KR20090098350A - Pla/mwnt-g-pla including mwnt-g-pla and method for preparing the same - Google Patents

Pla/mwnt-g-pla including mwnt-g-pla and method for preparing the same Download PDF

Info

Publication number
KR20090098350A
KR20090098350A KR1020080023678A KR20080023678A KR20090098350A KR 20090098350 A KR20090098350 A KR 20090098350A KR 1020080023678 A KR1020080023678 A KR 1020080023678A KR 20080023678 A KR20080023678 A KR 20080023678A KR 20090098350 A KR20090098350 A KR 20090098350A
Authority
KR
South Korea
Prior art keywords
pla
mwnt
polymer
cooh
prepared
Prior art date
Application number
KR1020080023678A
Other languages
Korean (ko)
Other versions
KR100954293B1 (en
Inventor
정영규
윤진태
이상철
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020080023678A priority Critical patent/KR100954293B1/en
Publication of KR20090098350A publication Critical patent/KR20090098350A/en
Application granted granted Critical
Publication of KR100954293B1 publication Critical patent/KR100954293B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

A method for manufacturing the multi-walled carbon nanotube-g-poly(lactic acid), and the multi-walled carbon nanotube-g-poly(lactic acid) prepared by the method are provided to improve tensile modulus and tensile strength without using a solvent. A method for manufacturing the multi-walled carbon nanotube-g-poly(lactic acid) comprises the step of melt condensation polymerizing 0.1-50 wt% of multi-walled carbon nanotube-COOH and 50-99.9 wt% of lactic acid by using a catalyst. The multi-walled carbon nanotube-COOH has 1~5x10^22 carboxyl groups (-COOH) per 1 g of a multi-walled carbon nanotube. The multi-walled carbon nanotube-COOH is prepared by mixing a multi-walled carbon nanotube and a nitric acid/sulfuric acid (3M/1M) mixture solution.

Description

MWNT-g-PLA를 포함하는 고분자 PLA/MWNT-g-PLA 및 그 제조방법{PLA/MWNT-g-PLA including MWNT-g-PLA and method for preparing the same}Polymer PLA / MWN-g-PLA containing MWNT-g-PLA and its manufacturing method {PLA / MWNT-g-PLA including MWNT-g-PLA and method for preparing the same}

본 발명은 고분자 MWNT-g-PLA와 이를 포함한 고분자 PLA/MWNT-g-PLA와 그 제조방법에 관한 것이다. 또한 본 발명은 고분자 PLA/MWNT-g-PLA로부터 제조된 물품에 관한 것이다.The present invention relates to a polymer MWNT-g-PLA and a polymer PLA / MWNT-g-PLA including the same and a method of manufacturing the same. The invention also relates to articles made from the polymer PLA / MWNT-g-PLA.

현재, 전 세계적으로 고유가와 환경문제가 크게 대두됨에 따라 재생가능하면서 환경 친화적인 고분자재료에 대한 관심이 급속히 증가되고 있다. 그러한 생분해성, 생체적합성, 재생가능성, 환경친화성 등의 유용한 특성을 갖는 고분자재료 중에서 PLA가 가장 큰 각광을 받고 있지만, 기계적 강도가 취약하다는 단점을 가지고 있다. 이러한 단점을 보완하기 위해서 기계적 강도, 내열성, 전기전도성이 탁월한 탄소나노뷰브(Carbon Nanotube, CNT)를 보강재로 사용하려는 노력이 계속되고 있다. 탄소나노튜브는 탄소 6개가 서로 연결 되어 육각형 벌집무늬로 결합되어 튜브 형태(관)를 이루고 있는 모양의 신소재이며 튜브의 직경이 나노미터(nm=10 억분의 1미터) 수준으로 극히 작은 물질이다. 탄소나노튜브는 zigzag와 armchair 라고 알 려진 두 개의 대칭구조가 가능하다. 실제적으로 대부분의 탄소나노튜브는 이러한 대칭구조를 갖는 대신에 벌집 모양의 육각형이 튜브축을 따라서 나선형으로 배열된 chiral 구조를 갖는다. 탄소나노튜브는 흑연면(graphite sheet)이 나노 크기의 직경으로 둥글게 말린 상태이며, 이 흑연면이 말리는 각도 및 구조에 따라서 금속 또는 반도체의 특성을 보인다. 또한 벽을 이루고 있는 결합 수에 따라서 단중벽 탄소나노튜브(SWNT, Single-walled Carbon Nanotube), 이중벽 탄소나노튜브(DWNT, Double-walled Carbon Nanotube), 다중벽 탄소나노튜브(MWNT, Multi-walled Carbon Nanotube), 다발형 탄소나노튜브(RNT, Rope Carbon Nanotube)로 구분한다.At present, with high oil prices and environmental problems all over the world, interest in renewable and environmentally friendly polymer materials is rapidly increasing. Among the polymer materials having such useful properties as biodegradability, biocompatibility, reproducibility, environmental friendliness, PLA has received the greatest attention, but has a disadvantage in that the mechanical strength is weak. In order to make up for these drawbacks, efforts are being made to use carbon nanotubes (CNTs) with excellent mechanical strength, heat resistance, and electrical conductivity as reinforcing materials. Carbon nanotubes are a new material shaped like a tube formed by six carbons connected to each other and joined in a hexagonal honeycomb pattern to form a tube. The diameter of the tube is very small, with nanometers (nm = 1 billionth of a meter). Carbon nanotubes are available in two symmetrical structures known as zigzag and armchair. In practice, most carbon nanotubes have a symmetrical structure, but instead have a chiral structure in which honeycomb-shaped hexagons are arranged spirally along the tube axis. Carbon nanotubes are in a state where a graphite sheet is rounded to a nano size diameter and exhibits characteristics of a metal or a semiconductor depending on the angle and structure of the graphite sheet being dried. In addition, single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and multi-walled carbon nanotubes (MWNTs) Nanotube) and bundle carbon nanotubes (RNT).

