KR20090090222A - Novel precursors for deposition of tellurium thin film and deposition method using the same - Google Patents

Novel precursors for deposition of tellurium thin film and deposition method using the same Download PDF

Info

Publication number
KR20090090222A
KR20090090222A KR1020080015546A KR20080015546A KR20090090222A KR 20090090222 A KR20090090222 A KR 20090090222A KR 1020080015546 A KR1020080015546 A KR 1020080015546A KR 20080015546 A KR20080015546 A KR 20080015546A KR 20090090222 A KR20090090222 A KR 20090090222A
Authority
KR
South Korea
Prior art keywords
thin film
tellurium
chamber
precursor compound
deposition
Prior art date
Application number
KR1020080015546A
Other languages
Korean (ko)
Other versions
KR100958331B1 (en
Inventor
김진동
임진묵
이진호
임상준
김민성
박중진
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to KR1020080015546A priority Critical patent/KR100958331B1/en
Publication of KR20090090222A publication Critical patent/KR20090090222A/en
Application granted granted Critical
Publication of KR100958331B1 publication Critical patent/KR100958331B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C395/00Compounds containing tellurium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A precursor compound for deposition of tellurium thin film is provided to ensure volatility, thermal stability and deposition performance which are suitable as a precursor compound for manufacturing a tellurium thin film. A precursor compound for deposition of tellurium thin film has a structure represented by chemical formula 1. In chemical formula 1, R1 and R2 are independently hydrogen or linear or branched (C1-C7) alkyl, however, R1 and R2 are not hydrogen at the same time. A method for manufacturing the tellurium thin film comprises the steps of: introducing a reaction substrate inside a chamber; injecting the precursor compound for deposition of tellurium thin film and absorbing it on the substrate; purging the precursor compound for deposition of tellurium thin film remaining in the chamber and by-products; forming the tellurium thin film by supplying the activating gas to the chamber; and purging residual reactive gas and reaction by-products within the chamber.

Description

신규한 텔루륨 박막 증착용 전구체 화합물 및 이를 이용한 텔루륨 박막 증착 방법{Novel precursors for deposition of tellurium thin film and deposition method using the same}Novel precursors for deposition of tellurium thin film and deposition method using the same

본 발명은 신규한 텔루륨 박막 증착용 전구체 화합물 및 이를 이용한 텔루륨 박막 증착 방법에 관한 것으로, 하기 화학식 1로 표시되는 신규한 유기 금속 전구체 화합물과 상기 전구체 화합물을 이용하여 단차피복성이 우수하며 박막 내 불순물이 없는 텔루륨 박막을 제조하는 방법에 관한 것이다.The present invention relates to a novel precursor compound for tellurium thin film deposition and a method for depositing tellurium thin film using the same, and using the novel organometallic precursor compound represented by the following Chemical Formula 1 and the precursor compound, the step coverage is excellent and the thin film It relates to a method for producing a tellurium thin film free of impurities.

[화학식 1][Formula 1]

Figure 112008012764451-PAT00002
Figure 112008012764451-PAT00002

[상기 식에서, R1 및R2는 서로 독립적으로 수소이거나 직쇄 또는 분지쇄의 (C1-C7)알킬이고, 단 R1 및 R2는 동시에 수소가 아니다.] [Wherein, R 1 and R 2 are each independently hydrogen or straight or branched chain (C 1 -C 7) alkyl, provided that R 1 and R 2 are not simultaneously hydrogen.]

반도체 메모리 장치는 전원이 꺼진 후 데이터 저장 여부에 따라 휘발성 메모리 장치와 비휘발성 메모리 장치로 구분될 수 있다. 일반적으로 전원을 차단하더라 도 저장된 정보가 지워지지 않는 특징을 갖고 있는 비휘발성 메모리 소자는 휴대용 개인 단말기의 수요 증대와 함께 비약적인 기술 발전을 보이고 있다. 상변화 메모리 장치(phase change memory device)는 비휘발성 메모리 장치로서 플래시 메모리 장치를 대체할 수 있는 차세대 메모리 장치로 연구되고 있다. 상변화 메모리 장치는 결정질 상태와 비정질 상태 중 하나의 상태로 유지되는 상변화 물질을 포함한다. 상변화 물질은 가열 및 냉각에 의하여 다른 상태로 변할 수 있다. 상변화 물질은 결정 상태에서는 낮은 저항을 갖고, 비정질 상태에서는 높은 저항을 갖는다.The semiconductor memory device may be classified into a volatile memory device and a nonvolatile memory device according to whether data is stored after the power is turned off. In general, nonvolatile memory devices, which are stored in a state where the stored information is not erased even when the power is cut off, are showing rapid technological developments along with increasing demand for portable personal terminals. Phase change memory devices are being researched as next generation memory devices that can replace flash memory devices as nonvolatile memory devices. The phase change memory device includes a phase change material maintained in one of a crystalline state and an amorphous state. The phase change material may change to another state by heating and cooling. Phase change materials have low resistance in the crystalline state and high resistance in the amorphous state.

텔루륨(Te)은 상전이 메모리와 광 기록 매체의 상전이 물질로 사용되는 GST[Ge(germanium)-Sb(antimony)-Te(tellurium)]합금 주성분으로 사용된다. 금속 텔루륨은 반도체 기술분야에서, 예를 들면, 적외선 검출물질인 카드뮴 수은 텔루라이드(CMT)의 제조시 및 감광성 스위치 각각에 있어서 중요하다. 빈번하게, 이들 금속 또는, 특히, CMT와 같은 이들 화합물은 성분 금속의 휘발성 화합물은 성분 금속의 휘발성 화합물(텔루륨의 경우, 이는 디알킬 화합물이 가장 일반적이다)의 증기상 공동분해를 포함하는 금속-유기 증기상 에피택시(Metal-Organic Vapour Phase Epitaxy; MOVPE)의 공정에 의해 기판 위에 침착된다. 디알킬 화합물은 휘발성 이외에도 이들이, 용이하게 분해되어 문헌에 기술된 바와 같은 순수한 디알킬 화합물을 형성시킬 수 있는 부가물을 형성함으로써 용이하게 정제될 수 있다는 이점이 있다[참조: GB-A-850955 및 PCT/GB88/01062]. 디알킬 디텔루라이드는 MOVPE 증의 전구체로서 유용할 뿐만 아니라 비대칭 디알킬 화합물을 제조하는데 있어서도 사용될 수 있다[참조: GB 8913799. 6].Tellurium (Te) is used as a main component of the GST (germanium) -Sb (antimony) -Te (tellurium) alloy which is used as a phase change material of phase change memory and an optical recording medium. Metal tellurium is important in the semiconductor art, for example, in the manufacture of infrared detector cadmium mercury telluride (CMT) and in photosensitive switches, respectively. Frequently, these metals or, in particular, these compounds, such as CMT, are volatile compounds of the component metals, which include the vapor phase co-degradation of the volatile compounds of the component metals (in the case of tellurium, which is the most common dialkyl compound). Deposited on the substrate by a process of Metal-Organic Vapor Phase Epitaxy (MOVPE). Dialkyl compounds, in addition to volatiles, have the advantage that they can be easily purified by forming adducts which can be readily degraded to form pure dialkyl compounds as described in the literature. See GB-A-850955 and PCT / GB88 / 01062]. Dialkyl ditellides are not only useful as precursors of MOVPE enrichment but can also be used to prepare asymmetric dialkyl compounds (GB 8913799. 6).

종래에 텔루륨 박막을 제조하기 위해서는 스퍼터링(sputtering)을 사용하였다. 스퍼터링은 가속된 입자를 고체 표면에 충돌시켜서 운동량의 교환에 의해 공간에 튀어나온 원자를 기판에 붙이는 방식이다. 따라서, 상기 방식은 그 특성상 복잡한 3차원 구조를 갖는 고집적 반도체 소자의 트랜치 구조에는 적용이 곤란하다. 그러므로 또한, 상기 화학 기상 증착법은 증착하려는 화합물을 기체화하여 반응 챔버에 보내고 화학 반응을 이용하여 소망하는 물질의 박막을 얻는 방식으로 박막을 증착하는 기판 구조 또는 패턴의 종횡비(aspect ratio)에 따른 단차피복성(step coverage)이 우수하여 원자층 증착법(Atomic layer deposition; ALD)과 더블어 고집접도를 얻기 위 사용하는 증착 방법이다. 원자층 증착법이란 반응물질을 챔버 내부로 주입하고 잔류하는 반응물질 및 부산물을 제거하는 과정을 순차적으로 반복하는 방식으로 반도체 기판 상에 원자층을 증착하는 방법이다. 이러한 원자층 증착법은 CVD법처럼 화학반응을 사용하는 증착법이지만, CVD법은 각각의 가스를 동시에 주입하여 챔버 내에서 혼합되는 반면, ALD법은 한 종류의 가스씩 펄스 형태로 주입된다는 점에서 CVD법과 구별된다.In the past, sputtering was used to manufacture a tellurium thin film. Sputtering is a method of colliding accelerated particles with a solid surface to attach atoms protruding into space by exchanging momentum to a substrate. Therefore, the above method is difficult to apply to the trench structure of the highly integrated semiconductor device having a complicated three-dimensional structure due to its characteristics. Therefore, the chemical vapor deposition method is also a step according to the aspect ratio of the substrate structure or pattern for depositing the thin film by vaporizing the compound to be deposited into the reaction chamber to obtain a thin film of the desired material using the chemical reaction It is a deposition method that is used to obtain a high degree of integration with Atomic layer deposition (ALD) due to its excellent step coverage. The atomic layer deposition method is a method of depositing an atomic layer on a semiconductor substrate by sequentially repeating a process of injecting a reactant into a chamber and removing residual reactants and by-products. The atomic layer deposition method is a deposition method using a chemical reaction like the CVD method, but the CVD method is injected in a chamber by injecting each gas at the same time, while the ALD method is injected in the form of pulses by one type of gas, Are distinguished.

구체적으로 화학 기상 증착법이나 원자층 증착법을 이용하여 텔루륨 박막을 제조하는 방법을 살펴보면, 종래에는 텔루륨 원료물질로서 Te(iPr)2, Te(tBu)2 등이 적용되었다.In detail, a method of manufacturing a tellurium thin film using a chemical vapor deposition method or an atomic layer deposition method is conventionally used as a tellurium raw material Te ( i Pr) 2 , Te ( t Bu) 2 and the like.

그러나, Te(iPr)2, Te(tBu)2는 원자층 증착법을 이용하여 증착할 경우 텔루륨 의 증착 속도가 느리고 일부 불완전하게 분해된 화합물이 화학적 결합을 끊고 독립적으로 존재하기가 어려워 텔루륨 박막에 불순물이 많이 남는 문제점이 있었다.However, Te ( i Pr) 2 and Te ( t Bu) 2 have a slow deposition rate of tellurium when atomic layer deposition is used, and some incompletely decomposed compounds are difficult to exist independently due to breakage of chemical bonds. There was a problem that a lot of impurities remain in the rulium thin film.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 신규한 텔루륨 박막 증착용 전구체 화합물을 제공하며, 상기 전구체 화합물을 이용하여 단차피복성이 우수하며 박막 내 불순물이 없는 텔루륨 박막을 제조하는 방법을 제공하는데 목적이 있다.The present invention is to solve the above problems, to provide a novel precursor compound for tellurium thin film deposition, a method for producing a tellurium thin film having excellent step coverage and no impurities in the thin film using the precursor compound. The purpose is to provide.

본 발명은 상기한 텔루륨 박막 증착을 위한 기존 전구체들의 장점을 최대한 포괄하며 단점을 최대한 보완할 수 있도록 설계된 하기 화학식 1로 표시되는 신규한 텔루륨 박막 증착용 전구체 화합물에 관한 것이며, 또한 상기 전구체 화합물을 이용하여 단차피복성이 우수하며 박막 내 불순물이 없는 텔루륨 박막을 제조하는 방법에 관한 것이다.The present invention relates to a novel tellurium thin film precursor compound represented by the following Chemical Formula 1, which is designed to fully cover the advantages of the existing precursors for depositing the tellurium thin film and to make up the most disadvantages, and also the precursor compound. The present invention relates to a method for producing a tellurium thin film having excellent step coverage and no impurities in a thin film.

[화학식 1][Formula 1]

Figure 112008012764451-PAT00003
Figure 112008012764451-PAT00003

[상기 식에서, R1 및R2는 서로 독립적으로 수소이거나 직쇄 또는 분지쇄의 (C1-C7)알킬이고, 단 R1 및 R2는 동시에 수소가 아니다.] [Wherein, R 1 and R 2 are each independently hydrogen or straight or branched chain (C 1 -C 7) alkyl, provided that R 1 and R 2 are not simultaneously hydrogen.]

상기 화학식 1의 화합물의 R1 및R2는 서로 독립적으로 수소, 메틸, 에틸, n- 프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸, n-헥실 또는 n-헵틸로부터 선택되어질 수 있다. R 1 and R 2 of the compound of Formula 1 are independently of each other hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, n -Hexyl or n-heptyl.

본 발명에 따른 디아미노텔루륨 유도체는 구체적으로 하기 화학식 2 내지 화학식 5로부터 선택되는 화합물로 예시될 수 있으나, 하기의 화합물이 본 발명을 한정하는 것은 아니다. The diamino tellurium derivative according to the present invention may be specifically exemplified as a compound selected from the following Chemical Formulas 2 to 5, but the following compounds are not intended to limit the present invention.

[화학식 2] [Formula 2]

Figure 112008012764451-PAT00004
Figure 112008012764451-PAT00004

[화학식3] [Formula 3]

Figure 112008012764451-PAT00005
Figure 112008012764451-PAT00005

[화학식4] [Formula 4]

Figure 112008012764451-PAT00006
Figure 112008012764451-PAT00006

[화학식5] [Formula 5]

Figure 112008012764451-PAT00007
Figure 112008012764451-PAT00007

상기 전구체 화합물을 제조하기 위한 출발물질은 공지된 화합물로서, 텔루륨 테트라클로라이드(Tellurium tetrachloride, TeCl4)을 사용한다.Starting material for preparing the precursor compound is a known compound, tellurium tetrachloride (Tellurium tetrachloride, TeCl 4 ) is used.

질소 분위기 하에 유기금속시약과 디알킬아민 유도체를 반응시킨 후 텔루륨테트라클로라이드를 가하여 교반 후 진공정제하여 본 발명에 따른 텔루륨 박막 전구체 화합물을 제조한다. 상기 유기금속시약으로는 n-부틸리튬, sec-부틸리튬, tert-부틸리튬 등을 들 수 있다. 이중에서도 바람직하기로는 n-부틸리튬이 좋다. After reacting the organometallic reagent with the dialkylamine derivative in a nitrogen atmosphere, tellurium tetrachloride is added thereto, followed by stirring and vacuum purification to prepare a tellurium thin film precursor compound according to the present invention. Examples of the organometallic reagent include n -butyllithium, sec -butyllithium, and tert -butyllithium. Of these, n -butyllithium is preferable.

또한, 본 발명은 상기 텔루륨 박막증착용 전구체 화합물을 이용한 텔루륨 박막 제조 방법을 제공한다. 상기 텔루륨 박막증착용 전구체 화합물을 이용한 텔루륨 박막 제조시 아르곤, 헬륨 등과 같은 비활성가스를 이송가스로 사용한다.In addition, the present invention provides a method for producing a tellurium thin film using the precursor compound for tellurium thin film deposition. In preparing a tellurium thin film using the tellurium thin film precursor compound, an inert gas such as argon or helium is used as a transport gas.

원자층 증착법(Atomic Layer Deposition : ALD)을 이용하여 텔루륨 박막 증착용 전구체 화합물로부터 텔루륨 박막을 제조하는 방법은 하기의 단계를 포함하는 것을 특징으로 한다.A method of manufacturing a tellurium thin film from a precursor compound for tellurium thin film deposition by using an atomic layer deposition method (ALD) includes the following steps.

(a)챔버 내에 반응 기판을 도입하는 단계;(a) introducing a reaction substrate into the chamber;

(b)상기 챔버 내로 본 발명에 따른 상기 텔루륨 박막 증착용 전구체 화합물을 주입하여 기판상에 흡착시키는 단계;(b) injecting the precursor compound for tellurium thin film deposition according to the present invention into the chamber and adsorbing it on a substrate;

(c)상기 챔버 내에 잔류하는 상기 텔루륨 박막 증착용 전구체 화합물 및 부산물을 퍼지하는 단계;(c) purging the precursor compound and by-products for depositing the tellurium thin film remaining in the chamber;

(d)상기 챔버에 활성화 가스를 공급하여 텔루륨 박막을 형성하는 단계;(d) supplying an activation gas to the chamber to form a tellurium thin film;

(e)상기 챔버 내에 잔류 반응 가스 및 반응 부산물을 퍼지하는 단계.(e) purging the residual reaction gas and reaction byproducts in the chamber.

본 발명에 따른 제조 방법은 원자층 증착법으로서 반응 기판 상에 상기 텔루 륨 전구체 화합물을 흡착시키는 단계(b)와 활성화 가스를 공급하여 텔루륨 단층(mono-layer)를 형성하는 단계(d)를 포함하며, 완전한 원자층 증착을 위해 중간에 퍼지단계(c, e)를 진행하여 균일한 증착이 되도록 하는 특징이 있다. 상기 활성화 가스는 챔버 내에 수소 가스 또는 암모니아를 주입하고 챔버에 직접 고주파(Radip frequency; RF)를 인가하여 챔버 내에 수소(H2) 플라즈마 또는 암모니아(NH3) 플라즈마를 형성하는 방법에 의해서 공급될 수 있으며, 또한 외부에서 플라즈마를 형성하고 챔버 내로 유도하는 리모트 플라즈마(remote plasma)에 의해 공급될 수 있다. 상기 활성화 가스는 흡착된 텔루륨 전구체 화합물의 유기성분과 반응하여 제거하는 역할을 함으로써 순수한 텔루륨 박막을 기판에 증착시킬 수 있다. 또한 상기 (b)~(e) 단계를 1주기(cycle)라고 하며, (e)단계 후, (b)~(e) 단계를 1회 이상 반복하여 상기 텔루륨 단층(mono-layer)이 반복 증착된 복층의 텔루륨 박막을 제조한다.The manufacturing method according to the present invention includes adsorbing the tellurium precursor compound on the reaction substrate as an atomic layer deposition method, and supplying an activation gas to form a tellurium mono-layer (d). In addition, the purge step (c, e) in the middle for the complete atomic layer deposition is characterized by a uniform deposition. The activation gas may be supplied by a method of injecting hydrogen gas or ammonia into the chamber and applying a high frequency (RF) directly to the chamber to form a hydrogen (H 2 ) plasma or ammonia (NH 3 ) plasma in the chamber. It may also be supplied by a remote plasma which forms a plasma externally and guides it into the chamber. The activation gas may react with and remove an organic component of the adsorbed tellurium precursor compound to deposit a pure tellurium thin film on the substrate. In addition, the steps (b) to (e) are referred to as one cycle, and after the step (e), the steps (b) to (e) are repeated one or more times to repeat the tellurium monolayer. A deposited multilayer tellurium thin film is prepared.

화학기상 증착법(Chemical vapor Deposition : CVD)을 이용하여 텔루륨 박막 증착용 전구체 화합물로부터 텔루륨 박막을 제조하는 방법은 하기의 단계를 포함하는 것을 특징으로 한다.The method for producing a tellurium thin film from a precursor compound for tellurium thin film deposition by using chemical vapor deposition (CVD) is characterized in that it comprises the following steps.

(f)챔버 내에 반응 기판을 도입하는 단계;(f) introducing a reaction substrate into the chamber;

(g)상기 챔버 내로 본 발명에 따른 상기 텔루륨 박막 증착용 전구체 화합물과 이송가스를 주입하여 기판상에 흡착되어 증착시키는 단계.(g) injecting the tellurium thin film deposition precursor compound and a transfer gas into the chamber by adsorbing and depositing the same on a substrate.

(h) 상기 챔버 내에 잔류 부산물 및 가스를 퍼지하는 단계.(h) purging residual byproducts and gases in the chamber.

본 발명에 따른 제조 방법은 화학기상 증착법으로서 반응 기판 상에 상기 텔루륨 전구체 화합물을 이송 가스에 의해 챔버내 주입하여 기판 표면상에서 화학반응을 일으켜 생성된 화합물을 확산에 의해 기판위에 흡착 되어 증착시키는 단계(g)와 잔류 가스 및 부산물을 퍼지 단계(h)를 포함하여, 균일한 증착이 되도록 하는 특징이 있다. 또한 상기 (g)~(h) 단계는 동시에 이루어지면서 텔루륨 박막 형성 및 성장시키므로써 박막을 제조한다. 텔루륨 박막 형성 및 성장시키기 위하여 상기 (g)~(h) 단계를 10분 이상 지속적으로 수행하는 것이 바람직하다.The manufacturing method according to the present invention is a chemical vapor deposition method in which the tellurium precursor compound is injected into a chamber by a transfer gas on a reaction substrate to cause a chemical reaction on the surface of the substrate, and the compound formed on the substrate is adsorbed onto the substrate by diffusion. (g) and the purge step (h) of the residual gas and by-products, it is characterized in that the uniform deposition. In addition, the (g) ~ (h) step is made at the same time to produce a thin film by forming and growing a tellurium thin film. In order to form and grow the tellurium thin film, it is preferable to continuously perform the above steps (g) to (h) for 10 minutes or more.

상술한 바와 같이, 본 발명에 따른 신규한 텔루륨 박막 증착용 전구체 화합물은 텔루륨 박막을 제조하기 위한 전구체 화합물로서 적합한 휘발성과 열적 안정성 및 증착 성능을 가지고 있으며, 상기 전구체 화합물을 이용하여 증착된 텔루륨 박막은 종래의 텔루륨 전구체 화합물이 가지고 있는 불순물, 스텝 커버리지 문제점을 해결함으로써 고집적화된 반도체 디바이스 제조 및 관련 산업 분야에 그 활용도가 크다고 할 수 있다.As described above, the novel precursor compound for tellurium thin film deposition according to the present invention has suitable volatility, thermal stability and deposition performance as a precursor compound for producing a tellurium thin film, and is formed by using the precursor compound The rulium thin film can be said to be widely used in the manufacture of highly integrated semiconductor devices and related industries by solving the impurities and step coverage problems of the conventional tellurium precursor compound.

이하, 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현 될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, embodiments of the present invention will be described in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, complete the scope of the invention to those skilled in the art It is provided to inform you.

이하, 본 발명의 전구체 화합물 및 전구체 화합물 합성용 리간드의 제조방법에 대하여 하기의 제조예를 통하여 좀더 상세하게 설명하기로 한다.Hereinafter, the preparation method of the precursor compound and the ligand for synthesizing the precursor compound of the present invention will be described in more detail with reference to the following preparation examples.

[[ 제조예Production Example 1]  One] 디에틸메틸아미노텔루륨Diethylmethylaminotellurium [Te(N( [Te (N ( CC 22 HH 55 )() ( CHCH 33 )))) 22 ]] 의 제조Manufacture

Figure 112008012764451-PAT00008
[화학식 2]
Figure 112008012764451-PAT00008
[Formula 2]

질소 분위기 하에 냉각된 n-BuLi (1.6 M in Hexane) 128.6 ml에 에틸메틸아민 42.3 ml을 천천히 넣고 5시간을 교반하여 LiNEtMe 용액을 만들고 여기에 TeCl4 (33.15g)을 천천히 첨가해 상온에서 5시간을 교반한 후 부산물로 나온 LiCl을 거르고 진공을 이용하여 용매를 제거하였다. 용매를 제거한 후 남은 진한 갈색의 액체를 28℃에서 진공(260mTorr)상태를 유지하면서 증류하여 1차 정제를 하고, 1차 정제하여 얻어진 생성물을 다시 25℃에서 진공(300mTorr) 상태를 유지하면서 증류하여 2차 정제를 하여 표제화합물로써 고순도의 Te(N(C2H5)(CH3))2 [화학식2] 6g(20%)을 얻었으며 1H-NMR 및 FTIR 결과는 다음과 같다.Slowly add 42.3 ml of ethylmethylamine to 128.6 ml of n-BuLi (1.6 M in Hexane) cooled under nitrogen atmosphere and stir for 5 hours to form LiNEtMe solution, and slowly add TeCl 4 (33.15g) to 5 hours at room temperature After stirring, LiCl as a by-product was filtered and the solvent was removed using a vacuum. After the solvent was removed, the remaining dark brown liquid was first purified by distillation at 28 ° C. while maintaining a vacuum (260 mTorr) state, and the product obtained by the first purification was distilled again while maintaining a vacuum (300 mTorr) state at 25 ° C. Secondary purification was performed to obtain 6 g (20%) of Te (N (C 2 H 5 ) (CH 3 )) 2 [Chemical Formula 2] with high purity as the title compound. The results of 1 H-NMR and FTIR are as follows.

1H-NMR(400MHz C6D6): δ(ppm) = 3.41(Te-CH 3 ), 3.31(Te-CH 2 -CH3), 1.02(Te-CH2-CH 3 ). 1 H-NMR (400 MHz C 6 D 6 ): δ (ppm) = 3.41 (Te- CH 3 ), 3.31 (Te- CH 2 -CH 3 ), 1.02 (Te-CH 2 -CH 3 ).

FTIR(cm-1): 2964.08(m), 2834.49(m), 2782.58(m), 1440.31(m), 1409.22(m), 1369.50(m), 1345.11(m), 1259.65(w), 1196.46(m), 1171.77(s), 1050.19(s), 1018.07(s), 981.10(vs), 862.68(vs), 797.95(m)FTIR (cm -1 ): 2964.08 (m), 2834.49 (m), 2782.58 (m), 1440.31 (m), 1409.22 (m), 1369.50 (m), 1345.11 (m), 1259.65 (w), 1196.46 (m) ), 1171.77 (s), 1050.19 (s), 1018.07 (s), 981.10 (vs), 862.68 (vs), 797.95 (m)

[[ 실시예Example 1] 화학 기상 증착법을 이용한  1] using chemical vapor deposition 텔루륨Tellurium 박막의 제조 Manufacture of thin film

본 발명의 제조예 1에서 제조된 전구체 화합물 Te(N(C2H5)(CH3))2 를 이용하여 텔루륨 박막을 제조하는 방법을 보다 구체적으로 설명한다.The method of preparing a tellurium thin film using the precursor compound Te (N (C 2 H 5 ) (CH 3 )) 2 prepared in Preparation Example 1 of the present invention will be described in more detail.

챔버 내부에 반응기판인 실리콘 웨이퍼를 도입하고, 기판 온도를 250℃로 하고, 스테인레스 스틸 버블러(bubbler) 용기 내에 있는 Te(N(C2H5)(CH3))2 의 온도를 30℃로 한다. 이후, 아르곤 가스를 이송 기체로 하여 Te(EMA)2 를 반응 챔버 내부로 주입 기판위에서 열에너지로 Te(N(C2H5)(CH3))2 흡착 분해시킨다. 잔류 부산물 및 가스는 아르곤 가스와 진공펌프를 이용하여 퍼지(purge)를 실시하여 챔버 내부에 존재하는 잔류가스 또는 흡착되는 않은 Te(N(C2H5)(CH3))2 를 제거하여 텔루륨 박막을 제조한다. 상기 공정을 10분 동안 실시하여 텔루륨 박막이 형성됨을 확인하였다. 상기 형성되는 텔루륨 박막을 원하는 특성에 따라 상기 공정을 시간에 따라 박막을 형성함으로써 막 두께를 조절할 수 있다.A silicon wafer, which is a reactor plate, is introduced into the chamber, the substrate temperature is 250 ° C, and the temperature of Te (N (C 2 H 5 ) (CH 3 )) 2 in the stainless steel bubbler vessel is 30 ° C. Shall be. Then, Te (EMA) 2 is adsorbed and decomposed with Te (N (C 2 H 5 ) (CH 3 )) 2 into thermal energy on the injection substrate into the reaction chamber using argon gas as a transport gas. Residual by-products and gases are purged using argon gas and vacuum pump to remove residual gas or non-adsorbed Te (N (C 2 H 5 ) (CH 3 )) 2 from the chamber. A rulium thin film is prepared. The process was carried out for 10 minutes to confirm that a tellurium thin film was formed. The thickness of the formed tellurium thin film may be adjusted by forming the thin film over time according to a desired characteristic of the process.

생성된 텔루륨 박막은 불순물 생성이 거의 없었으며, 또한 스텝 커버리지 특성이 매우 우수하였다.The resulting tellurium thin film had almost no impurity generation and had excellent step coverage characteristics.

[[ 실시예Example 2]  2] 원자층Atomic layer 증착법을 이용한  Using vapor deposition 텔루륨Tellurium 박막의 제조 Manufacture of thin film

본 발명의 제조예 1에서 제조된 전구체 화합물 Te(N(C2H5)(CH3))2 를 이용하여 텔루륨 박막을 제조하는 방법을 보다 구체적으로 설명한다.The method of preparing a tellurium thin film using the precursor compound Te (N (C 2 H 5 ) (CH 3 )) 2 prepared in Preparation Example 1 of the present invention will be described in more detail.

챔버 내부에 반응기판인 실리콘 웨이퍼를 도입하고, 기판 온도를 180℃로 하고, 스테인레스 스틸 버블러(bubbler) 용기 내에 있는 Te(N(C2H5)(CH3))2 의 온도를 30℃로 한다. 이후, 아르곤 가스를 이송 기체로 하여 4초간 Te(N(C2H5)(CH3))2 를 반응 챔버 내부로 주입시켜 텔루륨 화합물을 기판에 흡착시킨다. 그 다음 6초간 아르곤 가스와 진공펌프를 이용하여 퍼지(purge)를 실시하여 챔버 내부에 존재하는 잔류가스 또는 흡착되는 않은 Te(N(C2H5)(CH3))2 를 제거한다. 그 후 4초간 수소 플라즈마를 공급하여 실리콘 웨이퍼 상이 흡착된 전구체와 반응시켜 텔루륨 박막을 형성시킨다. 또한 6초간 아르곤 가스와 진공펌프를 이용하여 분해된 잔류물을 다시 한번 퍼지하여 텔루륨 박막을 제조한다. 상기 공정을 통해 한 주기당 0.6Å 두께의 텔루륨 단층(mono-layer) 박막이 형성되었다. 상기 형성되는 텔루륨 박막을 원하는 특성에 따라 상기 주기를 반복 수행하여 복층의 막막을 형성함으로써 막 두께를 조절할 수 있다.A silicon wafer serving as a reactor plate was introduced into the chamber, the substrate temperature was set to 180 ° C, and the temperature of Te (N (C 2 H 5 ) (CH 3 )) 2 in the stainless steel bubbler container was set to 30 ° C. Shall be. Thereafter, Te (N (C 2 H 5 ) (CH 3 )) 2 is injected into the reaction chamber using argon gas as a transport gas to adsorb the tellurium compound to the substrate. Then, purge with argon gas and vacuum pump for 6 seconds to remove residual gas or non-adsorbed Te (N (C 2 H 5 ) (CH 3 )) 2 inside the chamber. Thereafter, a hydrogen plasma is supplied for 4 seconds to react with the precursor adsorbed on the silicon wafer to form a tellurium thin film. In addition, by using the argon gas and vacuum pump for 6 seconds to purge the decomposed residue once again to produce a tellurium thin film. Through this process, a tellurium mono-layer thin film having a thickness of 0.6 mW per cycle was formed. The thickness of the formed tellurium thin film may be adjusted by repeatedly performing the cycle according to desired characteristics to form a multilayer film.

생성된 텔루륨 박막은 불순물 생성이 거의 없었으며, 또한 스텝 커버리지 특성이 매우 우수하였다.The resulting tellurium thin film had almost no impurity generation and had excellent step coverage characteristics.

도 1은 본 발명에 따른 원자층 증착 반응 장치의 개요도이고,1 is a schematic view of an atomic layer deposition reaction apparatus according to the present invention,

도 2는 본 발명에 따른 원자층 증착 공정 순서도이며,2 is a flowchart of an atomic layer deposition process according to the present invention,

도 3은 본 발명에 따른 화학기상 증착 반응 장치의 개요도이고,3 is a schematic view of a chemical vapor deposition reaction apparatus according to the present invention,

도 4는 본 발명에 따른 화학기상 증착 공정 순서도이며,4 is a chemical vapor deposition process flow chart according to the present invention,

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 반응기 20: 히터 30: 기판 10 reactor 20 heater 30 substrate

40: RF Power 50: 버블러 55: 가스 주입관40: RF Power 50: Bubbler 55: gas injection tube

60: 이송가스통 70: 반응가스통 80: 펌프60: transfer gas cylinder 70: reaction gas cylinder 80: pump

110: 반응기 120: 히터 130: 기판 110: reactor 120: heater 130: substrate

140: 버블러 145: 원료 주입관 150: 이송가스통140: bubbler 145: raw material injection pipe 150: transfer gas cylinder

160: 펌프160: pump

Claims (7)

하기 화학식 1로 표시되는 텔루륨 박막 증착용 전구체 화합물.A precursor compound for tellurium thin film deposition represented by the following formula (1). [화학식 1][Formula 1]
Figure 112008012764451-PAT00009
Figure 112008012764451-PAT00009
[상기 식에서, R1 및R2는 서로 독립적으로 수소이거나 직쇄 또는 분지쇄의 (C1-C7)알킬이고, 단 R1 및 R2는 동시에 수소가 아니다.] [Wherein, R 1 and R 2 are each independently hydrogen or straight or branched chain (C 1 -C 7) alkyl, provided that R 1 and R 2 are not simultaneously hydrogen.]
제 1항에 있어서, The method of claim 1, 상기 R1 내지 R4는 서로 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸, n-헥실 또는 n-헵틸인 것을 특징으로 하는 디아미노텔루륨 유도체. R 1 to R 4 are each independently hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, n-hexyl or n- Diamino tellurium derivative, characterized in that heptyl. 제 2항에 있어서, The method of claim 2, 하기 화학식 2 내지 화학식 5로부터 선택되는 것을 특징으로 하는 디아미노텔루륨 유도체. Diamino tellurium derivatives, characterized in that selected from the formula (2) to (5). [화학식 2] [Formula 2]
Figure 112008012764451-PAT00010
Figure 112008012764451-PAT00010
[화학식3] [Formula 3]
Figure 112008012764451-PAT00011
Figure 112008012764451-PAT00011
[화학식4] [Formula 4]
Figure 112008012764451-PAT00012
Figure 112008012764451-PAT00012
[화학식5] [Formula 5]
Figure 112008012764451-PAT00013
Figure 112008012764451-PAT00013
(a)챔버 내에 반응 기판을 도입하는 단계;(a) introducing a reaction substrate into the chamber; (b)상기 챔버 내로 제 1항 내지 제3항에서 선택되는 어느 한 항에 따른 텔루륨 박막 증착용 전구체 화합물을 주입하여 기판상에 흡착시키는 단계;(b) injecting the precursor compound for depositing tellurium thin film according to any one of claims 1 to 3 into the chamber and adsorbing it on a substrate; (c)상기 챔버 내에 잔류하는 상기 텔루륨 박막 증착용 전구체 화합물 및 부산물을 퍼지하는 단계;(c) purging the precursor compound and by-products for depositing the tellurium thin film remaining in the chamber; (d)상기 챔버에 활성화 가스를 공급하여 텔루륨 박막을 형성하는 단계; 및(d) supplying an activation gas to the chamber to form a tellurium thin film; And (e) 상기 챔버 내에 잔류 반응 가스 및 반응 부산물을 퍼지하는 단계를 포함하는 텔루륨 박막의 제조 방법.(e) purging the residual reaction gas and reaction by-products in the chamber. 제 4항에 있어서,The method of claim 4, wherein 상기 (e)단계 후, (b)~(e) 단계를 1회 이상 반복하여 복층의 텔루륨 막을 형성하는 것을 특징으로 하는 텔루륨 박막의 제조 방법.After the step (e), repeating steps (b) to (e) one or more times to form a tellurium thin film, characterized in that to form a multi-layer tellurium film. 제 4항에 있어서,The method of claim 4, wherein 상기 활성화 가스는 수소 플라즈마 또는 암모니아 플라즈마에 의해서 공급되는 것을 특징으로 하는 텔루륨 박막의 제조 방법.The activation gas is a method of producing a tellurium thin film, characterized in that supplied by hydrogen plasma or ammonia plasma. (f)챔버 내에 반응 기판을 도입하는 단계;(f) introducing a reaction substrate into the chamber; (g)상기 챔버 내로 제 1항 내지 제3항에서 선택되는 어느 한 항에 따른 텔루륨 박막 증착용 전구체 화합물과 이송가스를 주입하여 기판상에 흡착되어 증착시키는 단계; 및(g) injecting the precursor compound for tellurium thin film deposition according to any one of claims 1 to 3 and a transport gas into the chamber to be adsorbed onto the substrate and deposited; And (h) 상기 챔버 내에 잔류 부산물 및 가스를 퍼지하는 단계를 포함하는 텔루륨 박막의 제조 방법.(h) purging the residual by-products and gases in the chamber.
KR1020080015546A 2008-02-20 2008-02-20 Novel precursors for deposition of tellurium thin film and deposition method using the same KR100958331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080015546A KR100958331B1 (en) 2008-02-20 2008-02-20 Novel precursors for deposition of tellurium thin film and deposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080015546A KR100958331B1 (en) 2008-02-20 2008-02-20 Novel precursors for deposition of tellurium thin film and deposition method using the same

Publications (2)

Publication Number Publication Date
KR20090090222A true KR20090090222A (en) 2009-08-25
KR100958331B1 KR100958331B1 (en) 2010-05-17

Family

ID=41208147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080015546A KR100958331B1 (en) 2008-02-20 2008-02-20 Novel precursors for deposition of tellurium thin film and deposition method using the same

Country Status (1)

Country Link
KR (1) KR100958331B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022409B1 (en) 2013-03-13 2019-09-18 삼성전자주식회사 Method of forming a thin layer and method of manufacturing a phase-change memory device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688532B1 (en) 2005-02-14 2007-03-02 삼성전자주식회사 A Te precursor, a Te-including chalcogenide thin layer prepared by using the Te precursor, a method for preparing the thin layer and a phase-change memory device

Also Published As

Publication number Publication date
KR100958331B1 (en) 2010-05-17

Similar Documents

Publication Publication Date Title
JP5730670B2 (en) Method for producing thin film containing molybdenum oxide, and raw material for forming thin film containing molybdenum oxide
US8318252B2 (en) Antimony precursors for GST films in ALD/CVD processes
KR101659725B1 (en) Volatile dihydropyrazinyl and dihydropyrazine metal complexes
US9240319B2 (en) Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
KR20090054925A (en) Tellurium precursors for gst films in an ald or cvd process
WO2014077089A1 (en) Metal alkoxide compound, thin film-forming starting material, method for producing thin film, and alcohol compound
US20160031916A1 (en) Substituted Silacyclopropane Precursors And Their Use For The Deposition Of Silicon-Containing Films
KR100958331B1 (en) Novel precursors for deposition of tellurium thin film and deposition method using the same
WO2018088079A1 (en) Compound, starting material for thin film formation, thin film production method, and amidine compound
TW202300496A (en) Organo tin compound for thin film deposition and method for forming tin-containing thin film using same
KR100958333B1 (en) Novel germanium complexes and methode for preparing thereof
KR20150097429A (en) Precursor compositions for forming germanium antimony telurium alloy and method of forming germanium antimony telurium alloy layer using them as precursors
TWI824133B (en) Raw material for forming thin film, method for manufacturing thin film, and scandium compound
KR102641956B1 (en) Indium compound, Composition for thin film deposition containing indium comprising the same, and a method for manufacturing an indium-containing thin film
CN115362282B (en) Raw material for forming thin film for atomic layer deposition method and method for producing thin film
KR102548031B1 (en) Novel Organo-Indium Compounds and Method for forming thin film using the same
KR20230102179A (en) Indium compound, manufacturing method thereof, composition for thin film containing the same, and manufacturing method of indium-containing thin film
KR20100009093A (en) Process for preparing germanium thin film using organic germanium complex
KR20230089234A (en) Molybdenum compound, manufacturing method thereof, and composition for thin film containing the same
TW202144376A (en) Amidinate compound, dimer compound thereof, raw material for thin film formation, and method for producing thin film
KR20230132961A (en) Organo tin compound for thin film deposition and method of forming tin containing thin film using the same
KR20230117368A (en) Indium compound, raw material for thin film formation, thin film and manufacturing method thereof
JP5913663B2 (en) Molybdenum amide compounds
TW202311273A (en) Silicon precursors
TW202344512A (en) Raw material for forming thin film by atomic layer deposition method, thin film, and method for manufacturing thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 9