoid valve 40 'of the vapor line 30' is opened. In this case, the canister (evaporated gas inside the fuel tank 10 'passes through the vapor line 30'. 20 ') and is sent to the engine along the purge line 60' connected to the canister 20 '.

이처럼 상기 종래의 하이브리드 차량의 증발가스 배출구조는 모터 작동시에 증발가스가 대기로 방출되는 것을 원천적으로 차단할 수 있게 되는 장점이 있지만 연료탱크(10')의 두께를 증대시키고, 가압식 OBD 체크밸브(50')를 사용함으로써 원가와 중량이 현저하게 상승되는 문제가 있었다.As such, the conventional boil-off gas exhaust structure of the hybrid vehicle has an advantage of blocking the release of the boil-off gas into the atmosphere during operation of the motor, but increases the thickness of the fuel tank 10 'and pressurized OBD check valve ( There was a problem that the cost and weight were significantly increased by using 50 ').

예를 들어 0.8mm 두께의 연료탱크의 중량이 14kg이라면 그 두께를 1.8mm로 키우게 되면 중량은 2배 정도인 약 28kg으로 증가되며, 이러한 연료탱크의 중량 증대는 연비 저하를 초래하게 되므로 하이브리드의 궁극적 목표인 연비 상승을 위해 연료탱크의 두께를 감소시킬 필요가 있게 된다.For example, if the weight of the 0.8mm thick fuel tank is 14kg, if the thickness is increased to 1.8mm, the weight is increased to about 28kg, which is about twice the weight, and the increase in the weight of the fuel tank leads to lower fuel efficiency, which is why It is necessary to reduce the thickness of the fuel tank in order to increase fuel economy.

또한 상기 종래의 하이브리드 차량의 증발가스 배출구조에 있어서는 연료탱크(10') 내부의 압력이 증가하면 연료탱크(10')와 그에 내장된 연료펌프(11'), 그리고 연료탱크(10')와 벤트밸브(12'; VENT VALVE)의 장착부위에서 증발가스 누출(Leak)이 발생하게 될 우려가 많게 될 뿐 아니라 연료탱크(10')의 피로하중이 증가하여 크랙이 발생할 수 있게 되는 등의 문제가 있었다.In addition, in the evaporative gas discharge structure of the conventional hybrid vehicle, when the pressure inside the fuel tank 10 'increases, the fuel tank 10', the fuel pump 11 'embedded therein, and the fuel tank 10' and In addition, there is a high possibility that an evaporation gas leak will occur in the mounting portion of the vent valve 12 'and the fatigue load of the fuel tank 10' may increase, causing cracks. There was.

본 발명은 상기와 같은 종래 구조의 제결함을 감안하여 안출한 것이며, 그 목적이 모터 작동구간에서 연료탱크 내부의 증발가스를 효율적으로 배출시킬 수 있도록 하는 하이브리드 차량의 증발가스 배출구조를 제공하는 데에 있는 것이다.The present invention has been made in view of the deficiencies of the conventional structure as described above, the object of the present invention is to provide an evaporation gas discharge structure of a hybrid vehicle that can efficiently discharge the boil-off gas inside the fuel tank in the motor operating section. It is in

상기의 목적을 달성하기 위하여 본 발명은 연료탱크의 증발가스가 유입되는 캐니스터에 두 개의 출구니플을 마련하고, 하나의 출구니플에 CCV 밸브를 통해 퍼지라인을 접속하는 동시에 다른 출구니플에 솔레노이드밸브를 통해 배기관 및 촉매제를 접속하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides two outlet nipples in the canister into which the boil-off gas of the fuel tank is introduced, and connects the purge line through the CCV valve to one outlet nipple and the solenoid valve to the other outlet nipple. It is characterized by connecting the exhaust pipe and the catalyst through.

즉, 본 발명은 연료펌프와 벤트밸브가 내장되는 연료탱크와 캐니스터 사이에 증발가스를 유도하는 베이퍼라인이 마련되고, 캐니스터에 엔진으로 증발가스를 송출하는 퍼지라인이 접속되는 하이브리드 차량의 증발가스 배출구조를 구성함에 있어서, 상기 캐니스터에 증발가스를 방출하는 제1출구니플과 제2출구니플을 마련하고, 제1출구니플에 CCV 밸브를 장착하는 동시에 제2출구니플에 솔레노이드밸브를 장착하며, 상기 솔레노이드밸브를 촉매제(UCC)가 설치되는 배기관에 접속하여서 되는 것이다.That is, in the present invention, a vapor line is provided between the fuel tank and the canister in which the fuel pump and the vent valve are built, and the vapor line is discharged from the hybrid vehicle in which the purge line is connected to the canister to send the evaporated gas to the engine. In constructing the structure, the canister is provided with a first outlet nipple and a second outlet nipple for releasing boil-off gas, a CCV valve is mounted at the first outlet nipple, and a solenoid valve is mounted at the second outlet nipple. The solenoid valve is connected to the exhaust pipe where the catalyst (UCC) is installed.

본 발명에서 OBD 체크밸브로 사용되는 CCV 밸브 가압식 OBD 체크밸브에 대비하여 원가가 저렴하고, 크기가 작아 레이아웃에 유리하게 된다.Compared to the CCV valve pressurized OBD check valve used as the OBD check valve in the present invention, the cost is low, and the size is small, which is advantageous for the layout.

본 발명의 하이브리드 차량의 증발가스 배출구조에 있어서는 제1출구니플에 장착된 CCV 밸브가 닫히게 되면 제2출구니플에 장착된 솔레노이드밸브가 개방되며, 연료탱크로부터 베이퍼라인을 통해 캐니스터 내부로 유입된 증발가스가 솔레노이드 밸브를 통과하여 배기관 및 촉매제를 거쳐 대기중으로 방출된다.In the evaporative gas discharge structure of the hybrid vehicle of the present invention, when the CCV valve mounted on the first outlet nipple is closed, the solenoid valve mounted on the second outlet nipple is opened, and the evaporation flowed into the canister from the fuel tank through the vapor line. The gas passes through the solenoid valve and is released into the atmosphere through the exhaust pipe and the catalyst.

본 발명에 있어서 고온의 배기관이 연결되는 솔레노이드밸브의 출입구에는 배기관의 높은 온도에 직접 노출되는 것을 방지하기 위하여 내열성 수지의 링을 장착하는 것이 바람직하다.In the present invention, it is preferable to mount a ring of heat resistant resin at the inlet and outlet of the solenoid valve to which the high temperature exhaust pipe is connected to prevent direct exposure to the high temperature of the exhaust pipe.

본 발명에 있어서는 엔진이 오프되어 퍼지가 불가능한 모터 작동구간에서 캐니스터 내부의 증발가스를 배기관으로 유도하고 촉매제를 거쳐 대기중으로 방출시키게 되므로 안전하게 증발가스를 배출할 수 있게 되며, 연료탱크의 두께를 증가시킬 필요가 없게 되므로 중량 절감 및 연비 향상을 도모할 수 있게 된다.In the present invention, since the engine is off and the purge is impossible to drive the boil-off gas inside the canister to the exhaust pipe and the catalyst is discharged to the atmosphere through the catalyst, it is possible to safely discharge the boil-off gas, increase the thickness of the fuel tank Since there is no need, weight reduction and fuel efficiency can be improved.

또한 본 발명에 의하면 연료탱크 내부에 증발가스로 인한 과도한 압력이 형성되지 않게 되므로 연료탱크 내부의 증발가스의 누출이 없게 되고, 연료탱크의 내구성을 향상시킬 수 있게 된다.In addition, according to the present invention, since the excessive pressure due to the boil-off gas is not formed in the fuel tank, there is no leakage of the boil-off gas in the fuel tank, and the durability of the fuel tank can be improved.

아울러 본 발명에 의하면 종래의 가압식 OBD 체크밸브에 대비하여 원가가 저렴하고, 크기가 작은 CCV 밸브를 사용함으로써 레이아웃에 크게 유리하게 되는 등의 효과를 얻을 수 있게 된다.In addition, according to the present invention, compared to the conventional pressurized OBD check valve, the cost is low, and by using a CCV valve having a small size, it is possible to obtain an effect such as greatly advantageous to the layout.

이하 본 발명의 구체적인 기술내용을 첨부도면에 의거하여 더욱 자세히 설명하면 다음과 같다.Hereinafter, the specific technical details of the present invention will be described in more detail with reference to the accompanying drawings.

도 3에는 본 발명의 한 실시예의 구성도가 도시되어 있다.3 is a block diagram of one embodiment of the present invention.

본 발명은 연료펌프(11)와 벤트밸브(12)가 내장되는 연료탱크(10)와 캐니스터(20) 사이에 증발가스를 유도하는 베이퍼라인(30)이 마련되고, 캐니스터(20)에 엔진으로 증발가스를 송출하는 퍼지라인(60)이 접속되는 하이브리드 차량의 증발가스 배출구조를 구성함에 있어서, 상기 캐니스터(20)에 증발가스를 방출하는 제1출구니플(21)과 제2출구니플(22)을 마련하고, 제1출구니플(21)에 CCV 밸브(70)를 장착하는 동시에 제2출구니플(22)에 솔레노이드밸브(80)를 장착하며, 상기 솔레노이드밸브(80)를 촉매제(100; UCC)가 설치되는 배기관(90)에 접속하여서 되는 것이다.The present invention is provided between the fuel tank 10 and the canister 20 in which the fuel pump 11 and the vent valve 12 are embedded, and a vapor line 30 for inducing evaporated gas is provided, and the canister 20 serves as an engine. In constructing a boil-off gas discharging structure of a hybrid vehicle to which a purge line 60 for sending boil-off gas is connected, the first outlet nipple 21 and the second outlet nipple 22 which discharge the boil-off gas to the canister 20. ), The CCV valve 70 is mounted on the first outlet nipple 21, and the solenoid valve 80 is mounted on the second outlet nipple 22, and the solenoid valve 80 is catalyst 100; It is connected to the exhaust pipe 90 in which the UCC is provided.

본 발명에서 OBD 체크밸브로 사용되는 CCV 밸브(70)는 전술한 종래의 가압식 OBD 체크밸브에 대비하여 원가가 저렴하고, 크기가 작아 레이아웃에 유리하게 된다.CCV valve 70 used as an OBD check valve in the present invention is inexpensive compared to the conventional pressurized OBD check valve described above, and is advantageous in layout because of its small size.

상기 OBD 체크밸브는 증발가스가 대기로 새어나가는 지의 여부를 전자제어유니트(ECU)에서 확인하는 것이다.The OBD check valve is to check in the electronic control unit (ECU) whether or not the boil-off gas is leaking to the atmosphere.

본 발명의 하이브리드 차량의 증발가스 배출구조에 있어서는 제1출구니플(21)에 장착된 CCV 밸브(70)가 닫히게 되면 제2출구니플(22)에 장착된 솔레노이드밸브(22)가 개방되며, 이 때에는 연료탱크(10)로부터 베이퍼라인(30)을 통해 캐니스터(20) 내부로 유입된 증발가스가 솔레노이드밸브(80)를 통과하여 배기관(90)으로 방출되며, 배기경로에 마련된 촉매제(100)를 거쳐 대기중으로 방출된다.In the boil-off structure of the hybrid vehicle of the present invention, when the CCV valve 70 mounted on the first outlet nipple 21 is closed, the solenoid valve 22 mounted on the second outlet nipple 22 is opened. At this time, the evaporated gas introduced into the canister 20 from the fuel tank 10 through the vapor line 30 is discharged to the exhaust pipe 90 through the solenoid valve 80, and the catalyst 100 provided in the exhaust path is discharged. Is released into the atmosphere.

즉, 도 4a와 같이 엔진이 오프(OFF)되고 캐니스터(20)에서 엔진으로 유입되는 증발가스 퍼지량은 0이 되어 퍼지가 불가능한 모터 작동구간에서는 제1출구니 플(21)의 CCV 밸브(70)가 닫히게 되고, 제2출구니플(22)의 솔레노이드밸브(80)가 개방되어 캐니스터(20) 내부의 증발가스가 배기관(90), 촉매제(100)를 거쳐 대기중으로 방출된다.That is, as shown in FIG. 4A, the engine is turned off and the amount of evaporated gas purge flowing into the engine from the canister 20 is zero, and the CCV valve 70 of the first outlet 21 is not available in the motor operation section. ) Is closed, and the solenoid valve 80 of the second outlet nipple 22 is opened so that the boil-off gas in the canister 20 is discharged into the atmosphere through the exhaust pipe 90 and the catalyst 100.

그리고 도 4b와 같이 퍼지가 가능한 엔진 작동구간에서는 제1출구니플(21)의 CCV 밸브(70)가 개방되고, 그에 따라 캐니스터(20) 내부의 증발가스가 퍼지라인(60)을 통해 엔진으로 송출되며, 이 때 제2출구니플(22)의 솔레노이드밸브(80)는 닫히게 된다.In the engine operation section that can purge as shown in FIG. 4B, the CCV valve 70 of the first outlet nipple 21 is opened, and accordingly, the boil-off gas in the canister 20 is sent to the engine through the purge line 60. At this time, the solenoid valve 80 of the second outlet nipple 22 is closed.

상기에서 모터 작동구간의 경우 엔진이 오프되어 배기가스가 방출되지 않게 되므로 제2출구니플(22)에 장착된 솔레노이드밸브(80)를 통과한 증발가스가 배기관(90)으로 쉽게 유입될 수 있게 된다.In the motor operation section, since the engine is turned off so that the exhaust gas is not discharged, the boil-off gas passing through the solenoid valve 80 mounted on the second outlet nipple 22 can be easily introduced into the exhaust pipe 90. .

도 5에는 본 발명의 한 실시예의 솔레노이드밸브 부위의 상세도가 도시되어 있다.Figure 5 shows a detailed view of the solenoid valve portion of one embodiment of the present invention.

본 발명에 있어서 솔레노이드밸브(80)의 출구는 도 5와 같이 고온의 배기관(90)에 연결된다.In the present invention, the outlet of the solenoid valve 80 is connected to the high temperature exhaust pipe 90 as shown in FIG.

따라서 솔레노이드밸브(80)가 높은 온도에 직접 노출되는 것을 방지하기 위하여 도 5와 같이 솔레노이드밸브(80)의 증발가스 출입구에 내열성 수지의 링(81)을 장착하는 것이 바람직하다.Therefore, in order to prevent the solenoid valve 80 from being directly exposed to a high temperature, as shown in FIG. 5, it is preferable to mount the ring 81 of the heat resistant resin at the evaporation gas inlet and outlet of the solenoid valve 80.

솔레노이드밸브(80) 내부의 노즐 입구에서는 증발가스의 압력이 높게 되며, 노즐을 통과하게 되면 증발가스의 압력이 낮아짐과 동시에 속도가 증가하고 온도가 낮아지게 된다.(PV/T = 일정)At the inlet of the solenoid valve 80, the pressure of the boil-off gas becomes high, and when it passes through the nozzle, the pressure of the boil-off gas decreases, the speed increases, and the temperature decreases. (PV / T = constant)

따라서 본 발명에 있어서는 증발가스를 대기중으로 배출할 때에 증발가스의 온도를 낮춰 배기관(90) 및 머플러 입구 온도를 낮출 수 있게 된다.Therefore, in the present invention, when the boil-off gas is discharged to the atmosphere, the temperature of the boil-off gas can be lowered to lower the exhaust pipe 90 and the muffler inlet temperature.

또한 배기관(90) 입구의 길이(L)를 길게 설정하면 외부 대기온도에 의하여 증발가스의 온도를 더욱 낮출 수 있게 된다.In addition, if the length (L) of the inlet of the exhaust pipe (90) is set longer, the temperature of the boil-off gas can be further lowered by the external atmospheric temperature.

증발가스 성분은 탄화수소(HC)이며, 본 발명의 하이브리드 차량의 증발가스 배출구조에 있어서는 상기 증발가스가 촉매제(100)에서 산소와 화학반응에 의하여 수소와 이산화탄소 분리되어 대기중으로 방출되므로 환경오염을 유발하지 않게 된다.(HC+O2 = H2+CO2)The boil-off gas component is hydrocarbon (HC), and in the boil-off structure of the hybrid vehicle of the present invention, the boil-off gas is separated into hydrogen and carbon dioxide by a chemical reaction with oxygen in the catalyst 100 and is released into the atmosphere, causing environmental pollution. (HC + O 2 = H 2 + CO 2 )

이상에서 설명한 본 발명은 전술한 실시예 및 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and drawings, and various permutations, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be apparent to those who have

도 1은 본 발명이 관계하는 하이브리드 차량의 주행모드 예시도1 is an exemplary view of a driving mode of a hybrid vehicle according to the present invention.

도 2는 종래의 하이브리드 차량의 증발가스 배출구조의 구성도2 is a block diagram of a structure for discharging boil-off gas of a conventional hybrid vehicle

도 3은 본 발명의 한 실시예의 구성도3 is a block diagram of one embodiment of the present invention

도 4a는 동 실시예의 모터 작동구간의 제어흐름도Figure 4a is a control flow diagram of the motor operating section of the embodiment

도 4b는 동 실시예의 엔진 작동구간의 제어흐름도4B is a control flowchart of an engine operating section of the embodiment

도 5는 동 실시예의 솔레노이드밸브 부위의 상세도5 is a detailed view of the solenoid valve portion of the embodiment

< 도면의 주요 부분에 대한 부호 설명 ><Explanation of Signs of Major Parts of Drawings>

10 : 연료탱크 11 : 연료펌프10: fuel tank 11: fuel pump

12 : 벤트밸브 20 : 캐니스터12: vent valve 20: canister

21 : 제1출구니플 22 : 제2출구니플21: first exit nipple 22: second exit nipple

30 : 베이퍼라인 60 : 퍼지라인30: vapor line 60: purge line

70 : CCV 밸브 80 : 솔레노이드밸브70: CCV valve 80: solenoid valve

81 : 내열성 수지의 링 90 : 배기관81: ring of heat resistant resin 90: exhaust pipe

100 : 촉매제100: catalyst

Claims (2)

연료펌프(11)와 벤트밸브(12)가 내장되는 연료탱크(10)와 캐니스터(20) 사이에 증발가스를 유도하는 베이퍼라인(30)이 마련되고, 캐니스터(20)에 엔진으로 증발가스를 송출하는 퍼지라인(60)이 접속되는 하이브리드 차량의 증발가스 배출구조를 구성함에 있어서, 상기 캐니스터(20)에 증발가스를 방출하는 제1출구니플(21)과 제2출구니플(22)을 마련하고, 제1출구니플(21)에 CCV 밸브(70)를 장착하는 동시에 제2출구니플(22)에 솔레노이드밸브(80)를 장착하며, 상기 솔레노이드밸브(80)를 촉매제(100; UCC)가 설치되는 배기관(90)에 접속한 것을 특징으로 하는 하이브리드 차량의 증발가스 배출구조.Between the fuel tank 10 and the canister 20 in which the fuel pump 11 and the vent valve 12 are built, a vapor line 30 for inducing evaporated gas is provided, and the canister 20 supplies evaporated gas to the engine. In constructing an evaporation gas discharging structure of a hybrid vehicle to which a purge line 60 to be sent is connected, a first outlet nipple 21 and a second outlet nipple 22 for discharging evaporated gas are provided in the canister 20. In addition, the CCV valve 70 is mounted on the first outlet nipple 21, and the solenoid valve 80 is mounted on the second outlet nipple 22. The solenoid valve 80 is provided with a catalyst (100; UCC). Evaporation gas discharge structure of a hybrid vehicle, characterized in that connected to the exhaust pipe 90 is installed. 제1항에 있어서, 솔레노이드밸브(80)가 높은 온도에 직접 노출되는 것을 방지하기 위하여 솔레노이드밸브(80)의 증발가스 출입구에 내열성 수지의 링(81)을 장착하는 것을 특징으로 하는 하이브리드 차량의 증발가스 배출구조.The evaporation of the hybrid vehicle according to claim 1, wherein the ring 81 of the heat resistant resin is mounted at the inlet and outlet of the solenoid valve 80 to prevent the solenoid valve 80 from being directly exposed to a high temperature. Gas exhaust structure.
KR1020080035428A 2008-04-17 2008-04-17 A vapor gas discharging structure for a hybrid electric vehicle KR20090109930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080035428A KR20090109930A (en) 2008-04-17 2008-04-17 A vapor gas discharging structure for a hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080035428A KR20090109930A (en) 2008-04-17 2008-04-17 A vapor gas discharging structure for a hybrid electric vehicle

Publications (1)

Publication Number Publication Date
KR20090109930A true KR20090109930A (en) 2009-10-21

Family

ID=41537823

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080035428A KR20090109930A (en) 2008-04-17 2008-04-17 A vapor gas discharging structure for a hybrid electric vehicle

Country Status (1)

Country Link
KR (1) KR20090109930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163592B2 (en) 2011-12-09 2015-10-20 Hyundai Motor Company Vapor gas discharging apparatus for hybrid electric vehicle
US9982623B2 (en) 2016-07-12 2018-05-29 Hyundai Motor Company Apparatus and method for preventing overflow of fuel from vehicle fuel tank
US10428770B2 (en) 2015-04-08 2019-10-01 Hyundai Motor Company Solenoid valve and method of controlling the same
KR102332774B1 (en) 2021-08-18 2021-12-01 주식회사 케이알엔지니어링 Apparatus for excretion a off-gas of battery module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163592B2 (en) 2011-12-09 2015-10-20 Hyundai Motor Company Vapor gas discharging apparatus for hybrid electric vehicle
US10428770B2 (en) 2015-04-08 2019-10-01 Hyundai Motor Company Solenoid valve and method of controlling the same
US9982623B2 (en) 2016-07-12 2018-05-29 Hyundai Motor Company Apparatus and method for preventing overflow of fuel from vehicle fuel tank
KR102332774B1 (en) 2021-08-18 2021-12-01 주식회사 케이알엔지니어링 Apparatus for excretion a off-gas of battery module

Similar Documents

Publication Publication Date Title
US7886525B2 (en) Exhaust gas purification device of internal combustion engine
US6412277B2 (en) Arrangement for producing a vacuum in a motor vehicle system
US9689291B2 (en) Pump purge for urea dosing system
KR20110089454A (en) Ammonia-burning internal combustion engine
US9874127B2 (en) Urea injection device for selective catalyst reduction device
CN103711615A (en) Engine cooling system motor driven vacuum pump
KR20090109930A (en) A vapor gas discharging structure for a hybrid electric vehicle
US6679228B1 (en) Low evaporative emissions integrated air fuel module
KR101262607B1 (en) Vapor gas discharging apparatus for hybrid electric vehicle
KR19990034496A (en) Fuel system of LNV vehicle
KR101262605B1 (en) Vapor gas discharging apparatus for hybrid electric vehicle
CN110080912B (en) Active desorption gasoline vapor and secondary injection system and method
WO2019053918A1 (en) Fuel evaporative gas emission suppressing device
JP2005030381A (en) Fuel pump module and exhaust gas system
US20030102034A1 (en) Fuel tank and a method of making same
JP2010138776A (en) Fuel supply apparatus
JP2004537018A (en) Method for operating a vehicle fuel tank system, for example liquid hydrogen, in particular a cryogenic tank system, and a corresponding tank system for liquid hydrogen, for example
EP3403863B1 (en) A purge ejector assembly for a vehicle
KR20170124335A (en) Pure oxygen gas engine
KR200160773Y1 (en) Pump operation apparatus for fuel leakage of fuel tank
KR20050035744A (en) Evaporative emission control system for a vehicle
JP4175267B2 (en) Secondary air supply device
KR100579967B1 (en) Control-line of evaporation gas for increasing capacity of canister in vehicle
KR101271271B1 (en) Canister structure of vehicles
KR101262393B1 (en) apparatus for the improvement of canister purge performance of a car

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application