상기의 탄소나노튜브를 이용한 선행기술로는 등록특허 제10-0773729호 "표면처리된 탄소나노튜브(CNT)를 이용한 폴리에틸렌테레프탈레이트(PET) 및 그 제조방법" 과 공개특허 제10-2007-0071960호 "탄소나노튜브를 포함하는 고분자 나노복합체 및 그의 제조방법" 등이 있다. 2007년에 발표된 Polymer 48(2007) 3658-3663에서는 CNT에 산처리하여 얻은 CNT-COOH 표면에 용매(자일렌)를 사용하여 LA를 축합반응하여 Polymer-g-CNT를 제조하였다. 그러나, 용매를 사용하지 않고 간편하게 용융축합반응으로 제조하는 방법에 관한 연구는 이루어진 바가 없다.The prior art using the carbon nanotubes are registered Patent No. 10-0773729 "Polyethylene terephthalate (PET) using the surface-treated carbon nanotubes (CNT) and its manufacturing method" and Patent Publication No. 10-2007-0071960 No. "Polymer nanocomposite containing carbon nanotubes and a method for producing the same". In Polymer 48 (2007) 3658-3663, released in 2007, Polymer-g-CNT was prepared by condensation of LA using a solvent (xylene) on the surface of CNT-COOH obtained by acid treatment of CNT. However, no research has been made on a method of preparing a melt condensation reaction without using a solvent.

본 발명은 고분자 MWNT-g-PLA를 용매를 사용하지 않고 제조하는 방법을 제공함으로써, 용매를 사용하여 제조하는 기존의 방법보다 간편하게 용융축합반응으로 고분자 MWNT-g-PLA를 제조하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a polymer MWNT-g-PLA without using a solvent, thereby producing a polymer MWNT-g-PLA by a melt condensation reaction than conventional methods for producing a solvent using a solvent. .

본 발명은 상기의 고분자 MWNT-g-PLA에 PLA 단독고분자를 혼합함으로써 제조된 고분자 PLA/MWNT-g-PLA가 PLA 단독고분자보다 인장탄성율과 인장강도와 같은 기계적 성질을 향상시키는 것을 목적으로 한다.The present invention aims to improve the mechanical properties such as tensile modulus and tensile strength of the polymer PLA / MWNT-g-PLA prepared by mixing PLA homopolymer with the polymer MWNT-g-PLA.

또한 상기의 고분자 PLA/MWNT-g-PLA를 이용한 필름, 섬유, 플라스틱이 PLA 단독고분자를 이용한 필름, 섬유, 플라스틱보다 인장탄성율과 인장강도와 같은 기계적 성질을 향상시키는 것을 목적으로 한다.In addition, it is an object of the film, fiber, plastic using the polymer PLA / MWNT-g-PLA to improve the mechanical properties such as tensile modulus and tensile strength than the film, fiber, plastic using the PLA alone polymer.

상기의 목적을 달성하기 위한 본 발명에 따른 고분자 MWNT-g-PLA를 제조하는 방법은 0.1 내지 50 wt%의 MWNT-COOH와 50 내지 99.9 wt% 의 LA(Lactic acid)를 촉매를 이용하여 용융축합중합하여 제조하는 것을 특징으로 한다.Method for producing a polymer MWNT-g-PLA according to the present invention for achieving the above object is melt condensation using 0.1 to 50 wt% MWNT-COOH and 50 to 99.9 wt% LA (catalyst) using a catalyst It is characterized by producing by polymerization.

바람직하게는, 상기의 MWNT-COOH는 MWNT 1 g 당 1 내지 5×1022개의 카르복실기(-COOH)를 갖는 것을 특징으로 한다.Preferably, the MWNT-COOH is characterized in that it has 1 to 5 × 10 22 carboxyl groups (-COOH) per 1 g of MWNT.

바람직하게는, 상기의 MWNT-COOH는 MWNT를 질산/황산(3M/1M) 혼합용액과 반응시켜서 제조한 것을 특징으로 한다.Preferably, the MWNT-COOH is produced by reacting MWNT with a nitric acid / sulfuric acid (3M / 1M) mixed solution.

바람직하게는, 상기의 LA는 L-lactic acid 또는 D-lactic acid를 사용하는 것을 특징으로 한다.Preferably, the LA is characterized by using L-lactic acid or D-lactic acid.

바람직하게는, 상기의 촉매는 tin(Ⅱ) chloride, titanium(Ⅳ) butoxide, titanium(Ⅳ) isopropxide, titanium-2-ethyl(hexoxide), indium acetate, indium hyeroxide, antimony acetate, antimony trioxide, dibutyl tin oxide, stannous-2-ethyl-1-hexanoate 중에서 선택되는 촉매를 사용하는 것을 특징으로 한다.Preferably, the catalyst is tin (II) chloride, titanium (IV) butoxide, titanium (IV) isopropxide, titanium-2-ethyl (hexoxide), indium acetate, indium hyeroxide, antimony acetate, antimony trioxide, dibutyl tin oxide , stannous-2-ethyl-1-hexanoate is characterized by using a catalyst selected from.

바람직하게는, 상기의 용융축합반응은 반응온도를 120 내지 240℃ 로 하는 것을 특징으로 한다.Preferably, the melt condensation reaction is characterized in that the reaction temperature of 120 to 240 ℃.

바람직하게는, 상기의 용융축합반응은 반응압력을 0.1 내지 760 mmHg 로 하는 것을 특징으로 한다.Preferably, the melt condensation reaction is characterized in that the reaction pressure is 0.1 to 760 mmHg.

또한 본 발명에 따른 고분자 PLA/MWNT-g-PLA를 제조하는 방법은 상기의 방법으로 제조된 고분자 MWNT-g-PLA에 PLA 단독고분자를 용융혼합 또는 용액혼합하여 제조하는 것을 특징으로 한다.In addition, the method for producing a polymer PLA / MWNT-g-PLA according to the present invention is characterized in that the polymer MWNT-g-PLA prepared by the above method is prepared by melting or solution mixing the PLA-only polymer.

바람직하게는, 상기의 PLA 단독고분자는 L-lactic acid, D-lactic acid 및 이들의 조합으로 구성된 그룹에서 선택된 한 가지 이상의 단량체를 사용하는 것을 특징으로 한다.Preferably, the PLA homopolymer is characterized by using at least one monomer selected from the group consisting of L-lactic acid, D-lactic acid and combinations thereof.

