KR20090093500A - Heat Transfer Tube of Absorption Type Refrigeration - Google Patents

Heat Transfer Tube of Absorption Type Refrigeration

Info

Publication number
KR20090093500A
KR20090093500A KR1020080019052A KR20080019052A KR20090093500A KR 20090093500 A KR20090093500 A KR 20090093500A KR 1020080019052 A KR1020080019052 A KR 1020080019052A KR 20080019052 A KR20080019052 A KR 20080019052A KR 20090093500 A KR20090093500 A KR 20090093500A
Authority
KR
South Korea
Prior art keywords
heat transfer
heat
transfer tube
absorption type
along
Prior art date
Application number
KR1020080019052A
Other languages
Korean (ko)
Inventor
오주현
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to KR1020080019052A priority Critical patent/KR20090093500A/en
Publication of KR20090093500A publication Critical patent/KR20090093500A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

A heat transfer apparatus of absorption type refrigerator is provided to have dimples at the heat pipe and a heat transfer pin and enhance heat transfer area. A heat transfer apparatus (10) of absorption type refrigerator comprises a heat pipe (12), dimple unit, and heat transfer pin (14). The cooling water which flows in along the inside of the heat pipe and absorbent liquid along the outside of the heat pipe causes heat exchange. The dimple unit is in the heat pipe. The inside and outside of the dimple unit forms convex shape and concave shape, respectively.

Description

흡수식 냉동기의 전열장치{Heat Transfer Tube of Absorption Type Refrigeration}Heat Transfer Tube of Absorption Type Refrigeration

본 발명은 흡수식 냉동기의 전열장치에 관한 것으로, 보다 구체적으로는 전열관에 형성되는 딤플부와 전열핀의 조합에 의하여 전열면적이 더욱 증대되도록 하고, 아울러 전열관 내부를 따라 흐르는 냉각수와, 외면을 따라 흐르는 흡수액이 유동성을 가지고 난류를 형성하여 전열성능을 더 높일 수 있도록 한 것이다.The present invention relates to a heat transfer device of the absorption chiller, and more specifically, the heat transfer area is further increased by the combination of the dimple and heat transfer fins formed in the heat transfer tube, and the coolant flowing along the inside of the heat transfer tube and flows along the outer surface. The absorbent liquid has a fluidity to form turbulent flows to further increase the heat transfer performance.

일반적인 흡수식 냉동기는 흡수기, 증발기, 응축기, 및 재생기를 필수구성요소로 하고 있으며, 이러한 흡수식 냉동기에서 적용하고 있는 전열관은, 통상 내부에 흐르는 냉각수와, 외면에 유하되는 흡수액 간에 열 및 물질전달이 이루어지도록 하는 기능을 가진다. 그러한 열 및 물질전달 성능과 효율에 따라 흡수식 냉동기의 성능에 큰 영향을 주게 된다.In general, the absorption chiller has an absorber, an evaporator, a condenser, and a regenerator as essential components, and the heat pipes applied in the absorption chiller generally provide heat and mass transfer between the cooling water flowing inside and the absorption liquid flowing on the outer surface. Has the function to Such heat and mass transfer performance and efficiency will greatly affect the performance of the absorption chiller.

위에서와 같이 전열관의 열 및 물질전달 성능을 향상시키기 위해서는 기계적인 가공 혹은 화학적인 방법을 통하여, 표면적으로 증가시키고, 그와 더불어 유하되는 흡수액이 전열관의 축 방향으로 잘 퍼지도록 하며 전체에 걸쳐 균일하게 젖도록 해야만 한다. 이러한 것을 젖음성이라 하며 전열관의 성능과 비례하게 된다.As described above, in order to improve the heat and mass transfer performance of the heat pipe, the surface area is increased by mechanical processing or chemical method, and the absorbent liquid that flows down is well spread in the axial direction of the heat pipe and is uniformly distributed throughout. You must get wet. This is called wettability and is proportional to the performance of the heat pipe.

젖음성의 평가는 젖음율(wetted ratio)로 표현되며, 이 젖음율이 클수록 열 및 물질전달 효율이 높아지게 된다.The evaluation of the wettability is expressed by the wetted ratio, and the larger the wettability, the higher the heat and mass transfer efficiency.

그런데, 통상적으로 사용되고 있는 전열관은, 내면과 외면이 밋밋하게 형성되어 있다. 따라서 전열관의 내면을 따라 흐르는 냉각수와, 외면을 따라 흐르는 흡수액이 유동성을 가지면서 난류를 형성하지 못하여 열 교환은 물론 물질전달기능이 제대로 이루어지지 않는다. By the way, the heat exchanger tube normally used is formed in the inner surface and the outer surface smoothly. Therefore, the cooling water flowing along the inner surface of the heat transfer pipe and the absorbent liquid flowing along the outer surface do not form turbulent flow while having fluidity, so that the heat exchange and the material transfer function are not performed properly.

위와 같은 문제를 다소 해소하기 위해 전열관의 외면에 전열 핀(fin)을 설치하여 전열 면적을 넓히기 위한 구성도 있다. 하지만 냉각수가 전열관의 내면을 따라 난류를 형성하지 못하고 흐르게 되는 근본적인 원인을 해소하지 않는 이상 전열핀이 설치되더라도 전열 성능의 효과를 기대 이상 얻지못하는 문제가 있다.In order to alleviate the above problems, there is also a configuration for increasing the heat transfer area by installing a heat transfer fin on the outer surface of the heat transfer pipe. However, even if the heating fin is installed, the effect of the heat transfer performance may not be achieved more than expected, unless the coolant solves the fundamental cause of the flow of the turbulent flow along the inner surface of the heat pipe.

본 발명은 상기와 같은 문제점을 해결하기 위하여 발명된 것으로서, 전열관의 내면과 외면구조를 새로운 타입으로 개선하여, 전열면적을 더욱 넓히고, 아울러 유동성을 가지고 난류가 형성되도록 함으로써, 전열성능의 향상은 물론, 효율성을 더 높일 수 있도록 한 흡수식 냉동기의 전열장치를 제공하는데 그 목적이 있다.The present invention has been invented to solve the above problems, by improving the inner and outer surface structure of the heat transfer tube to a new type, to further increase the heat transfer area, and to form a turbulent flow with fluidity, as well as improving the heat transfer performance It is an object of the present invention to provide a heat transfer device of an absorption refrigerator, which can further increase efficiency.

상기한 목적을 달성하기 위하여 본 발명에서는, 내부를 따라 흐르는 냉각수와, 외면을 따라 흐르는 흡수액이 서로 열교환작용하게 되는 전열관에는 내면이 볼록하고 외면이 오목한 모양으로 형성되는 딤플부가 형성되어 있고; 상기 전열관의 외면에는 전열핀이 돌출되는 상태로 형성되는 흡수식 냉동기의 전열장치가 제공된다.In order to achieve the above object, in the present invention, a coolant flowing along the inside and an absorbent liquid flowing along the outer surface are heat-exchanged with each other, and a dimple portion having a convex inner surface and a concave outer surface is formed; The outer surface of the heat transfer tube is provided with a heat transfer device of the absorption chiller is formed in a state that the heat transfer fins.

또한, 상기에서 딤플부는, 전열관의 길이방향으로 형성되면서, 전열관의 원주 방향을 따라 간격을 가지고 배열되는 것이 바람직할 것이다.In addition, the dimple portion in the above, it is preferable to be arranged in the longitudinal direction of the heat transfer tube, spaced along the circumferential direction of the heat transfer tube.

또한, 상기에서 딤플부는, 전열관의 길이방향을 따라 복수 개로 형성되면서 서로 엇갈리게 배치되며, 전열관의 원주 방향을 따라 간격을 가지고 배열되는 것이 바람직할 것이다.In addition, in the above, it is preferable that the plurality of dimples are arranged alternately with each other while being formed in plural along the longitudinal direction of the heat transfer tube, and are arranged at intervals along the circumferential direction of the heat transfer tube.

이상에서 살펴본 바와 같이, 본 발명은 전열관에 형성되는 딤플부로 인하여 내면과 외면이 새로운 타입으로 변경되고, 그와 함께 전열핀이 구비되는 구성에 의해 전열면적이 증대된다.As described above, the present invention changes the inner and outer surfaces to a new type due to the dimples formed in the heat transfer tubes, and the heat transfer area is increased by the configuration in which the heat transfer fins are provided.

또한, 전열관의 내부를 따라 흐르는 냉각수와, 상기 전열관의 외면을 타고 흐르는 흡수액이 유동성을 가지고 난류가 형성됨으로써, 전열성능 및 효율을 더욱 높일 수 있는 효과를 기대할 수 있다.In addition, since the coolant flowing along the inside of the heat pipe and the absorbent liquid flowing through the outer surface of the heat pipe have fluidity, turbulence is formed, an effect of further improving heat transfer performance and efficiency can be expected.

도 1a 및 도 1b는 본 발명에 따른 흡수식 냉동기의 전열장치를 보여주는 것으로, 도 1a는 전열관에 전열핀이 구비된 모습을 나타낸 횡단면도이고, 도 1b는 도 1a의 A-A를 따라 나타낸 단면도이다.Figure 1a and Figure 1b shows a heat transfer device of the absorption type refrigerator according to the present invention, Figure 1a is a cross-sectional view showing a heat transfer fin is provided on the heat pipe, Figure 1b is a cross-sectional view taken along the line A-A of Figure 1a.

도 2는 도 1a 및 도 1b에 따른 전열관에 전열핀 가공 전 딤플부가 형성된 모습을 나타낸 평면도이다.Figure 2 is a plan view showing a state in which the dimple portion before the heat transfer fin processing is formed in the heat transfer tube according to Figures 1a and 1b.

도 3은 도 2에 따른 딤플부의 다른 실시예를 보여주는 평면도이다.3 is a plan view illustrating another embodiment of the dimple part according to FIG. 2.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 전열장치 12 : 전열관10: heating device 12: heat pipe

14 : 전열핀 16, 20 : 딤플부14: heat transfer fin 16, 20: dimple

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1a 및 도 1b에서는 본 발명에 따른 흡수식 냉동기의 전열장치를 보여주는 것으로, 도 1a는 전열관에 전열핀이 구비된 모습을 나타낸 횡단면도이고, 도 1b는 도 1a의 A-A를 따라 나타낸 단면도이다.Figure 1a and Figure 1b shows the heat transfer device of the absorption type refrigerator according to the present invention, Figure 1a is a cross-sectional view showing a state in which the heat transfer fin is provided in the heat pipe, Figure 1b is a cross-sectional view taken along the line A-A of Figure 1a.

도면에서 보듯이 전열장치(10)의 구성을 살펴보면, 전열관(12)의 표면에는 원주방향과 길이방향으로 따라 나사 산 모양으로 배열되는 전열핀(14)으로 형성되어 있다.Looking at the configuration of the heat transfer device 10, as shown in the figure, the surface of the heat transfer pipe 12 is formed of heat transfer fins 14 arranged in a threaded shape along the circumferential direction and the longitudinal direction.

구체적으로 살펴보면, 도 1b 및 도 2에 도시된 바와 같이 상기 전열관(12)에는 내면이 볼록하고 외면이 오목하게 처리되는 딤플부(16)가 길이방향으로 길게 형성되면서, 아울러 원주방향을 따라 서로 간격을 가지고 배열되어 있다. 참고로, 도 2는 앞서 설명된 도 1a 및 도 1b에 도시된 전열관(12)에서 전열핀(14)을 가공하기 전 딤플부(16)가 형성된 모습을 나타낸 평면도이다.Specifically, as illustrated in FIGS. 1B and 2, the heat pipe 12 has a dimple 16 formed with a convex inner surface and a concave outer surface formed in the longitudinal direction, and spaced from each other along the circumferential direction. It is arranged with For reference, FIG. 2 is a plan view illustrating a dimple portion 16 formed before the heating fins 14 are processed in the heat transfer tube 12 illustrated in FIGS. 1A and 1B.

상기 딤플부(16)의 양단은 전열관(12)의 길이에 상관없이 전열관(12)의 양단으로부터 약 40mm ~ 60mm 정도 이격되는 위치까지 형성되는 것이 바람직할 것이다. Both ends of the dimple 16 may be formed to a position spaced about 40 mm to 60 mm from both ends of the heat pipe 12 regardless of the length of the heat pipe 12.

위와 같이 딤플부(16)를 형성하는 전열관(12)의 외면에는 앞서 언급된 전열핀(14)이 기계적인 가공을 통해 형성된다. The heat transfer fins 14 mentioned above are formed on the outer surface of the heat transfer tube 12 forming the dimples 16 as described above through mechanical processing.

상기 전열핀(14)은 나사 산 모양으로 형성되는 것으로 도시되어 있으나, 반드시 이러한 형상으로 한정되지 아니하며, 사각형이나 원뿔, 반원 모양으로 형성되어도 무방할 것이다.The heat transfer fin 14 is illustrated as being formed in a threaded shape, but is not necessarily limited to this shape, and may be formed in a quadrangle, cone, or semi-circle shape.

아울러, 상기 전열핀(14)의 최적설계를 위해 상기 전열핀(14) 간에 피치(P)는 0.4 ~ 1mm로 하고, 전열핀(14)의 높이(D)는 0.38 ~ 0.5mm로 형성하며, 각도(θ)는 75°~ 89°를 형성하는 것이 바람직할 것이다.In addition, the pitch (P) is between 0.4 and 1mm between the heating fins 14, the height (D) of the heating fins 14 is formed to 0.38 ~ 0.5mm for the optimal design of the heating fins 14, It is preferable that the angle θ forms between 75 ° and 89 °.

참고로, 상기 피치(P)를 0.4 ~ 1mm로 제한하는 이유는, 피치(P)가 0.4mm 이하일 경우 전열면적은 상대적으로 늘어나지만 냉매 흡수를 촉진하는 마랑 고리 효과 저하로 인하여 결과적으로 전열성능이 떨어지게 되며, 상기 피치(P)가 1mm 이상일 경우 설정된 전열범위에서 전열핀(14)의 형성 개수가 줄어들어 전열면적이 감소하게 된다.For reference, the reason for limiting the pitch P to 0.4 to 1 mm is that when the pitch P is 0.4 mm or less, the heat transfer area is relatively increased, but as a result, the heat transfer performance is decreased due to the deterioration of the Marang ring effect that promotes refrigerant absorption. When the pitch P is 1 mm or more, the number of formation of the heat transfer fins 14 is reduced in the set heat transfer range, thereby reducing the heat transfer area.

상기 전열핀(14)의 높이(D)를 0.38 ~ 0.5mm로 제한하는 이유는, 높이(D)가 0.38mm 이하일 경우 전열면적 저하로 낮은 전열성능을 가지게 되며, 상기 높이(D)가 0.5mm 이상일 경우 전열면적은 증대되나 흡수액이 퍼지지 않고 끊어지는 현상이 발생하여 냉매 흡수력이 떨어지게 된다. 즉 젖음성이 좋지 못하다.The reason for limiting the height (D) of the heat transfer fin 14 to 0.38 ~ 0.5mm, when the height (D) is less than 0.38mm has a low heat transfer performance due to the lowered heat transfer area, the height (D) is 0.5mm In the above case, the heat transfer area is increased, but the absorbing liquid does not spread and breaks, resulting in a decrease in refrigerant absorption. That is, the wettability is not good.

상기 각도(θ)를 75°~ 89°로 제한하는 이유는, 각도(θ)를 90°가까이 가공해야 동일 단면적에서 전열핀(14)의 개수를 최대로 가공할 수 있게 되며, 상기 각도(θ)가 75°이하일 경우 전열핀(14)의 개수를 최대로 가공할 수 없고, 그와 함께 전열면적도 문제가 되지만 동일 높이로 가공시에 더 많은 원재료가 필요하므로 가격 경쟁력이 떨어지게 된다.The reason for limiting the angle θ to 75 ° to 89 ° is to process the angle θ close to 90 ° so that the maximum number of heat transfer fins 14 can be processed at the same cross-sectional area. ) Is less than 75 ° can not be processed to the maximum number of the heat transfer fins 14, the heat transfer area is also a problem with it, but the price is less competitive because more raw materials are required when processing the same height.

한편, 앞서 설명된 상기 전열관(12)에서 딤플부(16)는 길이 방향으로 길게 형성되면서 되면서 원주방향을 따라 배열되는 것으로 설명되었다. 그러나 반드시 위와 같은 배열구조로 한정될 필요는 없다.On the other hand, the dimples 16 in the heat transfer tube 12 described above was formed to be formed in the longitudinal direction while being described along the circumferential direction. However, it is not necessarily limited to the above arrangement.

도 3에 도시된 바와 같이 복수 개의 딤플부(20)가 전열관(12)의 길이방향을 따라 서로 간격을 가지고 형성되되, 엇갈리게 배치되면서 전열관(12)의 원주방향을 따라 배열되는 배치구조도 무방할 것이다. 이때 딤플부(20)의 길이(L)는 10mm ~ 20mm로 형성되는 것이 바람직할 것이다. As shown in FIG. 3, the plurality of dimples 20 are formed at intervals from each other along the longitudinal direction of the heat transfer tube 12, and may be arranged alternately and arranged along the circumferential direction of the heat transfer tube 12. will be. At this time, the length (L) of the dimple portion 20 will be preferably formed of 10mm ~ 20mm.

본 발명은 도 1a 내지 도 3에 도시된 바와 같이 전열관(12)에 형성되는 딤플부(16, 20)와, 전열핀(14)에 의하여 전열관(12)의 내면과 외면이 울퉁불퉁한 형상을 가지게 됨으로써, 전열면적이 증대된다. 그와 함께 전열관(12)의 내면을 따라 흐르는 냉각수와, 전열관(12)의 외면을 타고 흐르는 흡수액이 딤플부(16, 20)와, 전열핀(14)에 의해 흐름에 대한 방향전환이 이루어지면서 유동성과 난류가 형성된다. 1A to 3, the inner and outer surfaces of the heat pipe 12 are unevenly formed by the dimples 16 and 20 formed on the heat pipe 12 and the heat transfer fins 14, as shown in FIGS. 1A to 3. As a result, the heat transfer area is increased. At the same time, the coolant flowing along the inner surface of the heat transfer tube 12 and the absorbent liquid flowing on the outer surface of the heat transfer tube 12 are diverted to the flow by the dimples 16 and 20 and the heat transfer fins 14. Fluidity and turbulence are formed.

따라서, 상기 전열핀(14)에 의한 전열면적의 증대는 물론, 그와 더불어 흡수액의 흐름 방향에 대한 방향 전환기능도 함께 발휘하게 됨으로써, 전열성능 및 효율을 더욱 높일 수 있게 된다. 즉, 본 발명에 따른 전열장치(10)는, 전열면적은 확대와 함께 유동성과 난류가 자연적으로 형성되어 충분한 열 교환은 물론 물질전달기능이 향상됨으로써, 전열성능과 효율을 효과적으로 높일 수 있게 된다.Therefore, the heat transfer area by the heat transfer fins 14 is increased, as well as the direction switching function with respect to the flow direction of the absorbent liquid is also exhibited, thereby further improving heat transfer performance and efficiency. In other words, the heat transfer device 10 according to the present invention, the heat transfer area is enlarged, fluidity and turbulence is naturally formed, sufficient heat exchange as well as the material transfer function is improved, it is possible to effectively increase the heat transfer performance and efficiency.

Claims (3)

내부를 따라 흐르는 냉각수와 외면을 따라 흐르는 흡수액이 서로 열교환작용하게 되는 전열관에는 내면이 볼록하고 외면이 오목한 모양으로 형성되는 딤플부가 형성되어 있고;In the heat transfer tube in which the cooling water flowing along the inside and the absorbent liquid flowing along the outer surface are heat-exchanging with each other, a dimple portion is formed in which the inner surface is convex and the outer surface is concave; 상기 전열관의 외면에는 전열핀이 돌출되는 상태로 형성되는 것을 특징으로 하는 흡수식 냉동기의 전열장치. Heat transfer device of the absorption type refrigerator, characterized in that the outer surface of the heat transfer tube is formed in a state that the heat transfer fins protruding. 제 1항에 있어서, The method of claim 1, 상기 딤플부는, 전열관의 길이방향으로 형성되면서, 전열관의 원주 방향을 따라 간격을 가지고 배열되는 것을 특징으로 하는 흡수식 냉동기의 전열장치. The dimple part is formed in the longitudinal direction of the heat transfer tube, the heat transfer device of the absorption type refrigerator, characterized in that arranged at intervals along the circumferential direction of the heat transfer tube. 제 1항에 있어서,The method of claim 1, 상기 딤플부는, 전열관의 길이방향을 따라 복수 개로 형성되면서 서로 엇갈리게 배치되며, 전열관의 원주 방향을 따라 간격을 가지고 배열되는 것을 특징으로 하는 흡수식 냉동기의 전열장치.The dimples are formed in a plurality in the longitudinal direction of the heat exchanger tube are arranged to be staggered with each other, the heat transfer device of the absorption chiller, characterized in that arranged at intervals along the circumferential direction of the heat transfer tube.
KR1020080019052A 2008-02-29 2008-02-29 Heat Transfer Tube of Absorption Type Refrigeration KR20090093500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080019052A KR20090093500A (en) 2008-02-29 2008-02-29 Heat Transfer Tube of Absorption Type Refrigeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080019052A KR20090093500A (en) 2008-02-29 2008-02-29 Heat Transfer Tube of Absorption Type Refrigeration

Publications (1)

Publication Number Publication Date
KR20090093500A true KR20090093500A (en) 2009-09-02

Family

ID=41301977

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080019052A KR20090093500A (en) 2008-02-29 2008-02-29 Heat Transfer Tube of Absorption Type Refrigeration

Country Status (1)

Country Link
KR (1) KR20090093500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122100A1 (en) * 2015-01-27 2016-08-04 주식회사 태성트레이딩 Carbonated drink production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159859A (en) * 1992-11-25 1994-06-07 Sanyo Electric Co Ltd Heat transfer pipe for absorber and fabrication
JPH0724522A (en) * 1993-07-08 1995-01-27 Sanyo Electric Co Ltd Heat-transfer tube for absorber and production therefor
JPH11148747A (en) * 1997-11-19 1999-06-02 Kobe Steel Ltd Heat exchanger tube for evaporator of absorption refrigerating machine
KR200150457Y1 (en) * 1996-05-31 1999-07-01 이해규 Heat pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159859A (en) * 1992-11-25 1994-06-07 Sanyo Electric Co Ltd Heat transfer pipe for absorber and fabrication
JPH0724522A (en) * 1993-07-08 1995-01-27 Sanyo Electric Co Ltd Heat-transfer tube for absorber and production therefor
KR200150457Y1 (en) * 1996-05-31 1999-07-01 이해규 Heat pipe
JPH11148747A (en) * 1997-11-19 1999-06-02 Kobe Steel Ltd Heat exchanger tube for evaporator of absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122100A1 (en) * 2015-01-27 2016-08-04 주식회사 태성트레이딩 Carbonated drink production apparatus

Similar Documents

Publication Publication Date Title
US8561680B2 (en) Heat exchanger
KR20040017920A (en) Condensate drainage of heat exchanger
CN101363697A (en) High-efficiency heat exchange tube with minuteness passage
JPH07167530A (en) Heat transfer tube for absorber
CN208520252U (en) A kind of heat exchanger tube with self-cleaning and enhanced heat exchange function
US20140332188A1 (en) Heat exchanger
KR20090093500A (en) Heat Transfer Tube of Absorption Type Refrigeration
CN203240926U (en) Rotational flow type heat exchanger
CN111947499A (en) Super-cooled pipe and air conditioning unit
CN201297884Y (en) Straight-tooth seamless internal thread copper pipe
CN204693904U (en) Shell and tube condenser
CN103528417A (en) Tubular fin type finned tube exchanger
CN202692733U (en) Fin condensing pipe provided with liquid absorption core body
KR20090098526A (en) Heat tube of absorption type refrigeration
KR19980086240A (en) Heat exchanger for air conditioner
CN101498532A (en) Evaporating tube for central air-conditioner
CN102654372A (en) Pyramid-shaped finned condensing tube
CN203240927U (en) Conical heat exchanger
CN203454886U (en) Helical corrugated tube
JP2010210137A (en) Heat exchanger
JP2007163120A (en) Evaporation type heat transfer tube
CN108801033A (en) A kind of efficient heat-exchanging pipe of condensation
CN102636042A (en) Fin condensation pipe with liquid suction core bodies
JP2018071895A (en) Heat exchanger
JP2011163638A (en) Heat exchanger and article storage device with the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application