KR20090089944A - 박막형 태양전지 및 그 제조방법 - Google Patents

박막형 태양전지 및 그 제조방법 Download PDF

Info

Publication number
KR20090089944A
KR20090089944A KR1020080015124A KR20080015124A KR20090089944A KR 20090089944 A KR20090089944 A KR 20090089944A KR 1020080015124 A KR1020080015124 A KR 1020080015124A KR 20080015124 A KR20080015124 A KR 20080015124A KR 20090089944 A KR20090089944 A KR 20090089944A
Authority
KR
South Korea
Prior art keywords
transparent conductive
forming
metal material
conductive layer
solar cell
Prior art date
Application number
KR1020080015124A
Other languages
English (en)
Other versions
KR101448448B1 (ko
Inventor
김재호
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020080015124A priority Critical patent/KR101448448B1/ko
Priority to CN2009100091387A priority patent/CN101515606B/zh
Priority to TW098105555A priority patent/TWI404217B/zh
Priority to US12/378,890 priority patent/US20090205709A1/en
Publication of KR20090089944A publication Critical patent/KR20090089944A/ko
Priority to US14/454,636 priority patent/US20140349442A1/en
Application granted granted Critical
Publication of KR101448448B1 publication Critical patent/KR101448448B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 기판 상에 형성된 전면전극; 상기 전면전극 상에 형성된 반도체층; 상기 반도체층 상에 형성된 투명도전층; 상기 투명도전층 상에 형성된 후면전극; 및 상기 투명도전층과 후면전극 사이에 형성되어, 상기 후면전극의 전기적 저항을 감소시킴과 더불어 상기 투명도전층과 후면전극 사이의 접착력을 증진시키는 버퍼층을 포함하여 이루어진 박막형 태양전지, 및 그를 이용한 박막형 태양전지의 제조방법에 관한 것으로서,
본 발명에 따르면 투명도전층과 후면전극 사이에 버퍼층을 형성함으로써, 후면전극의 전기적 저항을 감소시킴과 더불어 투명도전층과 후면전극 사이의 접착력이 증진되는 효과가 있다.
박막형 태양전지, 버퍼층

Description

박막형 태양전지 및 그 제조방법{Thin film type Solar Cell and Method for manufacturing the same}
본 발명은 태양전지(Thin film type Solar Cell)에 관한 것으로서, 보다 구체적으로는 박막형 태양전지에 관한 것이다.
태양전지는 반도체의 성질을 이용하여 빛 에너지를 전기 에너지로 변환시키는 장치이다.
태양전지의 구조 및 원리에 대해서 간단히 설명하면, 태양전지는 P(positive)형 반도체와 N(negative)형 반도체를 접합시킨 PN접합 구조를 하고 있으며, 이러한 구조의 태양전지에 태양광이 입사되면, 입사된 태양광이 가지고 있는 에너지에 의해 상기 반도체 내에서 정공(hole) 및 전자(electron)가 발생하고, 이때, PN접합에서 발생한 전기장에 의해서 상기 정공(+)는 P형 반도체쪽으로 이동하고 상기 전자(-)는 N형 반도체쪽으로 이동하게 되어 전위가 발생하게 됨으로써 전력을 생산할 수 있게 되는 원리이다.
이와 같은 태양전지는 기판형 태양전지와 박막형 태양전지로 구분할 수 있다.
상기 기판형 태양전지는 실리콘과 같은 반도체물질 자체를 기판으로 이용하여 태양전지를 제조한 것이고, 상기 박막형 태양전지는 유리 등과 같은 기판 상에 박막의 형태로 반도체를 형성하여 태양전지를 제조한 것이다.
상기 기판형 태양전지는 상기 박막형 태양전지에 비하여 효율이 다소 우수하기는 하지만, 공정상 두께를 최소화하는데 한계가 있고 고가의 반도체 기판을 이용하기 때문에 제조비용이 상승되는 단점이 있다.
상기 박막형 태양전지는 상기 기판형 태양전지에 비하여 효율이 다소 떨어지기는 하지만, 얇은 두께로 제조가 가능하고 저가의 재료를 이용할 수 있어 제조비용이 감소되는 장점이 있어 대량생산에 적합하다.
상기 박막형 태양전지는 유리 등과 같은 기판 상에 전면전극을 형성하고, 상기 전면전극 위에 반도체층을 형성하고, 상기 반도체층 위에 후면전극을 형성하여 제조되는데, 이하, 도면을 참조로 종래의 박막형 태양전지에 대해서 보다 상세히 설명하기로 한다.
도 1a 내지 도 1d는 종래의 박막형 태양전지의 개략적인 공정 단면도이다.
우선, 도 1a에서 알 수 있듯이, 기판(10) 상에 전면전극(20)을 형성한다.
다음, 도 1b에서 알 수 있듯이, 상기 전면전극(20) 상에 반도체층(30)을 형성한다.
다음, 도 1c에서 알 수 있듯이, 상기 반도체층(30) 상에 투명도전층(40)을 형성한다.
다음, 도 1d에서 알 수 있듯이, 상기 투명도전층(40) 상에 후면전극(60)을 형성한다.
여기서, 상기 후면전극(60)은 알루미늄(Al) 또는 은(Ag)과 같은 금속을 상기 투명도전층(40) 상에 인쇄한 후 소정의 온도로 소성하여 형성하게 되는데, 상기 소성 공정시 상기 후면전극(60)을 구성하는 Al 또는 Ag와 같은 금속이 산화되어 상기 후면전극(60)과 투명도전층(40) 사이에 후면전극 산화물(65)이 형성되게 된다.
이와 같은 후면전극 산화물(65)은 알루미늄 산화물 또는 은 산화물로 이루어지는데, 이와 같은 산화물은 저항이 커서 후면전극(60)의 저항을 증가시켜 결국 태양전지의 효율을 저하시키는 단점이 있다.
본 발명은 전술한 종래의 박막형 태양전지의 문제점을 해결하기 위해 고안된 것으로서, 본 발명은 후면전극과 투명도전층 사이에 버퍼층을 형성함으로써 후면전극과 투명도전층 사이에 저항이 큰 후면전극 산화물이 형성되지 않도록 하여 전지효율이 상승되는 박막형 태양전지 및 그 제조방법을 제공함을 목적으로 한다.
본 발명은 상기 목적을 달성하기 위해서, 기판 상에 형성된 전면전극; 상기 전면전극 상에 형성된 반도체층; 상기 반도체층 상에 형성된 투명도전층; 상기 투명도전층 상에 형성된 후면전극; 및 상기 투명도전층과 후면전극 사이에 형성되어, 상기 후면전극의 전기적 저항을 감소시킴과 더불어 상기 투명도전층과 후면전극 사이의 접착력을 증진시키는 버퍼층을 포함하여 이루어진 박막형 태양전지를 제공한다.
상기 버퍼층은 상기 후면전극을 구성하는 물질보다 산화도가 큰 물질을 포함하여 이루어질 수 있다.
상기 버퍼층은 상기 후면전극을 구성하는 물질보다 산화도가 큰 금속물질 및 상기 금속물질의 산화물이 순서대로 적층되어 이루어질 수 있다.
상기 버퍼층을 구성하는 금속물질의 산화물은 상기 후면전극의 산화물보다 전기적 저항이 작다.
상기 버퍼층을 구성하는 금속물질의 산화물은 상기 투명도전층과 동일한 물 질로 이루어질 수 있다.
상기 금속물질의 산화물 및 상기 투명도전층은 ZnO로 이루어질 수 있다.
본 발명은 또한, 기판 상에 전면전극을 형성하는 공정; 상기 전면전극 상에 반도체층을 형성하는 공정; 상기 반도체층 상에 투명도전층을 형성하는 공정; 상기 투명도전층 상에 버퍼층을 형성하는 공정; 및 상기 버퍼층 상에 후면전극을 형성하는 공정을 포함하여 이루어진 박막형 태양전지의 제조방법을 제공한다.
상기 버퍼층을 형성하는 공정은 상기 투명도전층 상에 상기 후면전극을 구성하는 물질보다 산화도가 큰 금속물질 및 상기 금속물질의 산화물을 순서대로 형성하는 공정으로 이루어질 수 있다.
상기 후면전극을 형성하는 공정은 후면전극물질을 인쇄한 후 소성하는 공정으로 이루어지고, 상기 버퍼층을 구성하는 금속물질의 산화물은 상기 후면전극을 형성하기 위한 소성 공정시 상기 금속물질이 산화되어 형성될 수 있다.
상기 버퍼층을 구성하는 금속물질은 상기 투명도전층 상에 별도의 층을 적층하여 형성할 수 있다.
상기 버퍼층을 구성하는 금속물질을 형성하는 공정은 불활성가스분위기에서 Zn을 표적으로 하여 스퍼터링법을 이용하여 Zn을 형성하는 공정으로 이루어질 수 있다.
상기 투명도전층을 형성하는 공정은 산소분위기에서 Zn을 표적으로 하여 스퍼터링법을 이용하여 ZnO를 형성하는 공정으로 이루어지고, 상기 투명도전층을 형성하는 공정 및 상기 버퍼층을 구성하는 금속물질을 형성하는 공정은 동일한 스퍼 터링 장비에서 연속공정으로 수행할 수 있다.
상기 버퍼층을 구성하는 금속물질을 형성하는 공정은 수소분위기에서 Zn을 함유하는 가스를 원료로 하여 화학기상증착법 또는 원자층증착법을 이용하여 Zn을 형성하는 공정으로 이루어질 수 있다.
상기 버퍼층을 구성하는 금속물질은 상기 투명도전층의 상부를 환원시켜 형성할 수 있다.
상기 투명도전층의 상부를 환원시키는 공정은 수소 플라즈마 처리를 수행하여 상기 투명도전층에 함유된 산소와 플라즈마 처리시 공급되는 수소를 반응시키는 공정으로 이루어질 수 있다.
상기 버퍼층을 구성하는 금속물질의 산화물은 상기 후면전극의 산화물보다 전기적 저항이 작다.
상기와 같은 본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 본 발명은 투명도전층과 후면전극 사이에 버퍼층을 형성함으로써, 후면전극의 전기적 저항을 감소시킴과 더불어 투명도전층과 후면전극 사이의 접착력이 증진되는 효과가 있다.
구체적으로는, 후면전극을 구성하는 물질보다 산화도가 큰 금속물질을 포함하여 버퍼층을 구성함으로써 후면전극 형성을 위한 소성 공정시 종래와 같이 전기저항이 큰 후면전극 산화물이 형성되지 않고 전기저항이 매우 작은 금속물질의 산화물이 형성되도록 하여 후면전극의 전기적 저항을 감소시켜 태양전지의 효율이 증 진되게 되며, 또한, 버퍼층을 구성하는 금속물질의 산화물에 의해서 투명도전층과 후면전극 사이의 접착력이 증진되게 된다.
둘째, 본 발명은 버퍼층을 구성하는 금속물질의 산화물과 투명도전층을 동일한 물질로 형성함으로써, 동일한 장비에서 연속공정으로 수행할 수 있거나 또는 투명도전층을 이용하여 버퍼층을 구성하는 금속물질을 형성할 수 있어 제조공정을 보다 용이하게 조절할 수 있는 장점이 있다.
이하, 도면을 참조로 본 발명의 바람직한 실시예에 대해서 상세히 설명하기로 한다.
<박막형 태양전지>
도 2는 본 발명의 일 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 2에서 알 수 있듯이, 본 발명의 일 실시예에 따른 박막형 태양전지는, 기판(100), 전면전극(200), 반도체층(300), 투명도전층(400), 버퍼층(500) 및 후면전극(600)을 포함하여 이루어진다.
상기 기판(100)은 유리 또는 투명한 플라스틱으로 이루어진다.
상기 전면전극(200)은 ZnO, ZnO:B, ZnO:Al, ZnO:H, SnO2, SnO2:F, 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질을 이용하여 형성할 수 있다.
상기 전면전극(200)은 텍스처(texturing) 가공공정 등을 통해 그 표면을 요철구조로 형성하는 것이 바람직하다. 상기 텍스처 가공공정이란 물질 표면을 울퉁불퉁한 요철구조로 형성하여 마치 직물의 표면과 같은 형상으로 가공하는 공정으로서, 포토리소그라피법(photolithography)을 이용한 식각공정, 화학용액을 이용한 이방성 식각공정(anisotropic etching), 또는 기계적 스크라이빙(mechanical scribing)을 이용한 홈 형성 공정 등을 통해 수행할 수 있다. 이와 같은 텍스처 가공공정을 상기 전면전극(200)에 수행할 경우 입사되는 태양광이 태양전지 외부로 반사되는 비율은 감소하게 되며, 그와 더불어 입사되는 태양광의 산란에 의해 태양전지 내부로 태양광이 흡수되는 비율은 증가하게 되어, 태양전지의 효율이 증진되는 효과가 있다.
상기 반도체층(300)은 실리콘계 반도체물질을 이용하여 형성할 수 있다
상기 반도체층(300)은 P형 반도체층, I형 반도체층 및 N형 반도체층이 순서대로 적층된 PIN구조로 형성하는데, 이와 같이 상기 반도체층(300)을 PIN구조로 형성하게 되면, I형 반도체층이 P형 반도체층과 N형 반도체층에 의해 공핍(depletion)이 되어 내부에 전기장이 발생하게 되고, 태양광에 의해 생성되는 정공 및 전자가 상기 전기장에 의해 드리프트(drift)되어 각각 P형 반도체층 및 N형 반도체층에서 수집되게 된다.
상기 반도체층(300)을 PIN구조로 형성할 경우에는 상기 전면전극(200) 상부에 P형 반도체층을 형성하고 이어서 I형 반도체층 및 N형 반도체층을 형성하는 것이 바람직하다. 그 이유는 일반적으로 정공의 드리프트 이동도(drift mobility)가 전자의 드리프트 이동도에 의해 낮기 때문에 입사광에 의한 수집효율을 극대화하기 위해서 P형 반도체층을 수광면에 가깝게 형성하기 위함이다.
상기 투명도전층(400)은 ZnO와 같은 투명한 도전물질을 이용하여 형성한다.
상기 투명도전층(400)은 상기 반도체층(300)을 투과한 태양광을 다양한 각으로 산란시켜, 상기 후면전극(600)에서 반사되어 반도체층(300)으로 재입사되는 광의 비율을 증가시키게 된다.
상기 버퍼층(500)은 상기 투명도전층(400)과 후면전극(600) 사이에 형성되 어, 상기 후면전극(600)의 전기적 저항을 감소시킴과 더불어 상기 투명도전층(400)과 후면전극(600) 사이의 접착력을 증진시키는 역할을 한다.
상기 버퍼층(500)은 상기 후면전극(600)을 구성하는 물질보다 산화도가 큰 물질, 바람직하게는 Zn과 같은 투명한 금속물질(510)을 포함하여 이루어진다. 따라서, 상기 후면전극(600) 형성을 위한 소성 공정시 종래와 같이 알루미늄 산화물 또는 은 산화물과 같은 전기저항이 큰 물질이 형성되지 않고 ZnO와 같은 전기저항이 매우 작은 금속물질(510)의 산화물(530)이 형성된다. 결국, Zn과 같은 금속물질(510) 및 ZnO와 같은 상기 금속물질(510)의 산화물(530)이 순서대로 적층되어 버퍼층(500)을 구성함으로써, 후면전극(600)의 전기적 저항이 감소되어 태양전지의 효율이 증진되게 된다. 또한, 상기 버퍼층을 구성하는 금속물질(510)의 산화물(530)은 상기 투명도전층(400)과 후면전극(600) 사이의 접착력을 증진시키는 역할을 수행하게 된다.
상기 투명도전층(400)을 ZnO로 형성하고 상기 버퍼층(500)을 구성하는 금속물질(510) 및 금속물질(510)의 산화물(530)을 각각 Zn 및 ZnO로 형성함으로써, 상기 버퍼층(500)을 구성하는 금속물질(510)의 산화물(530)과 상기 투명도전층(400)을 동일한 물질로 형성할 경우 동일한 장비에서 연속공정으로 수행할 수 있거나(도 3a 내지 도 3f에 따른 제조방법 참조) 또는 투명도전층(400)을 이용하여 버퍼층(500)을 구성하는 금속물질(510)을 형성할 수 있는(도 4a 내지 도 4f에 따른 제조방법 참조) 등 제조공정을 보다 용이하게 조절할 수 있는 장점이 있으며, 이에 대해서는 후술하는 박막 태양전지의 제조방법을 참조하면 이해할 수 있을 것이다.
상기 후면전극(600)은 Ag, Al, Ag+Mo, Ag+Ni, Ag+Cu 등과 같은 금속을 이용하여 형성한다.
<박막형 태양전지의 제조방법>
도 3a 내지 도 3f는 본 발명의 일 실시예에 따른 박막형 태양 전지의 개략적 공정 단면도이다.
우선, 도 3a에서 알 수 있듯이, 기판(100) 상에 전면전극(200)을 형성한다.
상기 전면전극(200)은 ZnO, ZnO:B, ZnO:Al, ZnO:H, SnO2, SnO2:F, 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성할 수 있다.
상기 전면전극(200)은 태양광의 흡수율을 최대화하기 위해서 텍스처 가공공정 등을 통해 그 표면을 울퉁불퉁한 요철구조로 형성할 수 있다.
다음, 도 3b에서 알 수 있듯이, 상기 전면전극(200) 상에 반도체층(300)을 형성한다.
상기 반도체층(300)은 실리콘계 반도체물질을 플라즈마 CVD법을 이용하여 P형 반도체층, I형 반도체층 및 N형 반도체층이 순서대로 적층된 PIN구조로 형성할 수 있다.
다음, 도 3c에서 알 수 있듯이, 상기 반도체층(300) 상에 투명도전층(400)을 형성한다.
상기 투명도전층(400)은 ZnO와 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성할 수 있다.
다음, 도 3d에서 알 수 있듯이, 상기 투명도전층(400) 상에 금속물질(510)을 형성한다.
상기 금속물질(510)은 후술하는 후면전극을 구성하는 물질보다 산화도가 큰 금속을 이용하여 형성하며, 그에 따라 후면전극 형성을 위한 소성공정시 후면전극의 산화물이 형성되는 대신에 상기 금속물질(510)의 산화물이 형성되게 된다.
상기 금속물질(510)은 상기 투명도전층(400) 상에 별도의 층을 적층하여 형성하는데, 그 구체적인 형성방법으로는 스퍼터링법(Sputtering), 화학기상증착법(CVD) 또는 원자층증착법(ALD)을 들 수 있다.
첫째, 상기 금속물질(510)은 상기 투명도전층(400) 상에 스퍼터링법(Sputtering)을 이용하여 형성할 수 있으며, 이 경우에는 전술한 도 3c 공정과 동일한 스퍼터링 장비에서 연속공정으로 수행할 수 있는 장점이 있다. 즉, 전술한 도 3c공정에서는 산소분위기에서 Zn을 표적(target)으로 하여 스퍼터링법을 이용하여 ZnO로 이루어진 투명도전층(400)을 형성하고, 도 3d공정에서는 아르곤과 같은 불활성가스분위기에서 Zn을 표적으로 하여 스퍼터링법을 이용하여 Zn으로 이루어진 금속물질(510)을 형성할 수 있기 때문에, 동일한 스퍼터링장비에서 공급하는 가스만을 변경함으로써, 도 3c 공정 및 도 3d 공정을 연속수행할 수 있게 된다.
둘째, 상기 금속물질(510)은 상기 투명도전층(400) 상에 화학기상증착 법(CVD) 또는 원자층증착법(ALD)을 이용하여 형성할 수도 있다. 구체적으로는, 수소분위기에서 Zn(CH3)2 또는 Zn(C2H5)2을 원료로 하여 화학기상증착법 또는 원자층증착법을 이용하여 Zn으로 이루어진 금속물질(510)을 형성할 수 있으며, 이 경우에는 Zn(CH3)2 + H2 → Zn + 2(CH4) 또는 Zn(C2H5)2 + H2 → Zn + 2(C2H6)와 같은 반응을 통해 Zn으로 이루어진 금속물질(510)이 형성된다.
다음, 도 3e에서 알 수 있듯이, 상기 금속물질(510) 상에 후면전극물질(600a)을 형성한다.
상기 후면전극물질(600a)은 Ag, Al, Ag+Al, Ag+Mg, Ag+Mn, Ag+Sb, Ag+Zn, Ag+Mo, Ag+Ni, Ag+Cu, Ag+Al+Zn 등과 같은 금속을 스크린인쇄법(screen printing), 잉크젯인쇄법(inkjet printing), 그라비아인쇄법(gravure printing) 또는 미세접촉인쇄법(microcontact printing)을 이용하여 형성할 수 있다.
상기 스크린 인쇄법은 스크린과 스퀴즈(squeeze)를 이용하여 대상물질을 작업물에 전이시켜 소정의 패턴을 형성하는 방법이고, 상기 잉크젯 인쇄법은 잉크젯을 이용하여 대상물질을 작업물에 분사하여 소정의 패턴을 형성하는 방법이고, 상기 그라비아 인쇄법은 오목판의 홈에 대상물질을 도포하고 그 대상물질을 다시 작업물에 전이시켜 소정의 패턴을 형성하는 방법이고, 상기 미세접촉 인쇄법은 소정의 금형을 이용하여 작업물에 대상물질 패턴을 형성하는 방법이다.
다음, 도 3f에서 알 수 있듯이, 상기 후면전극물질(600a)을 소성하여 후면전극(600)을 완성한다.
상기 후면전극물질(600a)의 소성 공정시 상기 금속물질(510)의 상부가 산화되어 상기 금속물질(510)의 산화물(530)이 형성되고, 그에 따라 금속물질(510) 및 금속물질(510)의 산화물(530)로 이루어진 버퍼층(500)이 형성된다.
즉, 상기 금속물질(510)의 산화도가 상기 후면전극물질(600a)의 산화도보다 크기 때문에 상기 소성공정시 후면전극물질(600a)의 산화물이 형성되는 대신에 상기 금속물질(510)의 산화물이 형성되게 된다. 이때, 상기 금속물질(510)이 Zn으로 이루어진 경우 상기 금속물질(510)의 산화물은 ZnO로 이루어져, 종래의 후면전극 산화물과 비교할 때 전기적 저항이 매우 작기 때문에 후면전극(600)의 저항이 증가되는 것이 방지된다. 또한, 소성공정시 생성되는 금속물질(510)의 산화물(530)에 의해서 후면전극(600)과 투명도전층(400) 사이의 접착력도 크게 증가되게 된다.
도 4a 내지 도 4f는 본 발명의 다른 실시예에 따른 박막형 태양 전지의 개략적 공정 단면도로서, 금속물질(510)을 투명도전층(400) 상에 별도의 층으로 적층하는 대신에 투명도전층(400)의 상부를 환원시켜 금속물질(510)을 형성하는 것을 제외하고 전술한 도 3a 내지 도 3f에 따른 공정과 동일하다. 따라서, 동일한 부분에 대한 구체적인 설명은 생략한다.
우선, 도 4a에서 알 수 있듯이, 기판(100) 상에 전면전극(200)을 형성한다.
다음, 도 4b에서 알 수 있듯이, 상기 전면전극(200) 상에 반도체층(300)을 형성한다.
다음, 도 4c에서 알 수 있듯이, 상기 반도체층(300) 상에 투명도전층(400)을 형성한다.
상기 투명도전층(400)은 ZnO와 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성할 수 있다.
다음, 도 4d에서 알 수 있듯이, 상기 투명도전층(400)의 상부를 환원시켜 금속물질(510)을 형성한다.
즉, 상기 투명도전층(400)에 수소 플라즈마 처리를 수행할 경우 상기 투명도전층(400)의 상부에서 상기 투명도전층(400)에 함유된 산소(O2)가 플라즈마 처리시 공급되는 수소(H2)가 반응하게 되며, 이에 따라 투명도전층(400)에서 산소가 빠져나가면서 투명도전층(400)의 상부가 금속물질(510)로 환원되게 된다. 예를 들면, 투명도전층(400)을 구성하는 ZnO에 수소 플라즈마 처리를 수행할 경우 ZnO + H2 → Zn + H2O와 같은 반응을 일으켜 상기 투명도전층(400)의 상부에 Zn으로 이루어진 금속물질(510)이 형성되게 된다.
다음, 도 4e에서 알 수 있듯이, 상기 금속물질(510) 상에 후면전극물질(600a)을 형성한다.
다음, 도 4f에서 알 수 있듯이, 상기 후면전극물질(600a)을 소성하여 후면전극(600)을 완성함과 동시에, 상기 후면전극물질(600a)의 소성 공정시 상기 금속물질(510)의 상부가 산화되어 금속물질(510) 및 금속물질(510)의 산화물(530)로 이루어진 버퍼층(500)이 형성된다.
도 1a 내지 도 1d는 종래의 박막형 태양전지의 개략적인 공정 단면도이다.
도 2는 본 발명의 일 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 3a 내지 도 3f는 본 발명의 일 실시예에 따른 박막형 태양 전지의 개략적 공정 단면도이다.
도 4a 내지 도 4f는 본 발명의 다른 실시예에 따른 박막형 태양 전지의 개략적 공정 단면도이다.
<도면의 주요부의 부호에 대한 설명>
100: 기판 200: 전면전극
300: 반도체층 400: 투명도전층
500: 버퍼층 510: 금속물질
530: 금속물질의 산화물 600: 후면전극

Claims (16)

  1. 기판 상에 형성된 전면전극;
    상기 전면전극 상에 형성된 반도체층;
    상기 반도체층 상에 형성된 투명도전층;
    상기 투명도전층 상에 형성된 후면전극; 및
    상기 투명도전층과 후면전극 사이에 형성되어, 상기 후면전극의 전기적 저항을 감소시킴과 더불어 상기 투명도전층과 후면전극 사이의 접착력을 증진시키는 버퍼층을 포함하여 이루어진 박막형 태양전지.
  2. 제1항에 있어서,
    상기 버퍼층은 상기 후면전극을 구성하는 물질보다 산화도가 큰 물질을 포함하여 이루어진 것을 특징으로 하는 박막형 태양전지.
  3. 제1항에 있어서,
    상기 버퍼층은 상기 후면전극을 구성하는 물질보다 산화도가 큰 금속물질 및 상기 금속물질의 산화물이 순서대로 적층되어 이루어진 것을 특징으로 하는 박막형 태양전지.
  4. 제3항에 있어서,
    상기 버퍼층을 구성하는 금속물질의 산화물은 상기 후면전극의 산화물보다 전기적 저항이 작은 것을 특징으로 하는 박막형 태양전지.
  5. 제3항에 있어서,
    상기 버퍼층을 구성하는 금속물질의 산화물은 상기 투명도전층과 동일한 물질로 이루어진 것을 특징으로 하는 박막형 태양전지.
  6. 제5항에 있어서,
    상기 금속물질의 산화물 및 상기 투명도전층은 ZnO로 이루어진 것을 특징으로 하는 박막형 태양전지.
  7. 기판 상에 전면전극을 형성하는 공정;
    상기 전면전극 상에 반도체층을 형성하는 공정;
    상기 반도체층 상에 투명도전층을 형성하는 공정;
    상기 투명도전층 상에 버퍼층을 형성하는 공정; 및
    상기 버퍼층 상에 후면전극을 형성하는 공정을 포함하여 이루어진 박막형 태양전지의 제조방법.
  8. 제7항에 있어서,
    상기 버퍼층을 형성하는 공정은
    상기 투명도전층 상에 상기 후면전극을 구성하는 물질보다 산화도가 큰 금속물질 및 상기 금속물질의 산화물을 순서대로 형성하는 공정으로 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  9. 제8항에 있어서,
    상기 후면전극을 형성하는 공정은 후면전극물질을 인쇄한 후 소성하는 공정으로 이루어지고,
    상기 버퍼층을 구성하는 금속물질의 산화물은 상기 후면전극을 형성하기 위한 소성 공정시 상기 금속물질이 산화되어 형성되는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  10. 제8항에 있어서,
    상기 버퍼층을 구성하는 금속물질은 상기 투명도전층 상에 별도의 층을 적층하여 형성하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  11. 제10항에 있어서,
    상기 버퍼층을 구성하는 금속물질을 형성하는 공정은 불활성가스분위기에서 Zn을 표적으로 하여 스퍼터링법을 이용하여 Zn을 형성하는 공정으로 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  12. 제11항에 있어서,
    상기 투명도전층을 형성하는 공정은 산소분위기에서 Zn을 표적으로 하여 스퍼터링법을 이용하여 ZnO를 형성하는 공정으로 이루어지고,
    상기 투명도전층을 형성하는 공정 및 상기 버퍼층을 구성하는 금속물질을 형성하는 공정은 동일한 스퍼터링 장비에서 연속공정으로 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  13. 제10항에 있어서,
    상기 버퍼층을 구성하는 금속물질을 형성하는 공정은 수소분위기에서 Zn을 함유하는 가스를 원료로 하여 화학기상증착법 또는 원자층증착법을 이용하여 Zn을 형성하는 공정으로 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  14. 제8항에 있어서,
    상기 버퍼층을 구성하는 금속물질은 상기 투명도전층의 상부를 환원시켜 형성하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  15. 제14항에 있어서,
    상기 투명도전층의 상부를 환원시키는 공정은 수소 플라즈마 처리를 수행하여 상기 투명도전층에 함유된 산소와 플라즈마 처리시 공급되는 수소를 반응시키는 공정으로 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  16. 제8항에 있어서,
    상기 버퍼층을 구성하는 금속물질의 산화물은 상기 후면전극의 산화물보다 전기적 저항이 작은 것을 특징으로 하는 박막형 태양전지의 제조방법.
KR1020080015124A 2008-02-20 2008-02-20 박막형 태양전지 및 그 제조방법 KR101448448B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020080015124A KR101448448B1 (ko) 2008-02-20 2008-02-20 박막형 태양전지 및 그 제조방법
CN2009100091387A CN101515606B (zh) 2008-02-20 2009-02-20 薄膜型太阳能电池及其制造方法
TW098105555A TWI404217B (zh) 2008-02-20 2009-02-20 薄膜型太陽能電池及其製造方法
US12/378,890 US20090205709A1 (en) 2008-02-20 2009-02-20 Thin film type solar cell and method for manufacturing the same
US14/454,636 US20140349442A1 (en) 2008-02-20 2014-08-07 Thin film type solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080015124A KR101448448B1 (ko) 2008-02-20 2008-02-20 박막형 태양전지 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20090089944A true KR20090089944A (ko) 2009-08-25
KR101448448B1 KR101448448B1 (ko) 2014-10-14

Family

ID=40953993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080015124A KR101448448B1 (ko) 2008-02-20 2008-02-20 박막형 태양전지 및 그 제조방법

Country Status (4)

Country Link
US (2) US20090205709A1 (ko)
KR (1) KR101448448B1 (ko)
CN (1) CN101515606B (ko)
TW (1) TWI404217B (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052452A (ko) * 2009-11-11 2011-05-18 삼성전자주식회사 도전성 페이스트 및 태양 전지
KR101103914B1 (ko) * 2009-11-06 2012-01-12 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101132032B1 (ko) * 2010-08-11 2012-04-02 삼성에스디아이 주식회사 광전 변환 소자용 전극, 이의 제조 방법 및 이를 포함하는 광전 변환 소자
US9984787B2 (en) 2009-11-11 2018-05-29 Samsung Electronics Co., Ltd. Conductive paste and solar cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160007B2 (en) * 2007-11-20 2012-04-17 Qualcomm Incorporated Opportunistic uplink scheduling
US8547857B2 (en) * 2007-11-20 2013-10-01 Qualcomm Incorporated Opportunistic uplink scheduling
US9876129B2 (en) * 2012-05-10 2018-01-23 International Business Machines Corporation Cone-shaped holes for high efficiency thin film solar cells
US9153729B2 (en) 2012-11-26 2015-10-06 International Business Machines Corporation Atomic layer deposition for photovoltaic devices
US8889466B2 (en) 2013-04-12 2014-11-18 International Business Machines Corporation Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells
CN103606576B (zh) * 2013-10-21 2016-06-08 溧阳市东大技术转移中心有限公司 一种太阳能电池
US10062636B2 (en) * 2016-06-27 2018-08-28 Newport Fab, Llc Integration of thermally conductive but electrically isolating layers with semiconductor devices
US10490649B2 (en) * 2017-05-30 2019-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating semiconductor device with adhesion layer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104084A (en) * 1977-06-06 1978-08-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar cells having integral collector grids
US4602120A (en) * 1983-11-25 1986-07-22 Atlantic Richfield Company Solar cell manufacture
US5069968A (en) * 1990-12-20 1991-12-03 Ford Motor Company Laminated glazing unit having improved interfacial adhesion
JP2771414B2 (ja) * 1992-12-28 1998-07-02 キヤノン株式会社 太陽電池の製造方法
JP3651932B2 (ja) * 1994-08-24 2005-05-25 キヤノン株式会社 光起電力素子用裏面反射層及びその形成方法並びに光起電力素子及びその製造方法
US5569332A (en) * 1995-08-07 1996-10-29 United Solar Systems Corporation Optically enhanced photovoltaic back reflector
US5824566A (en) 1995-09-26 1998-10-20 Canon Kabushiki Kaisha Method of producing a photovoltaic device
US6132589A (en) * 1998-09-10 2000-10-17 Ga-Tek Inc. Treated copper foil and process for making treated copper foil
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
US7763794B2 (en) * 2004-12-01 2010-07-27 Palo Alto Research Center Incorporated Heterojunction photovoltaic cell
WO2006098185A1 (ja) * 2005-03-15 2006-09-21 Kaneka Corporation 薄膜光電変換装置用基板の製造方法、及び薄膜光電変換装置
KR101139453B1 (ko) * 2006-07-03 2012-04-30 엘지전자 주식회사 박막형 태양전지 및 그 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103914B1 (ko) * 2009-11-06 2012-01-12 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR20110052452A (ko) * 2009-11-11 2011-05-18 삼성전자주식회사 도전성 페이스트 및 태양 전지
US9984787B2 (en) 2009-11-11 2018-05-29 Samsung Electronics Co., Ltd. Conductive paste and solar cell
KR20180109825A (ko) * 2009-11-11 2018-10-08 삼성전자주식회사 도전성 페이스트 및 태양 전지
KR101132032B1 (ko) * 2010-08-11 2012-04-02 삼성에스디아이 주식회사 광전 변환 소자용 전극, 이의 제조 방법 및 이를 포함하는 광전 변환 소자

Also Published As

Publication number Publication date
CN101515606A (zh) 2009-08-26
CN101515606B (zh) 2011-06-01
KR101448448B1 (ko) 2014-10-14
US20140349442A1 (en) 2014-11-27
TW200937653A (en) 2009-09-01
TWI404217B (zh) 2013-08-01
US20090205709A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR101448448B1 (ko) 박막형 태양전지 및 그 제조방법
KR20090014450A (ko) 박막형 태양전지 제조방법 및 그 방법에 의해 제조된박막형 태양전지
KR20100021045A (ko) 박막형 태양전지 및 그 제조방법
KR20120011110A (ko) 기판형 태양전지 및 그 제조방법
KR20090035796A (ko) 박막형 태양전지 및 그 제조방법
KR101079612B1 (ko) 박막형 태양전지 및 그 제조방법
CN101779292A (zh) 薄膜型太阳能电池及其制造方法
KR20090067350A (ko) 박막형 태양전지 및 그 제조방법
KR101476120B1 (ko) 박막형 태양전지 및 그 제조방법
KR20090030362A (ko) 박막형 태양전지 및 그 제조방법
KR20110130191A (ko) 태양전지 및 그 제조방법
TWM517422U (zh) 具有局部鈍化的異質接面太陽能電池結構
CN108321221A (zh) 具有微腔结构的石墨烯太阳能电池及其制备方法
KR101415322B1 (ko) 박막형 태양전지 및 그 제조방법
CN102612757A (zh) 异质结型太阳能电池及其制造方法
KR20090076638A (ko) 박막형 태양전지 및 그 제조방법
CN104254926B (zh) 光伏装置
CN103038894A (zh) 利用太阳能发电的设备及其制造方法
KR20100058820A (ko) 박막형 태양전지의 제조방법
KR20120062432A (ko) 태양전지 및 그 제조방법
KR101643231B1 (ko) 태양전지 및 그 제조방법
KR101053782B1 (ko) 박막형 태양전지 및 그 제조방법
KR20110124939A (ko) 박막형 태양전지 및 그 제조방법
TWI581447B (zh) 異質接面太陽能電池結構及其製作方法
KR20100071779A (ko) 박막형 태양전지 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180817

Year of fee payment: 5