바람직하게는, 상기의 용융혼합은 온도를 160 내지 240℃ 로 하는 것을 특징으로 한다.Preferably, the melt mixing is characterized in that the temperature is 160 to 240 ℃.

바람직하게는, 상기의 용액혼합은 온도를 20 내지 70℃ 로 하는 것을 특징으로 한다.Preferably, the solution mixture is characterized in that the temperature is 20 to 70 ℃.

더 바람직하게는, 상기의 용액혼합은 용매로서 클로로포름, 톨루엔, 테트라하이드로퓨란, 메틸렌클로라이드 또는 자일렌을 사용하는 것을 특징으로 한다.More preferably, the solution mixture is characterized by using chloroform, toluene, tetrahydrofuran, methylene chloride or xylene as a solvent.

바람직하게는, 상기의 용액혼합은 비용매로서 물, 메탄올, 에탄올, 디메틸에테르 또는 디에틸에테르를 사용하는 것을 특징으로 한다.Preferably, the solution mixture is characterized in that water, methanol, ethanol, dimethyl ether or diethyl ether is used as the non-solvent.

또한 본 발명에 따른 고분자 MWNT-g-PLA는 상기의 방법으로 제조된 것을 특징으로 한다.In addition, the polymer MWNT-g-PLA according to the present invention is characterized in that it is prepared by the above method.

또한 본 발명에 따른 고분자 PLA/MWNT-g-PLA는 상기의 방법으로 제조된 것을 특징으로 한다.In addition, the polymer PLA / MWNT-g-PLA according to the present invention is characterized in that it is prepared by the above method.

또한 본 발명에 따른 물품은 상기의 고분자 PLA/MWNT-g-PLA로부터 제조된 것을 특징으로 한다.In addition, the article according to the invention is characterized in that it is prepared from the polymer PLA / MWNT-g-PLA.

바람직하게는, 상기의 물품은 필름, 섬유, 플리스틱인 것을 특징으로 한다.Preferably, the article is characterized in that the film, fiber, plastic.

이상에서 상술한 바와 같이, 본 발명은 고분자 MWNT-g-PLA를 용매를 사용하지 않고 제조하는 방법을 제공함으로써, 용매를 사용하여 제조하는 기존의 방법보다 간편하게 고분자 MWNT-g-PLA를 제조할 수 있는 효과가 있다.As described above, the present invention provides a method of preparing the polymer MWNT-g-PLA without using a solvent, thereby making it easier to prepare the polymer MWNT-g-PLA than a conventional method using a solvent. It has an effect.

또한 본 발명은 고분자 PLA/MWNT-g-PLA를 제조하는 방법을 제공함으로써, 제조된 고분자 PLA/MWNT-g-PLA가 PLA 단독고분자보다 인장탄성율과 인장강도와 같은 기계적 성질을 향상시키는 효과가 있다.In another aspect, the present invention provides a method for producing a polymer PLA / MWNT-g-PLA, the prepared polymer PLA / MWNT-g-PLA has the effect of improving the mechanical properties such as tensile modulus and tensile strength than the PLA polymer alone .

또한 본 발명은 상기의 고분자 PLA/MWNT-g-PLA를 이용한 필름, 섬유, 플라스틱이 PLA 단독고분자를 이용한 필름, 섬유, 플라스틱보다 인장탄성율과 인장강도와 같은 기계적 성질을 향상시키는 효과가 있다.In addition, the present invention has the effect of improving the mechanical properties such as tensile modulus and tensile strength than the film, fiber, plastic using the above-described polymer PLA / MWNT-g-PLA film, fiber, plastic using the PLA alone polymer.

정의Justice

본원에서 사용된 용어 MWNT는 다중벽탄소나노튜브(Multiwalled Carbon Nanotube)를 나타낸다. 본원에서 사용한 MWNT는 일진나노텍사의 CM-95 제품이다.The term MWNT, as used herein, refers to Multiwalled Carbon Nanotube. MWNT used herein is a CM-95 product of Iljin Nanotech.

본원에서 사용된 용어 MWNT-COOH는 상기의 MWNT의 표면에 카르복실기(-COOH)가 달려있는 것을 말한다. 본원의 MWNT-COOH는 MWNT 1 g 당 1 내지 5×1022개의 카르복실기(-COOH)를 갖는다.As used herein, the term MWNT-COOH refers to a carboxyl group (-COOH) on the surface of the MWNT. The MWNT-COOH herein has 1 to 5 × 10 22 carboxyl groups (—COOH) per gram of MWNT.

본원에서 사용된 용어 LA는 유산(Lactic acid) 단량체를 나타낸다. 또한, PLA는 폴리락타이드(Polylactide)를 나타내는 것으로 상기의 LA를 50% 이상 함유하는 중합체를 말한다.The term LA, as used herein, refers to a lactic acid monomer. In addition, PLA represents polylactide and refers to a polymer containing 50% or more of the above LA.

본원에서 사용된 용어 MWNT-g-PLA는 상기의 MWNT-COOH와 LA가 용융축합중합하여 제조한 것이다. 상기의 g는 graft("합체"의 의미를 가짐)의 약자이며, MWNT의 표면에 PLA 사슬가지가 형성되어 있는 것을 말한다.As used herein, the term MWNT-g-PLA is prepared by melt condensation polymerization of the MWNT-COOH and LA. G is an abbreviation of graft (meaning "union"), and means that PLA chain branch is formed on the surface of MWNT.

본원에서 사용된 용어 PLA/MWNT-g-PLA는 상기의 MWNT-g-PLA와 PLA 단독고분자를 용융혼합하거나 용액혼합하여 제조한 것을 말한다.As used herein, the term PLA / MWNT-g-PLA refers to one prepared by melt mixing or solution mixing the MWNT-g-PLA and PLA homopolymer.

제조예 1 (MWNT-g-PLA) Preparation Example 1 (MWNT-g-PLA)

순수한 MWNT를 질산/황산(3M/1M) 혼합용액에 넣고 1시간 동안 초음파처리하 여 현탁용액을 만든다. 상기의 현탁용액은 환류장치에서 120℃ 를 유지한 채, 2시간 동안 환류시킨다. 환류가 끝나면 상기의 현탁용액을 상온으로 냉각시킨 후 과량의 증류수에 침전을 시키고 pH가 7이 되도록 수세과정을 거친다. 그 후, 필터과정을 거쳐 80℃ 에서 진공건조하면 MWNT-COOH를 얻을 수 있다. 상기의 MWNT-COOH에서 카르복실기(-COOH)는 MWNT 1 g 당 1 내지 5×1022개를 가질 수 있다.Pure MWNTs are added to a mixed solution of nitric acid / sulfuric acid (3M / 1M) and sonicated for 1 hour to form a suspension solution. The suspension solution is refluxed for 2 hours while maintaining 120 ℃ in the reflux apparatus. After reflux, the suspension solution is cooled to room temperature, precipitated in excess distilled water, and washed with water until pH reaches 7. Subsequently, vacuum drying at 80 ° C. through a filter process yields MWNT-COOH. In the MWNT-COOH, the carboxyl group (-COOH) may have 1 to 5 × 10 22 per g of MWNT.

상기의 MWNT-COOH를 0.1 내지 50 중량비(wt%)로 조절하여 LA와 혼합하여 150℃ 의 오븐에서 12시간 동안 건조하여 수분을 제거하고, 촉매 tin(Ⅱ) chloride(SnCl2)를 첨가하여 120 내지 240℃ 에서 1시간 동안 진공상태(0.1 내지 760 mmHG)로 압력을 감소시키고 15시간 동안 중합을 진행한다. 상기의 중합된 시료를 클로로포름에 녹인 후에 침전, 여과를 거치면 MWNT-g-PLA를 얻을 수 있다.(도 1)The MWNT-COOH was adjusted to 0.1 to 50 weight ratio (wt%), mixed with LA, dried in an oven at 150 ° C. for 12 hours to remove moisture, and added with catalyst tin (II) chloride (SnCl 2 ) 120 To 240 ° C. for 1 hour in a vacuum (0.1 to 760 mmHG) to reduce the pressure and proceed with polymerization for 15 hours. MWNT-g-PLA may be obtained by dissolving the polymerized sample in chloroform, followed by precipitation and filtration (FIG. 1).

또한 상기의 촉매 tin(Ⅱ) chloride) 대신에 titanium(Ⅳ) butoxide, titanium(Ⅳ) isopropoxide, titanium-2-ethyl(hexoxide), indium acetate, indium hydroxide, antimony acetate, antimony trioxide, dibutyl tin oxide, stannous-2-ethyl-1-hexanoate 등을 사용할 수 있다.In addition, the catalyst tin (II) chloride) Instead of titanium (IV) butoxide, titanium (IV) isopropoxide, titanium-2-ethyl (hexoxide), indium acetate, indium hydroxide, antimony acetate, antimony trioxide, dibutyl tin oxide, stannous-2-ethyl-1-hexanoate Can be used.

제조예 2 (PLA/MWNT-g-PLA) Preparation Example 2 (PLA / MWNT-g-PLA)

(1) 용융혼합에 의한 제조(1) Manufacture by melt mixing

상기의 제조예 1에서 제조된 MWNT-g-PLA와 PLA 단독고분자를 혼련기(mixer 또는 extruder)를 이용하여 160 내지 240℃ 에서 용융혼합하여 PLA/MWNT-g-PLA를 얻을 수 있다.MWNT-g-PLA and PLA homopolymer prepared in Preparation Example 1 may be melt mixed at 160 to 240 ° C. using a kneader (mixer or extruder) to obtain PLA / MWNT-g-PLA.

PLA/MWNT-g-PLA와의 물성비교를 위하여 PLA/MWNT와 PLA/MWNT-COOH도 상기와 같은 방법으로 제조하였다. 즉, MWNT와 PLA 단독고분자를 용융혼합하여 PLA/MWNT를 제조하였고, MWNT-COOH와 PLA 단독고분자를 용융혼합하여 PLA/MWNT-COOH를 제조하였다.PLA / MWNT and PLA / MWNT-COOH were prepared in the same manner as above for physical property comparison with PLA / MWNT-g-PLA. That is, PLA / MWNT was prepared by melt mixing MWNT and PLA homopolymer, and PLA / MWNT-COOH was prepared by melt mixing MWNT-COOH and PLA homopolymer.

(2) 용액혼합에 의한 제조(2) Preparation by Solution Mixing

상기의 제조예 1에서 제조된 MWNT-g-PLA를 0.1 내지 50 중량비(wt%)로 조절하여 20 내지 70℃ 에서 용매에 녹여서 1시간 동안 초음파를 처리한다. 상기의 용매로서 클로로포름, 톨루엔, 테트라하이드로퓨란, 메틸렌클로라이드, 자일렌을 사용할 수 있다. 상기의 MWNT-g-PLA를 녹인 용액에 PLA 단독고분자(고유점도 1.01 dL/g, L-lactic acid 99 mol%)를 첨가하여 6시간 동안 교반하고, 과량의 메탄올에 녹인 후에 침전, 여과를 거치면 PLA/MWNT-g-PLA를 얻을 수 있다. 상기의 메탄올은 비용매로서, 침전을 얻기 위해 사용하였는데, 메탄올 대신에 물, 에탄올, 디메틸에테르, 디에틸에테르 등을 사용할 수 있다.MWNT-g-PLA prepared in Preparation Example 1 was adjusted to 0.1 to 50 weight ratio (wt%), dissolved in a solvent at 20 to 70 ° C., and subjected to ultrasonic treatment for 1 hour. Chloroform, toluene, tetrahydrofuran, methylene chloride and xylene can be used as the solvent. PLA alone polymer (high viscosity 1.01 dL / g, L-lactic acid 99 mol%) was added to the solution of MWNT-g-PLA dissolved for 6 hours, stirred in excess methanol, precipitated and filtered. PLA / MWNT-g-PLA can be obtained. Methanol described above was used as a non-solvent to obtain precipitation, but water, ethanol, dimethyl ether, diethyl ether and the like can be used instead of methanol.

PLA/MWNT-g-PLA와의 물성비교를 위하여 PLA/MWNT와 PLA/MWNT-COOH도 상기와 같은 방법으로 제조하였다. 즉, MWNT와 PLA 단독고분자를 용액혼합하여 PLA/MWNT를 제조하였고, MWNT-COOH와 PLA 단독고분자를 용융혼합하여 PLA/MWNT-COOH를 제조하였다.PLA / MWNT and PLA / MWNT-COOH were prepared in the same manner as above for physical property comparison with PLA / MWNT-g-PLA. That is, PLA / MWNT was prepared by solution mixing MWNT and PLA homopolymer, and PLA / MWNT-COOH was prepared by melt mixing MWNT-COOH and PLA homopolymer.

제조예 3 (필름) Preparation Example 3 (Film)

PLA 단독고분자, 제조예 1에서 제조된 MWNT-COOH와 MWNT-g-PLA, 제조예 2에서 제조된 PLA/MWNT-g-PLA와 PLA/MWNT, PLA/MWNT-COOH를 80℃ 에서 충분히 진공건조한 후, 180℃ 에서 가열프레스를 이용하여 0.2mm 두께로 압축하면 필름형태로 얻을 수 있다.PLA alone polymer, MWNT-COOH and MWNT-g-PLA prepared in Preparation Example 1, PLA / MWNT-g-PLA prepared in Preparation Example 2, PLA / MWNT, PLA / MWNT-COOH sufficiently vacuum-dried at 80 ℃ After compression to 0.2mm thickness using a heating press at 180 ℃ can be obtained in the form of a film.

실험예 1 (적외선분광 스펙트럼을 통한 구조 확인) Experimental Example 1 (Confirmation of Structure through Infrared Spectroscopy)

제조예 1에 의해 제조된 MWNT-COOH와 MWNT-g-PLA의 구조를 확인하기 위하여 적외선분광 스펙트럼을 조사하였다.(도 2)Infrared spectroscopy was carried out to confirm the structures of MWNT-COOH and MWNT-g-PLA prepared in Preparation Example 1 (FIG. 2).

-COOH(carboxyl group, 카르복실기)는 1720 cm-1 부근에서 고유피크를 보인다. 그리고, 도 2의 MWNT-COOH(b)가 1720 cm-1 피크를 보이므로 카르복실기를 가지고 있음을 확인할 수 있다.-COOH (carboxyl group) shows inherent peaks around 1720 cm -1 . And, since the MWNT-COOH (b) of Figure 2 shows a 1720 cm -1 peak it can be confirmed that it has a carboxyl group.

-COO-(ester group, 에스테르기)는 약 1755 cm-1 부근에서 고유피크를 보인다. 그리고, 도2의 MWNT-g-PLA(c)가 1750 cm-1 피크를 보이고, PLA(d)가 1755 cm-1 피크를 보이므로, MWNT-g-PLA(c)와 PLA(d)가 에스테르기를 가지고 있음을 확인할 수 있다. 상기의 에스테르기는 2개 이상의 LA가 결합할 때, H2O가 빠져나가면서 중합이 일어나서 에스테르 결합을 형성하게 된 것이다.-COO- (ester group) shows inherent peaks around 1755 cm -1 . In addition, since MWNT-g-PLA (c) of FIG. 2 shows a peak of 1750 cm −1 and PLA (d) shows a peak of 1755 cm −1 , MWNT-g-PLA (c) and PLA (d) show a peak of 1750 cm −1 . It can be confirmed that it has an ester group. When two or more LAs are bonded to the ester group, polymerization occurs as H 2 O is released to form an ester bond.

실험예 2 (열중량분해곡선을 통한 PLA 사슬가지의 함량 분석) Experimental Example 2 (Content Analysis of PLA Chain Branch through Thermogravimetric Analysis)

제조예 1에 의해 제조된 MWNT-g-PLA에서 PLA가 전체중량의 몇 %를 차지하는지 확인하기 위하여 열중량분해 실험을 하였다. 상기의 실험은 TA Instruments사의 SDT Q600 TGA를 이용하여 질소분위기 조건하에서 20 내지 800 ℃의 온도에서 실행하였으며, 이때의 승온속도는 20 ℃/분으로 하였다.In the MWNT-g-PLA prepared in Preparation Example 1, a thermogravimetric experiment was conducted to determine what percentage of the total weight of PLA. The experiment was carried out using a TA Instruments SDT Q600 TGA at a temperature of 20 to 800 ℃ under nitrogen atmosphere conditions, the temperature increase rate was set to 20 ℃ / min.

도 3의 열중량분해곡선을 보면, MWNT(a)와 MWNT-COOH(b)는 600℃ 까지 온도를 높여도 중량감소가 거의 일어나지 않는다. 그런데, PLA(d)는 600℃ 에서 거의 남아있지 않다. 따라서 MWNT-g-PLA(c)의 600℃ 에서의 잔류량이 68.54% 라는 것은 PLA가 31.46% 포함되어 있었다는 것을 의미한다.Referring to the thermogravimetric decomposition curve of Figure 3, MWNT (a) and MWNT-COOH (b) is almost no weight loss even if the temperature is increased to 600 ℃. However, PLA (d) hardly remains at 600 ° C. Therefore, 68.54% of the residual amount of MWNT-g-PLA (c) at 600 ° C means that 31.46% of PLA was included.

비교예 1 (PLA/MWNT-g-PLA필름의 인장탄성율과 인장강도) Comparative Example 1 (Tensile Modulus and Tensile Strength of PLA / MWNT-g-PLA Film)

도 4는 PLA 단독고분자 필름(가)과 다양한 중량비(wt%)로 제조한 PLA/MWNT-g-PLA 필름(나 내지 바)의 인장실험결과를 나타낸 것이다.Figure 4 shows the tensile test results of the PLA alone polymer film (A) and PLA / MWNT-g-PLA film (b) prepared in various weight ratio (wt%).

인장탄성율을 살펴보면, PLA 단독고분자 필름(가)의 경우는 1928 ± 156 MPa였다. PLA/MWNT-g-PLA 필름(나 내지 바)의 경우는 MWNT 0.1 wt%로 제조한 PLA/MWNT-g-PLA 필름(나)에서 MWNT 1 wt%로 제조한 PLA/MWNT-g-PLA 필름(마)로 갈수록 인장탄성율이 증가하다가, MWNT 5 wt%로 제조한 PLA/MWNT-g-PLA 필름(바)에서는 인장탄성율이 일정하게 유지되었다. PLA 단독고분자 필름(가)와 비교했을 때, MWNT 1 wt%로 제조한 PLA/MWNT-g-PLA 필름(마)의 인장탄성율은 약 32% 증가하였음 을 알 수 있다. 상기의 32%는 (2541-1928)/1928 × 100 = 31.79 % 의 식에서 계산된 것이다.In the tensile modulus, the PLA homopolymer film (A) was 1928 ± 156 MPa. In the case of PLA / MWNT-g-PLA film (B) to PLA / MWNT-g-PLA film (B) made of MWNT 1 wt% from PLA / MWNT-g-PLA film (B) made of 0.1 wt% Tensile elastic modulus increased with (E), but the tensile elastic modulus was kept constant in PLA / MWNT-g-PLA film (bar) made of 5 wt% MWNT. Compared with the PLA homopolymer film (a), it can be seen that the tensile modulus of the PLA / MWNT-g-PLA film (e) manufactured with 1 wt% of MWNT was increased by about 32%. 32% of the above is calculated from the formula (2541-1928) /1928×100=31.79%.

인장강도를 살펴보면, PLA 단독고분자 필름(가)의 경우는 49.3 MPa였다. PLA/MWNT-g-PLA 필름(나 내지 바)의 경우는 MWNT 0.1 wt%로 제조한 PLA/MWNT-g-PLA 필름(나)에서 MWNT 1 wt%로 제조한 PLA/MWNT-g-PLA 필름(마)로 갈수록 인장강도가 증가하다가, MWNT 5 wt%로 제조한 PLA/MWNT-g-PLA 필름(바)에서는 인장강도가 감소하는 경향을 보였다. PLA 단독고분자 필름(가)와 비교했을 때, MWNT 1 wt%로 제조한 PLA/MWNT-g-PLA 필름(마)의 인장강도는 약 47 % 증가하였음을 알 수 있다. 상기의 47%는 (72.3-49.3)/49.3 × 100 = 46.65 % 의 식에서 계산된 것이다.Looking at the tensile strength, PLA homopolymer film (A) was 49.3 MPa. In the case of PLA / MWNT-g-PLA film (B) to PLA / MWNT-g-PLA film (B) made of MWNT 1 wt% from PLA / MWNT-g-PLA film (B) made of 0.1 wt% Tensile strength was increased to (e), but the tensile strength was decreased in the PLA / MWNT-g-PLA film (bar) made of 5 wt% MWNT. Compared with the PLA homopolymer film (a), it can be seen that the tensile strength of the PLA / MWNT-g-PLA film (e) prepared with MWNT 1 wt% increased about 47%. 47% of the above is calculated from the formula (72.3-49.3) /49.3×100=46.65%.

비교예 2 (다양한 종류의 필름의 인장탄성율과 인장강도) Comparative Example 2 (Tensile Modulus and Tensile Strength of Various Types of Film)

상기의 비교예 1을 통해서, MWNT가 1 wt% 인 PLA/MWNA-g-PLA 필름의 인장탄성율과 인장강도가 가장 좋다는 것을 확인하였다. 따라서, MWNT를 1 wt% 포함하면 제조예 3을 통해서 제조된 여러 종류의 필름도 인장강도가 좋은지 확인하는 실험을 하였다. Through Comparative Example 1, it was confirmed that the tensile modulus and tensile strength of PLA / MWNA-g-PLA film having MWNT of 1 wt% is the best. Therefore, when 1 wt% of MWNT was included, various kinds of films prepared through Preparation Example 3 were tested to determine whether the tensile strength was good.

도 5는 PLA 단독고분자 필름(가), PLA/MWNT 필름(나), PLA/MWNT-COOH 필름(다), PLA/MWNA-g-PLA 필름(라)의 신장-응력곡선과 인장탄성률과 인장강도를 나타낸 것이다. 상기의 도 5에서 나타난 결과를 보면, PLA/MWNA-g-PLA 필름(라)가 인장강도가 가장 좋은 것임을 알 수 있다. 이것은 PLA 단독고분자에서 MWNT나 MWNT-COOH보다 MWNA-g-PLA가 분산성이 좋으며, MWNA-g-PLA의 표면에 있는 PLA 사슬이 PLA 단독고분자와의 계면 결합력을 증대시키기 때문이다.Figure 5 shows the elongation-stress curve and tensile modulus of elasticity and tension of PLA homopolymer film (A), PLA / MWNT film (B), PLA / MWNT-COOH film (C), PLA / MWNA-g-PLA film (D) Strength is shown. Looking at the results shown in Figure 5, it can be seen that the PLA / MWNA-g-PLA film (D) is the best tensile strength. This is because MWNA-g-PLA has better dispersibility than MWNT or MWNT-COOH in PLA homopolymer, and the PLA chain on the surface of MWNA-g-PLA increases the interfacial bonding force with PLA homopolymer.

본 발명에서 제시하는 방법에 따라 제조된 고분자 MWNT-g-PLA와 고분자 PLA/MWNT-g-PLA는 상기 실험예의 결과로 부터 입증되듯이 기존의 PLA 단독고분자보다 향상된 인장탄성율과 인장강도를 가진다. 따라서, 필름, 섬유, 플리스틱 등 다양한 분야에서 유용하게 적용될 수 있으며, 본 발명은 이들 구체적인 예에 한정되는 것은 아니다.The polymer MWNT-g-PLA and the polymer PLA / MWNT-g-PLA prepared according to the method of the present invention have improved tensile modulus and tensile strength than the conventional PLA homopolymer as demonstrated by the results of the above experimental example. Therefore, it can be usefully applied in various fields such as film, fiber, plastic, etc. The present invention is not limited to these specific examples.

도 1은 MWNT-COOH와 LA(Lactic acid)의 용융축합중합에 의해 MWNT 표면에 PLA 사슬가지를 갖는 MWNT-g-PLA의 제조과정을 도시한 도면이다.FIG. 1 is a view illustrating a manufacturing process of MWNT-g-PLA having PLA chain branch on MWNT surface by melt condensation polymerization of MWNT-COOH and LA (Lactic acid).

도 2는 MWNT, MWNT-COOH, MWNT-g-PLA, PLA 의 적외선분광 스펙트럼을 나타낸 도면이다.2 is a diagram showing an infrared spectroscopy spectrum of MWNT, MWNT-COOH, MWNT-g-PLA, PLA.

도 3은 PLA, MWNT, MWNT-COOH, MWNT-g-PLA 의 열분해곡선을 나타낸 도면이다.3 is a diagram showing a thermal decomposition curve of PLA, MWNT, MWNT-COOH, MWNT-g-PLA.

도 4는 PLA 단독고분자 필름(가)과 다양한 중량비(wt%)로 제조한 PLA/MWNT-g-PLA 필름(나 내지 바)의 인장실험결과를 나타낸 것이다.Figure 4 shows the tensile test results of the PLA alone polymer film (A) and PLA / MWNT-g-PLA film (b) prepared in various weight ratio (wt%).

도 5는 PLA 단독고분자 필름(가), PLA/MWNT 필름(나), PLA/MWNT-COOH 필름(다), PLA/MWNA-g-PLA 필름(라)의 신장-응력곡선과 인장탄성률과 인장강도를 나타낸 것이다.Figure 5 shows the elongation-stress curve and tensile modulus of elasticity and tension of PLA homopolymer film (A), PLA / MWNT film (B), PLA / MWNT-COOH film (C), PLA / MWNA-g-PLA film (D) Strength is shown.

Claims (17)

0.1 내지 50 wt%의 MWNT-COOH와 50 내지 99.9 wt%의 LA(Lactic acid)를 촉매를 이용하여 용융축합중합하여 고분자 MWNT-g-PLA를 제조하는 방법.A method of preparing a polymer MWNT-g-PLA by melt condensation polymerization of 0.1 to 50 wt% MWNT-COOH and 50 to 99.9 wt% LA (Lactic acid) using a catalyst. 제 1 항에 있어서, 상기의 MWNT-COOH는 MWNT 1 g 당 1 내지 5×1022개의 카르복실기(-COOH)를 갖는 것을 특징으로 고분자 MWNT-g-PLA를 제조하는 방법.The method of claim 1, wherein the MWNT-COOH has 1 to 5 × 10 22 carboxyl groups (—COOH) per gram of MWNT. 제 1 항에 있어서, 상기의 MWNT-COOH는 MWNT를 질산/황산(3M/1M) 혼합용액과 반응시켜서 제조한 것을 특징으로 고분자 MWNT-g-PLA를 제조하는 방법.The method of claim 1, wherein the MWNT-COOH is prepared by reacting MWNT with a nitric acid / sulfuric acid (3M / 1M) mixed solution. 제 1 항에 있어서, 상기의 LA는 L-lactic acid 또는 D-lactic acid를 사용하여 고분자 MWNT-g-PLA를 제조하는 방법.The method of claim 1, wherein the LA is a method for producing a polymer MWNT-g-PLA using L-lactic acid or D-lactic acid. 제 1 항에 있어서, 상기의 촉매는 tin(Ⅱ) chloride, titanium(Ⅳ) butoxide, titanium(Ⅳ) isopropxide, titanium-2-ethyl(hexoxide), indium acetate, indium hyeroxide, antimony acetate, antimony trioxide, dibutyl tin oxide, stannous-2-ethyl-1-hexanoate 중에서 선택되는 촉매를 사용하여 고분자 MWNT-g-PLA를 제조하는 방법.The method of claim 1, wherein the catalyst is tin (II) chloride, titanium (IV) butoxide, titanium (IV) isopropxide, titanium-2-ethyl (hexoxide), indium acetate, indium hyeroxide, antimony acetate, antimony trioxide, dibutyl Method for preparing a polymer MWNT-g-PLA using a catalyst selected from tin oxide, stannous-2-ethyl-1-hexanoate. 제 1 항에 있어서, 상기의 용융축합반응은 반응온도를 120 내지 240℃ 로 하여 고분자 MWNT-g-PLA를 제조하는 방법.The method of claim 1, wherein the melt condensation reaction is a method for producing a polymer MWNT-g-PLA at a reaction temperature of 120 to 240 ℃. 제 1 항에 있어서, 상기의 용융축합반응은 반응압력을 0.1 내지 760 mmHg 로 하여 고분자 MWNT-g-PLA를 제조하는 방법.The method of claim 1, wherein the melt condensation reaction produces a polymer MWNT-g-PLA using a reaction pressure of 0.1 to 760 mmHg. 제 1 항의 방법으로 제조된 고분자 MWNT-g-PLA에 PLA 단독고분자를 용융혼합 또는 용액혼합하여 고분자 PLA/MWNT-g-PLA를 제조하는 방법.A method for preparing a polymer PLA / MWNT-g-PLA by melt-mixing or solution-mixing PLA homopolymer to the polymer MWNT-g-PLA prepared by the method of claim 1. 제 8 항에 있어서, 상기의 PLA 단독고분자는 L-lactic acid, D-lactic acid 및 이들의 조합으로 구성된 그룹에서 선택된 한 가지 이상의 단량체를 사용하여 고분자 PLA/MWNT-g-PLA를 제조하는 방법.The method of claim 8, wherein the PLA homopolymer is a polymer PLA / MWNT-g-PLA using at least one monomer selected from the group consisting of L-lactic acid, D-lactic acid, and combinations thereof. 제 8 항에 있어서, 상기의 용융혼합은 온도를 160 내지 240℃ 로 하여 고분자 PLA/MWNT-g-PLA를 제조하는 방법.The method of claim 8, wherein the melt mixing is a method for producing a polymer PLA / MWNT-g-PLA at a temperature of 160 to 240 ℃. 제 8 항에 있어서, 상기의 용액혼합은 온도를 20 내지 70℃ 로 하여 고분자 PLA/MWNT-g-PLA를 제조하는 방법.The method of claim 8, wherein the solution mixture is a method for producing a polymer PLA / MWNT-g-PLA at a temperature of 20 to 70 ℃. 제 11 항에 있어서, 상기의 용액혼합은 용매로서 클로로포름, 톨루엔, 테트라하이드로퓨란, 메틸렌클로라이드 또는 자일렌을 사용하여 고분자 PLA/MWNT-g-PLA를 제조하는 방법.The method of claim 11, wherein the solution mixture is a method for preparing the polymer PLA / MWNT-g-PLA using chloroform, toluene, tetrahydrofuran, methylene chloride or xylene as a solvent. 제 11 항에 있어서, 상기의 용액혼합은 비용매로서 물, 메탄올, 에탄올, 디메틸에테르 또는 디에틸에테르를 사용하여 고분자 PLA/MWNT-g-PLA를 제조하는 방법.12. The method of claim 11, wherein the solution mixture is a non-solvent, wherein the polymer PLA / MWNT-g-PLA is prepared using water, methanol, ethanol, dimethyl ether or diethyl ether. 제 1 항의 방법으로 제조된 고분자 MWNT-g-PLA.Polymer MWNT-g-PLA prepared by the method of claim 1. 제 8 항의 방법으로 제조된 고분자 PLA/MWNT-g-PLA.Polymer PLA / MWNT-g-PLA prepared by the method of claim 8. 제 15 항의 고분자 PLA/MWNT-g-PLA로 부터 제조된 물품.An article made from the polymer PLA / MWNT-g-PLA of claim 15. 제 16 항에 있어서, 필름, 섬유, 플리스틱인 물품.17. The article of claim 16, which is a film, fiber, plastic.
KR1020080023678A 2008-03-14 2008-03-14 Poly LA/MWNT-g-poly LA including MWNT-g-poly LA and method for preparing the same KR100954293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080023678A KR100954293B1 (en) 2008-03-14 2008-03-14 Poly LA/MWNT-g-poly LA including MWNT-g-poly LA and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080023678A KR100954293B1 (en) 2008-03-14 2008-03-14 Poly LA/MWNT-g-poly LA including MWNT-g-poly LA and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20090098350A true KR20090098350A (en) 2009-09-17
KR100954293B1 KR100954293B1 (en) 2010-04-26

Family

ID=41357440

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080023678A KR100954293B1 (en) 2008-03-14 2008-03-14 Poly LA/MWNT-g-poly LA including MWNT-g-poly LA and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100954293B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265944A (en) * 2018-09-05 2019-01-25 南京林业大学 A kind of preparation method of high intensity antibacterial carbon nano tube/silver/lactic acid composite material
CN111534882A (en) * 2020-05-22 2020-08-14 北京光华纺织集团有限公司 Preparation method of functionalized multi-walled carbon nanotube reinforced polyester fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852386B1 (en) 2007-03-16 2008-08-14 한국과학기술원 Dispersion composite of nanotube for a process for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265944A (en) * 2018-09-05 2019-01-25 南京林业大学 A kind of preparation method of high intensity antibacterial carbon nano tube/silver/lactic acid composite material
CN111534882A (en) * 2020-05-22 2020-08-14 北京光华纺织集团有限公司 Preparation method of functionalized multi-walled carbon nanotube reinforced polyester fiber
CN111534882B (en) * 2020-05-22 2022-05-20 北京光华纺织集团有限公司 Preparation method of functionalized multi-walled carbon nanotube reinforced polyester fiber

Also Published As

Publication number Publication date
KR100954293B1 (en) 2010-04-26

Similar Documents

Publication Publication Date Title
Zeng et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior
Al Sheheri et al. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites
Wu et al. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites
Xiong et al. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite
Yoon et al. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes
Li et al. A facile method to produce graphene oxide-g-poly (L-lactic acid) as an promising reinforcement for PLLA nanocomposites
Yoon et al. Influences of poly (lactic acid)‐grafted carbon nanotube on thermal, mechanical, and electrical properties of poly (lactic acid)
Kuan et al. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite
EP1522552B1 (en) Composite and method of manufacturing the same
Liu et al. Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide 6 composites
Li et al. Enhanced thermal and electrical properties of poly (D, L-lactide)/multi-walled carbon nanotubes composites by in-situ polymerization
WO2007035442A2 (en) Conductive silicone and methods for preparing same
KR101321099B1 (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
Bang et al. Effects of pH on electrospun PVA/acid-treated MWNT composite nanofibers
Jagtap et al. Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique.
Kim et al. Electrospun poly (vinyl alcohol) nanofibers incorporating PEGylated multi-wall carbon nanotube
US20170092388A1 (en) Conductive composites and compositions for producing the same, and production methods thereof
Yu et al. Effective stress transferring interface and mechanical property enhancement of poly (L-lactide)/multi-walled carbon nanotubes fibers
KR101056311B1 (en) Carbon nanotube-g-polylactide polymer, polylactide / carbon nanotube-g-polylactide composite, and preparation method thereof
Ma et al. Modified treatment for carbonized cellulose nanofiber application in composites
KR100954293B1 (en) Poly LA/MWNT-g-poly LA including MWNT-g-poly LA and method for preparing the same
KR101466750B1 (en) Graphene oxide / carboxymethylcellulose / alginate Nanocomposite
Ehteramian et al. Functionalization of multi-walled carbon nanotube and its effect on shape memory behavior of nanocomposite based on thermoplastic polyurethane/polyvinyl chloride/multi-walled carbon nanotube (TPU/PVC/MWCNT)
Liao et al. Poly (3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposites: Preparation and characterizations
Damonte et al. Synthesis and characterization of a novel star polycaprolactone to be applied in the development of graphite nanoplates-based nanopapers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130403

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee