KR20090105022A - Magnetic random access memory cell - Google Patents

Magnetic random access memory cell Download PDF

Info

Publication number
KR20090105022A
KR20090105022A KR1020080030255A KR20080030255A KR20090105022A KR 20090105022 A KR20090105022 A KR 20090105022A KR 1020080030255 A KR1020080030255 A KR 1020080030255A KR 20080030255 A KR20080030255 A KR 20080030255A KR 20090105022 A KR20090105022 A KR 20090105022A
Authority
KR
South Korea
Prior art keywords
transistor
magnetic tunnel
magnetic
memory cell
tunnel junction
Prior art date
Application number
KR1020080030255A
Other languages
Korean (ko)
Other versions
KR101119160B1 (en
Inventor
이승현
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020080030255A priority Critical patent/KR101119160B1/en
Publication of KR20090105022A publication Critical patent/KR20090105022A/en
Application granted granted Critical
Publication of KR101119160B1 publication Critical patent/KR101119160B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: A magnetic random access memory cell is provided to implement high integration using one transistor while storing a lot of information. CONSTITUTION: A magnetic random access memory cell includes one bit line(41), one source line(61), and a plurality of magnetic tunnel junctions(81,82), and a transistor(70). The magnetic tunnel junctions are connected in parallel to one bit line. The magnetic tunnel junctions store the data. One side of the transistor is connected in parallel to the magnetic tunnel junctions. The other side of the transistor is connected to one source line.

Description

자기 메모리 셀 {MAGNETIC RANDOM ACCESS MEMORY CELL}Magnetic Memory Cells {MAGNETIC RANDOM ACCESS MEMORY CELL}

본 발명은 자기 터널 접합(Magnetic Tunnel Junction)을 포함하는 자기 메모리 셀(Magnetic Random Access Memory Cell)에 관한 것으로, 복수 개의 자기 터널 접합이 하나의 트랜지스터에 병렬로 연결된 자기 메모리 셀과 관련된다. 더 상세하게는, 복수 개의 자기 터널 접합과 하나의 트랜지스터를 병렬로 연결하여 하나의 트랜지스터로 복수 개의 자기 터널 접합을 제어하여 정보를 저장할 수 있도록 함으로써 고집적 자기 메모리 셀을 구현하는 것과 관련된다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic random access memory cell including a magnetic tunnel junction, wherein a plurality of magnetic tunnel junctions are associated with a magnetic memory cell connected in parallel to one transistor. More specifically, it relates to implementing a highly integrated magnetic memory cell by connecting a plurality of magnetic tunnel junctions and a transistor in parallel so that a single transistor can control the plurality of magnetic tunnel junctions to store information.

최근 반도체 메모리 장비의 개발동향은 다중 기능을 가진 복합 장비화가 대세를 이루고 있다. 이를 위해서는, 논리 회로와 반도체 메모리 장비를 각각 작게 만들어 하나의 장비로 병합해야하는 것이 필수적이다. 또한, 하나의 장비로 병합이 이루어지면서도 저전력에서 빠른 동작 속도를 구현할 것이 요구된다.Recently, the trend of the development of semiconductor memory equipment has been the trend towards complex equipment with multiple functions. To do this, it is necessary to make the logic circuit and the semiconductor memory equipment smaller and merge into one device. In addition, while merging into a single device, it is required to realize a high operating speed at low power.

현재 반도체 메모리 장비 생산업체들은 궁극적으로 집적도를 증가시켜 생산량을 늘리며 Idsat를 크게 함으로써 동작속도를 향상시키는 것이었다. 이를 위한 최우선 과제는 종래 반도체 메모리 장비의 게이트 폭(Gate Length)를 줄이는 것이었 다. 하지만, ITRS 로드맵(Road Map) 및 각 사의 개발전략을 보면 반도체 메모리 장비의 경우 현재의 캐패시터 구조 및 게이트 구조를 이용하는 한, 45nm이하의 반도체 메모리 장비에서 원하는 동작속도 및 신호 대비(Signal Contrast)를 얻을 수 없을 것으로 예상하고 있다. Today's semiconductor memory equipment manufacturers have ultimately been able to increase density, increase production, and increase I dsat to improve operating speed. A top priority for this has been to reduce the gate length of conventional semiconductor memory equipment. However, according to the ITRS Road Map and the development strategies of each company, as long as they use the current capacitor structure and gate structure, they can obtain the desired operating speed and signal contrast in the semiconductor memory equipment of 45nm or less. Expect to be unable.

