KR20090088053A - Nosie reduction method for digital hologram - Google Patents

Nosie reduction method for digital hologram Download PDF

Info

Publication number
KR20090088053A
KR20090088053A KR1020080013378A KR20080013378A KR20090088053A KR 20090088053 A KR20090088053 A KR 20090088053A KR 1020080013378 A KR1020080013378 A KR 1020080013378A KR 20080013378 A KR20080013378 A KR 20080013378A KR 20090088053 A KR20090088053 A KR 20090088053A
Authority
KR
South Korea
Prior art keywords
digital hologram
noise
digital
image
hologram
Prior art date
Application number
KR1020080013378A
Other languages
Korean (ko)
Inventor
김동욱
서영호
최현준
Original Assignee
김동욱
최현준
서영호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김동욱, 최현준, 서영호 filed Critical 김동욱
Priority to KR1020080013378A priority Critical patent/KR20090088053A/en
Publication of KR20090088053A publication Critical patent/KR20090088053A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • G03H2001/2297Addressing the hologram to an active spatial light modulator using frame sequential, e.g. for reducing speckle noise

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)

Abstract

A noise reduction method of a digital hologram is provided to analyze data after frequency-converting a digital hologram, thereby effectively removing noise. A global DCT(Discrete Cosine Transform) digital hologram is divided into an object area and a background area based on an object outline map. A histogram transform method is applied to the object area. The background area having small correlation with image quality of a restoration image is substituted by 0. The amount of noise spread in the entire image is reduced. Noise occurring during acquisition/transmission processes of the digital hologram is effectively removed.

Description

디지털 홀로그램의 노이즈 제거 방법 {Nosie Reduction Method for digital hologram}Noise reduction method for digital hologram {Nosie Reduction Method for digital hologram}

Digital Hologram, Filter Design, Image processingDigital Hologram, Filter Design, Image processing

[문헌 1] 이영희, “디지털콘텐츠에 관한 연구”, 한국정보과학회 논문지, 2004.5 Vol.20-5, 100~106쪽[Reference 1] Lee Young-hee, “A Study on Digital Contents,” Journal of the Korean Information Science Society, 2004.5 Vol.20-5, pp. 100 ~ 106

[문헌 2] Digital, C., "Digital Contents Course-ware," IEEE Multimedia, 2004.7, Vol. 10-7, 100~110쪽.[Document 2] Digital, C., "Digital Contents Course-ware," IEEE Multimedia, 2004.7, Vol. Pp. 10-7, 100-110.

[문헌 3] B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies, Springer Verlag Berlin. 2002.3[3] B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies, Springer Verlag Berlin. 2002.3

[문헌 4] T. J. Naughton, Y. Frauel, B. Javidi and E. Tajahuerce, "Compression of digital holograms for three-dimensional object recognition," SPIE Proc. , 2001, Vol 4471, 280-289쪽.[4] T. J. Naughton, Y. Frauel, B. Javidi and E. Tajahuerce, "Compression of digital holograms for three-dimensional object recognition," SPIE Proc. , 2001, Vol 4471, pp. 280-289.

[문헌 5] T. J. Naughton, Y. Frauel, B. Javidi and E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 2002.7월, No. 20, 4124-4132쪽. [5] T. J. Naughton, Y. Frauel, B. Javidi and E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 2002.7, No. Pp. 20, 4124-4132.

[문헌 6] T. J. Naughton and B. Javidi, "Compression of Encrypted Three-dimensional Objects using Digital Holography," Optical Engineering,, October 2004. vol. 43, no. 10, 2233-2238쪽[6] T. J. Naughton and B. Javidi, "Compression of Encrypted Three-dimensional Objects using Digital Holography," Optical Engineering ,, October 2004. vol. 43, no. 10, pp. 2233-2238

[문헌 7] T.J.Naughton, Y. Frauel, E. Tajahuerce, and B. Javidi, "Compression of Digital Holograms for Three-Dimensional Object Reconstruction and Recognition," Applied Optics, 2002.07.10 vol. 41, no. 20, 4124-4132쪽.[7] T. J. Naughton, Y. Frauel, E. Tajahuerce, and B. Javidi, "Compression of Digital Holograms for Three-Dimensional Object Reconstruction and Recognition," Applied Optics, July 10, 2002 vol. 41, no. Pp. 20, 4124-4132.

[문헌 8] T. J. Naughton, J. B. Mc Donald, and B. Javidi, "Efficient compression of Fresnel fields for Internet transmission of three-dimensional images," Applied Optics-Information Processing, August 2003.08.10. vol. 42, no. 23, 4758-4764쪽. 8 T. J. Naughton, J. B. Mc Donald, and B. Javidi, "Efficient compression of Fresnel fields for Internet transmission of three-dimensional images," Applied Optics-Information Processing, August 2003. vol. 42, no. 23, pp. 4758-4764.

[문헌 9] Y. H. Seo, H. J. Choi, and D. W. Kim, "Lossy Coding Technique for Digital Holographic Signal", SPIE Optical Enginnering, , 2006.06, vol. 45, no. 6. 5802-1~5802-10쪽.[9] Y. H. Seo, H. J. Choi, and D. W. Kim, "Lossy Coding Technique for Digital Holographic Signal", SPIE Optical Enginnering,, 2006.06, vol. 45, no. 6. pp. 5802-1 through 5802-10.

[문헌 10] 최현준, 서영호, 유지상, 김동욱, "전역 2차원 DCT를 이용한 디지털 홀로그램의 분석 및 워터마킹 기법", 한국해양통신학회논문지, 2007.07, 제 11권 7호, . 202~207쪽.[Reference 10] Choi, Hyun-Joon, Young-Ho Suh, Yoo Sang-Seo, Kim Dong-Wook, "Analysis and Watermarking Techniques of Digital Hologram Using Global 2D DCT", Journal of The Korean Institute of Maritime Communication Sciences, 2007.07, Vol. 11, No. 7,. Pp. 202--207.

[문헌 11] J. S. Lee, "Digital Image Smoothing and the Sigma Filter", Computer Graphics and Image Processing , 1983, 255~269쪽.[11] J. S. Lee, "Digital Image Smoothing and the Sigma Filter," Computer Graphics and Image Processing, 1983, 255-269.

[문헌 12] http://www2.edge.no/projects/index.php?expnDocument 12 http://www2.edge.no/projects/index.php?expn

=2&target=holovision/abo   = 2 & target = holovision / abo

디지털 홀로그램의 잡음은 CCD 카메라를 이용하여 간섭패턴을 획득하는 과정에서 카메라 주변의 환경과 센서의 상태에 의해 발생한다. 잡음은 공간상에서 복원되는 3차원 영상의 질을 떨어뜨리고, 원본 디지털 홀로그램의 엔트로피를 증가시켜 기존에 개발되었던 디지털 홀로그램 압축 기술들의 효율을 감소시킨다.The noise of the digital hologram is generated by the environment around the camera and the state of the sensor in the process of acquiring the interference pattern using the CCD camera. Noise deteriorates the quality of the 3D image reconstructed in space and increases the entropy of the original digital hologram, reducing the efficiency of existing digital hologram compression techniques.

본 발명에서는 DCT를 도입하여 디지털 홀로그램을 주파수 변환한 후 데이터를 분석하여 효율적인 잡음제거 기술을 개발하였다.In the present invention, an efficient noise reduction technique was developed by analyzing the data after frequency conversion of the digital hologram by introducing DCT.

본 발명에서는 디지털 홀로그램의 잡음을 제거하기 위해 전역 DCT를 이용하여 주파수 변환하였다. 주파수 영역을 자연현상으로 취급하여 객체영역과 배경영역으로 분리한 후 4가지 기법의 잡음 제거 기술을 개발하였다.In the present invention, the frequency conversion is performed by using the global DCT to remove the noise of the digital hologram. We treat the frequency domain as a natural phenomenon and separate it into object domain and background domain.

실험 결과 객체영역은 히스토그램 처리기법을 적용하고 배경영역은 '0'으로 치환하는 기법의 성능이 가장 좋았으며, PSNR이 6dB이상 향상되었다.Experimental results show that the histogram processing method is applied to the object area and the background area is replaced with '0', and the PSNR is improved by more than 6dB.

1. 디지털 홀로그램의 분석1. Analysis of Digital Holograms

디지털 홀로그램은 객체의 위상(phase)을 디지털 데이터로 기록하였기 때문에 일반적인 자연 영상들과는 상당히 다른 특성을 보인다. 일반적인 자연 영상들은 프랙탈 이론의 기반이 되는 자기 유사성(self-similarity)뿐만 아니라 인접한 화소(pixel)들 사이에도 강한 상관도(correlation)를 보인다. 하지만, 디지털 홀로그램은 마치 잡음 영상과 같이 매우 불연속적인 특징을 가지고 있는 비정상 신호이다. 이러한 자연 영상과 디지털 홀로그램의 예를 도 1에서 보이고 있다.Digital holograms show quite different characteristics from normal natural images because they record the phase of an object as digital data. In general, natural images show strong correlation between adjacent pixels as well as self-similarity which is the basis of fractal theory. However, digital holograms are abnormal signals with very discontinuous characteristics, such as noise images. An example of such a natural image and a digital hologram is shown in FIG. 1.

도 1-(d)에서 확인하였듯이 디지털 홀로그램은 자연 영상들과는 다른 특성을 보인다. 따라서 자연 영상들을 대상으로 연구되어왔던 기존의 잡음 제거 기술들을 디지털 홀로그램에 그대로 적용할 경우 높은 효과를 기대하기가 어려울 것이다. 본 연구팀은 이러한 특성을 고려하여 디지털 홀로그램에 DCT를 적용하여 주파수 영역으로 변환하였다. As shown in Fig. 1- (d), the digital hologram has different characteristics from natural images. Therefore, it is difficult to expect high effects if the existing noise reduction techniques that have been studied for natural images are applied to digital holograms as they are. Taking into account these characteristics, the team applied DCT to the digital hologram and converted it into the frequency domain.

본 발명에서 DCT를 도입한 이유는 디지털 홀로그램의 생성 수식이 코사인(cosine) 함수를 기저(basis)로 하고 있기 때문에 DCT를 적용할 경우 원본 객체와 유사한 영상을 얻을 수 있을 것이라는 가정에서였다. 도 2에서 디지털 홀로그램의 생성에 사용된 객체영상, 생성한 디지털 홀로그램, 그리고 DCT를 수행한 결과를 보이고 있다. DCT는 수학식 (1)과 같이 영상 전체를 대상으로 하는 256×256 전역 DCT 기법을 사용하였다. The reason for introducing DCT in the present invention is that the generation formula of the digital hologram is based on a cosine function, and it is assumed that an image similar to the original object can be obtained when DCT is applied. In FIG. 2, the object image used to generate the digital hologram, the generated digital hologram, and the DCT are shown. DCT used the 256 × 256 global DCT technique for the entire image as in Equation (1).

Figure 112008011023111-PAT00001
Figure 112008011023111-PAT00001

Figure 112008011023111-PAT00002
Figure 112008011023111-PAT00002

여기서 u, v는 주파수 변환 영역의 좌표, x, y는 원본 영상의 좌표, 그리고 N은 2차원 DCT를 수행할 화소 수를 의미한다.Here, u and v are coordinates of the frequency conversion region, x and y are coordinates of the original image, and N is the number of pixels to perform the two-dimensional DCT.

2. 잡음제거 알고리즘2. Noise Reduction Algorithm

2.1. 잡음모델(noise model)2.1. Noise model

원본 객체 영상 o(x, y)를 CGH기법으로 디지털 홀로그램 h(i, j)로 변환하고, N(0, σn2) 가우시안 잡음(Gaussian noise)을 첨가하여 잡음이 섞인 디지털 홀로그램 h‘(i, j)를 다음 수학식 (2)과 같이 정의할 수 있다.Converts the original object image o (x, y) to digital hologram h (i, j) by CGH method and adds N (0, σn2) Gaussian noise to mix the digital hologram h '(i, j) may be defined as in Equation (2) below.

Figure 112008011023111-PAT00003
Figure 112008011023111-PAT00003

n(i,j)는 평균이 0인 백색 가우시안 잡음으로 가정한다. 수학식 (2)에서 설명한 잡음 첨가 모델을 도 3에서 보이고 있다.Assume n (i, j) is a white Gaussian noise with a mean of zero. The noise addition model described in Equation (2) is shown in FIG. 3.

2.2. 디지털 홀로그램을 위한 잡음 제거알고리즘2.2. Noise Rejection Algorithm for Digital Hologram

도 2-(C)에서 확인하였듯이 디지털 홀로그램을 대상으로 전역 DCT를 수행하면 주파수 영역에서 객체 영상과 매우 유사한 계수의 분포가 관찰된다. 본 연구팀은 이런 주파수 영역의 계수값들의 분포를 자연 영상으로 가정하여 새로운 잡음 제거 기술을 기술하고자 한다. As shown in FIG. 2 (C), when global DCT is performed on a digital hologram, a distribution of coefficients very similar to an object image is observed in a frequency domain. The team attempts to describe a new noise reduction technique assuming the distribution of coefficient values in the frequency domain as natural images.

도 4에서는 원본 디지털 홀로그램과 잡음이 첨가된 디지털 홀로그램의 256 ×256 전역 DCT 결과, 그리고 이들의 계수값 분포를 보이고 있다.4 shows the 256 × 256 global DCT results of the original digital hologram and the noise-added digital hologram, and their coefficient distribution.

도 4 -(c)와 (d)에서 보이듯이 주파수 영역에서 관찰되는 객체내의 화소값들은 주변 화소와의 상관도가 매우 낮고 객체 외부는 비교적 작은 화소값들이 분포하고 있다. 본 연구팀은 이런 화소값들의 분포 특성을 이용하기 위해 주파수 영역에서의 객체와 배경을 분리한 후 각각 다른 잡음 제거 기법을 기술한다. 도 5에서 객체와 배경을 분리하기 위해 생성한 객체 윤곽선 지도(contour-map)를 보이고 있다.As shown in Figs. 4 (c) and 4 (d), pixel values in an object observed in the frequency domain have a very low correlation with surrounding pixels and relatively small pixel values are distributed outside the object. To take advantage of the distribution of these pixel values, the team separates objects and backgrounds in the frequency domain and then describes different noise reduction techniques. In FIG. 5, an object contour map generated to separate an object from a background is shown.

도 5의 객체 윤곽선 지도는 전역 DCT된 디지털 홀로그램의 대상으로 에지영역을 탐색한 후 임계값을 설정하여 이진화한 영상이다. 본 발명에서는 임계값을 200으로 설정하였다. The object contour map of FIG. 5 is an image obtained by binarizing an edge region with a target of a global DCT digital hologram and setting a threshold value. In the present invention, the threshold value is set to 200.

본 발명에서는 디지털 홀로그램의 주파수 영역에서 객체 윤곽선 지도를 구한 후 다음과 같은 4가지 기법의 잡음 제거 기술을 기술한다. In the present invention, after obtaining the object contour map in the frequency domain of the digital hologram, the following four techniques for noise reduction are described.

■ Method 1: 배경영역을 '0' 으로 치환■ Method 1: Replace background area with '0'

■ Method 2: 배경영역을 '0' 으로 치환한 후 객체영역에 sigma 필터를 적용■ Method 2: Replace the background area with '0' and apply the sigma filter to the object area

■ Method 3: 주파수 영역 전체를 대상으로 히스토그램변환기법을 적용■ Method 3: Apply the histogram conversion technique to the entire frequency domain

■ Method 4: 객체와 배경영역을 분리한 후 각각에 히스토그램 변환기법을 적용■ Method 4: Separate object and background area and apply histogram conversion method to each

Method 1은 전역 DCT된 디지털 홀로그램을 객체 윤곽선 지도를 기반으로 객체영역과 배경영역으로 분리한 후 복원 영상의 화질과 상관도가 작은 배경영역을 모두 '0'으로 치환하여 영상 전체에 퍼져있는 잡음의 양을 줄이는 기법이다. Method 2는 객체영역과 배경영역을 분리한 후 배경영역을 ‘0’으로 치환하고, 객 체영역은 필터링 윈도우 내 화소들 중에서 중심 화소와 유사한 값을 갖는 화소들의 평균으로 복원하는 sigma 필터를 적용하였다. sigma 필터는 아래의 수학식 (3)과 같다. Method 1 separates the global DCT digital hologram into object area and background area based on the object contour map and replaces all background areas with low correlation with the image quality of reconstructed image with '0' to remove noise spread throughout the image. It is a technique to reduce the amount. Method 2 applies a sigma filter that separates the object area from the background area, replaces the background area with '0', and restores the object area to the average of pixels with values similar to the center pixel among the pixels in the filtering window. . The sigma filter is shown in Equation (3) below.

Figure 112008011023111-PAT00004
Figure 112008011023111-PAT00004

여기서 R(m,n:i,j)는 잡음 제거한 화소값, h'(i, j)는 잡음이 첨가된 디지털 홀로그램의 화소값, 그리고 h(m, n)은 주변 화소값을 의미한다. 따라서 객체영역처럼 중심 화소와 주변 화소의 차이가 큰 경우 블러링 현상을 줄일 수 있다. 임계값 Δ는 예측된 잡음의 분산(variance) 값을 이용하여 결정한다. Where R (m, n: i, j) is the noise-reduced pixel value, h '(i, j) is the pixel value of the noise-added digital hologram, and h (m, n) is the peripheral pixel value. Therefore, blurring phenomenon can be reduced when the difference between the center pixel and the surrounding pixel is large like the object region. The threshold Δ is determined using the variance of the predicted noise.

Method 3과 4는 디지털 홀로그램을 전역 DCT한 후 계수들의 통계적인 히스토그램 분포 특성을 파악하여 잡음 제거에 적용하였다. 통계적인 히스토그램 분포 특성을 구하기 위해 컴퓨터 그래픽으로 제작한 100개의 객체영상들에 CGH기법을 적용하여 생성한 디지털 홀로그램들을 사용하였다. 100개의 객체영상들 중에서 대표적인 객체영상 4가지를 도 6에서 보이고 있다. Methods 3 and 4 were applied to noise reduction by analyzing the histogram distribution of coefficients after global DCT of digital hologram. Digital holograms created by applying the CGH method to 100 object images created by computer graphics were used to obtain statistical histogram distribution characteristics. Four representative object images among 100 object images are shown in FIG. 6.

도 8에서는 전역 DCT한 디지털 홀로그램들의 통계적인 히스토그램 특성을 보이고 있다. 전역 DCT는 256×256 화소 전체를 대상으로 수행하였다. 8 shows statistical histogram characteristics of global DCT digital holograms. Global DCT was performed on all 256 × 256 pixels.

본 발명에서는 디지털 홀로그램의 주파수 영역에서 계수들의 통계적인 히스토그램 분포를 비교해 잡음의 스펙트럼을 추정한다. 이후 도 7-(b)와 같은 잡음 영역의 히스토그램 분포도를 도 7-(a)와 같은 원본 디지털 홀로그램의 히스토그램 분 포와 비슷한 분포로 변형하여 잡음으로 예측되는 계수값들을 복원하였다. In the present invention, the spectrum of noise is estimated by comparing the statistical histogram distribution of coefficients in the frequency domain of the digital hologram. Subsequently, the histogram distribution of the noise region as shown in Fig. 7- (b) is transformed into a distribution similar to the histogram distribution of the original digital hologram as shown in Fig. 7- (a) to restore coefficient values predicted as noise.

Method 3은 영상 전체에 대해 히스토그램 처리기법을 적용하였고, Method 4는 객체영역과 배경영역을 분리한 후 배경영역은 '0'으로 치환하고 객체영역만을 대상으로 히스토그램 처리기법을 적용하였다. 히스토그램 처리기법은 다음의 수학식 (4)과 같다.Method 3 applies the histogram processing method to the whole image, and Method 4 applies the histogram processing method to the object area and replaces the background area with '0' after separating the object area and the background area. The histogram processing technique is as shown in Equation (4) below.

Figure 112008011023111-PAT00005
Figure 112008011023111-PAT00005

여기서 rs[n]은 이동된 히스토그램 분포, hs[n]은 노이즈가 첨가된 히스토그램, c는 가중치(weighting factor), σ는 분산을 의미한다. Where rs [n] is the shifted histogram distribution, hs [n] is the histogram with noise added, c is the weighting factor, and σ is the variance.

3. 실험 및 고찰 3. Experiment and Discussion

잡음이 섞인 디지털 홀로그램을 Sigma 필터와 본 연구팀이 기술한 4가지 기법들을 적용하였다. 잡음 제거 기법을 적용한 후 PC 시뮬레이션으로 복원한 3차원 홀로그래피 영상들의 주관적인 화질과 PSNR을 측정하였다. We applied a noisy digital hologram with a Sigma filter and four techniques described by our team. After applying the noise reduction technique, the subjective picture quality and PSNR of 3D holographic images reconstructed by PC simulation were measured.

실험환경은 다음과 같다. The experimental environment is as follows.

■ 디지털 홀로그램 크기: 256×256 [pixel2]■ Digital Hologram Size: 256 × 256 [pixel2]

■ SLM의 화소크기: 10.4㎛×10.4㎛■ SLM pixel size: 10.4㎛ × 10.4㎛

■ 광원의 파장: 633㎚ ■ Wavelength of light source: 633nm

■ 복원되는 거리: 1,000㎜■ Distance restored: 1,000㎜

(1) 기존 잡음 제거 알고리즘을 적용한 결과(1) The result of applying the existing noise reduction algorithm

자연영상의 잡음 제거에 사용되던 sigma 필터를 토끼영상디지털 홀로그램의 잡음 제거에 적용하여 보았다. 잡음이 첨가된 디지털 홀로그램의 홀로그램 영역과 전역 DCT된 주파수 영역에서 각각 필터링을 수행하였다. 도 9에서 실험결과들을 보이고 있다. The sigma filter, which was used for noise reduction of natural images, was applied to noise reduction of rabbit image digital hologram. Filtering was performed in the hologram region of the noisy digital hologram and the global DCT frequency region, respectively. 9 shows the experimental results.

도 8에서 보이듯이 잡음이 첨가된 디지털 홀로그램을 자연영상에서 사용되던 sigma 필터로 잡음 제거하였을 경우 오히려 복원영상의 화질이 떨어지는 것을 시각적으로 확인할 수 있다. 객관적인 화질평가를 위해 PSNR을 측정한 결과 원본 복원영상과 비교하여 잡음이 첨가된 디지털 홀로그램의 복원영상은 24.35dB, sigma 필터로 잡음을 제거한 복원영상은 21.53dB로 측정되었다. 실험결과 자연영상의 잡음제거를 위해 개발된 기술을 디지털 홀로그램에 그대로 적용할 경우 오히려 복원영상의 화질이 떨어지는 것을 확인하였다.As shown in FIG. 8, when the noise is removed by the sigma filter used in the natural image, the image quality of the reconstructed image is deteriorated. As a result of measuring PSNR for objective image quality evaluation, the reconstructed image of noise added digital hologram was 24.35dB and the reconstructed image of sigma filter removed 21.53dB. As a result of the experiment, it was confirmed that the image quality of the reconstructed image is deteriorated when the technique developed for the noise reduction of the natural image is applied to the digital hologram as it is.

(2) 개발한 기술을 적용한 결과(2) The result of applying the developed technology

2.3절에서 설명했던 4가지 기법들을 이용하여 잡음 제거한 결과를 표 1에서 보이고 있다. 원본 디지털 홀로그램을 기준으로 잡음이 첨가된 디지털 홀로그램과 잡음 제거 기법들을 적용하여 측정한 PSNR 값들을 보이고 있다. 표에서 확인할 수 있듯이 Method 4의 기법을 적용한 결과 PSNR이 약 6dB 이상 향상되는 결과를 보였 다.Table 1 shows the noise reduction results using the four techniques described in Section 2.3. Based on the original digital hologram, we show the PSNR values measured by applying noise-added digital hologram and noise cancellation techniques. As can be seen from the table, applying the method 4 resulted in a PSNR improvement of about 6dB or more.

도 9에서는 잡음 제거 결과의 주관적인 화질측정을 위해 PC에서 시뮬레이션한 복원영상들을 보이고 있다. 9 shows reconstructed images simulated in a PC for subjective image quality measurement of noise reduction results.

MethodsMethods Noisy digital hologramNoisy digital hologram Denoising digital hologramDenoising digital hologram 1One 24.35dB   24.35 dB 26.55dB26.55 dB 22 26.75dB26.75 dB 33 29.63dB29.63 dB 44 30.47dB30.47 dB

도1 - 영상의 예; (a) 자연 영상, (b)(a)의 화소값 분포도, (c) 디지털 홀로그램, (d) (c)의 화소값 분포도1-an example of an image; (a) natural image, (b) pixel value distribution diagram (a), (c) digital hologram, (d) pixel value distribution diagram (c)

도2 - (a) 객체 영상, (b) (a)의 디지털 홀로그램, (c) (b)의 256x256 전역 DCT 결과.Figure 2-(a) object image, (b) digital hologram of (a), (c) 256x256 global DCT result of (b).

도3 - 잡음 모델.3-noise model.

도4 - (a) 원본 디지털 홀로그램의 DCT 결과, (b) 잡음이 첨가된 디지털 홀로그램의 DCT 결과, (c) (a)의 화소값 분포도, (d) (b)의 화소갑 분포도.Figure 4-(a) DCT result of original digital hologram, (b) DCT result of digital hologram with noise added, (c) pixel value distribution diagram of (a), (d) pixel value distribution diagram of (b).

도5 - 주파수 영역에서의 객체 윤곽선 지도.5-object contour map in the frequency domain.

도6 - 객체영상의 예; (a) 토끼, (b) 오리, (c) 스프링, (d) 주전자.6-an example of an object image; (a) rabbit, (b) duck, (c) spring, (d) kettle.

도7 - 디저털 홀로그램의 주파수 영역에서의 통계적인 히스토그램 분포; (a) 원본 디지털 홀로그램, (b) 잡음이 첨가된 디지털 홀로그램.7-Statistical histogram distribution in the frequency domain of the digital hologram; (a) Original digital hologram, (b) Noisy digital hologram.

도8 - sigma 필터로 잡음 제거한 결과; 디지털 홀로그램 (a) 원본, (b) 잡음이 첨가된, (c) 잡음 제거된, 복원 결과 (d) 원본, (e) 잡음이 첨가된, (f) 잡음이 제거된.Figure 8-Noise rejection results with sigma filter; Digital hologram (a) Original, (b) Noise added, (c) Noise canceled, Restoration result (d) Original, (e) Noise added, (f) Noise canceled.

도9 - 잡음 제거한 복원 영상들 (a) 원본, (b) 잡음이 첨가된, (c) Method 1, (d) Method 2, (e) Method 3, (f) Method 4.Figure 9-Reconstructed images with noise removed (a) Original, (b) Noise added, (c) Method 1, (d) Method 2, (e) Method 3, (f) Method 4.

Claims (2)

디지털 홀로그램의 전자적인 노이즈 제거 기법Electronic Noise Reduction Techniques for Digital Holograms 디지털 홀로그램의 주파수 영역에서의 특성을 이용한 노이즈 제거 기법Noise Reduction Technique Using the Characteristics of Digital Hologram in Frequency Domain
KR1020080013378A 2008-02-14 2008-02-14 Nosie reduction method for digital hologram KR20090088053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080013378A KR20090088053A (en) 2008-02-14 2008-02-14 Nosie reduction method for digital hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080013378A KR20090088053A (en) 2008-02-14 2008-02-14 Nosie reduction method for digital hologram

Publications (1)

Publication Number Publication Date
KR20090088053A true KR20090088053A (en) 2009-08-19

Family

ID=41206837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080013378A KR20090088053A (en) 2008-02-14 2008-02-14 Nosie reduction method for digital hologram

Country Status (1)

Country Link
KR (1) KR20090088053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115248549A (en) * 2022-01-12 2022-10-28 浙江理工大学 Digital holographic three-dimensional reconstruction method for scattering and eliminating stray frequency spectrum noise
KR20230102059A (en) 2021-12-29 2023-07-07 주식회사 에픽옵틱스 Hologram optical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230102059A (en) 2021-12-29 2023-07-07 주식회사 에픽옵틱스 Hologram optical system
CN115248549A (en) * 2022-01-12 2022-10-28 浙江理工大学 Digital holographic three-dimensional reconstruction method for scattering and eliminating stray frequency spectrum noise
CN115248549B (en) * 2022-01-12 2024-05-24 浙江理工大学 Digital holographic three-dimensional reconstruction method for scattering and eliminating stray spectrum noise

Similar Documents

Publication Publication Date Title
JP4417419B2 (en) Input image stego analysis method, apparatus, and computer-readable medium
KR101298642B1 (en) Method and apparatus for eliminating image noise
Lee et al. Three-dimensional visualization of objects in scattering medium using integral imaging and spectral analysis
CN113850741B (en) Image noise reduction method and device, electronic equipment and storage medium
Dai et al. Film grain noise removal and synthesis in video coding
Pan et al. Imperceptible reversible watermarking of radiographic images based on quantum noise masking
Lee et al. Poisson-gaussian noise reduction for x-ray images based on local linear minimum mean square error shrinkage in nonsubsampled contourlet transform domain
Feng et al. Real-world non-homogeneous haze removal by sliding self-attention wavelet network
Matrecano et al. Improved BM3D for correlated noise removal
KR20090088053A (en) Nosie reduction method for digital hologram
Hu et al. A region-based video de-noising algorithm based on temporal and spatial correlations
Khalili A comparison between digital image watermarking in tow different color spaces using dwt2
Vohra et al. Image restoration using thresholding techniques on wavelet coefficients
Orović et al. An image watermarking based on the pdf modeling and quantization effects in the wavelet domain
KR20130046304A (en) Image denoising in the transform domain using nonlocal means filtering
Zhu et al. Noise reduced high dynamic range tone mapping using information content weights
Choi et al. Noise reduction for digital holograms in a discrete cosine transform (DCT) domain
Balamurugan et al. Source camera identification using SPN with PRNU estimation and enhancement
Oakes et al. Visual attention-based watermarking
Batna Comparative study between wavelet thresholding techniques (hard, soft and invariant-translation) in ultrasound images
Sari et al. Development of denoising method for digital image in low-light condition
Kaur et al. Study of Image Denoising and Its Techniques
Kaarna et al. Multiwavelets in watermarking spectral images
Kotal et al. Efficient Self-Supervised Denoising from Single Image
Xu et al. Color enhancement algorithm for visual communication posters based on homomorphic filtering

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination