KR20090104210A - Development of advanced performance in fuel cell with mixture of metal/CNF/ACF and metal/carbon composites - Google Patents
Development of advanced performance in fuel cell with mixture of metal/CNF/ACF and metal/carbon composites Download PDFInfo
- Publication number
- KR20090104210A KR20090104210A KR1020080029522A KR20080029522A KR20090104210A KR 20090104210 A KR20090104210 A KR 20090104210A KR 1020080029522 A KR1020080029522 A KR 1020080029522A KR 20080029522 A KR20080029522 A KR 20080029522A KR 20090104210 A KR20090104210 A KR 20090104210A
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- carbon
- activated carbon
- fuel cell
- composite
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
Description
본 발명은 활성탄소섬유 위에 열분해법으로 탄소나노섬유를 성장시켜, 이를 지지체로 사용하여 전이금속 전구체를 담지시켜 제조되는 촉매와 활성탄소에 전이금속 전구체를 담지시킨 촉매의 조합을 통하여 전극구조의 최적제어를 이룩하고, 연료전지의 전극성능 발전에 관한 것이다.The present invention optimizes the electrode structure through a combination of a catalyst prepared by growing carbon nanofibers on an activated carbon fiber by pyrolysis and supporting the transition metal precursor using the catalyst, and a catalyst supporting the transition metal precursor on the activated carbon. The present invention relates to the development of control and the electrode performance of fuel cells.
연료전지는 전기화학반응에 의해 연료가 가지고 있는 화학에너지를 직접 전기에너지로 변환시키는 발전장치로써 디젤발전, 증기가스 터빈장치 등의 다른 발전장치에 비해 발전효율이 높고 소음 및 유해 배기가스 등에 의한 문제점이 적은 장점을 가지고 있다. 세부적인 반응에 대하여 설명하면 연료전지는 양극에 수소를 함유한 연료가스를 음극에는 산소를 함유한 산화성 가스를 공급하여 수소와 산소의 전기화학적 반응에 의해 전기에너지를 장치로써, NOx가스나 매연 등의 배출이 없고 소음과 진동 등이 적은 친환경적인 장치이기 때문에 차세대 에너지원으로 많은 연구가 진 행되고 있으며, 특히 배기가스를 방출하지 않아 자동차와 같은 이동체용 구동에너지원으로 사용할수 있도록 개발이 이루어져 그 실용화를 목전에 두고 있다. 상기와 같은 연료전지는 사용되는 전해질의 종류에 따라 크게 알칼리형, 인산형, 용융탄산염, 고체산화물 및 고분자 연료전지로 분류되는바, 이들중 이동전원용 에너지원으로는 고분자 전해질 연료전지(PEMFC, polymer electrolyte membrane fuel cell)와 직접메탄올 연료전지(DMFC, direct methanol fuel cell)이 가장 적합한 것으로 알려져 있다.Fuel cell is a power generation device that directly converts chemical energy of fuel into electric energy by electrochemical reaction. It has higher power generation efficiency than other power generation devices such as diesel power generation and steam gas turbine device. This has a small advantage. In detail, the fuel cell supplies a fuel gas containing hydrogen to the anode and an oxidizing gas containing oxygen to the cathode. The fuel cell supplies electrical energy by an electrochemical reaction between hydrogen and oxygen. Since it is an eco-friendly device with no emission of noise and low noise and vibration, many researches are being conducted as a next-generation energy source. Especially, it is developed to be used as a driving energy source for moving bodies such as automobiles because it does not emit exhaust gas. Practical use is in sight. The fuel cells are classified into alkali type, phosphate type, molten carbonate, solid oxide, and polymer fuel cell according to the type of electrolyte used. Among these, a fuel cell for a mobile power source is a polymer electrolyte fuel cell (PEMFC, polymer). The electrolyte membrane fuel cell (DMFC) and direct methanol fuel cell (DMFC) are known to be the most suitable.
상기 PEMFC 및 DMFC는 고분자를 전해질로 사용하기 때문에 전해질에 의한 부식이나 증발의 위험이 없으며, 단위 면적당 높은 전류밀도를 얻을수 있기 때문에 타 연료전지에 비해 출력특성이 월등히 높고, 작동온도가 낮은 장점이 있는 연료전지이다. Since PEMFC and DMFC use a polymer as an electrolyte, there is no risk of corrosion or evaporation by an electrolyte, and since a high current density can be obtained per unit area, the output characteristics are much higher than those of other fuel cells, and the operating temperature is low. It is a fuel cell.
상기 PEMFC 및 DMFC 의 단위전지는, 나피온 용액의 건조층을 중심으로 하여 그 양면에 나피온 쉬트, 전극이 되는 백금/탄소 촉매층, 테프론 처리 카본페이퍼, 세퍼레이터, 집전체로의 엔드플레이트 등이 일련의 순서로 적층된 구조로써, 가스유로채널을 통해 공급되는 연료가스인 수소가스가 양극을 이루는 백금/탄소 촉매와 반응하면서 전자를 빼앗겨 수소이온이 되고 이 수소이온들은 고분자 전해질막인 상기 나피온 쉬트와 나피온 용액건조층을 통과하여 반대편의 음극으로 이동하게 된다. 그리고 반대편 가스유로채널을 통해 공급되는 산소가스가 외부회로를 통해 음극으로 이동해온 전자들에 의해 환원된 산소이온은 음극으로 이동해 온 상기수소이온과 반응하여 음극표면에서 물을 생성시키게 되고, 이 물은 반응하지 않은 여분의 산소가스와 함께 가스 유로 채널의 출구로 배출된다.The unit cells of the PEMFC and DMFC include a Nafion sheet, a platinum / carbon catalyst layer serving as an electrode, a Teflon-treated carbon paper, a separator, and an end plate to a current collector on both sides of a dry layer of a Nafion solution. In the stacked structure, hydrogen gas, a fuel gas supplied through a gas flow channel, reacts with a platinum / carbon catalyst constituting an anode to desorb electrons to become hydrogen ions, and the NaFion sheet is a polymer electrolyte membrane. And Nafion solution is passed through the drying layer to the negative electrode of the opposite side. Oxygen ions reduced by the electrons moved through the external gas flow channel to the cathode through an external circuit react with the hydrogen ions moved to the cathode to generate water at the cathode surface. Is discharged to the outlet of the gas flow channel with excess oxygen gas which has not reacted.
이때, 상기 촉매 반응으로 생성된 전자들이 외부 회로를 따라 흐르게 되면서 전기를 발생하게 된다. In this case, electrons generated by the catalytic reaction flow along an external circuit to generate electricity.
일반적으로 백금 혹은 백금을 주성분으로 하는 합금이 무정형의 카본에 담지된 촉매가 연료전지용 전극재료로 널리 사용된다. 그러나 이러한 전극재료는 담지되는 금속의 양이 증가할수록 금속의 결정크기가 증가한다는 단점이 있다. 한편 백금과 같은 귀금속의 이용율을 향상시킬수 있는 방법으로서, 보다 높은 비표면적을 가지는 카본을 제조한 다음, 여기에 백금을 담지시킬 경우 보다 높은 비표면적을 갖고 있기 때문에 이에 담지된 백금은 상업용으로 널리 사용되는 vulcan XC카본에 담지된 경우보다 월등히 작은 결정크기를 갖는다. 그러나 이러한 높은 비표면적을 가지는 카본류, 카본나노튜브(CNT), 탄소나노섬유(CNF)등은 통상의 방법으로는 백금을 PEMFC, DMFC에서 요구하는 량(20 - 60%)에 맞게 담지할 수가 없다. 따라서 표면을 강산이나 강염기를 사용하여 산화(oxidation)시키는 방법을 사용하여 담지하는 방법들이 있다. 하지만 이런 방법을 사용하여 촉매제조시 미세기공에 의해 수소 양이온의 표면전달 특성이 현저히 저하되는 단점이 나타난다.In general, a catalyst in which platinum or platinum-based alloys are supported on amorphous carbon is widely used as an electrode material for fuel cells. However, such an electrode material has a disadvantage in that the crystal size of the metal increases as the amount of the supported metal increases. On the other hand, as a method to improve the utilization of precious metals such as platinum, the platinum supported thereon has a higher specific surface area when carbon having a higher specific surface area is produced and then loaded with platinum. It has a much smaller crystal size than the vulcan XC carbon. However, such high surface area carbons, carbon nanotubes (CNTs), carbon nanofibers (CNFs), etc., can be loaded in a conventional manner according to the amount required by PEMFC and DMFC (20-60%). none. Therefore, there are methods of supporting the surface using a method of oxidizing using a strong acid or a strong base. However, this method has a disadvantage in that the surface transfer characteristics of hydrogen cations are significantly lowered by the micropores when preparing the catalyst.
본 발명은 종래의 지지체로써 사용되는 활성탄소와 탄소나노튜브, 탄소나노섬유등이 갖고 있는 제한점을 해결하기 위하여 창안된 것으로, 활성탄소에 담지된 전이금속 촉매와 활성탄소섬유 위에 성장된 탄소나노섬유에 담지된 전이금속 촉매를 적절한 조합으로 혼합하여 전기전도성과 반응면적을 갖도록 하여 연료전지의 전극구조 제어 및 CGMRDUS화 담체의 전극반응의 효율적 전행을 위한 3상구조의 제어에 의해 촉매 성능을 극대화 하는데 그 목적이 있다. The present invention was devised to solve the limitations of activated carbon, carbon nanotubes, carbon nanofibers, etc. used as a conventional support, and carbon nanofibers grown on activated carbon fibers and transition metal catalysts Maximizes catalyst performance by mixing the transition metal catalysts supported in a proper combination to have electrical conductivity and reaction area to control the electrode structure of the fuel cell and the three-phase structure for efficient propagation of electrode reaction of the CGMRDUS carrier. The purpose is.
본 발명에서 금속-복합카본 지지체는 다양한 금속을 카본과 화학적으로 결합시킬 수 있을 뿐만 아니라 백금을 포함한 2개종 이상의 금속 전구체를 도입하여 복합체를 제조하게 되면 매우 다양한 특성의 합금 또는 금속 혼합물을 얻을 수 있게 된다. 이를 통해 백금의 양을 줄이면서 연료전지의 전극촉매 활성을 증가시키는 합금-카본복합 지지체 또는 금속혼합물-카본복합 지지체 제조방법에 관한 것이다.In the present invention, the metal-composite carbon support may not only chemically bond various metals to carbon, but also introduce two or more metal precursors including platinum to prepare a composite to obtain an alloy or metal mixture having a wide variety of properties. do. The present invention relates to a method for producing an alloy-carbon composite support or a metal mixture-carbon composite support that reduces the amount of platinum and increases the electrocatalyst activity of a fuel cell.
본 발명의 금속-복합카본지지체는 연료전지의 전극으로 유용하게 사용될 수 있다. 본 발명의 금속-복합카본지지체가 연료전지의 전극 반응에 있어서 우수한 촉매 활성을 나타낸다는 점은 후술하는 실시예에서 확인할 수 있다. The metal-composite carbon support of the present invention can be usefully used as an electrode of a fuel cell. It can be seen in the examples described later that the metal-composite carbon support of the present invention exhibits excellent catalytic activity in the electrode reaction of the fuel cell.
본 발명의 금속-복합카본지지체는 수소 또는 탄화수소를 연료로 사용하는 어떠한 연료전지의 전극 촉매로도 사용될 수 있으나, 특히 고분자전해질연료전지(PEMFC)와 직접메탄올 연료전지(Direct methanol Feul Cell)의 촉매로 유용하다.The metal-composite carbon support of the present invention may be used as an electrode catalyst of any fuel cell using hydrogen or hydrocarbon as a fuel, but in particular, a catalyst of a polymer electrolyte fuel cell (PEMFC) and a direct methanol fuel cell (Direct methanol Feul Cell) Useful as
본 발명은 활성탄소섬유 위에 성장된 탄소나노섬유에 담지된 금속촉매와 활성탄소위에 담지된 금속촉매의 최적의 조합을 통한 연료전지 전극 금속-탄소복합구조체의 제어 및 창출을 통한 저온형 연료전지의 전극제조에 관한 것이다.The present invention provides a low temperature fuel cell by controlling and creating a fuel cell electrode metal-carbon composite structure through an optimal combination of a metal catalyst supported on carbon nanofibers grown on activated carbon fibers and a metal catalyst supported on activated carbon. It relates to electrode production.
본 발명은 또한 상기의 금속-탄소 복합체를 제조하는 방법을 제공하는데, 상기 제조방법은 다음과 같은 단계로 구성된다.The present invention also provides a method for producing the metal-carbon composite, which is composed of the following steps.
(a) 활성탄소섬유의 표면처리단계(a) surface treatment of activated carbon fibers
(b) 표면처리된 활성탄소섬유에 금속전구체를 첨가하여 탄화수소의 열분해를 경유한 탄소나노섬유의 성장단계와,(b) growth of carbon nanofibers through pyrolysis of hydrocarbons by adding metal precursors to the surface-treated activated carbon fibers;
(c) 상기의 단계로 제조된 활성탄소섬유위에 성장된 탄소나노섬유에 금속을 함침,건조시키는 단계와(c) impregnating and drying the metal in the carbon nanofibers grown on the activated carbon fibers prepared in the step;
(d) 활성탄소위에 금속을 함침, 건조시키는 단계와,(d) impregnating and drying the metal on the activated carbon;
(e) 상기 결과물을 혼합, 소성하는 단계를 포함한다.(e) mixing and firing the resultant product.
상기 활성탄소섬유 위에 성장된 탄소나노섬유에 담지된 금속촉매와 활성탄소위에 담지된 금속촉매의 조합을 위해 구성되는 금속은 특별히 제한되지 않으며, 예를 들어 Pt, Ru, Cu, Ni, Mn, Co, W, Fe, Ir, Rh, Ag, Au, Os, Cr, Mo V, Pd, Ti, Zr, Zn, B, Al, Ga, Sn, Pb, Sb, Se, Te, Cs, Rb, Mg, Sr, Ce, Pr, Nd, Sm, Re 또는 이들의 복합성분을 사용할수 있고, 이들 금속의 전구체로 (NH3)4Pt(NO3)2, H2PtCl6- xH20, (NH3)6RuCl3, Ni(NO3)2, MnCl2, CoCl2, (NH4)6W12O39, FeCl2, (NH4)3IrCl6, (NH4)3RhCl6, AgCl 등을 사용할 수 있다.The metal constituted for the combination of the metal catalyst supported on the carbon nanofibers grown on the activated carbon fiber and the metal catalyst supported on the activated carbon is not particularly limited. For example, Pt, Ru, Cu, Ni, Mn, Co , W, Fe, Ir, Rh, Ag, Au, Os, Cr, Mo V, Pd, Ti, Zr, Zn, B, Al, Ga, Sn, Pb, Sb, Se, Te, Cs, Rb, Mg, Sr, Ce, Pr, Nd, Sm, Re or combinations thereof may be used, and precursors of these metals include (NH 3) 4 Pt (NO 3) 2,
이때, 활성탄소섬유 위에 성장된 탄소나노섬유에 함침된 금속은 하나의 금속이 단독으로 포함될 수도 있고, 둘 이상의 금속이 포함될 수도 있다. 둘 이상의 금속이 포함될 경우에는, 반응 조건을 조절하여 합금의 형태로 함침시킬 수도 있고, 따로따로 혼합된 형태로 함침 시킬수도 있다. 또한 금속의 함침비율역시 다양하게 조절될수 있다. 예를 들어, 백금과 류테늄의 전구체로 (NH3)4Pt(NO3)2 와 (NH3)6RuCl3를 사용하여 백금 또는 루테늄을 따로따로 함침 시킬 수도 있고 백금, 루테늄 함금의 형태로 함침 시킬 수도 있다.At this time, the metal impregnated in the carbon nanofibers grown on the activated carbon fiber may be included in one metal alone, or may include two or more metals. When two or more metals are included, the reaction conditions may be adjusted to impregnate the alloy, or may be impregnated separately in a mixed form. In addition, the impregnation rate of the metal can also be adjusted in various ways. For example, platinum or ruthenium may be impregnated separately using (NH3) 4Pt (NO3) 2 and (NH3) 6RuCl3 as precursors of platinum and ruthenium, or may be impregnated in the form of platinum and ruthenium alloys.
한편, 전술한 데로 상기에 열거된 금속들은 단독으로 함침될 수도 있고, 둘 이상의 복합성분이 함침될 수 있으나, 복합성분의 경우 백금이 함께 포함되는 것이 바람직하다.Meanwhile, as described above, the metals listed above may be impregnated alone, or two or more composite components may be impregnated, but in the case of the composite components, platinum is preferably included together.
상기 (a) 단계는 활성탄소섬유의 표면처리 단계로써, 표면처리제로써 염산과 고순도의 질산을 사용하는 것이 바람직하다.The step (a) is a surface treatment step of the activated carbon fiber, it is preferable to use hydrochloric acid and high purity nitric acid as the surface treatment agent.
또한 고순도의 산을 사용하는 대신에 강염, 예를 들면 KOH(수산화칼륨)을 사용할 수도 있다. It is also possible to use strong salts such as KOH (potassium hydroxide) instead of using high purity acids.
상기 (b) 단계는 표면처리된 활성탄소섬유 위에 탄소나노섬유를 성장시키기 위한 단계로써, 카본전구체로써 아세톤에 용해된 니켈나이트레이트(nickel nitrate tetrahydrate)를 사용하는 것이 바람직하며 500에서 550oC 온도의 메탄분위기에서 수행되는 것이 바람직하다.The step (b) is a step for growing carbon nanofibers on the surface-treated activated carbon fibers, preferably using nickel nitrate tetrahydrate dissolved in acetone as a carbon precursor, and methane at a temperature of 500 to 550 ° C. It is preferably carried out in an atmosphere.
상기 (e) 단계는 상기단계를 통하여 얻어진 금속-탄소나노섬유-활성탄소섬유와 금속-활성탄소를 조합하는 단계로써, 새로운 복합체가 얻어지는 과정이다.The step (e) is a step of combining the metal-carbon nanofiber-activated carbon fiber and the metal-activated carbon obtained through the above step, a process of obtaining a new composite.
상기 (e)단계는 350 - 900oC의 수소분위기에서 수행되는 것이 바람직하다.The step (e) is preferably carried out in a hydrogen atmosphere of 350-900oC.
상기와 같은 과정을 거쳐 제조된 금속-카본 복합체 내에는 금속-카본 복합체 중량에 대하여 1 - 95중량%의 금속과 5-99중량% 카본이 포함되고, 바람직하게는 4 - 60중량%의 금속과 40 - 96중량%의 카본이 포함된다.In the metal-carbon composite prepared by the above process, 1 to 95% by weight of metal and 5-99% by weight of carbon are contained, preferably 4 to 60% by weight, of the metal-carbon composite. 40 to 96% by weight of carbon is included.
한편, 본 발명의 금속-카본복합체에 사용된 금속이, 백금을 제 1 성분으로 하고, 기타 금속을 제 2 성분으로 이루어진 경우, 제 2 금속성분으로는 Ru, Cu, Ni, Mn, Co, W, Fe, Ir, Rh, Ag, Au, Os, Cr, Mo, V, Pd, Ti, Zr, Zn, B, Al, Ga, Sn, Pb, Sb, Se, Te, Cs, Rb, Mg, Sr, Ce, Pr, Nd, Sm, Re 또는 이들의 혼합성분을 사용할 수 있다.본 발명에서와 같이, 활성탄소섬유 위에 성장된 탄소나노섬유에 담지된 금속촉매와 활성탄소섬유위에 담지된 금속촉매의 조합은 1:9 ~ 5:5의 조합인 것이 바람직하다. 두 개의 촉매가 상기와 같은 비율로 조합될 경우, 연료전지의 특성이 더욱 우수해짐을 확인할 수 있었다. 이는 전극구조의 최적화에 의해 수소이온 전도특성과 전기전도성이 향상된 3상의 구성이 실현된 것으로 본 발명의 중요요소이다. 또한, 본 발명에서와 같이 두가지 종류의 카본지지체를 동시에 도입하여 열처리하면 금속과 카본이 화학적으로 공유결합을 생성시킬수 있기 때문에 흡착된 수소의 스필오버의 활발한 진행을 유도할 수 있다. 즉, 수소흡장성 매체적 특성을 겸비한 전극구조의 실현으로 연료전지의 전극반응 속도를 증가시키는데 매우 중요한 역할을 하여, 이에 고분산으로 유지된 금속촉매의 활성이 고전류에도 저항이 적은 전극활성을 갖게 할 수 있다. 즉, 본 발명의 두가지 카본지지체를 동시에 도입하여 사용하면 전극구성의 최적화와 더불어 연료전지의 전극반응 속도를 향상시킬 수 있다.On the other hand, when the metal used for the metal-carbon composite of the present invention comprises platinum as the first component and other metals as the second component, the second metal component is Ru, Cu, Ni, Mn, Co, W , Fe, Ir, Rh, Ag, Au, Os, Cr, Mo, V, Pd, Ti, Zr, Zn, B, Al, Ga, Sn, Pb, Sb, Se, Te, Cs, Rb, Mg, Sr , Ce, Pr, Nd, Sm, Re or a mixed component thereof may be used. As in the present invention, a metal catalyst supported on carbon nanofibers grown on activated carbon fibers and a metal catalyst supported on activated carbon fibers may be used. The combination is preferably a combination of 1: 9 to 5: 5. When the two catalysts are combined in the above ratio, it can be seen that the characteristics of the fuel cell are more excellent. This is an important element of the present invention as the three-phase configuration in which the hydrogen ion conduction characteristics and the electrical conductivity are improved by the optimization of the electrode structure is realized. In addition, when two kinds of carbon supports are simultaneously introduced and heat treated as in the present invention, metal and carbon may chemically form covalent bonds, thereby inducing active progression of spillover of adsorbed hydrogen. That is, it is very important to increase the electrode reaction rate of the fuel cell by realizing the electrode structure that combines the hydrogen-absorbing medium characteristics, so that the activity of the metal catalyst maintained in high dispersion has the electrode activity with low resistance even at high current. can do. That is, when the two carbon supports of the present invention are introduced and used at the same time, the electrode configuration can be optimized and the electrode reaction speed of the fuel cell can be improved.
실시예1Example 1
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
먼저, 1g의 활성탄소섬유를 곱게 갈아 0.2M의 염산용액 200mL에 넣고 상온에서 교반하였다. 교반후 증류수로 세척하면서 필터링을 하였다. 건조후 얻은 파우더를 다시 6M의 질산용액 200mL에 넣고 80도에서 교반한다. 교반이 끝난후 증류수로 세척하면서 필터링을 하였다. 위에 제조방법에 따라 얻은 전처리된 활성탄소섬유 1g 기준으로 아세톤에 용해된 0.2M의 니켈나이트레이트(nickel nitrate tetrahydrate)를 mL를 넣은후 교반한다. 이를 진공건조기를 이용하여 40 C온도에서 건조하여 Ni 전구체 용액이 합침되도록 하였다. 이후 반응로에 넣어서 메탄(NH4)하에서 530 C 하에서 1시간동안 열분해하였다. 이는 활성탄소 섬유위에 탄소섬유를 성장시키기 위한 공정이다.First, 1 g of activated carbon fibers were finely ground and put into 200 mL of 0.2 M hydrochloric acid solution and stirred at room temperature. After stirring, the mixture was filtered with washing with distilled water. The powder obtained after drying is added to 200 mL of 6M nitric acid solution and stirred at 80 ° C. After stirring was filtered while washing with distilled water. Based on 1 g of the pretreated activated carbon fiber obtained according to the above method, add 0.2 M of nickel nitrate tetrahydrate dissolved in acetone, and then stir. This was dried at a temperature of 40 C using a vacuum dryer to allow the Ni precursor solution to merge. Then put into a reactor and pyrolyzed under methane (NH4) for 1 hour under 530 C. This is a process for growing carbon fibers on activated carbon fibers.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
상기 A의 방법에 따라 제조된 활성탄소 섬유위에 성장된 탄소나노섬유 1g 기준으로 20wt% Pt가 합침되도록 Pt 전구체 용액을 첨가하여 교반한다. 전구체로는 H2PtCl6 가 사용되었다. 또한 활성탄소도 상기 방법으로 Pt를 함침시킨다. 환원제로써는 NaBH4를 사용하여 dropping을 하여 환원과정을 실시하였다. 이후, 350도 수소 분위기에서 열처리를 수행하였다.Pt precursor solution is added and stirred so that 20wt% Pt is added on the basis of 1g of carbon nanofibers grown on activated carbon fibers prepared according to the method of
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
상기 A,B 방법에 따라 제조된 촉매를 서로 조합하여 본 발명의 백금-복합탄소 지지체를 제조하였다. 그 조합비율은 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 30wt%, 활성탄소섬유 70wt%이다. The platinum-compound carbon support of the present invention was prepared by combining the catalysts prepared according to the above methods A and B. The combination ratio is 30 wt% carbon nanofibers and 70 wt% activated carbon fibers grown on activated carbon fibers based on the composite carbon support.
실시예2Example 2
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 20wt%, 활성탄소섬유 80wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 20 wt% of carbon nanofibers and 80 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예3Example 3
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 10wt%, 활성탄소섬유 90wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1, except that the combination ratio was 10 wt% of carbon nanofibers grown on activated carbon fibers and 90 wt% of activated carbon fibers based on the composite carbon support. It was.
실시예4Example 4
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 0wt%, 활성탄소섬유 100wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 0 wt% of carbon nanofibers grown on activated carbon fibers and 100 wt% of activated carbon fibers based on the composite carbon support. It was.
실시예5Example 5
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 40wt%, 활성탄소섬유 60wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 40 wt% of carbon nanofibers and 60 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예6Example 6
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 50wt%, 활성탄소섬유 50wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 50 wt% of carbon nanofibers and 50 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예7Example 7
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 60wt%, 활성탄소섬유40wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 60 wt% of carbon nanofibers and 40 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예8Example 8
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 70wt%, 활성탄소섬유 30wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 70 wt% of carbon nanofibers and 30 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예9Example 9
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 80wt%, 활성탄소섬유 20wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 80 wt% of carbon nanofibers and 20 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예10Example 10
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 90wt%, 활성탄소섬유 10wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다. The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 90 wt% of carbon nanofibers and 10 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. It was.
실시예11Example 11
A. 활성탄소 섬유위에 성장된 탄소나노섬유의 제조A. Preparation of Carbon Nanofibers Grown on Activated Carbon Fibers
활성탄소 섬유위에 성장된 탄소나노섬유는 실시예 1과 동일한 방법으로 제조하였다.Carbon nanofibers grown on activated carbon fibers were prepared in the same manner as in Example 1.
B. 활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조B. Preparation of Platinum Catalyst Supported on Carbon Nanofibers Grown on Activated Carbon Fiber
활성탄소 섬유위에 성장된 탄소나노섬유에 담지된 백금촉매의 제조는 실시예 1과 동일한 방법으로 제조하였다.The platinum catalyst supported on carbon nanofibers grown on activated carbon fibers was prepared in the same manner as in Example 1.
C. 활성탄소 섬유위에 성장된 탄소나노 섬유와 활성탄소에 담지된 백금촉매의 조합C. Combination of carbon nanofibers grown on activated carbon fiber and platinum catalyst supported on activated carbon
그 조합비율이 복합탄소지지체를 기준으로 활성탄소 섬유위에 성장된 탄소나노섬유 100wt%, 활성탄소섬유 0wt%인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 본 발명의 금속-복합탄소지지체를 제조하였다 The metal-composite carbon support of the present invention was prepared in the same manner as in Example 1 except that the combination ratio was 100 wt% of carbon nanofibers and 0 wt% of activated carbon fibers grown on activated carbon fibers based on the composite carbon support. Was
실험예1. 구조분석Experimental Example 1. Structural analysis
상기 실시예에서 제조된 활성탄소위에 성장된 탄소나노섬유의 구조를 분석하기 위하여 투과전자현미경(Trasmission Electron Microscope:TEM), X-선 회절분석기(X-ray diffractometer:XRD), 기공분석기(pore analyser)를 이용하였다.In order to analyze the structure of the carbon nanofibers grown on the activated carbon prepared in the above embodiment, a transmission electron microscope (TEM), an X-ray diffractometer (XRD), a pore analyzer ) Was used.
도 1은 실시예 1에 따라 제조된 활성탄소섬유위에 성장된 탄소나노섬유를 SEM으로 관찰한 결과이며 이로부터 알수 있는 바와 같이 본 발명에 의한 활성탄소 섬유위에 성장된 탄소나노섬유는 3차원 구조로 관찰되었다.1 is a result of observing the carbon nanofibers grown on the activated carbon fiber prepared according to Example 1 by SEM and as can be seen from the carbon nanofibers grown on the activated carbon fiber according to the present invention has a three-dimensional structure Was observed.
도 2는 실시예 2에 따라 제조된 활성탄소섬유 위에 성장된 탄소나노섬유에 함침된 백금-복합카본지지체의 분말을 TEM으로 관찰한 결과이며 이로부터 알수 있는바와 같이 본 발명에 의한 백금-복합카본지지체는 3차원 구조로 관찰되었다.Figure 2 is the result of observing the powder of the platinum-composite carbon support impregnated in carbon nanofibers grown on the activated carbon fiber prepared according to Example 2 by TEM and the platinum-composite carbon according to the present invention The support was observed in a three-dimensional structure.
도 3은 본발명 실시예 2에 따라 제조된 백금-복합카본지지체의 XRD 분석결과로써, 본 발명에 의한 나노구조를 가진 활성탄소섬유위에 성장된 탄소나노섬유가 나타나 있는 것을 볼수있다.3 is an XRD analysis result of the platinum-composite carbon support prepared according to Example 2 of the present invention, and it can be seen that carbon nanofibers grown on activated carbon fibers having nanostructures according to the present invention are shown.
도 4는 실시예 3에 따라 제조된 활성탄소위에 성장된 탄소나노섬유에 담지된 백금촉매와 활성탄소위에 성장된 백금촉매의 조합의 기공구조를 관찰한 결과로써, FIG. 4 is a result of observing the pore structure of a combination of a platinum catalyst supported on carbon nanofibers grown on activated carbon prepared on Example 3 and a platinum catalyst grown on activated carbon.
이러한 결과로부터 종래의 방법으로 제조된 백금-탄소 촉매는 금속과 카본이 단순하게 서RDu 있으나, 본 발명에 따라 제조된 백금-복합탄소지지체는 백금이 카본과 화학적결합을 이루고 있는 새로운 복합체임을 명확히 알 수 있다. 이와 같이 금속이 매우 안정환 카본과 화학적 결합을 이루고 있는 것은 본 발명의 특징적인 조합에 따른 결과이다.From these results, the platinum-carbon catalyst prepared by the conventional method has a simple RDu of metal and carbon, but the platinum-composite carbon support prepared according to the present invention clearly shows that platinum is a new composite chemically formed with carbon. Can be. Thus, the metal is in a chemical bond with the very stable ring carbon is a result of the characteristic combination of the present invention.
도 2에서도 알수 있듯이 본 발명에 따라 제조된 백금-복합탄소지지체의 조합은 백금이 2차원 또는 3차원의 구조롤 카본위에 다분산 되어 있음을 알수 있었다.As can be seen from FIG. 2, the combination of the platinum-composite carbon support prepared according to the present invention showed that platinum was polydispersed on the carbon of two-dimensional or three-dimensional structure rolls.
상기 실시예 1 내지 12에서 제조한 백금-복합탄소지지체의 조합을 이용하여 연료전지의 촉매로서의 활성을 평가해 보기 위해 전기화학 및 전극-전해질 접합체 성능 확인실험을 수행하였다.Electrochemical and electrode-electrolyte conjugate performance verification experiments were performed to evaluate the activity as a catalyst of a fuel cell using the combination of platinum-composite carbon supports prepared in Examples 1 to 12.
실험예1. 전극 전해질 접합체의 성능실험Experimental Example 1. Performance test of electrode electrolyte assembly
본발명의 실시예 1에서 제조된 촉매를 고분자전해질막연료전지(PEMFC)의 산화극으로 제조하고 상업용 Pt/C(E-TEK)촉매를 환원극으로 제조하여 나피온 전해질막(Nafion 112)에 직접스프레이(direct spraying)하여 전해질-전극접합체(MEA)를 제조하였다. 산화극의 촉매코팅층에는 나피온전해질 용액 15%를 첨가하였다. 기체 확산층(GDL)으로는 상업용 기체확산층이 사용되었다. 나피온 전해질 막을 사이에 두고 두 산화/환원극은 1분간 압착하여 어셈블리를 제조하고, 각 조합에 따른 성능결과를 도 5,6에 나타내었다. 이때 산화극의 조건은 0.4mg Pt/sq.cm, 수소 150ml/min 환원극의 조건은 0.4mg Pt/sq.cm, 산소 200ml/min 또는 공기 200ml/min이다. 도 6은 상기 조건에서 연료전지 후단밸브의 압력을 1bar로 했을때의 성능결과이다.The catalyst prepared in Example 1 of the present invention was prepared as an anode of a polymer electrolyte membrane fuel cell (PEMFC), and a commercial Pt / C (E-TEK) catalyst was prepared as a cathode to a Nafion electrolyte membrane (Nafion 112). Electrolyte-electrode assembly (MEA) was prepared by direct spraying. 15% of a Nafion electrolyte solution was added to the catalytic coating layer of the anode. A commercial gas diffusion layer was used as the gas diffusion layer (GDL). The two oxidation / reduction electrodes were pressed for 1 minute with the Nafion electrolyte membrane interposed therebetween to prepare an assembly, and the performance results of each combination are shown in FIGS. 5 and 6. At this time, the conditions of the anode is 0.4mg Pt / sq.cm, hydrogen 150ml / min The conditions of the cathode are 0.4mg Pt / sq.cm, oxygen 200ml / min or air 200ml / min. Fig. 6 is a performance result when the pressure of the fuel cell rear valve is 1 bar under the above conditions.
비교실험예1
산화극 촉매로써, 본 발명의 백금-복합카본지지체 대신에 상업용 20wt% Pt/C(E-TEK)사를 사용하는 것을 제외하고는 상기 실험예 1과 동일한 조건 및 과정으로 실험을 수행하고, 그 결과를 도 5, 6에 나타내었다. As the anode catalyst, the experiment was carried out under the same conditions and procedures as those of Experimental Example 1, except that commercial 20 wt% Pt / C (E-TEK) was used instead of the platinum-composite carbon support of the present invention. The results are shown in FIGS. 5 and 6.
도 5, 6의 성능결과에서 알 수 있듯이 본 발명에 의한 백금-복합카본지지체를 사용한 전극 전해질 접합체는 모든 반응 온도에서 우수한 성능과 높은 개회로 전압(open circuit voltage)값을 나타냄을 확인 할 수 있었으며, 특히 환원극의 원료 가 공기였을때와 후단밸브의 압력이 1bar였을때 그 효과가 우수함을 알 수 있다.As can be seen from the performance results of FIGS. 5 and 6, the electrode electrolyte assembly using the platinum-composite carbon support according to the present invention showed excellent performance and high open circuit voltage at all reaction temperatures. In particular, the effect is excellent when the cathode material is air and the pressure of the rear valve is 1 bar.
이상에서 살펴 본 바와 같이, 본 발명에 따른 금속-복합카본지지체의 조합은 그의 제조방법에 의하면 연료전지의 성능을 더욱 향상시킬 수 있는 효과가 있다. 이로 인해 청정 에너지인 수소 및 탄화수소를 이용하여 전기를 생성하는 연료전지 분야에 사용할 수 있도록 함으로써, 특히 현재 연구가 활발히 진행중인 화석연료의 고갈로 인한 대체에너지로써의 대안으로, 또한 기존 에너지 자원의 고갈 및 공해문제를 획기적으로 해결할 수 있다. As described above, the combination of the metal-composite carbon support according to the present invention has the effect of further improving the performance of the fuel cell. This makes it possible to use it in the fuel cell field that generates electricity using hydrogen and hydrocarbons, which are clean energy, and as an alternative to alternative energy due to the depletion of fossil fuel, which is currently being actively researched, and also depletion of existing energy resources and We can solve the pollution problem drastically.
도 1은 본 발명의 실시예1에 따라 제조된 활성탄소섬유 위에 성장된 탄소나노섬유를 SEM으로 관찰한 결과1 is a SEM observation result of carbon nanofibers grown on activated carbon fibers prepared according to Example 1 of the present invention.
도 2는 본 발명의 실시예3에 따라 제조된 활성탄소섬유 위에 성장된 탄소나노섬유에 함침된 금속-탄소복합체의 TEM 관찰결과2 is a TEM observation result of a metal-carbon composite impregnated with carbon nanofibers grown on activated carbon fibers prepared according to Example 3 of the present invention.
도 3은 본 발명의 실시예3에 따라 제조된 활성탄소섬유 위에 성장된 탄소나노섬유에 함침된 금속-탄소복합체의 XRD 관찰결과3 is an XRD observation result of a metal-carbon composite impregnated with carbon nanofibers grown on activated carbon fibers prepared according to Example 3 of the present invention.
도 4는 발명의 실시예3에 따라 제조된 백금-복합카본 지지체 및 상업용 연료전지 촉매를 이용한 전극-전해질 접합체의 고분자 전해질 연료전지 성능비교 평가결과로써, 1은 백금-복합카본지지체 사용시(후단밸브 가압시), 2는 백금-복합카본지지체 사용시(후단밸브 가압없음), 3은 상업용 백금촉매 사용시(후단밸브 가압시), 4는 상업용 백금촉매 사용시(후단밸브 가압없음)FIG. 4 shows the results of the polymer electrolyte fuel cell performance comparison of the electrode-electrolyte assembly using the platinum-composite carbon support prepared according to Example 3 of the present invention and a commercial fuel cell catalyst. Pressurized), 2 when using platinum-composite carbon support (no trailing valve pressurized), 3 when using commercial platinum catalyst (pressing backside valve), 4 when using commercial platinum catalyst (no trailing valve pressurized)
도 5는 발명의 실시예3에 따라 제조된 백금-복합 카본지지체의 개념도,5 is a conceptual diagram of a platinum-composite carbon support prepared according to Example 3 of the present invention;
1은 담지된 백금, 2는 활성탄소섬유 위에 성장된 탄소나노섬유, 3은 활성탄소, 4는 나피온 5는 활성탄소이다.1 is supported platinum, 2 is carbon nanofibers grown on activated carbon fibers, 3 is activated carbon, 4 is
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080029522A KR20090104210A (en) | 2008-03-31 | 2008-03-31 | Development of advanced performance in fuel cell with mixture of metal/CNF/ACF and metal/carbon composites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080029522A KR20090104210A (en) | 2008-03-31 | 2008-03-31 | Development of advanced performance in fuel cell with mixture of metal/CNF/ACF and metal/carbon composites |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090104210A true KR20090104210A (en) | 2009-10-06 |
Family
ID=41534035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080029522A KR20090104210A (en) | 2008-03-31 | 2008-03-31 | Development of advanced performance in fuel cell with mixture of metal/CNF/ACF and metal/carbon composites |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20090104210A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101525496B1 (en) * | 2013-08-29 | 2015-06-03 | 광주과학기술원 | Polymer electrolyte membrane fuel cell comprising a stabilization layer formed by atomic layer deposition |
KR101632511B1 (en) * | 2014-12-15 | 2016-06-21 | 연세대학교 산학협력단 | Cerium Oxide-Doped Electrode And Method For Manufacturing The Same |
CN114409028A (en) * | 2022-02-11 | 2022-04-29 | 中海油天津化工研究设计院有限公司 | Three-dimensional particle electrode for wastewater treatment and preparation method thereof |
-
2008
- 2008-03-31 KR KR1020080029522A patent/KR20090104210A/en not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101525496B1 (en) * | 2013-08-29 | 2015-06-03 | 광주과학기술원 | Polymer electrolyte membrane fuel cell comprising a stabilization layer formed by atomic layer deposition |
KR101632511B1 (en) * | 2014-12-15 | 2016-06-21 | 연세대학교 산학협력단 | Cerium Oxide-Doped Electrode And Method For Manufacturing The Same |
CN114409028A (en) * | 2022-02-11 | 2022-04-29 | 中海油天津化工研究设计院有限公司 | Three-dimensional particle electrode for wastewater treatment and preparation method thereof |
CN114409028B (en) * | 2022-02-11 | 2024-04-16 | 中海油天津化工研究设计院有限公司 | Three-dimensional particle electrode for wastewater treatment and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | When MOFs meet MXenes: superior ORR performance in both alkaline and acidic solutions | |
Iqbal et al. | Prospects and challenges of graphene based fuel cells | |
Zhang et al. | Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction | |
CN110404588B (en) | Ultrathin layered FeNi-LDH-FePc @ MXene bifunctional catalyst and preparation method thereof | |
KR100715155B1 (en) | Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers | |
Ma et al. | MOF-derived N-doped carbon coated CoP/carbon nanotube Pt-based catalyst for efficient methanol oxidation | |
Li et al. | Incorporation of Fe3C and pyridinic N active sites with a moderate N/C ratio in Fe–N mesoporous carbon materials for enhanced oxygen reduction reaction activity | |
US20130149632A1 (en) | Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst | |
WO2016138202A1 (en) | N-doped carbon nanomaterials as catalysts for oxygen reduction reaction in acidic fuel cells | |
CN101966453A (en) | Method for preparing graphene-loaded platinum nano catalyst | |
Sahoo et al. | Platinum-decorated chemically modified reduced graphene oxide–multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell | |
Cheng et al. | Investigation of Ti mesh-supported anodes for direct borohydride fuel cells | |
Yuan et al. | Carbon riveted Pt-MnO2/reduced graphene oxide anode catalyst for DMFC | |
Divya et al. | Platinum–graphene hybrid nanostructure as anode and cathode electrocatalysts in proton exchange membrane fuel cells | |
Shu et al. | Rational design of a high-durability Pt-based ORR catalyst supported on Mn/N codoped carbon sheets for PEMFCs | |
WO2014009835A2 (en) | Metal nanoparticle-graphene composites and methods for their preparation and use | |
Lan et al. | Membrane-less Direct Formate Fuel Cell Using an Fe–N-Doped Bamboo Internode as the Binder-Free and Monolithic Air-Breathing Cathode | |
CN113036160A (en) | Preparation method of nanocellulose-derived carbon-supported cobalt electrocatalyst | |
Liu et al. | N, O-codoped carbon spheres with uniform mesoporous entangled Co3O4 nanoparticles as a highly efficient electrocatalyst for oxygen reduction in a Zn-air battery | |
An et al. | Engineering gC 3 N 4 composited Fe-UIO-66 to in situ generate robust single-atom Fe sites for high-performance PEMFC and Zn–air battery | |
Shi et al. | Interconnected porous structural construction of Mn-and N-doped carbon nanosheets for fuel cell application | |
CN112968184B (en) | Electrocatalyst with sandwich structure and preparation method and application thereof | |
CN102916201A (en) | Palladium-carbon nanocatalyst and preparation method thereof | |
Li et al. | Janus structural TaON/Graphene-like carbon dual-supported Pt electrocatalyst enables efficient oxygen reduction reaction | |
Lu et al. | Pt-supported C–MnO 2 as a catalyst for polymer electrolyte membrane fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |