KR20090099928A - Process for incombustible magnesium hydroxide - Google Patents

Process for incombustible magnesium hydroxide Download PDF

Info

Publication number
KR20090099928A
KR20090099928A KR1020080025232A KR20080025232A KR20090099928A KR 20090099928 A KR20090099928 A KR 20090099928A KR 1020080025232 A KR1020080025232 A KR 1020080025232A KR 20080025232 A KR20080025232 A KR 20080025232A KR 20090099928 A KR20090099928 A KR 20090099928A
Authority
KR
South Korea
Prior art keywords
crystallization
magnesium hydroxide
magnesium
hours
salt solution
Prior art date
Application number
KR1020080025232A
Other languages
Korean (ko)
Other versions
KR100985186B1 (en
Inventor
황선근
정용화
박성기
허정반
Original Assignee
애경소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애경소재 주식회사 filed Critical 애경소재 주식회사
Priority to KR1020080025232A priority Critical patent/KR100985186B1/en
Publication of KR20090099928A publication Critical patent/KR20090099928A/en
Application granted granted Critical
Publication of KR100985186B1 publication Critical patent/KR100985186B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/20Powder free flowing behaviour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/84Flame-proofing or flame-retarding additives

Abstract

PURPOSE: A method for manufacturing flame-retardant magnesium hydroxide is provided to show high dispersibility even when the highly concentrated magnesium hydroxide is added to synthetic resin as a flame-retardant agent. CONSTITUTION: A method for manufacturing flame-retardant magnesium hydroxide comprises the following steps of: putting 20-60wt% of 15-30% magnesium salt solution among its total amount in a reactor at 30~60°C; slowly adding 15-50wt% of 40-60% alkaline solution among its total amount and powerfully agitating them; agitating them at 30~80°C and normal pressure for 1-3 hours in order to induce gelation; raising the temperature up to 100~120°C at normal pressure after the gelation, and making progress of crystallization for 3-7 hours; slowly adding the rest of the 15-30% magnesium salt solution to it after the crystallization; making progress of second crystallization at 90~120°C and normal pressure for 3-7 hours; and washing the obtained flame-retardant magnesium hydroxide with distilled water after the second crystallization and drying it at 120~180°C for 1-3 hours.

Description

난연성 수산화마그네슘 제조방법 {Process for Incombustible Magnesium Hydroxide}Process for producing flame retardant magnesium hydroxide {Process for Incombustible Magnesium Hydroxide}

본 발명은 난연성 수산화마그네슘 제조방법에 관한 것으로서, 보다 상세하게는 상압 조건에서 수산화마그네슘 미립자를 균일성 및 고분산성을 필요로 하는 난연재료로 적합하도록 판상형의 일정한 형태로 제조하는 것이 가능한 난연성 수산화마그네슘 제조방법에 관한 것이다.The present invention relates to a method for producing flame retardant magnesium hydroxide, and more particularly, to manufacturing a flame retardant magnesium hydroxide capable of producing magnesium hydroxide fine particles in a plate-shaped shape to be suitable as a flame retardant material requiring uniformity and high dispersibility under normal pressure conditions. It is about a method.

수산화마그네슘(magnesium hydroxide)은 화학식이 Mg(OH)2이고, 마그네슘의 수산화물로, 금속마그네슘의 원료, 함유폐수용 흡착제, 배연탈황제, 배수중화제, 중유보일러 부식방지제 등의 공업용과 제사제(설사약), 제산제 및 동물용 약제 등 의약용으로 널리 사용되고 있다.Magnesium hydroxide is a Mg (OH) 2 chemical formula, and it is a hydroxide of magnesium, which is a raw material for metal magnesium, adsorbent for containing wastewater, flue gas desulfurizer, drainage neutralizer, heavy oil boiler corrosion inhibitor, etc. It is widely used in medicine, such as antacids and animal medicines.

그리고 난연제로 할로겐화합물, 삼산화안티몬, 인화합물 등이 많이 사용되는데, 이들 난연제는 화재시에 대량의 연기와 유기가스를 발생시키기 때문에, 최근에는 그 사용이 감소되는 추세이다.In addition, halogen compounds, antimony trioxide, phosphorus compounds, and the like are frequently used as flame retardants. Since these flame retardants generate a large amount of smoke and organic gas in a fire, their use has recently been reduced.

최근에는 수산화마그네슘이 연소시에 발연량이 적어 연기에 의한 질식사를 방지할 수 있고, 무독의 환경친화적 물질이며, 연소시 수증기(물)를 방출하여 난연 특성(소화 및 발화 억제 특성)을 나타내는 점이 확인되면서, 새로운 난연제로 각광을 받고 있다.In recent years, magnesium hydroxide has a small amount of smoke during combustion, which prevents suffocation due to smoke, and is a non-toxic environmentally friendly substance, and exhibits flame retardant characteristics (fire and suppression of fire) by releasing water vapor (water) during combustion. As a new flame retardant, it is in the limelight.

수산화마그네슘을 제조하는 종래의 이온간수, 해수 또는 마그네시아를 사용하고 알칼리원으로 석회 또는 가성소다 등을 사용하는 방법, 산화마그네슘의 수화반응에 의한 방법, 마그네슘염과 암모니아를 반응시켜 수산화마그네슘 결정을 정석시키는 방법 등이 있다. 이들 제조방법은 수산화마그네슘 입자의 형상이 특정되어 차이가 나므로, 난연제로서 필요한 균일성과 고분산성을 위해 판상형과 균일한 입도 분포를 갖는 수산화마그네슘을 얻기가 어려웠다.A method using conventional ionized water, seawater or magnesia for producing magnesium hydroxide, using lime or caustic soda as alkali source, a method by hydrating magnesium oxide, crystallizing magnesium hydroxide crystals by reacting magnesium salt with ammonia It is a method to make it. These manufacturing methods differ in that the shape of the magnesium hydroxide particles is specific, making it difficult to obtain magnesium hydroxide having a plate-like shape and a uniform particle size distribution for uniformity and high dispersibility required as a flame retardant.

따라서 판상형과 균일한 입도 분포를 갖는 수산화마그네슘을 얻기 위하여 고온 고압하에서 제조하는 방법이 다양하게 제안되어 활용되고 있다.Therefore, various methods have been proposed and utilized under high temperature and high pressure to obtain magnesium hydroxide having a plate-like shape and a uniform particle size distribution.

그런데, 종래의 고온 고압 조건에서 반응하는 방식은 제조설비가 고가이며, 반응기 설비의 크기에 한계가 있어 대량 생산이 어렵고, 에너지의 소모량이 많으며, 산업 안전의 위험성이 존재한다는 문제가 있다.By the way, the conventional method of reacting at high temperature and high pressure conditions is expensive manufacturing equipment, there is a limit to the size of the reactor equipment is difficult to mass production, high energy consumption, there is a problem that there is a risk of industrial safety.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 상압의 조건에서 마그네슘염과 알칼리 용액을 반응시켜 균일성과 고분산성을 갖는 판상형 수산화마그네슘을 제조하는 것이 가능한 난연성 수산화마그네슘 제조방법을 제공하기 위한 것이다.An object of the present invention is to solve the above problems, to provide a flame-retardant magnesium hydroxide manufacturing method capable of producing a plate-shaped magnesium hydroxide having a uniformity and high dispersibility by reacting a magnesium salt and an alkaline solution under normal pressure conditions will be.

본 발명이 제안하는 난연성 수산화마그네슘 제조방법은 반응기에 15∼30% 마그네슘염 용액을 총 투입량 100중량% 중에서 20∼60중량%를 넣고 30∼60℃를 유지한 상태에서 40∼60% 알칼리 용액을 마그네슘염 용액의 총 투입량에 대하여 15∼50중량%를 0.5∼2시간에 걸쳐 천천히 투입하면서 강력히 교반한 다음 온도를 30∼80℃를 유지한 상태에서 1∼3시간 교반하여 겔화를 진행하는 겔화단계와, 겔화가 완료되면 온도를 100∼120℃로 상승시킨 후 3∼7시간 동안 결정화를 진행하는 1차결정화단계와, 1차 결정화가 완료되면 다시 15∼30% 마그네슘염 용액의 나머지 40∼80중량%를 천천히 투입하고 온도를 90∼120℃를 유지하면서 3∼7시간 동안 결정화를 진행하는 2차결정화단계와, 2차 결정화가 완료되면 증류수로 세척하여 120∼180℃에서 1∼3시간 건조를 행하는 세척건조단계를 포함하여 이루어진다.Flame retardant magnesium hydroxide production method proposed in the present invention is to put a 20 to 60% by weight of 15-30% magnesium salt solution in the total amount of 100% by weight in a reactor to maintain a 40 to 60% alkaline solution at 30 to 60 ℃ A gelation step in which 15 to 50% by weight of the magnesium salt solution is slowly added while stirring slowly over 0.5 to 2 hours, followed by stirring for 1 to 3 hours while maintaining the temperature at 30 to 80 ° C. When the gelation is completed, the first crystallization step of increasing the temperature to 100 to 120 ° C. and performing crystallization for 3 to 7 hours, and when the first crystallization is completed, the remaining 40 to 80 of the 15 to 30% magnesium salt solution A second crystallization step of slowly adding the weight% and maintaining the temperature at 90 to 120 ° C. for 3 to 7 hours, and washing with distilled water after completion of the second crystallization, drying at 120 to 180 ° C. for 1 to 3 hours. Washing to dry It comprise the system.

상기에서 마그네슘염으로는 황산마그네슘(MgSO4), 염화마그네슘(MgCl2), 질화마그네슘(MgNO3), 초산마그네슘(Mg(CH3COO)2) 등이 사용 가능하다.As the magnesium salt, magnesium sulfate (MgSO 4 ), magnesium chloride (MgCl 2 ), magnesium nitride (MgNO 3 ), magnesium acetate (Mg (CH 3 COO) 2 ), and the like may be used.

상기 알칼리 용액으로는 수산화나트륨(NaOH), 암모니아(NH4OH), 수산화칼슘(Ca(OH)2) 등이 사용 가능하다.As the alkaline solution, sodium hydroxide (NaOH), ammonia (NH 4 OH), calcium hydroxide (Ca (OH) 2 ), or the like can be used.

상기에서 마그네슘과 알칼리의 반응 몰비는 1:1.8∼3.0으로 유지하는 것이 바람직하며, 보다 바람직하게는 1:2∼2.3로 유지하는 것이 좋다. 상기에서 마그네슘과 알칼리의 반응 몰비가 작으면 반응성이 부족하며, 몰비를 더 크게 하더라도 반응성에 변화가 없어 실용적이지 않다.In the above, the reaction molar ratio of magnesium and alkali is preferably maintained at 1: 1.8 to 3.0, more preferably 1: 2 to 2.3. When the reaction molar ratio of magnesium and alkali is small, the reactivity is insufficient, and even if the molar ratio is larger, the reactivity does not change and is not practical.

그리고 본 발명의 난연성 수산화마그네슘 제조방법은 2차결정화단계에서 15∼30% 마그네슘염 용액의 총 투입량 100중량% 중에서 20∼60중량%를 투입하며, 2차 결정화가 완료되면 다시 15∼30% 마그네슘염 용액의 나머지 20∼60중량%를 천천히 투입하고 온도를 90∼120℃를 유지하면서 3∼7시간 동안 결정화를 진행하는 3차결정화단계를 진행하고 상기 세척건조단계로 진행하는 것도 가능하다.In the method for preparing flame-retardant magnesium hydroxide of the present invention, 20 to 60 wt% of the total amount of 15 to 30% magnesium salt solution is added in the second crystallization step, and 15 to 30% magnesium is again provided after the second crystallization is completed. The remaining 20 to 60% by weight of the salt solution is slowly added, and the third crystallization step of proceeding the crystallization for 3 to 7 hours while maintaining the temperature 90 to 120 ℃ it is also possible to proceed to the washing and drying step.

상기 2차결정화단계 및 3차결정화단계에서 마그네슘염 용액을 투입하는 투입속도는 3∼20g/분의 범위에서 유지하는 것이 바람직하다. 상기에서 투입속도가 너무 늦으면 생산성이 나쁘고, 투입속도가 너무 빠르면 입자가 불규칙하게 형성되며 입경이 작은 미립자가 과다하게 생성된다.In the secondary crystallization step and the tertiary crystallization step, the addition rate of the magnesium salt solution is preferably maintained in the range of 3 to 20 g / min. In the above, if the feed rate is too low, productivity is bad, and if the feed rate is too fast, particles are irregularly formed and excessively small particles are produced.

상기와 같은 과정을 거쳐 수산화마그네슘을 제조하는 경우 1차 평균 입경이 0.3∼1㎛이고, 2차 평균 입경이 1.1∼2.0㎛인 약간 원형의 판상형 미립자가 얻어진다.When magnesium hydroxide is produced through the above process, slightly circular plate-shaped fine particles having a primary average particle size of 0.3 to 1 m and a secondary average particle size of 1.1 to 2.0 m are obtained.

본 발명의 난연성 수산화마그네슘 제조방법은 각 단계에서 반응물의 pH 8∼ 14를 유지하는 것이 바람직하고, 보다 바람직하게는 pH 12∼14를 유지하는 것이 좋다. 상기에서 pH값이 알칼리에 가까울수록 결정화가 촉진되며, 중성에 가까우면 생산성이 낮고, 너무 강알칼리로 되면 겔화단계 또는 1차결정화단계에서 입자의 응집이 과다하게 이루어지고 2차결정화단계 또는 3차결정화단계에서 입자의 성장이 충분하게 이루어지지 않는다.In the method for producing flame-retardant magnesium hydroxide of the present invention, it is preferable to maintain the pH of the reactants at each step, and more preferably maintain the pH of 12-14. In the above pH value is closer to alkali, the crystallization is promoted, if it is close to neutral productivity is low, if too strong alkali, in the gelation step or primary crystallization step is excessive aggregation of particles and secondary crystallization step or tertiary crystallization There is not enough growth of the particles in the step.

그리고 본 발명의 난연성 수산화마그네슘 제조방법은 각 단계를 상압하(상압의 조건)에서 수행한다.And the flame-retardant magnesium hydroxide production method of the present invention is carried out each step under normal pressure (condition of normal pressure).

본 발명에 따른 난연성 수산화마그네슘 제조방법에 의하면, 상압의 조건에서 판상형 수산화마그네슘 입자를 얻는 것이 가능하므로, 합성수지에 수산화마그네슘을 난연제로 첨가할 때에 고농도로 충진하는 경우에도 고분산성을 가지며, 합성수지 조성물의 특성을 저하시키지 않는다.According to the flame-retardant magnesium hydroxide manufacturing method according to the present invention, it is possible to obtain the plate-shaped magnesium hydroxide particles under the conditions of normal pressure, even when the magnesium hydroxide is added to the synthetic resin as a flame retardant, it has a high dispersibility, and the composition of the synthetic resin composition It does not deteriorate characteristics.

또 본 발명에 따른 난연성 수산화마그네슘 제조방법에 의하면, 겔화단계와 1차결정화단계를 거친 다음 2차결정화단계 및 3차결정화단계를 거쳐 입자의 성장을 진행하므로, 1차 평균 입경이 0.3∼1㎛이고 2차 평균 입경이 1.1∼2.0㎛인 일정한 입도 분포를 갖는 균일성의 고품질 수산화마그네슘을 얻는 것이 가능하다.In addition, according to the method for producing flame-retardant magnesium hydroxide according to the present invention, since the particles are grown through the gelation step and the first crystallization step and then the secondary crystallization step and the tertiary crystallization step, the primary average particle diameter is 0.3 to 1 μm. It is possible to obtain uniform high quality magnesium hydroxide having a constant particle size distribution having a secondary average particle diameter of 1.1 to 2.0 mu m.

그리고 본 발명에 따른 난연성 수산화마그네슘 제조방법에 의하면, 상압 조건에서 균일성과 고분산성을 갖는 난연제로 적합한 수산화마그네슘을 제조하는 것이 가능하므로, 생산비가 절감되고, 대량생산이 가능하며, 제조과정에서의 안전사고 위험성이 감소한다.The flame retardant magnesium hydroxide manufacturing method according to the present invention makes it possible to manufacture a suitable magnesium hydroxide as a flame retardant having uniformity and high dispersibility under normal pressure conditions, thereby reducing production costs, mass production, and safety in the manufacturing process. The risk of an accident is reduced.

다음으로 본 발명에 따른 난연성 수산화마그네슘 제조방법의 바람직한 실시예를 상세하게 설명하지만, 이는 본 발명을 예시적으로 나타내는 것이며, 본 발명의 범위를 이에 한정하는 것이 아님은 명백하다.Next, a preferred embodiment of the method for producing a flame retardant magnesium hydroxide according to the present invention will be described in detail, but it is apparent that the present invention is illustrative, and the scope of the present invention is not limited thereto.

다음의 실시예 및 비교예는 모두 상압의 조건에서 전 과정을 수행하였다.The following examples and comparative examples were all performed under normal pressure.

[실시예 1]Example 1

3ℓ 반응기에 21% 황산마그네슘(MgSO4) 용액 985g을 넣고 50℃를 유지한 상태에서 50% 수산화나트륨(NaOH) 용액 579g을 천천히 투입하면서 강력히 교반한 다음 온도를 70℃로 유지한 상태에서 2시간 동안 교반하여 겔화를 진행하였다. 투입된 용액에 있어서, 마그네슘과 알칼리의 반응 몰비는 1:2.1로 반응을 진행하였다. 이때 반응물의 pH는 10∼14를 유지하였다. 겔화가 완료된 다음 온도를 110℃까지 상승시킨 후 5시간 동안 결정화를 진행하였다. 1차 결정화가 완료된 다음 다시 21% 황산마그네슘(MgSO4) 용액 985g을 1시간에 걸쳐 천천히 투입하고 온도를 105℃를 유지하면서 5시간 동안 결정화를 진행하였다. 2차 결정화가 완료된 다음 증류수로 깨끗이 세척하여 150℃에서 2시간 건조를 행하여 1차 평균 입경이 0.3∼1㎛이고 2차 평균 입경이 1.3㎛이며 약간 구형의 판상형 입자인 본 발명에 따른 난연성 수산화마그네슘 입자의 실시예 1을 얻었다.985 g of 21% magnesium sulfate (MgSO 4 ) solution was added to a 3 liter reactor, while 579 g of 50% sodium hydroxide (NaOH) solution was slowly added while maintaining the temperature at 50 ° C, and then stirred vigorously for 2 hours while maintaining the temperature at 70 ° C. Agitation proceeded to gelation. In the solution added, the reaction molar ratio of magnesium and alkali was 1: 2.1. At this time, the pH of the reactant was maintained at 10-14. After gelation was completed, the temperature was raised to 110 ° C. and crystallization proceeded for 5 hours. After completion of the first crystallization, 985 g of 21% magnesium sulfate (MgSO 4 ) solution was slowly added over 1 hour, and crystallization was performed for 5 hours while maintaining the temperature at 105 ° C. After the completion of the second crystallization, washed with distilled water and dried for 2 hours at 150 ℃ to the primary average particle size of 0.3 ~ 1㎛, secondary average particle diameter of 1.3㎛, slightly spherical plate-shaped particles of flame-retardant magnesium hydroxide according to the present invention Example 1 of the particles was obtained.

도 1에는 상기 실시예 1을 촬영한 전자현미경 사진(배율 40,000배)을 나타낸다.1 shows an electron microscope photograph (magnification 40,000 times) of the first embodiment.

[실시예 2]Example 2

3ℓ 반응기에 21% 황산마그네슘(MgSO4) 용액 657g을 넣고 50℃를 유지한 상태에서 50% 수산화나트륨(NaOH) 용액 579g을 천천히 투입하면서 강력히 교반한 다음 온도를 70℃로 유지한 상태에서 2시간 동안 교반하여 겔화를 진행하였다. 투입된 용액에 있어서, 마그네슘과 알칼리의 반응 몰비는 1:2.1로 반응을 진행하였다. 이때 반응물의 pH는 10∼14를 유지하였다. 겔화가 완료된 다음 온도를 110℃까지 상승시킨 후 5시간 동안 결정화를 진행하였다. 1차 결정화가 완료된 다음 다시 21% 황산마그네슘(MgSO4) 용액 657g을 1시간에 걸쳐 천천히 투입하고 온도를 105℃를 유지하면서 5시간 동안 결정화를 진행하였다. 2차 결정화가 완료된 다음 다시 21% 황산마그네슘(MgSO4) 용액 657g을 1시간에 걸쳐 천천히 투입하고 온도를 105℃를 유지하면서 5시간 동안 결정화를 진행하였다. 3차 결정화가 완료된 다음 증류수로 깨끗이 세척하여 150℃에서 2시간 건조를 행하여 1차 평균 입경이 0.3∼1㎛이고 2차 평균 입경이 1.5㎛이며 약간 구형의 판상형 입자인 본 발명에 따른 난연성 수산화마그네슘 입자의 실시예 2를 얻었다.657 g of 21% magnesium sulfate (MgSO 4 ) solution was added to a 3 L reactor, while 579 g of 50% sodium hydroxide (NaOH) solution was slowly added while maintaining the temperature at 50 ° C, and then stirred vigorously for 2 hours while maintaining the temperature at 70 ° C. Agitation proceeded to gelation. In the solution added, the reaction molar ratio of magnesium and alkali was 1: 2.1. At this time, the pH of the reactant was maintained at 10-14. After gelation was completed, the temperature was raised to 110 ° C. and crystallization proceeded for 5 hours. After completion of the first crystallization, 657 g of 21% magnesium sulfate (MgSO 4 ) solution was slowly added over 1 hour, and crystallization was performed for 5 hours while maintaining the temperature at 105 ° C. After completion of the second crystallization, 657 g of 21% magnesium sulfate (MgSO 4 ) solution was slowly added over 1 hour, and crystallization was performed for 5 hours while maintaining the temperature at 105 ° C. After completion of tertiary crystallization, the mixture was washed with distilled water and dried at 150 ° C. for 2 hours. Example 2 of the particles was obtained.

도 2에는 상기 실시예 2를 배율 20,000배로 촬영한 전자현미경 사진을 나타내고, 도 3에는 배율 40,000배로 촬영한 전자현미경 사진을 나타낸다.2 shows an electron microscope photograph of Example 2 at 20,000 times magnification, and FIG. 3 shows an electron microscope photograph at 40,000 times magnification.

[실시예 3]Example 3

3ℓ 반응기에 21% 황산마그네슘(MgSO4) 용액 657g을 넣고 50℃를 유지한 상태에서 50% 수산화나트륨(NaOH) 용액 579g을 천천히 투입하면서 강력히 교반한 다 음 온도를 70℃로 유지한 상태에서 2시간 동안 교반하여 겔화를 진행하였다. 투입된 용액에 있어서, 마그네슘과 알칼리의 반응 몰비는 1:2.1로 반응을 진행하였다. 이때 반응물의 pH는 10∼14를 유지하였다. 겔화가 완료된 다음 온도를 110℃까지 상승시킨 후 5시간 동안 결정화를 진행하였다. 1차 결정화가 완료된 다음 다시 21% 황산마그네슘(MgSO4) 용액 1314g을 5시간에 걸쳐 천천히 투입하고 온도를 105℃를 유지하면서 5시간 동안 결정화를 진행하였다. 2차 결정화가 완료된 다음 증류수로 깨끗이 세척하여 150℃에서 2시간 건조를 행하여 1차 평균 입경이 0.5∼1㎛이고 2차 평균 입경이 1.7㎛이며 판상형인 본 발명에 따른 난연성 수산화마그네슘 입자의 실시예 3을 얻었다.657 g of 21% magnesium sulfate (MgSO 4 ) solution was added to the 3L reactor, and 579 g of 50% sodium hydroxide (NaOH) solution was slowly added while maintaining 50 ° C, followed by vigorous stirring, and then the temperature was maintained at 70 ° C. The gelation was performed by stirring for a time. In the solution added, the reaction molar ratio of magnesium and alkali was 1: 2.1. At this time, the pH of the reactant was maintained at 10-14. After gelation was completed, the temperature was raised to 110 ° C., and then crystallization was performed for 5 hours. After completion of the first crystallization, 1314 g of 21% magnesium sulfate (MgSO 4 ) solution was slowly added over 5 hours, and crystallization was performed for 5 hours while maintaining the temperature at 105 ° C. After completion of the second crystallization, washed with distilled water and dried for 2 hours at 150 ℃ to the primary average particle size of 0.5 ~ 1㎛, secondary average particle diameter of 1.7㎛, plate-shaped flame retardant magnesium hydroxide particles according to the present invention Got 3.

도 4에는 상기 실시예 3을 배율 20,000배로 촬영한 전자현미경 사진을 나타낸다.4 shows an electron microscope photograph of Example 3 at 20,000 times magnification.

[비교예][Comparative Example]

3ℓ 반응기에 21% 황산마그네슘(MgSO4) 용액 1970g을 넣고 50℃를 유지한 상태에서 50% 수산화나트륨(NaOH) 용액 579g을 천천히 투입하면서 강력히 교반한 다음 온도를 70℃로 유지한 상태에서 2시간 동안 교반하여 겔화를 진행하였다. 투입된 용액에 있어서, 마그네슘과 알칼리의 반응 몰비는 1:2.1로 반응을 진행하였다. 이 때 반응물의 pH는 10∼14를 유지하였으며, 수산화마그네슘(Mg(OH)2) 고형물(solid)은 약 7.8%였다. 겔화가 완료된 다음 온도를 105℃까지 상승시킨 후 7시간 동안 결정화를 진행하였다. 결정화가 완료된 다음 증류수로 깨끗이 세척하여 150℃에서 2시간 건조를 행하였다.After putting 1970g of 21% magnesium sulfate (MgSO 4 ) solution in a 3L reactor, 579g of 50% sodium hydroxide (NaOH) solution was slowly added while maintaining the temperature at 50 ° C, and then stirred vigorously for 2 hours while maintaining the temperature at 70 ° C. Agitation proceeded to gelation. In the solution added, the reaction molar ratio of magnesium and alkali was 1: 2.1. At this time, the pH of the reactant was maintained at 10 to 14, and the magnesium hydroxide (Mg (OH) 2 ) solid was about 7.8%. After gelation was completed, the temperature was raised to 105 ° C. and crystallization was performed for 7 hours. After crystallization was completed, washed with distilled water and dried at 150 ℃ 2 hours.

상기와 같은 과정을 통하여 얻어진 수산화마그네슘 입자는 1차 평균 입경이 0.1∼0.5㎛이고, 2차 평균 입경이 1.2㎛이었다.The magnesium hydroxide particles obtained through the above process had a primary average particle diameter of 0.1 to 0.5 µm and a secondary average particle diameter of 1.2 µm.

도 5에는 상기와 같이 얻어진 비교예를 배율 40,000배로 촬영한 전자현미경 사진을 나타낸다.5 shows an electron microscope photograph of a comparative example obtained as described above at a magnification of 40,000 times.

상기와 같이 얻어진 본 발명에 따른 실시예 1 내지 실시예 3 및 비교예를 도 1 내지 도 5를 참조하여 비교하면, 1차 입경 및 2차 입경에 있어서 본 발명에 따른 실시예가 비교예에 비하여 더 크게 성장하였음을 확인할 수 있으며, 비교예에 비하여 판상형이 넓게 형성되었음을 확인할 수 있었다.When comparing Examples 1 to 3 and Comparative Example according to the present invention obtained as described above with reference to Figs. 1 to 5, the embodiment according to the present invention in the primary particle size and the secondary particle size is more than the comparative example It was confirmed that the growth was large, it was confirmed that the plate-like form was wider than the comparative example.

그리고 2차결정화단계 이후에 3차결정화단계를 진행하는 경우에 2차 평균 입경이 더 크게 성장하였으며, 2차결정화단계에서 마그네슘염 용액을 초기 100중량%에 비하여 200중량%를 더 오랫동안 투입하면서 결정화를 진행하는 경우에 1차 평균 입경 및 2차 평균 입경이 더 크게 성장하는 것을 확인할 수 있었다.In addition, when the tertiary crystallization step is carried out after the secondary crystallization step, the second average particle diameter is increased, and in the second crystallization step, the crystallization is performed by adding 200% by weight of the magnesium salt solution longer than the initial 100% by weight. In the case of proceeding, it was confirmed that the first and second average particle diameters grow larger.

따라서 비교예의 경우에는 결정화를 1단계로 행함에 따라 충분한 결정의 성장이 이루어지지 않은 것으로 추정할 수 있다,Therefore, in the case of the comparative example, it can be estimated that sufficient crystal growth has not been achieved by performing crystallization in one step.

본 발명에 따른 난연성 수산화마그네슘 제조방법에 의하면, 결정화를 2단계 또는 3단계 나누어 진행하거나 1단계에 비하여 2단계에서 더 많은 마그네슘염을 투입하는 것에 의하여 수산화마그네슘 입자의 고른 성장과 효과적인 판상형으로의 성장을 유도하는 것이 가능하다.According to the flame-retardant magnesium hydroxide manufacturing method according to the present invention, the crystallization is divided into two or three stages, or by adding more magnesium salt in two stages than in the first stage, even growth of magnesium hydroxide particles and effective plate-like growth It is possible to derive

상기에서는 본 발명에 따른 난연성 수산화마그네슘 제조방법의 바람직한 실 시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속한다.In the above description of the preferred embodiment of the method for producing a flame retardant magnesium hydroxide according to the present invention, the present invention is not limited thereto, and the invention can be modified in various ways within the scope of the claims and the detailed description of the invention and the accompanying drawings. This also belongs to the scope of the present invention.

도 1은 본 발명에 따른 난연성 수산화마그네슘 제조방법의 실시예 1에 의하여 제조된 수산화마그네슘 입자를 촬영한 전자현미경 사진(배율 40,000배)이다.1 is an electron micrograph (magnification 40,000 times) of the magnesium hydroxide particles prepared by Example 1 of the method for preparing a flame-retardant magnesium hydroxide according to the present invention.

도 2는 본 발명에 따른 난연성 수산화마그네슘 제조방법의 실시예 2에 의하여 제조된 수산화마그네슘 입자를 촬영한 전자현미경 사진(배율 20,000배)이다.Figure 2 is an electron micrograph (magnification of 20,000 times) of the magnesium hydroxide particles prepared by Example 2 of the method for producing a flame-retardant magnesium hydroxide according to the present invention.

도 3은 본 발명에 따른 난연성 수산화마그네슘 제조방법의 실시예 2에 의하여 제조된 수산화마그네슘 입자를 촬영한 전자현미경 사진(배율 40,000배)이다.Figure 3 is an electron micrograph (magnification 40,000 times) of the magnesium hydroxide particles prepared by Example 2 of the method for producing a flame-retardant magnesium hydroxide according to the present invention.

도 4는 본 발명에 따른 난연성 수산화마그네슘 제조방법의 실시예 3에 의하여 제조된 수산화마그네슘 입자를 촬영한 전자현미경 사진(배율 40,000배)이다.Figure 4 is an electron micrograph (magnification of 40,000 times) of the magnesium hydroxide particles prepared by Example 3 of the method for producing a flame-retardant magnesium hydroxide according to the present invention.

도 5는 비교를 위하여 본 발명과 다른 수산화마그네슘 제조방법에 의하여 제조된 수산화마그네슘 입자를 촬영한 전자현미경 사진(배율 40,000배)이다.Figure 5 is an electron micrograph (magnification 40,000 times) of the magnesium hydroxide particles prepared by the present invention and another magnesium hydroxide manufacturing method for comparison.

Claims (7)

반응기에 15∼30% 마그네슘염 용액을 총 투입량 100중량% 중에서 20∼60중량%를 넣고 30∼60℃를 유지한 상태에서 40∼60% 알칼리 용액을 마그네슘염 용액의 총 투입량에 대하여 15∼50중량%를 천천히 투입하면서 강력히 교반한 다음 상압하에서 온도를 30∼80℃를 유지한 상태에서 1∼3시간 교반하여 겔화를 진행하는 겔화단계와,20 to 60% by weight of 15-30% magnesium salt solution is added to 100% by weight of the reactor and 40 to 60% alkaline solution is added to the total amount of magnesium salt solution while maintaining 30 to 60 ° C. A gelling step of stirring by vigorously while slowly adding the weight% and then stirring the gel at 1 to 3 hours while maintaining the temperature at 30 to 80 ° C. under normal pressure; 겔화가 완료되면 상압하에서 온도를 100∼120℃로 상승시킨 후 3∼7시간 동안 결정화를 진행하는 1차결정화단계와,After the gelation is completed, the first crystallization step of increasing the temperature to 100 ~ 120 ℃ under normal pressure and then undergoing crystallization for 3 to 7 hours, 1차 결정화가 완료되면 다시 15∼30% 마그네슘염 용액의 나머지 40∼80중량%를 천천히 투입하고 상압하에서 온도를 90∼120℃를 유지하면서 3∼7시간 동안 결정화를 진행하는 2차결정화단계와,After the first crystallization is completed, the second crystallization step of slowly adding the remaining 40 to 80% by weight of the 15-30% magnesium salt solution and performing the crystallization for 3 to 7 hours while maintaining the temperature at 90 to 120 ℃ under normal pressure; , 2차 결정화가 완료되면 증류수로 세척하여 120∼180℃에서 1∼3시간 건조를 행하는 세척건조단계를 포함하는 난연성 수산화마그네슘 제조방법.When the second crystallization is completed, a flame-retardant magnesium hydroxide manufacturing method comprising a washing and drying step of washing with distilled water for 1 to 3 hours at 120 to 180 ℃. 청구항 1에 있어서,The method according to claim 1, 상기 마그네슘염으로는 황산마그네슘(MgSO4) 또는 염화마그네슘(MgCl2)을 사용하고, 상기 알칼리 용액으로는 수산화나트륨(NaOH)을 사용하는 난연성 수산화마그네슘 제조방법.Magnesium salt (MgSO 4 ) or magnesium chloride (MgCl 2 ) is used as the magnesium salt, sodium hydroxide (NaOH) is used as the alkaline solution, flame retardant magnesium hydroxide manufacturing method. 청구항 1에 있어서,The method according to claim 1, 상기 겔화단계에서 마그네슘과 알칼리의 반응 몰비는 1:1.8∼3.0의 범위로 하는 난연성 수산화마그네슘 제조방법.Reaction molar ratio of magnesium and alkali in the gelling step is 1: 1.8 to 3.0 range of flame retardant magnesium hydroxide production method. 청구항 1에 있어서,The method according to claim 1, 상기 2차결정화단계에서 마그네슘염 용액을 투입하는 투입속도는 3∼20g/분의 범위에서 유지하는 난연성 수산화마그네슘 제조방법.Method of preparing a flame retardant magnesium hydroxide to maintain the input rate of the magnesium salt solution in the secondary crystallization step in the range of 3 to 20g / min. 청구항 1에 있어서,The method according to claim 1, 상기 2차결정화단계에서 마그네슘염 용액의 총 투입량 100중량% 중에서 20∼60중량%를 천천히 투입하고,In the secondary crystallization step, 20 to 60% by weight of the total amount of magnesium salt solution is added slowly, 2차 결정화가 완료되면 다시 15∼30% 마그네슘염 용액의 나머지 20∼60중량%를 천천히 투입하고 상압하에서 온도를 90∼120℃를 유지하면서 3∼7시간 동안 결정화를 진행한 다음 상기 세척건조단계로 진행하는 3차결정화단계를 더 포함하는 난연성 수산화마그네슘 제조방법.After the completion of the second crystallization, the remaining 20 to 60% by weight of the 15-30% magnesium salt solution was slowly added again, and the crystallization was performed for 3 to 7 hours while maintaining the temperature at 90 to 120 ° C under normal pressure, and then the washing and drying step. Flame retardant magnesium hydroxide manufacturing method further comprising a third crystallization step to proceed to. 청구항 5에 있어서,The method according to claim 5, 상기 3차결정화단계에서 마그네슘염 용액을 투입하는 투입속도는 3∼20g/분의 범위를 유지하는 난연성 수산화마그네슘 제조방법.Flame retardant magnesium hydroxide manufacturing method in which the input rate of the magnesium salt solution in the third crystallization step maintains the range of 3 to 20g / min. 청구항 1 내지 청구항 6 중 어느 한항에 있어서,The method according to any one of claims 1 to 6, 각 단계에서 반응물의 pH를 8∼14로 유지하는 난연성 수산화마그네슘 제조방법.Flame retardant magnesium hydroxide production method for maintaining the pH of the reactants at 8 to 14 in each step.
KR1020080025232A 2008-03-19 2008-03-19 Process for Incombustible Magnesium Hydroxide KR100985186B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080025232A KR100985186B1 (en) 2008-03-19 2008-03-19 Process for Incombustible Magnesium Hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080025232A KR100985186B1 (en) 2008-03-19 2008-03-19 Process for Incombustible Magnesium Hydroxide

Publications (2)

Publication Number Publication Date
KR20090099928A true KR20090099928A (en) 2009-09-23
KR100985186B1 KR100985186B1 (en) 2010-10-05

Family

ID=41358370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080025232A KR100985186B1 (en) 2008-03-19 2008-03-19 Process for Incombustible Magnesium Hydroxide

Country Status (1)

Country Link
KR (1) KR100985186B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190058933A (en) * 2017-11-22 2019-05-30 (주)금양 Process for production of a thermally expanded microsphere having high solvent-resistant toward dioctyl phthalate
CN114735728A (en) * 2022-04-19 2022-07-12 广西南宁百会药业集团有限公司 Preparation method and application of magnesium hydroxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE539377C2 (en) * 2016-02-24 2017-08-29 Deflamo Ab A process for manufacturing of fire suppressing crystals
KR101908297B1 (en) 2016-11-14 2018-10-16 (주)로송 Preparation process of incombustible magnesium hydroxide from bitterns

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184146B1 (en) * 1996-06-11 1999-04-15 임무현 Process for production of magnesium hydroxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190058933A (en) * 2017-11-22 2019-05-30 (주)금양 Process for production of a thermally expanded microsphere having high solvent-resistant toward dioctyl phthalate
CN114735728A (en) * 2022-04-19 2022-07-12 广西南宁百会药业集团有限公司 Preparation method and application of magnesium hydroxide

Also Published As

Publication number Publication date
KR100985186B1 (en) 2010-10-05

Similar Documents

Publication Publication Date Title
US4351814A (en) Hydrotalcites having a hexagonal needle-like crystal structure and process for production thereof
CN101353815B (en) Method for preparing basic magnesium chloride whisker from dolomite and bittern
JP2017036449A (en) Flame retardant magnesium hydroxide nanoparticles and method of production thereof
CN1331984C (en) Prepn of magnesium hydroxide for fire retardant
JP2001508015A (en) Magnesium process
KR20090099928A (en) Process for incombustible magnesium hydroxide
JP4663690B2 (en) Magnesium hydroxide particles for flame retardant, method for producing the same, and surface treatment method
CN114573868B (en) Aluminum phosphite-alkyl aluminum phosphite composite salt and preparation method and application thereof
US9346683B2 (en) Carbonate radical-containing magnesium hydroxide particle and manufacturing method thereof
TW201437347A (en) Flame retardant, flame retardant composition and compact
US4246254A (en) Fibrous magnesium hydroxide and process for production thereof
JP5125258B2 (en) Spherical magnesium oxide particles and method for producing the same
CN113651345B (en) High-purity flaky boehmite morphology control method
CN103183757A (en) Calcium carbonate having a surface charge, the preparing process thereof and filler for producing a paper using the same
JP2007176710A (en) Method for producing antimony oxide sol and antimony oxide sol
CN101229925A (en) Method for preparing magnesium hydroxide with coproduction of calcium chloride
JP4365084B2 (en) Magnesia particles and method for producing the same
KR20030028683A (en) Magnesium hydroxide having uniformity and high dispersibility and method for preparing the same
KR20120137864A (en) Method for manufacturing magnesium hydroxide-red phosphorus composite powder for flame retardant and magnesium hydroxide-red phosphorus composite powder manufactured by using the same
KR101361862B1 (en) Synthesis of nano sized magnesium hydroxide
JP2005139012A (en) Method for producing acicular calcium carbonate
WO2023019746A1 (en) Low-cost preparation method for magnesium-aluminum hydrotalcite
CN103342833B (en) A kind of ammonium polyphosphate and hydroxide nanoparticle mixture and preparation method thereof
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
CN112210123A (en) Preparation method of low-cost coated flame-retardant smoke suppressant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130904

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140915

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160823

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 9