즉, 집적도 및 동작 속도 향상을 위한 게이트 폭 및 게이트 산화물 두께의 감소는 단 채널 효과(Short Channel Effect)와 같은 부작용, 반도체 메모리 장비 캐패시턴스(Capacitance)의 상대적인 증가 및 누설 전류의 증가를 유발하여 원하는 동작 속도 및 신호 대비를 얻을 수 없게 된다. 따라서, 이러한 문제점을 극복할 수 있는 새로운 반도체 메모리 장비의 개발이 필요하다.In other words, the reduction of gate width and gate oxide thickness to improve the integration and operation speed causes side effects such as short channel effect, relative increase in semiconductor memory equipment capacitance, and increase in leakage current, thereby desired operation. Speed and signal contrast will not be obtained. Therefore, there is a need for the development of new semiconductor memory equipment that can overcome these problems.

따라서, 차세대 반도체 메모리 장비로는 i) 고분자 쌍극자 모멘트의 분극 반적을 이용하여 데이터를 저장하는 고분자 반도체 메모리, ii) 자기 터널 접합에 전류를 흘려 자성체의 극성을 변화시킴으로써 데이터를 저장하는 자기 메모리, iii) 자기 메모리의 변화인 STT-MRAM 및 iv) 전류가 인가될 때 히터 물질의 가열에 의한 국부영역의 상변화를 이용하는 PRAM(Phase RAM) 등이 개발 중에 있다. 이 중에서 현재 가장 유력한 차세대 반도체 메모리 장비로는 자기 메모리를 들 수 있는데 이하에서는 자기 메모리에 대해서 상세히 살펴보기로 한다.Therefore, the next-generation semiconductor memory equipment includes: i) a polymer semiconductor memory for storing data using polarization traces of a polymer dipole moment; STT-MRAM, which is a change in magnetic memory, and iv) PRAM (Phase RAM), which uses a phase change of a local area by heating of a heater material when current is applied, is being developed. Among the most influential next-generation semiconductor memory equipment is magnetic memory, which will be described in detail below.

자기 메모리는 자성체 특유의 스핀 의존 전도 현상에 기초한 자기 저항 효과를 이용하는 비휘발성 자기 메모리이다. 자기 메모리는 스위칭 소자인 트랜지스터와 데이터가 저장되는 자기 터널 접합 셀로 구성된다. 일반적으로 자기 터널 접합 셀은 두 개의 강자성층과 그 사이에 위치하는 절연막으로 이루어진다. Magnetic memory is a nonvolatile magnetic memory that utilizes a magnetoresistive effect based on spin-dependent conduction phenomena peculiar to a magnetic body. The magnetic memory is composed of a transistor which is a switching element and a magnetic tunnel junction cell in which data is stored. In general, a magnetic tunnel junction cell is composed of two ferromagnetic layers and an insulating film interposed therebetween.

도 1은 종래 기술의 자기 메모리 셀을 구성하는 자기 터널 접합 셀의 구조를 도시한다. 도 1을 참조하면, 자기 터널 접합 셀은 자화(Magnetization) 방향이 고정되어 있는 고정 강자성층(20, Pinned Ferromagnetic Layer), 고정 강자성층에 대해 자화 방향이 평행 또는 반평행으로 바뀔 수 있는 자유 강자성층(10, Free Ferromagnetic Layer) 및 고정 강자성층과 자유 강자성층 사이에 위치하는 절연층, 즉, 자기 터널 장벽층(20)으로 구성된다.1 shows a structure of a magnetic tunnel junction cell constituting a magnetic memory cell of the prior art. Referring to FIG. 1, a magnetic tunnel junction cell includes a pinned ferromagnetic layer (20) having a fixed magnetization direction and a free ferromagnetic layer whose magnetization direction may be parallel or antiparallel to the fixed ferromagnetic layer. (10, Free Ferromagnetic Layer) and an insulating layer located between the fixed ferromagnetic layer and the free ferromagnetic layer, that is, the magnetic tunnel barrier layer (20).

도 2는 종래 기술의 전류 스위칭 방식을 이용한 자기 메모리 단위 셀의 구조를 도시한다. 도 2를 참조하면, 자기 메모리의 단위 셀은 정보가 저장되는 자기 터널 접합 셀(80) 및 상기 자기 터널 접합을 선택하는 트랜지스터(70)가 직렬로 연결되어 구성된다. 전류 스위칭 방식의 자기 메모리에서는, 비트 라인(40, Bit Line)과 소스 라인(60, Source Line) 사이에 흐르는 전류를 바꾸어 줌으로써 자기 터널 접합 셀의 정보를 변경 가능하다.2 illustrates a structure of a magnetic memory unit cell using a current switching scheme of the prior art. Referring to FIG. 2, a unit cell of a magnetic memory includes a magnetic tunnel junction cell 80 storing information and a transistor 70 selecting the magnetic tunnel junction in series. In the current switching magnetic memory, the information of the magnetic tunnel junction cell can be changed by changing the current flowing between the bit line 40 and the source line 60.

자기 터널 접합 셀은 상하로 적층된 상기 자성층의 자화 방향에 따라 저항비가 달라진다. 자기 메모리는 자기 터널 접합 셀의 이러한 특성을 이용하여 데이터를 기록한다. 저항비에 의해 센싱 마진(Sensing Margin)이 결정되고, 자기 메모리으로부터 데이터를 정확하게 읽어내기 위해서 자기 메모리의 센싱 마진이 가능한 한 큰 것이 바람직하다.In the magnetic tunnel junction cell, the resistance ratio varies depending on the magnetization direction of the magnetic layers stacked up and down. Magnetic memory uses this characteristic of magnetic tunnel junction cells to write data. Sensing margin is determined by the resistance ratio, and in order to accurately read data from the magnetic memory, it is preferable that the sensing margin of the magnetic memory is as large as possible.

상기한 것처럼, 하나의 자기 터널 접합 셀에는 하나의 정보를 기록하는 것이 가능하다. 1 비트(Bit)를 구성하는 하나의 자기 메모리 셀은 하나의 자기 터널 접합 및 트랜지스터를 포함하는데, 자기 터널 접합에 기록된 정보를 바꾸기 위해서는 꽤 큰 전류가 필요하다. 이러한 전류를 공급하기 위해서는 트랜지스터의 크기가 커져야 하기 때문에 고집적 자기 메모리 셀을 구현하기 어렵다는 문제점이 있다.As described above, one information can be recorded in one magnetic tunnel junction cell. One magnetic memory cell constituting one bit includes one magnetic tunnel junction and a transistor, which requires a fairly large current to change the information written in the magnetic tunnel junction. In order to supply such a current, it is difficult to implement a highly integrated magnetic memory cell because the size of the transistor must be large.

본 발명은 자기 터널 접합을 포함하는 자기 메모리 셀에 관한 것으로, 복수 개의 자기 터널 접합이 하나의 트랜지스터에 병렬로 연결된 자기 메모리 셀과 관련된다. 상기 문제점을 해결하기 위하여, 본 발명에서는 복수 개의 자기 터널 접합과 하나의 트랜지스터를 병렬로 연결하여 하나의 트랜지스터로 복수 개의 자기 터널 접합을 제어하여 정보를 저장할 수 있도록 함으로써 고집적 자기 메모리 셀을 구현한다.The present invention relates to a magnetic memory cell comprising a magnetic tunnel junction, wherein a plurality of magnetic tunnel junctions are associated with a magnetic memory cell connected in parallel to one transistor. In order to solve the above problems, the present invention implements a highly integrated magnetic memory cell by connecting a plurality of magnetic tunnel junctions and one transistor in parallel to control the plurality of magnetic tunnel junctions with one transistor to store information.

본 발명은 하나의 비트 라인 및 하나의 소스 라인을 포함하는 자기 메모리 셀로서, 상기 하나의 비트 라인과 병렬로 연결되고, 데이터를 저장하는 복수 개의 자기 터널 접합; 및 일측이 상기 복수 개의 자기 터널 접합과 병렬로 연결되고, 타측이 상기 하나의 소스 라인과 연결되는 트랜지스터를 포함하고, 상기 트랜지스터는 상기 하나의 비트 라인과 상기 하나의 소스 라인 사이에 흐르는 전류를 제어함으로써 상기 자기 터널 접합의 자화 방향을 결정하는 것을 특징으로 하는 자기 메모리 셀을 개시한다.The present invention provides a magnetic memory cell including one bit line and one source line, comprising: a plurality of magnetic tunnel junctions connected in parallel with the one bit line and storing data; And a transistor having one side connected in parallel with the plurality of magnetic tunnel junctions and the other side connected with the one source line, wherein the transistor controls a current flowing between the one bit line and the one source line. The magnetic memory cell is characterized by determining the magnetization direction of the magnetic tunnel junction.

본 발명은 복수 개의 자기 터널 접합 셀을 하나의 트랜지스터에 병렬로 연결함으로써, 하나의 자기 메모리 셀에 다수의 정보를 저장하는 것이 가능하다는 장점 이 있다. 예를 들어, N 개의 자기 터널 접합 셀을 병렬로 연결할 경우 2N 개의 정보를 하나의 자기 메모리 셀에 저장할 수 있다는 장점이 있다.The present invention has the advantage that it is possible to store a plurality of information in one magnetic memory cell by connecting a plurality of magnetic tunnel junction cells to one transistor in parallel. For example, when N magnetic tunnel junction cells are connected in parallel, 2 N information may be stored in one magnetic memory cell.

추가적으로, 하나의 자기 터널 접합 셀에 하나의 트랜지스터를 통해 전류를 공급하면, 요구되는 트랜지스터의 갯수가 많아지기 때문에 고집적 자기 메모리 셀의 구현이 어려워진다. 하지만, 본 발명에서는 복수 개의 자기 터널 접합 셀에 하나의 트랜지스터를 병렬로 연결함으로써, 더 많은 정보를 저장할 수 있으면서도 요구되는 트랜지스터는 한 개 이기 때문에 고집적 자기 메모리 셀의 구현이 가능하다는 장점이 있다.In addition, supplying current through one transistor to one magnetic tunnel junction cell increases the number of transistors required, making it difficult to implement highly integrated magnetic memory cells. However, in the present invention, by connecting one transistor to a plurality of magnetic tunnel junction cells in parallel, there is an advantage that a highly integrated magnetic memory cell can be implemented because only one transistor is required while storing more information.

이하에서는 도면을 참조하여 본 발명의 실시예를 상세히 살펴보도록 한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀을 도시한다. 도 3을 참조하면, 두 개의 자기 터널 접합 셀(81,82)이 하나의 비트 라인(41)에 병렬로 연결되어 있다. 자기 터널 접합 셀(81,82)은 정보를 저장하는 역할을 한다.3 illustrates a magnetic memory cell using a current switching scheme according to an embodiment of the present invention. Referring to FIG. 3, two magnetic tunnel junction cells 81 and 82 are connected in parallel to one bit line 41. Magnetic tunnel junction cells 81 and 82 serve to store information.

본 발명의 실시예에서 자기 터널 접합 셀(81,82)은 각각 자유 강자성층(11,12), 고정 강자성층(21,22) 및 터널 장벽층(31,32)을 포함하고 있다. 비트 라인(41)은 각 자기 터널 접합 셀(81,82)의 자유 강자성층(11,12)에 연결된다. 그리고, 자기 터널 접합 셀(81,82) 각각의 고정 강자성층(21,22)은 트랜지스터(70)의 일측에 병렬로 연결되어 있다. 또한, 트랜지스터(70)는 워드 라인(51) 및 소스 라 인(61)에 각각 연결되어 있다.In the embodiment of the present invention, the magnetic tunnel junction cells 81 and 82 include free ferromagnetic layers 11 and 12, fixed ferromagnetic layers 21 and 22, and tunnel barrier layers 31 and 32, respectively. The bit line 41 is connected to the free ferromagnetic layers 11 and 12 of the respective magnetic tunnel junction cells 81 and 82. In addition, the fixed ferromagnetic layers 21 and 22 of the magnetic tunnel junction cells 81 and 82 are connected in parallel to one side of the transistor 70. In addition, the transistor 70 is connected to the word line 51 and the source line 61, respectively.

도 3을 참조하여 본 발명의 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀의 동작 과정을 살펴보면 다음과 같다. 먼저 쓰기(Writing) 동작을 살펴보면, 소스 라인(61)을 통해 트랜지스터(70)로 전류가 인가된다. 트랜지스터(70)로 인가된 전류는 워드 라인(51)을 통해 입력되는 신호에 따라 트랜지스터(70) 내부에서 제어된다. 트랜지스터(70)에서 제어된 전류는 터널 접합 셀(81,82)로 출력된다. 자기 터널 접합 셀(81,82)은 트랜지스터(70)로부터 인가된 전류에 따라 정보를 기록한다. An operation process of a magnetic memory cell using a current switching method according to an embodiment of the present invention will be described with reference to FIG. 3. Referring to the writing operation, a current is applied to the transistor 70 through the source line 61. The current applied to the transistor 70 is controlled inside the transistor 70 according to a signal input through the word line 51. The controlled current in transistor 70 is output to tunnel junction cells 81 and 82. The magnetic tunnel junction cells 81 and 82 record information according to the current applied from the transistor 70.

일반적으로, 자기 터널 접합 셀은 고정 강자성층과 자유 강자성층의 자화 방향에 따라 정보를 기록한다. 구체적으로, 자기 터널 접합 셀은 고정 강자성층과 자유 강자성층의 자화 방향이 동일한지 여부에 따라 1 비트의 정보를 저장한다. 예를 들어, 자화 방향이 동일하면 0(또는 1)이고, 자화 방향이 반대이면 1(또는 0)로 하여 1 비트의 정보를 저장 가능하다. 상기 고정 강자성층과 자유 강자성층의 자화 방향은 자기 터널 접합 셀로 인가된 전류에 따라 결정되므로, 결국 트랜지스터의 제어에 따라 정보를 기록함으로써 쓰기 동작이 이루어진다고 볼 수 있다.In general, the magnetic tunnel junction cell records information according to the magnetization directions of the fixed ferromagnetic layer and the free ferromagnetic layer. Specifically, the magnetic tunnel junction cell stores one bit of information depending on whether the magnetization directions of the fixed ferromagnetic layer and the free ferromagnetic layer are the same. For example, if the magnetization directions are the same, it is 0 (or 1). If the magnetization directions are opposite, it is possible to store 1 bit of information as 1 (or 0). Since the magnetization directions of the fixed ferromagnetic layer and the free ferromagnetic layer are determined by the current applied to the magnetic tunnel junction cell, it can be said that a write operation is performed by recording information under the control of the transistor.

도 4는 본 발명의 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀의 네 가지 상태를 도시한다. 도 4를 참조하면, 자기 터널 접합 셀(81,82) 각각의 고정 강자성층(21,22) 및 자유 강자성층(11,12)의 자화 방향에 따라 본 발명의 실시예에 따른 자기 메모리 셀은 네 가지 서로 다른 상태를 가지게 된다. 4 illustrates four states of a magnetic memory cell using a current switching scheme according to an embodiment of the present invention. Referring to FIG. 4, according to the magnetization directions of the fixed ferromagnetic layers 21 and 22 and the free ferromagnetic layers 11 and 12 of the magnetic tunnel junction cells 81 and 82, There are four different states.

예를 들어, 자기 터널 접합 셀(81)에서 고정 강자성층(21) 및 자유 강자성 층(11)의 자화 방향이 동일한 경우를 0 방향이 반대인 경우를 1이라고 하고, 자기 터널 접합 셀(82)에서 고정 강자성층(22) 및 자유 강자성층(12)의 자화 방향이 동일한 경우를 0, 방향이 반대인 경우를 1이라고 한다. 그러면, 자기 터널 접합 셀(81,82)의 조합에 의해 00, 01, 10, 11의 경우를 나타낼 수 있으며, 도 4에 도시된 네 가지 상태에 각각을 대응시킴으로써 2 비트 정보를 저장할 수 있다. For example, the case where the magnetization directions of the fixed ferromagnetic layer 21 and the free ferromagnetic layer 11 are the same in the magnetic tunnel junction cell 81 is 1 when the opposite direction is 0, and the magnetic tunnel junction cell 82 is used. In this case, the case where the magnetization directions of the fixed ferromagnetic layer 22 and the free ferromagnetic layer 12 are the same is 0, and the case where the directions are opposite is 1. Then, the case of 00, 01, 10, and 11 can be represented by the combination of the magnetic tunnel junction cells 81 and 82, and two-bit information can be stored by corresponding to each of the four states shown in FIG.

따라서, 본 발명의 실시예에 따른 자기 메모리 셀은 네 가지 서로 다른 상태를 가지기 때문에 각각의 상태에 서로 다른 정보를 저장할 수 있게 된다. 즉, 종래 기술에서는 하나의 트랜지스터로 하나의 정보만을 저장할 수 있었지만, 본 발명의 자기 메모리 셀은 하나의 트랜지스터(70)를 사용하여 네 개의 정보를 저장할 수 있게 된다.Therefore, since the magnetic memory cell according to the embodiment of the present invention has four different states, it is possible to store different information in each state. That is, in the related art, only one information can be stored in one transistor, but the magnetic memory cell of the present invention can store four information using one transistor 70.

한편, 정보의 읽기(Reading) 동작을 살펴보도록 한다. 본 발명의 실시예에서 하나의 비트 라인(41)이 두 개의 자기 터널 접합(81,82)에 병렬로 연결되어 있다. 상기 예에서, 두 개의 자기 터널 접합에는 00, 01, 10, 11의 네 개의 정보가 저장되어 있기 때문에 비트 라인(41)은 저장된 이 정보들을 읽어들임으로써 읽기 동작이 이루어진다.Meanwhile, the reading operation of information will be described. In the embodiment of the present invention, one bit line 41 is connected in parallel to two magnetic tunnel junctions 81 and 82. In the above example, since two pieces of information, 00, 01, 10, and 11 are stored in two magnetic tunnel junctions, the bit line 41 reads the stored information so that a read operation is performed.

도 5는 본 발명의 다른 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀의 구조를 도시한다. 도 5를 참조하면, N 개의 자기 터널 접합 셀(81,82,..,N)이 하나의 비트 라인(40)에 병렬로 연결되어 있다. 그리고, N 개의 자기 터널 접합 셀(81,82,..,N)은 하나의 트랜지스터(70)에 병렬로 연결되어 있다. 또한, 트랜지스터(70)는 워드 라인(51) 및 소스 라인(61)에도 각각 연결되어 있다. 5 illustrates a structure of a magnetic memory cell using a current switching scheme according to another embodiment of the present invention. Referring to FIG. 5, N magnetic tunnel junction cells 81, 82,... N are connected in parallel to one bit line 40. N magnetic tunnel junction cells 81, 82,..., N are connected in parallel to one transistor 70. In addition, the transistor 70 is also connected to the word line 51 and the source line 61, respectively.

상기한 실시예에서와 마찬가지로, 자기 메모리 셀은 N 개의 자기 터널 접합 셀(81,82,..,N) 각각의 고정 강자성층 및 자유 강자성층의 자화 방향에 따라 2N 개의 서로 다른 상태를 가지게 된다. 따라서, 2N 개의 상태 각각에 2N 개의 정보를 대응시킴으로써, 하나의 자기 메모리 셀에 2N 개의 정보를 저장할 수 있다.As in the above embodiment, the magnetic memory cell has 2 N different states depending on the magnetization directions of the fixed ferromagnetic layer and the free ferromagnetic layer of each of the N magnetic tunnel junction cells 81, 82,. do. Therefore, by corresponding the information to the 2 N of 2 N states, respectively, and it is capable of storing 2 N pieces of information in a magnetic memory cell.

결론적으로, 본 발명에서 트랜지스터(70)가 N 개의 자기 터널 접합 셀(81,82,..,N) 각각에 충분한 전류만 공급해 줄 수 있다면, 복수 개의 자기 터널 접합 셀을 하나의 트랜지스터에 연결함으로써 하나의 트랜지스터로도 많은 정보를 저장할 수 있게 되어 고집적 자기 메모리 셀의 구현이 가능해진다.In conclusion, in the present invention, if the transistor 70 can supply only enough current to each of the N magnetic tunnel junction cells 81, 82, ..., N, by connecting a plurality of magnetic tunnel junction cells to one transistor, A single transistor can store a lot of information, enabling the implementation of highly integrated magnetic memory cells.

도 1은 종래 기술의 자기 메모리 셀을 구성하는 자기 터널 접합 셀의 구조를 도시한다.1 shows a structure of a magnetic tunnel junction cell constituting a magnetic memory cell of the prior art.

도 2는 종래 기술의 전류 스위칭 방식을 이용한 자기 메모리 셀의 구조를 도시한다.2 illustrates a structure of a magnetic memory cell using a current switching scheme of the prior art.

도 3은 본 발명의 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀의 구조를 도시한다.3 illustrates a structure of a magnetic memory cell using a current switching scheme according to an embodiment of the present invention.

도 4는 본 발명의 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀의 네 가지 상태를 도시한다.4 illustrates four states of a magnetic memory cell using a current switching scheme according to an embodiment of the present invention.

도 5는 본 발명의 다른 실시예에 따른 전류 스위칭 방식을 이용한 자기 메모리 셀의 구조를 도시한다.5 illustrates a structure of a magnetic memory cell using a current switching scheme according to another embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10,11,12 : 자유 강자성층10,11,12: free ferromagnetic layer

20,21,22 : 고정 강자성층20,21,22: fixed ferromagnetic layer

30,31,32 : 터널 장벽층30,31,32: tunnel barrier layer

40,41 : 비트 라인40,41: bit line

50,51 : 워드 라인50,51: word line

60,61 : 소스 라인60,61: Source Line

70 : 트랜지스터70: transistor

80,81,82 : 자기 접합 터널80,81,82: Self Junction Tunnel

Claims (8)

하나의 비트 라인 및 하나의 소스 라인을 포함하는 자기 메모리 셀(Magnetic Random Access Memory Cell)로서,A magnetic random cell comprising one bit line and one source line, comprising: 상기 하나의 비트 라인과 병렬로 연결되고, 데이터를 저장하는 복수 개의 자기 터널 접합(Magnetic Tunnel Junction); 및A plurality of magnetic tunnel junctions connected in parallel with the one bit line and storing data; And 일측이 상기 복수 개의 자기 터널 접합과 병렬로 연결되고, 타측이 상기 하나의 소스 라인과 연결되는 트랜지스터를 포함하는 자기 메모리 셀.And a transistor having one side connected in parallel with the plurality of magnetic tunnel junctions and the other side connected with the one source line. 청구항 1에 있어서,The method according to claim 1, 상기 트랜지스터는 상기 하나의 비트 라인과 상기 하나의 소스 라인 사이에 흐르는 전류를 제어함으로써 상기 자기 터널 접합의 자화 방향을 결정하는 것을 특징으로 하는 자기 메모리 셀.And the transistor determines a magnetization direction of the magnetic tunnel junction by controlling a current flowing between the one bit line and the one source line. 청구항 1에 있어서,The method according to claim 1, 상기 복수 개의 자기 터널 접합 각각은 고정 강자성층, 터널 장벽층 및 자유 강자성층을 포함하는 자기 메모리 셀.Each of the plurality of magnetic tunnel junctions comprises a fixed ferromagnetic layer, a tunnel barrier layer, and a free ferromagnetic layer. 청구항 3에 있어서, The method according to claim 3, 상기 하나의 비트 라인은 상기 복수 개의 자기 터널 접합 각각의 자유 강자 성층과 병렬로 연결되는 것을 특징으로 하는 자기 메모리 셀.And the one bit line is connected in parallel with a free ferromagnetic layer of each of the plurality of magnetic tunnel junctions. 청구항 3에 있어서, The method according to claim 3, 상기 트랜지스터는 상기 복수 개의 자기 터널 접합 각각의 고정 강자성층과 병렬로 연결되는 것을 특징으로 하는 자기 메모리 셀.And the transistor is connected in parallel with the fixed ferromagnetic layer of each of the plurality of magnetic tunnel junctions. 청구항 3에 있어서,The method according to claim 3, 상기 자유 강자성층은 상기 터널 장벽층과 정합(Coherent)을 이루는 것을 특징으로 하는 자기 메모리 셀.And the free ferromagnetic layer is coherent with the tunnel barrier layer. 청구항 1에 있어서,The method according to claim 1, 상기 트랜지스터와 연결되어 상기 트랜지스터의 동작을 제어하는 워드 라인을 더 포함하는 자기 메모리 셀.And a word line coupled to the transistor to control operation of the transistor. 청구항 1에 있어서,The method according to claim 1, 상기 하나의 비트 라인 및 상기 하나의 소스 라인으로 입력되는 신호를 통해 읽기/쓰기 동작을 제어하는 것을 특징으로 하는 자기 메모리 셀.And a read / write operation through a signal input to the one bit line and the one source line.
KR1020080030255A 2008-04-01 2008-04-01 Magnetic random access memory cell KR101119160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080030255A KR101119160B1 (en) 2008-04-01 2008-04-01 Magnetic random access memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080030255A KR101119160B1 (en) 2008-04-01 2008-04-01 Magnetic random access memory cell

Publications (2)

Publication Number Publication Date
KR20090105022A true KR20090105022A (en) 2009-10-07
KR101119160B1 KR101119160B1 (en) 2012-03-20

Family

ID=41534781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080030255A KR101119160B1 (en) 2008-04-01 2008-04-01 Magnetic random access memory cell

Country Status (1)

Country Link
KR (1) KR101119160B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101215951B1 (en) * 2011-03-24 2013-01-21 에스케이하이닉스 주식회사 Semiconductor Memory And Manufacturing Method Thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448853B1 (en) * 2002-05-20 2004-09-18 주식회사 하이닉스반도체 Magnetic random access memory
KR100923298B1 (en) * 2003-01-18 2009-10-23 삼성전자주식회사 Magnetic RAM comprising unit cell having one transistor and two Magnetic Tunneling Junctions and method for manufacturing the same
KR100546177B1 (en) * 2003-06-25 2006-01-24 주식회사 하이닉스반도체 Magnetoresistive ram
JP2005340468A (en) * 2004-05-26 2005-12-08 Fujitsu Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101215951B1 (en) * 2011-03-24 2013-01-21 에스케이하이닉스 주식회사 Semiconductor Memory And Manufacturing Method Thereof
US8896040B2 (en) 2011-03-24 2014-11-25 SK Hynix Inc. Magneto-resistive random access memory (MRAM) having a plurality of concentrically aligned magnetic tunnel junction layers and concentrically aligned upper electrodes over a lower electrode

Also Published As

Publication number Publication date
KR101119160B1 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
US7859881B2 (en) Magnetic memory device and write/read method of the same
US7835210B2 (en) Magnetic random access memory and data read method of the same
KR101004910B1 (en) Current driven switched magnetic storage cells having improved read and write margins and magnetic memories using such cells
CN100541650C (en) Nonvolatile storage array and address conversion method
WO2010095589A1 (en) Magnetoresistive effect element and magnetic random access memory
JP2001217398A (en) Storage device using ferromagnetic tunnel junction element
US20090034326A1 (en) Methods and apparatus for thermally assisted programming of a magnetic memory device
JP5091969B2 (en) Semiconductor memory device
JP5483025B2 (en) Magnetic memory element, magnetic memory
JP2013026600A (en) Semiconductor device and magnetic random access memory
US9311981B2 (en) Semiconductor memory device having variable resistance memory and operating method
US20150043272A1 (en) Spin-Transfer Torque Magnetic Random Access Memory (STTMRAM) With Enhanced Write Current
JP5472832B2 (en) Magnetic memory
JP5045672B2 (en) MRAM using 2T2MTJ cell
CN110544499B (en) Static random access memory structure
KR20030089078A (en) Magnetic Ramdom access memory cell using magnetic tunnel junction devices
CN111613635B (en) Vertical spin transfer torque MRAM memory cells
JP2012190515A (en) Semiconductor memory device
JP2013026337A (en) Semiconductor device and magnetic random access memory
JP5754531B2 (en) Magnetoresistive element and method of manufacturing magnetic random access memory
KR20170064982A (en) Method and apparatus for performing self-referenced read in a magnetoresistive random access memory
US9767863B2 (en) Redundancy memory device comprising a plurality of selecting circuits
KR100422945B1 (en) A method for writing of a magnetic random access memory using bipolar junction transistor
KR101119160B1 (en) Magnetic random access memory cell
US20050052905A1 (en) Magnetic memory cell structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee