KR20090080654A - A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same - Google Patents

A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same Download PDF

Info

Publication number
KR20090080654A
KR20090080654A KR1020080006537A KR20080006537A KR20090080654A KR 20090080654 A KR20090080654 A KR 20090080654A KR 1020080006537 A KR1020080006537 A KR 1020080006537A KR 20080006537 A KR20080006537 A KR 20080006537A KR 20090080654 A KR20090080654 A KR 20090080654A
Authority
KR
South Korea
Prior art keywords
corynebacterium
microorganism
gene
purnh
usha
Prior art date
Application number
KR1020080006537A
Other languages
Korean (ko)
Other versions
KR100957690B1 (en
Inventor
김철하
최종수
조진만
김혜원
이지혜
홍국기
이진남
오윤석
박장희
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020080006537A priority Critical patent/KR100957690B1/en
Publication of KR20090080654A publication Critical patent/KR20090080654A/en
Application granted granted Critical
Publication of KR100957690B1 publication Critical patent/KR100957690B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F57/00Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired 
    • D06F57/12Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired  specially adapted for attachment to walls, ceilings, stoves, or other structures or objects
    • D06F57/122Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired  specially adapted for attachment to walls, ceilings, stoves, or other structures or objects for attachment by clamping between two retaining-planes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F57/00Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F57/00Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired 
    • D06F57/12Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired  specially adapted for attachment to walls, ceilings, stoves, or other structures or objects
    • D06F57/125Supporting means, other than simple clothes-lines, for linen or garments to be dried or aired  specially adapted for attachment to walls, ceilings, stoves, or other structures or objects for attachment to, or close to, the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/14Chambers, containers, receptacles of simple construction
    • F26B25/18Chambers, containers, receptacles of simple construction mainly open, e.g. dish, tray, pan, rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method for producing a xanthosine 5'-monophosphate by using Corynebacterium sp. microorganism is provided to enhance the activation of enzyme related to the purine biosynthesis and inactivate an enzyme which resolves nucleic acid. A method for improving the productivity of xanthosine 5'-monophosphate from Corynebacterium sp. microorganism is enhancing the activation of phosphoribosylglycinamide formyltransferase and inosinic acid cyclohydrolase. Two or more purNH genes which encode the enzymes are contained inside chromosome. The purNH gene as gene sequence of the sequence number 12. A method for producing a xanthosine 5'-monophosphate comprises: a step of culturing the Corynebacterium sp. microorganism to produce the xanthosine 5'-monophosphate; and a step of collecting the xanthosine 5'-monophosphate from a cell or medium.

Description

5'-크산틸산 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 5'-크산틸산의 생산 방법{A MICROORGANISM OF CORYNEBACTERIUM GENUS HAVING ENHANCED XANTHOSINE 5'-MONOPHOSPHATE PRODUCTIVITY AND METHOD OF PRODUCING XANTHOSINE 5'-MONOPHOSPHATE USING THE SAME}MICROORGANISM OF CORYNEBACTERIUM GENUS HAVING ENHANCED XANTHOSINE 5'-MONOPHOSPHATE PRODUCTIVITY AND METHOD OF PRODUCING XANTHOSINE 5ATE-MONOPHOSPH SAME}

본 발명은 퓨린 생합성에 관여하는 5'-포스포리보실글리신아마이드 포밀트랜스퍼라아제(5'-phosphoribosylglycinamide formyltransferase 1) 및 이노신산 사이클로하이드롤라아제(inosinic acid cyclohydrolase; 이하 IMP 사이클로하이드롤라아제라 칭한다) 효소의 활성을 강화시키고, 바람직하게는 핵산을 분해하는 5'-뉴클레오티다아제(5'-nucleotidase)를 추가로 불활성화시킴으로써 5'-크산틸산(xanthosine 5'-monophosphate; 이하 5'-XMP라 칭한다)의 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용하여 5'-크산틸산을 생산하는 방법에 관한 것이다. The present invention relates to the 5'-phosphoribosylglycinamide formyltransferase 1 and inosine acid cyclohydrolase (hereinafter referred to as IMP cyclohydrolase) enzymes involved in purine biosynthesis. X'anthocine acid (hereinafter referred to as 5'-XMP) by further inactivating 5'-nucleotidase, which enhances the nucleic acid and preferably degrades the nucleic acid. The present invention relates to a microorganism of the genus Corynebacterium with improved production capacity and a method of producing 5'-xanthyl acid using the same.

5'-XMP는 퓨린 뉴클레오티드(purine nucleotide) 생합성 대사계의 중간 생성물로 5'-구아닐산(guanine 5'-monophosphate: 이하 5'-GMP라 칭한다)의 제조 원료로서 중요한 물질이다. 5'-GMP는 이노신산(inosinic acid; 이하 IMP라 칭한다)과 더불어 식품 조미 첨가제로 널리 이용되고 있는 물질이다. 5'-GMP는 그 자체로서 버섯의 맛을 내는 것으로 알려져 있으나, 주로 L-글루타민산나트륨(monosodium L-glutamate; MSG)의 풍미를 강화하는 것으로 알려져 있다. 이러한 성질은 특히 IMP과 같이 쓰여졌을 때 강하게 나타난다.5'-XMP is an intermediate product of the purine nucleotide biosynthesis metabolic system and is an important material as a raw material for producing 5'-guanylic acid (hereinafter referred to as 5'-GMP). 5'-GMP, along with inosinic acid (hereinafter referred to as IMP), is widely used as a food seasoning additive. 5'-GMP is known to taste mushrooms by itself, but is known to enhance the flavor of mainly sodium L-glutamate (MSG). This property is particularly strong when used with IMP.

지금까지 알려진 5'-GMP의 제조 방법에는 (1) 효모세포로부터 추출한 리보핵산(RNA)을 효소학적으로 분해하는 방법, (2) 미생물 발효법으로 5'-GMP를 직접 발효하는 방법, (3) 미생물 발효법으로 생산한 구아노신을 화학적으로 인산화 시키는 방법, (4) 미생물 발효법으로 생산한 구아노신을 효소적 방법으로 인산화 시키는 방법, (5) 미생물 발효법으로 생산한 5'-XMP를 코리네형 미생물을 이용하여 5'-GMP으로 전환하는 방법, (6) 미생물 발효법으로 생산한 5'-XMP를 대장균을 이용하여 5'-GMP로 전환시키는 방법을 들 수 있다. 이중 (1)의 방법은 원료 수급 및 경제성에 문제가 있으며, (2)의 방법은 5'-GMP의 세포막 투과성의 문제로 인하여 수율이 낮다는 단점이 있어 그 외의 방법이 공업적으로 주로 이용되고 있다.Known methods for producing 5'-GMP include (1) enzymatic digestion of ribonucleic acid (RNA) extracted from yeast cells, (2) direct fermentation of 5'-GMP by microbial fermentation, and (3) Chemical phosphorylation of guanosine produced by microbial fermentation, (4) Enzymatic phosphorylation of guanosine produced by microbial fermentation, (5) 5'-XMP produced by microbial fermentation using coryneform microorganisms The method of converting into 5'-GMP, (6) The method of converting 5'-XMP produced by microbial fermentation into 5'-GMP using Escherichia coli. The method of (1) has a problem in the supply and demand of raw materials, and the method of (2) has a disadvantage in that the yield is low due to the problem of 5'-GMP cell membrane permeability, and other methods are mainly used industrially. have.

위에서 전기한 방법들 중 5'-XMP를 생산하여 5'-GMP로 전환시키는 방법을 이용하여 5'-GMP를 생산 할 경우, 5'-XMP의 생산성을 강화할 수 있는 전략이 필요하다. 때문에 종래에 5'-XMP 생합성 관련 유전자가 강화된 코리네박테리움 균주 및 이를 이용한 5'-XMP 생산방법이 알려져 있었다. 예를 들면, 국내 특허 10-1991-018061에는 5'-XMP 수율을 높이기 위하여, 아데닌과 구아닌 반영양요구성형의 크산틸산아미나제 불활성균주이며 구아노신 유사체 내성을 가지고 있고 세포벽 분해 효소인 라이소인 라이소자임에 감수성이 매우 높은 균주를 제작하여 개시하였다. 국 내 특허 10-2001-000513에는 5'-XMP을 생산하는 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)를 친주로 자외선 조사, N-메틸-N'-니트로-N-니트로소구아니딘(N-methyl-N'-nitro-N-nitrosoguanidine; NTG) 등의 변이 유발제를 통상적인 방법에 따라 처리하여 친주의 형질을 변형시킴으로써 5'-XMP의 생합성에 영향을 주는 발린(valine)에 대한 유사체(analoge)인 노르발린(norvaline) 내성주를 선별하였고, 그 결과 5'-XMP을 고수율, 고농도로 배양액 중에 직접 축적시키는 미생물을 이용한 5'-XMP 생산방법을 개시하였다. 또, 국내 특허 10-2003-0091342에서는 미생물에서 핵산을 분해함으로써 핵산 농도를 감소시키는 것으로 보고된 (Escherichia coli and Salmonella: Cellular and Molecular Biology: 2nd edition:561~579) ushA 유전자를 코리네박테리움에서 규명하여 이노신산 생산 균주에서 불활성화시킴으로써 고수율의 이노신산을 생산하는 방법을 개시하였다.If 5'-GMP is produced by converting 5'-XMP to 5'-GMP, the strategy to enhance productivity of 5'-XMP is needed. Therefore, conventionally known Corynebacterium strains and 5'-XMP production method using the 5'-XMP biosynthesis-related genes have been known. For example, Korean Patent No. 10-1991-018061 discloses a lysozyme, a lysozyme that is resistant to guanosine analogs and is a cell wall degrading enzyme that is resistant to adenosine and guanine semiconducting xanthyl acid aminase in order to increase the yield of 5'-XMP. A highly susceptible strain was prepared and disclosed. Korean Patent No. 10-2001-000513 discloses 5'-XMP producing Corynebacterium ammoniagenes, which is irradiated with ultraviolet rays, N-methyl-N'-nitro-N-nitrosoguanidine (N- Analogues to valines that affect the biosynthesis of 5'-XMP by modifying the traits of the parent strains by treating the mutant traits according to conventional methods, such as methyl-N'-nitro-N-nitrosoguanidine (NTG) Norvaline resistant strains) were selected, and as a result, a 5'-XMP production method using microorganisms that directly accumulate 5'-XMP in culture medium at high yield and high concentration was disclosed. In addition, Korean Patent 10-2003-0091342 In the reported to reduce the concentration of the nucleic acid by breaking the nucleic acid from the microorganism (Escherichia coli and Salmonella: Cellular and Molecular Biology: 2 nd edition: 561 ~ 579) Corynebacterium the ushA gene A method for producing high yield of inosinic acid by inactivation in inosinic acid producing strains was disclosed.

그러나 종래에는 고수율의 5'-XMP 생산주를 만들기 위해 5'-XMP의 생합성에 관련된 퓨린 생합성 경로에 관여하는 포스포리보실글리신아마이드 포밀트랜스퍼라아제 및 IMP 사이클로하이드롤라아제 효소를 각각 암호화하는 유전자인 purN, purH(이하 purNH라 칭한다)를 강화하여 5'-XMP 수율을 향상시킨 미생물에 관한 예는 개시된 바 없다. 또한, 핵산을 분해하는 5'-뉴클레오티다아제를 암호화하는 ushA 유전자를 불활성시킨 변이주에 관한 내용 또한 언급된 적이 없다. 더불어 purNH 유전자가 강화되고 ushA 유전자가 불활성화된 균주에서 고수율의 5'-XMP를 생산하는 방법에 대해서도 개시된 바 없다.Conventionally, however, genes encoding phosphoribosylglycineamide formyltransferase and IMP cyclohydrolase enzymes, respectively, involved in the purine biosynthesis pathway involved in biosynthesis of 5'-XMP to produce high yield 5'-XMP producers. Examples of microorganisms which have enhanced phosphorus purN , purH (hereinafter referred to as purNH ) to improve 5'-XMP yield have not been disclosed. In addition, there is no mention of a mutant strain that inactivated the ushA gene encoding 5'-nucleotidase, which degrades nucleic acids. In addition, a method for producing high yield 5'-XMP from a strain in which the purNH gene is enhanced and the ushA gene is inactivated is not disclosed.

이에 본 발명자들은 5'-XMP를 생산하여 5'-GMP로 전환시키는 방법을 이용하여 5'-GMP를 생산 할 경우, 5'-GMP의 수요만큼 5'-XMP가 필요하므로 5'-XMP의 생산성을 강화하기 위하여, 퓨린 생합성 경로에 관여하는 효소의 활성을 강화하고 핵산을 분해하는 효소를 불활성화시킴으로써 5'-XMP의 생산성을 보다 극대화할 필요가 있다고 판단하였다. 본 발명자들은 퓨린 생합성 경로에 관여하는 포스포리보실글리신아미드 포밀트랜스퍼라아제 및 IMP 사이클로하이드롤라아제 효소를 암호화하는 유전자 purNH의 활성을 강화시키고, 핵산을 분해하는 5'-뉴클레오티다아제를 암호화하는 ushA 유전자를 불활성화시킴으로써 5'-XMP의 생산성이 증가한다는 것을 발견하여, 본 발명을 완성하게 되었다.Therefore, the present inventors produce 5'-XMP and produce 5'-GMP using the method of converting it to 5'-GMP, since 5'-XMP is required as much as 5'-GMP needs. In order to enhance the productivity, it was determined that it is necessary to maximize the productivity of 5'-XMP by enhancing the activity of enzymes involved in the purine biosynthetic pathway and inactivating enzymes that degrade nucleic acids. We enhance the activity of the gene purNH , which encodes phosphoribosylglycineamide formyltransferase and IMP cyclohydrolase enzymes involved in the purine biosynthetic pathway, and encodes a 5'-nucleotidase that degrades nucleic acids. By inactivating the ushA gene, it was found that the productivity of 5'-XMP was increased, thus completing the present invention.

따라서, 본 발명의 목적은 포스포리보실글리신아마이드 포밀트랜스퍼라제 및 IMP 사이클로하이드롤라아제 효소를 암호화하는 purNH 유전자를 염색체 내로 도입하여 상기 효소의 활성을 강화시킴으로써 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 제공하는 것이다.Accordingly, an object of the present invention is to introduce a corynebacte having improved production capacity of 5'-XMP by introducing into the chromosome a purNH gene encoding phosphoribosylglycineamide formyltransferase and an IMP cyclohydrolase enzyme, thereby enhancing the activity of the enzyme. To provide microorganisms in theium.

또한, 본 발명의 목적은 추가적으로 5'-뉴클레오티다제를 암호화하는 ushA 유전자의 활성을 불활성화시킨 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 제공하는 것이다.It is also an object of the present invention to provide a microorganism of the genus Corynebacterium, which has an enhanced ability to produce 5'-XMP, which inactivates the activity of the ushA gene encoding 5'-nucleotidase.

본 발명의 또 다른 목적은 상기 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 배양하여 5'-XMP를 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing 5'-XMP by culturing the microorganism of the genus Corynebacterium improved production capacity of the 5'-XMP.

상기와 같은 목적을 달성하기 위해, 본 발명은 포스포리보실글리신아마이드 포밀트랜스퍼라제 및 IMP 사이클로하이드롤라아제 효소를 암호화하는 purNH 유전자가 도입에 의해 염색체 내에 2 카피 이상 존재하여 상기 효소의 활성을 강화시킴으로써 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 제공한다.In order to achieve the above object, the present invention provides a purNH gene encoding the phosphoribosylglycine amide formyl transferase and IMP cyclohydrolase enzyme is present in the chromosome by two or more copies to enhance the activity of the enzyme It provides microorganisms of the genus Corynebacterium with improved production capacity of 5'-XMP.

본 발명은 또한 상기 코리네박테리움 속 미생물을 추가적으로 5'-뉴클레오티다제를 암호화하는 ushA 유전자 내에 하나의 염기를 삽입시켜 불활성화시킴으로써 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 제공한다.The present invention also provides a microorganism of the genus Corynebacterium having improved production capacity of 5'-XMP by inactivating the microorganism of the genus Corynebacterium by inserting one base into the ushA gene encoding 5'-nucleotidase. to provide.

본 발명은 또한 상기 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 배양하여 5'-XMP를 생산하는 방법을 제공한다.The present invention also provides a method of producing 5'-XMP by culturing the microorganism of the genus Corynebacterium improved production capacity of the 5'-XMP.

본 발명에 따른 코리네박테리움 속 미생물은 포스포리보실글리신아마이드 포밀트랜스퍼라제와 IMP 사이클로하이드롤라아제의 활성이 코리네박테리움 속 미생물이 가지고 있는 고유의 활성보다 증가되어 있고, 5'-뉴클레오티다제가 불활성화 되도록 조작되어 있어 기존의 5'-XMP 생산에 사용되는 미생물에 비하여 5'-XMP 생산능이 향상되어 있다. 따라서, 당해 미생물을 사용하면 고효율로 5'-XMP를 생산하여 생산성을 증가시킬 수 있다.The microorganisms of the genus Corynebacterium according to the present invention have increased activity of phosphoribosylglycineamide formyltransferase and IMP cyclohydrolase than the intrinsic activity of microorganisms of corynebacterium, and 5'-nucleo Tidase is inactivated to improve 5'-XMP production capacity compared to the microorganisms used to produce 5'-XMP. Therefore, the use of the microorganism can increase the productivity by producing 5'-XMP with high efficiency.

본 발명은 포스포리보실글리신아마이드 포밀트랜스퍼라제 및 IMP 사이클로하이드롤라아제 효소를 암호화하는 purNH 유전자가 도입에 의해 염색체 내에 2 카피 이상 존재하여 상기 효소의 활성을 강화시킴으로써 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 제공한다.In the present invention, two or more copies of the purNH gene encoding the phosphoribosylglycine amide formyltransferase and the IMP cyclohydrolase enzyme are present in the chromosome to enhance the activity of the enzyme, thereby enhancing the activity of the 5'-XMP. Provides microorganisms in the genus Nebacterium.

5'-XMP를 만들기 위한 생합성 경로는 매우 복잡하며, 다양한 아미노산 및 조효소들이 부가적으로 참여하는 반응이 연속되고 있다. 본 발명에서 포스포리보실글리신아마이드 포밀트랜스퍼라제 및 IMP 사이클로하이드롤라아제 효소는 모두 5'-XMP의 합성에 관련된 퓨린의 합성에 관여하는 효소들이다.The biosynthetic pathway to make 5'-XMP is very complex and there is a series of reactions involving additional amino acids and coenzymes. In the present invention, phosphoribosylglycine amide formyltransferase and IMP cyclohydrolase enzyme are both enzymes involved in the synthesis of purines involved in the synthesis of 5'-XMP.

포스포리보실글리신아마이드 포밀트랜스퍼라아제는 퓨린의 생합성에 중요한 역할을 하며, N2-포밀-NL(5-포스포-D-리보실)글리신아마이드 및 테트라하이드로폴산을 생성하기 위하여 10-포밀테르라하이드로폴산(N10-formyltetrahydrofolate)의 포밀기를 N1-(5-포스포-D-리보실)글리신아마이드(N1-(5-phospho-D-ribosyl)glycinamide)로 이동시키는 것을 촉매하는 효소이다. 테트라하이드로폴산은 퓨린, 티미딘, DNA 등의 합성에 중요한 역할을 하므로, 5'-XMP의 합성에 필수적이다. 또한, IMP 사이클로하이드롤라아제는 퓨린 생합성의 마지막 단계를 촉매하며, 5-포밀아미노이미다졸-4-카복사마이드 리보뉴클레오티드(5-formylaminoimidazole-4-carboxamide ribonucleotide)를 IMP로 촉매하는 효소이다.Phosphoribosylglycineamide formyltransferase plays an important role in the biosynthesis of purines and 10-formylterra to produce N2-formyl-NL (5-phospho-D-ribosyl) glycineamide and tetrahydrofolic acid. It is an enzyme that catalyzes the transfer of the formyl group of hydrofolic acid (N10-formyltetrahydrofolate) to N1- (5-phospho-D-ribosyl) glycinamide. Tetrahydrofolic acid plays an important role in the synthesis of purine, thymidine, DNA and the like, and is essential for the synthesis of 5'-XMP. In addition, IMP cyclohydrolase catalyzes the last step of purine biosynthesis and is an enzyme that catalyzes 5-formylaminoimidazole-4-carboxamide ribonucleotide with IMP.

상기 포스포리보실글리신아마이드 포밀트랜스퍼라아제 및 IMP 사이클로하이드롤라아제를 암호화하는 유전자의 염기서열은 이미 밝혀져 있으며, 바람직하게는 상기 효소를 암호화하는 유전자는 코리네박테리움 암모니아게네스 유래의 purNH 유전자(진뱅크 허가번호 AB003159; 서열번호 12)이다.The base sequence of the gene encoding the phosphoribosyl glycine amide formyl transferase and IMP cyclohydrolase is already known, preferably the gene encoding the enzyme is purNH gene derived from Corynebacterium ammonia genes ( GenBank Accession No. AB003159; SEQ ID NO: 12).

본 발명에서 상기 효소의 활성을 강화시키는 방법은 유전자 카피 수의 증가 및 돌연변이에 의하여 효소활성을 증가시킴을 포함한다. 본 발명에서 유전자 카피 수의 증가는, 외래 유전자의 도입에 의한 카피 수의 증가뿐만 아니라, 내재적 유전자의 증폭에 의한 것도 포함된다. 외래 유전자 도입의 경우에는, 유전자를 코리네박테리움 속 미생물에서 기능할 수 있는 벡터로 도입하여 유전자 카피수를 증가시킨다. 본 발명에서 사용 가능한 벡터는 특별히 제한되는 것은 아니며, 공지된 발현벡터를 사용할 수 있다. 내재적 유전자 증폭의 경우, 본 발명에서 상기 내재적 유전자는 코리네박테리움 속 미생물이 천연의 상태로 가지고 있는 유전자를 의미한다. 내재적 유전자의 증폭은 당업계에 알려진 방법, 예를 들면 적당한 선택 압력하에서의 배양 등에 의하여 용이하게 이루어질 수 있다.The method of enhancing the activity of the enzyme in the present invention includes increasing the enzyme activity by increasing the number of gene copies and mutation. In the present invention, the increase in the number of gene copies includes not only an increase in the number of copies due to the introduction of a foreign gene, but also an amplification of an endogenous gene. In the case of foreign gene introduction, the gene is introduced into a vector capable of functioning in a microorganism of the genus Corynebacterium to increase the gene copy number. The vector usable in the present invention is not particularly limited, and known expression vectors may be used. In the case of endogenous gene amplification, the endogenous gene in the present invention means a gene that the microorganism of Corynebacterium has in its natural state. Amplification of endogenous genes can be readily accomplished by methods known in the art, such as culturing under appropriate selection pressure and the like.

본 발명의 바람직한 양태에서, 상기 효소의 활성은 코리네박테리움 속 미생물이 천연상태로 가지고 있는 내재적 purNH 유전자에 더하여 1 카피 이상의 purNH 유전자를 새로 도입함으로써 달성되며, 바람직하게는 2개 카피의 purNH 유전자가 상동 재조합에 의하여 내재적 purNH 유전자 옆에 1 카피의 purNH 유전자가 더 삽입되고, 최종적으로는 2개 카피의 purNH 유전자가 증폭되고 돌연변이를 일으킴으로써 효소의 활성이 강화되는 것이다.In a preferred embodiment of the invention, the activity of the genus Corynebacterium microorganism is achieved by introducing new purNH gene least one copy in addition to the intrinsic purNH gene that has a natural state, preferably purNH gene of two copies of the enzyme By homologous recombination, one more copy of the purNH gene is inserted next to the intrinsic purNH gene, and finally two copies of the purNH gene are amplified and mutated. Enzyme activity is enhanced.

본 발명에서 외래 유전자의 도입시 사용 가능한 벡터는 바람직하게는 염색체 삽입용 벡터 pDZ를 사용한다. 본 발명의 한 양태에 따르면, 상기 유전자 도입에 사용되는 벡터는 상기 purNH 유전자를 포함하는 pDZ-purNH 벡터이다.In the present invention, a vector usable in the introduction of a foreign gene preferably uses a vector pDZ for chromosome insertion. According to one aspect of the invention, the vector used for the gene introduction is a pDZ- purNH vector comprising the purNH gene.

본 발명은 또한 추가적으로 5'-뉴클레오티다제를 암호화하는 ushA 유전자의 활성을 불활성화시킨 5'-XMP의 생산능이 향상된 코리네박테리움 속 미생물을 제공 한다.The present invention also provides a microorganism of the genus Corynebacterium with an improved production capacity of 5'-XMP which further inactivated the activity of the ushA gene encoding 5'-nucleotidase.

본 발명에서 5'-뉴클레오티다아제는 뉴클레오티드의 당과 인산결합을 가수분해하는 효소로서 핵산을 분해하여 핵산의 농도를 감소시킨다. 상기 효소를 암호화하는 유전자 ushA의 염기서열은 국내 특허 10-2003-0091342로부터 얻을 수 있으며, 바람직하게는 코리네박테리움 암모니아게네스 유래의 상기 ushA 유전자는 서열번호 13의 염기서열을 갖는다.In the present invention, 5'-nucleotidase is an enzyme that hydrolyzes phosphate bonds with sugars of nucleotides, thereby degrading the nucleic acid to reduce the concentration of the nucleic acid. The base sequence of the gene ushA encoding the enzyme can be obtained from Korean Patent No. 10-2003-0091342. Preferably, the ushA gene derived from Corynebacterium ammonia genes has the base sequence of SEQ ID NO: 13.

본 발명에 있어서, 상기 불활성화는 ushA 유전자의 활성이 치환, 결손, 삽입 등에 의해서 불활성화된 것을 포함한다. 더욱 바람직하게는, 상기 ushA 유전자가 염색체 내의 염기 삽입으로 인한 프레임쉬프트에 의해 불활성화 된 것이며, 상기 염기는 임의의 염기일 수 있다. 상기 유전자의 치환, 결실 및/또는 삽입은 통상의 당업계에 알려진 방법에 의하여 용이하게 이루어질 수 있다.In the present invention, the inactivation includes the activity of the ushA gene inactivated by substitution, deletion, insertion or the like. More preferably, the ushA gene is inactivated by frame shift due to base insertion in the chromosome, and the base may be any base. Substitution, deletion and / or insertion of such genes can be readily made by conventional methods known in the art.

본 발명에서 상기 유전자가 도입되는 코리네박테리움 속 미생물은 코리네박테리움 속 미생물이면 어느 것이나 포함될 수 있다. 예를 들면, 상기 코리네박테리아 속 미생물에는, 코리네박테리움 암모니아게네스 KCCM-10530, 코리네박테리움 암모니아게네스 ATCC6872, 코리네박테리움 써모아미노게네스 (thermoaminogenes) FERM BP-1539, 코리네박테리움 글루타미쿰 ATCC13032, 브레비박테리움 플라붐 (Brevibacterium flavum) ATCC 14067, 브레비박테리움 락토페르멘툼 (lactofermentum) ATCC 13869 및 이들로부터 제조된 균주를 포함하며, 바람직하게는 코리네박테리움 암모니아게네스 KCCM-10530이다.Corynebacterium genus microorganism into which the gene is introduced in the present invention may include any of Corynebacterium microorganisms. For example, the microorganisms of the genus Corynebacterium include Corynebacterium ammonia genes KCCM-10530, Corynebacterium ammonia genes ATCC6872, Corynebacterium thermoaminogenes (FERM BP-1539), Coryne Bacterium glutamicum ATCC13032, Brevibacterium flavum ATCC 14067, Brevibacterium lactofermentum ATCC 13869 and strains prepared therefrom, preferably corynebacterium ammonia Gennes KCCM-10530.

본 발명의 한 양태에 따르면, 코리네박테리움 속 미생물은 각각 도 1, 2의 개열지도를 갖는 벡터 pDZ-purNH, pDZ-ushA가 코리네박테리움 속 미생물에 순차적으로 또는 동시에 도입된 것일 수 있다. 상기 코리네박테리움 속 미생물은 purNH 유전자가 염색체 내에 1카피 이상 삽입되어 포스포리보실글리신아마이드 포밀트랜스퍼라아제 및 IMP 사이클로하이드롤라아제 효소의 활성이 강화되어 있고, 더 바람직하게는 추가적으로 ushA 유전자가 염색체 내 염기 삽입으로 인한 프레임쉬프트에 의해 불활성화 된 것이다.According to one aspect of the present invention, the Corynebacterium spp. Microorganisms having the cleavage maps of FIGS. 1 and 2, respectively, may be introduced into the Corynebacterium spp . Vector pDZ- purNH and pDZ- ushA sequentially or simultaneously. . The microorganism of the genus Corynebacterium has at least one copy of the purNH gene inserted into the chromosome to enhance the activity of the phosphoribosylglycine amide formyltransferase and the IMP cyclohydrolase enzyme, and more preferably the ushA gene is further added to the chromosome. It is inactivated by the frame shift due to the base insertion.

본 발명의 바람직한 양태에서, 코리네박테리움 암모니아게네스 KCCM-10530에 도 1, 2의 개열지도를 갖는 벡터 pDZ-purNH 및 pDZ-ushA를 도입하고 선택배지에 배양하여, 2개 카피의 purNH 유전자가 염색체 내에 삽입되고 ushA 유전자에 하나의 염기가 삽입되어 불활성화된 균주를 얻었으며, 제작된 균주를 코리네박테리움 암모니아게네스 KCJ-0001(수탁번호 : KCCM10913P), KCCM-0002(수탁번호 :KCCM10914P)로 각각 명명하였다.In a preferred embodiment of the present invention, two copies of the purNH gene are introduced into Corynebacterium ammonia genes KCCM-10530 with vectors pDZ- purNH and pDZ- ushA having a cleavage map of FIGS. Was inserted into the chromosome and one base was inserted into the ushA gene to obtain an inactivated strain. The prepared strains were corynebacterium ammonia genes KCJ-0001 (Accession Number: KCCM10913P), KCCM-0002 (Accession Number: KCCM10914P).

또한 본 발명은 상기 본 발명의 미생물을 이용하여 직접 발효법에 의하여 배양액내에 고수율로 5'-XMP를 직접 축적하여 생산하는 방법을 제공한다. 보다 구체적으로는, 상기 본 발명에 따라 제조된 5'-XMP 생산능이 향상된 코리네박테리움 속 미생물을 배양하여 세포 또는 배양물 중에 5'-XMP를 생산하는 단계; 및 상기 세포 또는 배양물로부터 5'-XMP를 회수하는 단계를 포함하는 것을 특징으로 하는 고수율로 5'-XMP를 생산하는 방법에 관한 것이다.In another aspect, the present invention provides a method of directly accumulating 5'-XMP in high yield in a culture medium by direct fermentation using the microorganism of the present invention. More specifically, the step of producing a 5'-XMP in cells or cultures by culturing the microorganism of the genus Corynebacterium produced in accordance with the present invention improved 5'-XMP; And it relates to a method for producing 5'-XMP in high yield, characterized in that it comprises the step of recovering 5'-XMP from the cell or culture.

본 발명의 5'-XMP를 생산하는 방법에서, 상기 비생물의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양과정은 당 업자라면 선택되는 균주에 따라 용이하게 조정하여 사용할 수 있다. 상기 배양방법의 예에는, 회분식, 연속식 및 유가식 배양이 포함되나, 여기에 한정되는 것은 아니다.In the method of producing 5'-XMP of the present invention, the abiotic culturing process may be carried out according to a suitable medium and culture conditions known in the art. This culture process can be used by those skilled in the art easily adjusted according to the strain selected. Examples of the culture method include, but are not limited to, batch, continuous and fed-batch cultures.

배양에 사용되는 배지는 특정한 균주의 요구 조건을 적절하게 만족시켜야 한다. 본 발명에서 사용되는 배지는 글리세롤을 탄소원으로서 일부 혹은 전부 포함한다. 그 외의 적정량의 탄소원은 다양하게 이용될 수 있다. 특히 바람직한 탄소원은 포도당이다. 사용될 수 있는 질소원의 예는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 및 대두밀과 같은 유기 질소원 및 요소, 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄, 및 질산 암모늄과 같은 무기질소원이 포함된다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서, 인산이수소칼륨, 인산수소이칼륨 및 대응되는 소디움-함유 염이 포함될 수 있다. 또한, 황산마그네슘 또는 황산 철과 같은 금속염을 포함할 수 있다. 그외에, 아미노산, 비타민, 및 적절한 전구체 등이 포함될 수 있다. 이들 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있다.The medium used for cultivation should suitably meet the requirements of the particular strain. The medium used in the present invention contains glycerol as part or all of the carbon source. Other suitable amounts of carbon source can be used in various ways. Particularly preferred carbon source is glucose. Examples of nitrogen sources that can be used include organic nitrogen sources and urea such as peptone, yeast extract, gravy, malt extract, corn steep liquor, and soybean wheat, inorganic nitrogen sources such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, and ammonium nitrate Included. These nitrogen sources may be used alone or in combination. The medium may include potassium dihydrogen phosphate, dipotassium hydrogen phosphate and the corresponding sodium-containing salts as a person. It may also include metal salts such as magnesium sulfate or iron sulfate. In addition, amino acids, vitamins, appropriate precursors, and the like can be included. These media or precursors may be added batchwise or continuously to the culture.

배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포생성을 억제 할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물내로 산소 또는 산소-함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소, 또는 이산화탄소 가스를 주입한다. 배양물의 온도는 보 통 20 내지 45℃, 바람직하게는 25℃ 내지 40℃이다. 배양 기간은 원하는 유용 물질의 생성량이 계속할 수 있으며, 바람직하게는 10 내지 160 시간이다.During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture. In addition, during the culture, antifoaming agents such as fatty acid polyglycol esters can be used to suppress foaming. In addition, to maintain the aerobic state of the culture, oxygen or oxygen-containing gas is injected into the culture or nitrogen, hydrogen, or carbon dioxide gas is injected without gas injection or to maintain anaerobic and unaerobic conditions. The temperature of the culture is usually 20 to 45 ° C, preferably 25 to 40 ° C. The incubation period can continue the production of the desired useful substance, preferably 10 to 160 hours.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 실시하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for carrying out the present invention by way of example, but the scope of the present invention is not limited to these examples.

참고예Reference Example 1: 염색체 삽입용 벡터( 1: Vector for chromosome insertion pDZpDZ )를 이용한 유전자의 삽입방법Gene insertion method using

본 실시예에서는 염색체 삽입용 벡터 pDZ를 이용하여 유전자의 염색체 삽입을 진행하였다. 코리네박테리움의 염색체로 뉴클레오티드를 삽입하기 위하여, 염색체상의 삽입되는 부위와 상동성을 갖는 시퀀스를 삽입하고자 하는 뉴클레오티드를 양 옆에 갖고 있는 pDZ 벡터를 제작한다. 염색체로 여분의 유전자를 삽입하기 위하여, 대상이 되는 유전자를 연속적으로 2 카피 포함하고 있는 pDZ 벡터를 제작하여, 도입할 균주에 전기펄스법으로 형질전환 후 카나마이신 (kanamicin) 25mg/L를 함유한 선별 배지에서 염색체상의 뉴클레오티드와 상동성에 의해 삽입된 균주를 선별하였다.In this embodiment, the chromosome insertion of the gene was performed using the chromosome insertion vector pDZ. In order to insert nucleotides into the chromosome of Corynebacterium, a pDZ vector having a nucleotide to be inserted into a sequence having homology with the insertion site on the chromosome is prepared. In order to insert the extra gene into the chromosome, a pDZ vector containing two copies of the gene of interest was produced, and the strain to be introduced was transformed with the electropulse method, followed by kanamicin 25mg / L. Strains inserted by homology with nucleotides on the chromosome in the medium were selected.

벡터의 성공적인 염색체 삽입은 X-gal (5-브로모-4-클로로-3-인돌릴-B-D-갈락토시드)을 포함한 고체배지에서 푸른색을 나타내는가의 여부를 확인함으로써 가능하였다.Successful chromosome insertion of the vector was made possible by checking whether it was blue in a solid medium containing X-gal (5-bromo-4-chloro-3-indolyl-B-D-galactosid).

1차 염색체 삽입된 균주를 영양배지에서 진탕 배양 (30℃, 4시간) 한 후, 각 각 10-4으로부터 10-10으로 x-gal을 포함하고 있는 고체배지에 도말하였다. 대부분의 콜로니가 푸른색을 띄는데 반하여, 낮은 비율로 나타나는 백색 콜로니를 선별함으로써, 2차 교차 (crossover)에 의해 삽입된 염색체상의 벡터 서열이 제거된 균주를 선별하였다.The primary chromosome-inserted strains were shaken in nutrient medium (30 ° C., 4 hours), and then plated onto solid medium containing x-gal from 10 −4 to 10 −10 , respectively. Whereas most of the colonies are blue, strains that have removed the vector sequence on the chromosome inserted by secondary crossover are selected by selecting white colonies that appear at a low rate.

이상과 같이 선별된 균주는 최종적으로 항생제 카나마이신에 대한 감수성 여부의 확인 및 PCR을 통하여 유전자 구조 확인 과정을 거쳐 최종 선정되었다.The strains selected as described above were finally selected through the gene structure confirmation process through PCR and confirmation of susceptibility to the antibiotic kanamycin.

실시예Example 1 : 5'- 1: 5'- XMPXMP 생산균주Production strain 코리네박테리움Corynebacterium 암모니아게네스Ammonia Genes KTCCKTCC -10530 유래 From -10530 purNHpurNH 클로닝Cloning 및 염색체 삽입용 재조합 벡터 ( And recombinant vectors for chromosomal insertion ( pDZpDZ -- purNHpurNH ) 제작 Production

본 실시예에서는 NIH GenBank를 근거로 하여 purNH 유전자의 염기서열 정보 (NCBI 등록번호 _ AB003159)를 확보하고, 이에 근거하여 두 쌍의 프라이머 (서열 1-3)를 합성하였다.In this example, the base sequence information (NCBI accession number _ AB003159) of the purNH gene was obtained based on NIH GenBank, and two pairs of primers (SEQ ID NOs: 1-3) were synthesized based on this.

코리네박테리움 KCCM-10530를 주형으로 하고, 상기 서열번호 7 내지 10의 올리고뉴클레오티드를 프라이머로 하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 53℃, 30초; 및 중합반응 72℃, 2분을 25회 반복하였다.PCR was performed using Corynebacterium KCCM-10530 as a template and oligonucleotides of SEQ ID NOs: 7 to 10 as primers. The polymerase was PfuUltra high-reliability DNA polymerase (stratagene), PCR conditions were denaturation 95 ℃, 30 seconds; Annealing 53 ° C., 30 seconds; And 25 degreeC of the polymerization reaction 72 degreeC and 2 minutes was repeated.

그 결과 2.7 kb의 purNH 유전자 두쌍 (purNH-A, purNH-B)을 얻었다. purNH-A는 서열번호 1과 2를 프라이머로 사용하여 증폭된 것이며, purNH-B는 서열번호 2과 3를 프라이머로 하여 증폭된 것이다. 상기 증폭 산물을 TOPO 클로닝 키 트(Invitrogen)을 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-purNH-A와 pCR-purNH-B 벡터를 얻었다.As a result, two pairs of purNH genes ( purNH- A, purNH- B) of 2.7 kb were obtained. purNH- A was amplified using SEQ ID NOs: 1 and 2 as primers, and purNH -B was amplified using SEQ ID NOs: 2 and 3 as primers. The amplification product was cloned into E. coli vector pCR2.1 using TOPO cloning kit (Invitrogen) to obtain pCR- purNH -A and pCR- purNH -B vectors.

서열 번호 1 cgg gat ccc gag gcg aag acg ata ttg agg aca gSEQ ID NO: 1 cgg gat ccc gag gcg aag acg ata ttg agg aca g

서열 번호 2 acg cgt cga cgt ggg aaa cgc aga cga gaa caSEQ ID NO: 2 acg cgt cga cgt ggg aaa cgc aga cga gaa ca

서열 번호 3 acg cgt cga cga ggc gaa gac gat att gag gac agSEQ ID NO: 3 acg cgt cga cga ggc gaa gac gat att gag gac ag

상기 pCR 벡터에 purNH-A, purNH-B의 각 말단에 포함된 제한효소 (purNH-A:BamHI+salI, purNH-B:SalI+salI)를 처리하여, 상기 pCR 벡터로부터 각각의 purNH-A, purNH-B 유전자를 분리하였다. 다음으로 제한효소 BamHI과 SalI이 처리된 pDZ 벡터에 3조각 접합을 통하여, 최종적으로 purNH 2 카피가 연속적으로 클로닝된 pDZ-purNH 재조합 벡터를 얻었다. 도 1은 코리네박테리움 염색체 삽입용 pDZ-purNH를 나타내는 도면이다.For the pCR vector with a restriction enzyme comprising at each end of purNH-A, B-purNH processes the (purNH -A:: BamHI + salI , purNH -B SalI + salI), each -A purNH from the pCR vectors, purNH- B gene was isolated. Next, a restriction enzyme by BamHI and SalI for the processing of three pieces joined to the pDZ vector, finally purNH 2 copies are continuously pDZ- purNH the obtained recombinant vector by cloning. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows pDZ- purNH for corynebacterium chromosome insertion.

실시예Example 2 :  2 : purNHpurNH 삽입 균주 개발  Insert strain development

제작된 pDZ-purNH 벡터를 코리네박테리움 암모니아게네스 KCCM-10530 균주에 형질 전환하였다. 참고예 1에서 기술한 것과 같이 2차 교차 과정을 거쳐 염색체 상에서 purNH 유전자의 바로 옆에 1 카피의 purNH 유전자를 추가로 삽입하여, 카피 수를 2개로 증가시킨 5'-XMP 생산균주를 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes) KCJ-0001으로 명명하고, 그를 2008년 1월 8일자 로 대한민국 서울특별시 서대문구 홍제 1동 361-221번지에 소재하는 구제 기탁기관인 한국종균협회 부설 한국미생물보존센터에 기탁하였다(KCCM-10913P).Manufactured pDZ- purNH The vector was transformed into Corynebacterium ammonia gene KCCM-10530 strain. As described in Reference Example 1, a 5'-XMP-producing strain that increased the number of copies to two by inserting an additional copy of the purNH gene right next to the purNH gene on the chromosome through the second crossover process, was described as Corynebacte. Leeum's ammonia Ness (Corynebacterium ammoniagenes ) was named KCJ-0001 and deposited on January 8, 2008 at the Korea Microbiological Conservation Center, an affiliated organization of the Korean spawn association, a relief deposit organization located at 361-221, Hongje 1-dong, Seodaemun-gu, Seoul, Korea (KCCM-10913P). .

연속적으로 삽입된 purNH 유전자는 2 카피의 purNH 연결부위를 증폭할 수 있는 프라이머 (서열 4, 5)을 이용한 PCR로 최종 확인하였다. The continuously inserted purNH gene was finally confirmed by PCR using primers (SEQ ID NOs. 4 and 5) capable of amplifying two copies of the purNH linkage.

서열 번호 4 tcg atg cct gca tct tggSEQ ID NO: 4 tcg atg cct gca tct tgg

서열 번호 5 ggc gat aag gct tcg agtSEQ ID NO: 5 ggc gat aag gct tcg agt

실시예Example 3 : 5'- 3: 5'- XMPXMP 생산균주Production strain 코리네박테리움Corynebacterium 암모니아게네스Ammonia Genes KTCCKTCC -10530 유래 From -10530 ushAushA 클로닝Cloning 및 염색체 삽입용 재조합벡터 ( And recombinant vectors for chromosome insertion ( pDZpDZ -- ushAushA ) 제작Production

본 실시예에서는 5'-XMP 생산능이 있는 코리네박테리움 암모니아게네스 KCCM-10530의 염색체 DNA를 주형으로 한 PCR을 통하여, 5'-뉴클레오티다제를 암호화하는 유전자인 ushA의 유전자를 확보하였다.In this example, a gene of ushA , a gene encoding 5'-nucleotidase, was secured by PCR using chromosomal DNA of Corynebacterium ammonia gene KCCM-10530 having 5'-XMP production capacity. .

국내 특허 10-2003-0091342을 근거로 하여 ushA 유전자의 염기서열 정보를 확보하고, 이에 근거하여 두 쌍의 프라이머 (서열번호 6 내지 9)를 합성하였다. 프라이머 7과 8의 양끝에 하나의 염기를 삽입하여 프라이머를 제작하여 염색체의 ushA 유전자 내부에 하나의 염기가 삽입되도록 디자인하였다.Based on the domestic patent 10-2003-0091342 to obtain the nucleotide sequence information of the ushA gene, based on this two pairs of primers (SEQ ID NO: 6 to 9) was synthesized. One base was inserted at both ends of primers 7 and 8 to prepare a primer so that one base was inserted into the ushA gene of the chromosome.

코리네박테리움 암모니아게네스 KCCM-10530을 주형으로 하고, 상기 서열번호 6 내지 9의 올리고뉴클레오티드를 프라이머로 하여 PCR을 수행하였다. 중합효소 는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (stratagene)이고, PCR 조건은 변성 95℃, 30초; 어닐링 53℃, 30초; 및 중합반응 72℃, 1분을 25회 반복하였다.PCR was performed using Corynebacterium ammonia genes KCCM-10530 as a template and oligonucleotides of SEQ ID NOs: 6 to 9 as primers. The polymerase is PfuUltra high-trust DNA polymerase (stratagene) and PCR conditions were denatured 95 ° C., 30 seconds; Annealing 53 ° C., 30 seconds; And repeating the polymerization reaction 72 ° C. for 1 minute 25 times.

그 결과 400 bp의 ushA 유전자 두쌍 (ushA-A, ushA-B)을 얻었다. ushA-A는 서열번호 6과 7를 프라이머로 사용하여 증폭된 것이며, ushA-B는 서열번호 8과 9를 프라이머로 하여 증폭된 것이다. 상기 증폭 산물을 TOPO 클로닝 키트 (Invitrogen)를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-ushA-A와 pCR-ushA-B 벡터를 얻었다.As a result, two pairs of 400 bp ushA genes ( ushA -A, ushA -B) were obtained. ushA- A was amplified using SEQ ID NOs: 6 and 7 as primers, and ushA -B was amplified using SEQ ID NOs: 8 and 9 as primers. The amplification products were cloned into E. coli vector pCR2.1 using TOPO cloning kit (Invitrogen) to obtain pCR- ushA -A and pCR- ushA -B vectors.

서열 번호 6 g acg gcc agt gaa ttc gac cgc ggc tat gac gat ttg ctcSEQ ID NO: 6 g acg gcc agt gaa ttc gac cgc ggc tat gac gat ttg ctc

서열 번호 7 agt gca gtg tct aga acc atc acg ttc gat gat gcc ctg cSEQ ID NO: 7 agt gca gtg tct aga acc atc acg ttc gat gat gcc ctg c

서열 번호 8 cgt gat ggt tct aga cac tgc act ggg cgc agg ggc atg aSEQ ID NO: 8 cgt gat ggt tct aga cac tgc act ggg cgc agg ggc atg a

서열 번호 9 a tgc ctg cag gtc gac gta cgc cac cag cat tca taa tgcSEQ ID NO: 9 a tgc ctg cag gtc gac gta cgc cac cag cat tca taa tgc

상기 pCR 벡터에 ushA-A와 ushA-B의 각 말단에 포함된 제한효소 (ushA-A:EcoRI+xbaI, ushA-B:xbaI+salI)를 처리하여, 상기 pCR 벡터로부터 각각의 ushA 유전자를 분리하였다. 다음으로 제한효소 EcoRI과 SalI이 처리된 pDZ 벡터에 3조각 접합을 통하여, 최종적으로 ushA 유전자 내부에 하나의 뉴클레오티드가 삽입되어 클로닝된 pDZ-ushA를 제작하였다. 도 2는 코리네박테리움 염색체 삽입용 pDZ-ushA 벡터를 나타내는 도면이다.The pCR vector is treated with restriction enzymes ( ushA- A: EcoRI + xbaI, ushA- B: xbaI + salI) contained at each end of ushA- A and ushA- B to separate each ushA gene from the pCR vector. It was. Next, through three-piece conjugation to the pDZ vector treated with restriction enzymes EcoRI and SalI, one nucleotide was finally inserted into the ushA gene to make a cloned pDZ- ushA . 2 is a diagram showing a pDZ- ushA vector for corynebacterium chromosome insertion.

실시예Example 4 :  4 : purNHpurNH 삽입 및  Insert and ushAushA 유전자 불활성화 균주의 제작 Construction of Gene Inactivation Strains

제작된 pDZ-ushA 벡터를 코리네박테리움 암모니아게네스 KCJ-0001(KCCM-10913P) 균주에 형질 전환하고, 참고예 1의 방법으로 2차 교차 과정을 거쳐 염색체 상에서 ushA 유전자 내부에 하나의 염기가 삽입되어 불활성화된 생산주를 제작한 후 이를 코리네박테리움 암모니아게네스 KCJ-0002로 명명하였으며, 그를 2008년 1월 8일자로 대한민국 서울특별시 서대문구 홍제 1동 361-221번지에 소재하는 구제 기탁기관인 한국종균협회 부설 한국미생물보존센터에 기탁하였다(KCCM-10914P).The produced pDZ- ushA vector was transformed into a strain of Corynebacterium ammonia gene KCJ-0001 (KCCM-10913P), followed by a second crossover process using the method of Reference Example 1, and one base was added to the ushA gene on the chromosome. After making the inserted and inactivated producer, it was named Corynebacterium Ammonia Genes KCJ-0002 and deposited him on January 8, 2008 at 361-221 Hongje 1-dong, Seodaemun-gu, Seoul, Korea. It was deposited in the Korea Microbiological Conservation Center, an affiliated organization of the Korean spawn association (KCCM-10914P).

유전자의 뉴클레오티드 변이는 변이된 부분을 프라이머 서열로 포함하는 서열번호 10과 11의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.Nucleotide variation of the gene was finally confirmed by PCR using the primers of SEQ ID NOs: 10 and 11 including the mutated part as a primer sequence.

서열 번호 10 tcg aac gtg atg gtcSEQ ID NO: 10 tcg aac gtg atg gtc

서열 번호 11 gta cgc cac cag cat tca taa tgcSEQ ID NO: 11 gta cgc cac cag cat tca taa tgc

실시예Example 5 :  5: purNHpurNH 삽입 및  Insert and ushAushA 유전자 불활성화 균주의 5'- 5'- of gene inactivated strain XMPXMP 생산 production

실시예 2와 4에서 최종적으로 제작된 5'-XMP 생산균주인 코리네박테리아 암모니아게네스 KCJ-0001(KCCM-10913P)과 KCJ-0002(KCCM-10914P)를 5'-XMP 생산을 위해 아래와 같은 방법으로 배양하였다. 하기 종 배지 3ml을 함유하는 14ml 튜브에 코리네박테리움 암모니아게네스 모균주 KCCM-10530, KCJ-0001(KCCM-10913P)와 KCJ-0002(KCCM-10914P)을 접종하고 30℃에서 20시간 동안 200 rpm으로 진탕 배양하였다.Corynebacterial ammonia genes KCJ-0001 (KCCM-10913P) and KCJ-0002 (KCCM-10914P), which were finally produced in Examples 2 and 4, were produced to produce 5'-XMP The culture was carried out by the method. A 14 ml tube containing 3 ml of the following species medium was inoculated with Corynebacterium ammonia genes strains KCCM-10530, KCJ-0001 (KCCM-10913P) and KCJ-0002 (KCCM-10914P) and 200 for 20 hours at 30 ° C. Shake culture was performed at rpm.

하기의 생산배지 32 ml (본배지 24ml + 별살배지 8ml)을 포함하고 있는 250 ml 코너-바플 플라스크에 0.4 ml의 종 배양액을 접종하고 30℃에서 96 시간 동안 230 rpm으로 진탕 배양하였다. 배양 종료 후 HPLC를 이용한 방법에 의해 5'-크산틸산의 생산량을 측정하였다. 코리네박테리움 암모니아게네스 KCCM-10530, KCJ-0001(KCCM-10913P)와 KCJ-0002(KCCM-10914P)에 대한 배양액 중의 5'-XMP 결과는 아래 표1 과 같다.0.4 ml of the seed culture was inoculated into a 250 ml corner-baffle flask containing 32 ml of the following production medium (24 ml of this medium + 8 ml of starch medium) and shake-cultured at 230 ° C. at 230 rpm for 96 hours. After the incubation, the yield of 5'-xanthyl acid was measured by HPLC. 5'-XMP results in cultures for Corynebacterium ammonia genes KCCM-10530, KCJ-0001 (KCCM-10913P) and KCJ-0002 (KCCM-10914P) are shown in Table 1 below.

균주명Strain name KCCM-10530KCCM-10530 KCJ-0001 (KCCM-10913P)KCJ-0001 (KCCM-10913P) KCJ-0002 (KCCM-10914P)KCJ-0002 (KCCM-10914P) 5'-XMP (g/l)5'-XMP (g / l) 28.628.6 29.729.7 30.330.3

종배지: 포도당 30g/l, 펩톤 15g/l, 효모엑기스 15g/l, 염화나트륨 2.5g/l, 우레아 3g/l, 아데닌 150mg/l, 구아닌 150mg/l, pH 7.2Species medium: glucose 30g / l, peptone 15g / l, yeast extract 15g / l, sodium chloride 2.5g / l, urea 3g / l, adenine 150mg / l, guanine 150mg / l, pH 7.2

생산배지 (본배지): 포도당 80g/l, 황산마그네슘 10g/l, 황산철 20mg/l, 황산아연 10mg/l, 황산망간 10mg/l, 아데닌 30mg/l, 구아닌 30mg/l, 비오틴 100μg/l, 황산구리 1mg/l, 티아민염산염 5mg/l, 염화칼슘 10mg/l, pH 7.2Production medium (main medium): glucose 80g / l, magnesium sulfate 10g / l, iron sulfate 20mg / l, zinc sulfate 10mg / l, manganese sulfate 10mg / l, adenine 30mg / l, guanine 30mg / l, biotin 100μg / l , Copper sulfate 1mg / l, thiamine hydrochloride 5mg / l, calcium chloride 10mg / l, pH 7.2

생산배지 (별살배지): 인산제1칼륨 10g/l, 인산제2칼륨 10g/l, 우레아 7g/l, 황산암모늄 5g/lProduction medium (starch medium): 10 g / l potassium phosphate, 10 g / l potassium phosphate, 7 g / l urea, 5 g / l ammonium sulfate

상기 표 1 에서 나타낸 바와 같이, KCJ-0001(KCCM-10913P)과 KCJ-0002(KCCM-10914P)는 모균주 KCCM-10530에 비하여 5'-XMP 생산이 1.7 g/l 증가되었음을 확인 할 수 있었다. As shown in Table 1, KCJ-0001 (KCCM-10913P) and KCJ-0002 (KCCM-10914P) was confirmed that the production of 5'-XMP increased 1.7 g / l compared to the parent strain KCCM-10530.

도 1은 pDZ 벡터에 purNH 유전자를 클로닝하여 제작한 pDZ-purNH 벡터의 구조를 나타낸다.1 shows the structure of a pDZ- purNH vector prepared by cloning the purNH gene in a pDZ vector.

도 2는 pDZ 벡터에 ushA-A와 ushA-B 유전자를 클로닝하여 제작한 pDZ-ushA 벡터의 구조를 나타낸다.Figure 2 shows the structure of the pDZ- ushA vector produced by cloning the ushA -A and ushA -B genes in the pDZ vector.

<110> CJ Cheiljedang Corporation <120> A Microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same <130> PA07-0408 <160> 13 <170> KopatentIn 1.71 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cgggatcccg aggcgaagac gatattgagg acag 34 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 acgcgtcgac gtgggaaacg cagacgagaa ca 32 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 acgcgtcgac gaggcgaaga cgatattgag gacag 35 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tcgatgcctg catcttgg 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ggcgataagg cttcgagt 18 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 gacggccagt gaattcgacc gcggctatga cgatttg 37 <210> 7 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 agtgcagtgt ctagaaccat cacgttcgat gatgccctgc 40 <210> 8 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cgtgatggtt ctagacactg cactgggcgc aggggcatg 39 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atgcctgcag gtcgacgtac gccaccagca ttcataatgc 40 <210> 10 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tcgaacgtga tggtc 15 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtacgccacc agcattcata atgc 24 <210> 12 <211> 2900 <212> DNA <213> Corynebacterium ammoniagenes <400> 12 cagtggacta cattgatggt gaggtcgaag aagagacatc cgttgccaac gagggtggct 60 cccagggtga ggcagtctcc gttggagcaa tgtcggagga gctgatcgat aatttggaag 120 atggttcctt ccccgatgag gtgccaggcg aagacgatat tgaggacagg atcggtactg 180 ctacgcatga gccaagcgat ggagatgcca ataacgagcc cagcgtcgaa gacgttgaca 240 tcgacaatgc agagcaaacc gcggaagggg tattgccaaa ctctgacaac ggagcccaag 300 aagctgcgga aaatgacaca gaagcttctg gggtcgagca cgctgatgat ggccacgatg 360 gccaacagca aagcgatgag gacgataaaa caggcaaaga tacccaataa gaggggataa 420 gttgtcctct tttccgtggt ggaggaaaaa ttggcggcat cgtttcgtcc tcgaaagggc 480 tacagactag tctttaacac gtgactgaat cgccttcgca agttttgaaa gcacaagacc 540 cgcttcaagt agtggtgctg gtatctggca ccggatcttt gctgcaaaat attatcgaca 600 accaagatga ctcctatcgg gttatcaagg tagtcgcgga taagccctgc ccggggatta 660 accgagccca agatgcaggc atcgacaccg aagtcgtgct tttaggctca gaccgcgcgc 720 agtggaacaa agaccttgtc gcagcggttg gtaccgccga tgttgtggtg tccgctggat 780 ttatgaaaat cctggggcct gaattcttgg ccagctttga aggccgcaca ataaatacgc 840 atcccgcact cctgccgtcc tttccgggcg cgcatggagt acgggatgcg ttggcttatg 900 gcgtgaaagt caccggctct actgtccatt ttgtggacgc gggagtcgat actggccgca 960 tcatcgcaca acgcgcagta gagattgagg cagaagatga tgaggcaagc ttgcatgagc 1020 gcatcaaaag cgtcgaacgt gagcttatcg tgcaggtctt acgcgcagcg aatgttcaag 1080 accagcaact tattattgag atttaaacca gatttcccac agtcaggaag gcaaggcttt 1140 catccatgag tgatgaccgc aagcagatca agcgtgcact aattagcgtt tatgacaaga 1200 cagggctcga agagctcgct cgcacgcttg acagcgcagg cgtagagatt gtgtccaccg 1260 gctccaccgc cgccaagatt gctgatcttg gtattaacgt cactccggtt gaatctctca 1320 ccggattccc agagtgcctc gaaggccgcg ttaagacctt gcacccacgc gtgcatgcgg 1380 gcattttggc tgatacccgc aagccggatc accttaatca gctggaagag cttgagattg 1440 agccattcca gttggtcgtg gttaacctgt acccatttaa agagactgta gcttctggcg 1500 cagacttcga tggttgcgtc gagcagattg atatcggcgg tccatccatg gtccgtgctg 1560 ctgccaagaa ccacccatcg gtggcggttg ttgtagaccc agcgcgttac ggcgacatcg 1620 ctgaggctgt cgctcagggc ggattcgatc tggcgcagcg tcgtcagctg gccgcgactg 1680 cgtttaagca cacggcagat tatgatgttg cagtttctgg ctggtttgcc cagcagcttg 1740 ccgatgactc tgttgcctct gctgagcttg aaggcgacgc gctgcgttat ggtgagaacc 1800 ctcaccagca ggcttccatc gttcgtgaag gcacgaccgg tgttgctaat gcgaagcagc 1860 tgcacggtaa ggaaatgagc tacaacaact accaggacgc ggatgccgca tggcgcgcgg 1920 cttgggatca tgaacgtcca tgtgtagcaa ttattaagca cgctaaccct tgcggtatcg 1980 ctgtttctga tgagtccatc gcagcagcac acgcagcggc acacgcctgt gacccaatgt 2040 ccgctttcgg tggcgttatt gcggtcaacc gcgaagtcac caaggaaatg gcaacccagg 2100 ttgctgacat cttcaccgag gtcatcatcg caccgtccta cgaagatgga gccgtcgaga 2160 ttttgcaggg caagaagaat attcgcatcc ttgttgttga gcatgaagta ccagcagtag 2220 aggtcaaaga aatctctggt ggccgtctgc tgcaggaagc agacgtttac caggctgagg 2280 gcgataaggc ttcgagttgg actttggctg ccggcgaagc tgcatccgag gaaaagctcg 2340 cggagctgga attcgcttgg cgcgcagtac gctcggtaaa gtccaacgcc atcttgttgg 2400 cgcatgaagg tgcaaccgtt ggcgtgggta tgggccaggt caaccgcgtt gattcggcga 2460 agttggctgt tgaccgcgcg aatactttgg ctgattccgc agagcgtgct cgcggttccg 2520 tcgcagcatc ggatgcgttc ttcccattcg ccgatggctt gcaggtgctt atcgatgccg 2580 gcgtttccgc cgttgtccag cccggcggct ccatccgcga tgaagaagtt attgctgccg 2640 ctgaagcagc cggtatcacc atgtacttca ctggcacccg ccacttcgcg cactaaagct 2700 ttcctccgct tcgcgtccgg gaagctttag cccggaagag atagcaaaag gggcctgttc 2760 acccgcaatt ttaacggtgt gaacaggccc cttggctttc tagagctcga cttttaaata 2820 tcgagcttta agcgtcgatg ttctcgtctg cgtttcccag ccacggcgcg atgacctggt 2880 ctgacttctt cggacaacaa 2900 <210> 13 <211> 2615 <212> DNA <213> Corynebacterium ammoniagenes <400> 13 taccaacgcg gataagctca agagcgaacc agagcgcatg gcgcaggttg agtgggaaca 60 aggaaagtcg tcttccggtg ctttcgctgc aaccttgcag ctagaagcgc tcgataggca 120 aggcctgctc tttgaggtca ccaaggtatt taccgaagcg aagctgaacg tattatccat 180 gcgctcggtt cgaggtgaag accatattgc gaccctgcag tttacttttt cggtctcaga 240 taccaagcag cttggttctt tgatgacaac gttgcgtaat actgaaggcg tattcgacgt 300 ctatcgcgtg actgcttagt tgccccttct gcggggtagc taagccacta gcaggtggcg 360 tgaagttaaa gctgtggtga attattttca tcgacgcggt aaatgcggag gtggtgcaaa 420 accattgcac tgcttagata atttaaaggc gatataaaga ctcctgtaag taatttctca 480 ttattctcac aggagaaccc gtgtctaagt ttcgccgttt tggccgtctg ctggctgcaa 540 ccaccgtatc cgccaccatc gtagttggcg cgcccgtagc ctttggtcaa gaagataatg 600 ttgttgattt ctcagtcacc aatatcactg acttccatgg ccacctttct acgcaggagg 660 ctgacgctcc tgatgccaac tcagagatgg gggcggccaa gctcaaggaa ctgattgagt 720 acgttaatca ggaccaggaa tacatcatga ctacctccgg cgataacgtc ggcggtagcg 780 ctttcgtctc ggcaatcgct gatgatgagc caaccctaga tgtcctcaac atgctcggcg 840 ttgacgtctc tgcggtaggt aaccatgaat tcgaccgcgg ctatgacgat ttgctcggtc 900 gtattgctga aaaatccgcc tacccattgc tgggcgcgaa tgtcacctta aacggtgaac 960 cgatgttgga tgcttcctac gttcaagaaa ttgacggcgt caaggtggga tttgtcggta 1020 ctgtgaccac cttgactaag gacaaggtcg caccatccgc agttgaaggt gtggagtttt 1080 ctgaccccgt cgaggctacg aataaggaat ctgaccgtct gaaggaatct ggcgaagcag 1140 acgttgttgt agcgctcatg cacgaggacg cgcagcagta cgctgctggc ttcaacaaca 1200 atgtggatat ccttttcgga ggcgactctc accagcgctc gcagggcatc atcgaacgtg 1260 atggtgcgca gccactgcac tgggcgcagg ggcatgaata tggcaaggtt ctccaagacg 1320 ccgatatttc ctttaacaag gacaccggcg aaattgagtc cgtcgaaatc acccagtacg 1380 accgctcgat gcctgaggtt gaagcactag cccctgatgc agaaattgcc gctcgcgtgg 1440 cagccgctga ggcagaagct gaagagcttg gagctaaagt tgtcggccag atggaccgcg 1500 ctactttccg tggtcaagat gagggcgcag gagcggggag caaccgcggt gttgaatcta 1560 cgttgaactc gctaattgct gatgccaacc gcgcatcagt tgctaaggcg actggtgcgg 1620 acgtggattt gggcattatg aatgctggtg gcgtacgtgc tgaccttcct gcaggcgatg 1680 tcactttcca ggatgtgctt accgtgcagc ctttcggcaa ttcgattgca tacggcactt 1740 tgaccggcca agatattttg gatgctttgg aagctcagtg gcagccagga tcgtctcgtc 1800 cacgcttggc tttgggtcta tctgctggat ttgagtacgc ctacgaccca actgcagagc 1860 aaggccagcg cgttatctcc gcgaccttgg atggcgaaga aattgaccca tcagcggaat 1920 acactgttgc aacttccacg ttcctcttcg atggtggcga caacttcgca tctctggcca 1980 atgtccaaaa cctcactgac gtgggctaca tggactactc agttctcaat gactacatca 2040 aagatggcgc agaggtacag gaaggccagt ctgatatcgg tatcagcacc gaaggcaccc 2100 tggcagctgg tgaagaagtt accttcaacc tcacctcgct taactacact atggaagaag 2160 atccacaagc caccacagcg accgtcaccg tgggcgacgt gcaagaaacc gccgatatcg 2220 acgctcagtg gaatgctgaa gaagatccgc agaagaatga atttggccgt gctagcgtaa 2280 cgctgactct gccagaggac attgaggaaa ccgacttggt taccgtaacc accgatgccg 2340 gcaccgagat tactgtgccg ctgagggcct tgggcaccaa cgagggcacg gacggcggct 2400 ccaatcctgg cagcagcgca cctggcacag gtaagggctc ttctcggggt gcttcggctg 2460 ctgcaggaat cgctggagtg ttggcagcga ttgcgggcat cgccgcgttt attggtctga 2520 acggtcagtt tgatcagttc atcccagcta acatgcagcg cgctcttggt gacctgcgca 2580 gtcagctcaa cgaggttagc cacatcaaat tctag 2615 <110> CJ Cheiljedang Corporation <120> A Microorganism of corynebacterium genus having enhanced          xanthosine 5'-monophosphate productivity and method of producing          xanthosine 5'-monophosphate using the same <130> PA07-0408 <160> 13 <170> KopatentIn 1.71 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cgggatcccg aggcgaagac gatattgagg acag 34 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 acgcgtcgac gtgggaaacg cagacgagaa ca 32 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 acgcgtcgac gaggcgaaga cgatattgag gacag 35 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tcgatgcctg catcttgg 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ggcgataagg cttcgagt 18 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 gacggccagt gaattcgacc gcggctatga cgatttg 37 <210> 7 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 agtgcagtgt ctagaaccat cacgttcgat gatgccctgc 40 <210> 8 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cgtgatggtt ctagacactg cactgggcgc aggggcatg 39 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atgcctgcag gtcgacgtac gccaccagca ttcataatgc 40 <210> 10 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tcgaacgtga tggtc 15 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtacgccacc agcattcata atgc 24 <210> 12 <211> 2900 <212> DNA <213> Corynebacterium ammoniagenes <400> 12 cagtggacta cattgatggt gaggtcgaag aagagacatc cgttgccaac gagggtggct 60 cccagggtga ggcagtctcc gttggagcaa tgtcggagga gctgatcgat aatttggaag 120 atggttcctt ccccgatgag gtgccaggcg aagacgatat tgaggacagg atcggtactg 180 ctacgcatga gccaagcgat ggagatgcca ataacgagcc cagcgtcgaa gacgttgaca 240 tcgacaatgc agagcaaacc gcggaagggg tattgccaaa ctctgacaac ggagcccaag 300 aagctgcgga aaatgacaca gaagcttctg gggtcgagca cgctgatgat ggccacgatg 360 gccaacagca aagcgatgag gacgataaaa caggcaaaga tacccaataa gaggggataa 420 gttgtcctct tttccgtggt ggaggaaaaa ttggcggcat cgtttcgtcc tcgaaagggc 480 tacagactag tctttaacac gtgactgaat cgccttcgca agttttgaaa gcacaagacc 540 cgcttcaagt agtggtgctg gtatctggca ccggatcttt gctgcaaaat attatcgaca 600 accaagatga ctcctatcgg gttatcaagg tagtcgcgga taagccctgc ccggggatta 660 accgagccca agatgcaggc atcgacaccg aagtcgtgct tttaggctca gaccgcgcgc 720 agtggaacaa agaccttgtc gcagcggttg gtaccgccga tgttgtggtg tccgctggat 780 ttatgaaaat cctggggcct gaattcttgg ccagctttga aggccgcaca ataaatacgc 840 atcccgcact cctgccgtcc tttccgggcg cgcatggagt acgggatgcg ttggcttatg 900 gcgtgaaagt caccggctct actgtccatt ttgtggacgc gggagtcgat actggccgca 960 tcatcgcaca acgcgcagta gagattgagg cagaagatga tgaggcaagc ttgcatgagc 1020 gcatcaaaag cgtcgaacgt gagcttatcg tgcaggtctt acgcgcagcg aatgttcaag 1080 accagcaact tattattgag atttaaacca gatttcccac agtcaggaag gcaaggcttt 1140 catccatgag tgatgaccgc aagcagatca agcgtgcact aattagcgtt tatgacaaga 1200 cagggctcga agagctcgct cgcacgcttg acagcgcagg cgtagagatt gtgtccaccg 1260 gctccaccgc cgccaagatt gctgatcttg gtattaacgt cactccggtt gaatctctca 1320 ccggattccc agagtgcctc gaaggccgcg ttaagacctt gcacccacgc gtgcatgcgg 1380 gcattttggc tgatacccgc aagccggatc accttaatca gctggaagag cttgagattg 1440 agccattcca gttggtcgtg gttaacctgt acccatttaa agagactgta gcttctggcg 1500 cagacttcga tggttgcgtc gagcagattg atatcggcgg tccatccatg gtccgtgctg 1560 ctgccaagaa ccacccatcg gtggcggttg ttgtagaccc agcgcgttac ggcgacatcg 1620 ctgaggctgt cgctcagggc ggattcgatc tggcgcagcg tcgtcagctg gccgcgactg 1680 cgtttaagca cacggcagat tatgatgttg cagtttctgg ctggtttgcc cagcagcttg 1740 ccgatgactc tgttgcctct gctgagcttg aaggcgacgc gctgcgttat ggtgagaacc 1800 ctcaccagca ggcttccatc gttcgtgaag gcacgaccgg tgttgctaat gcgaagcagc 1860 tgcacggtaa ggaaatgagc tacaacaact accaggacgc ggatgccgca tggcgcgcgg 1920 cttgggatca tgaacgtcca tgtgtagcaa ttattaagca cgctaaccct tgcggtatcg 1980 ctgtttctga tgagtccatc gcagcagcac acgcagcggc acacgcctgt gacccaatgt 2040 ccgctttcgg tggcgttatt gcggtcaacc gcgaagtcac caaggaaatg gcaacccagg 2100 ttgctgacat cttcaccgag gtcatcatcg caccgtccta cgaagatgga gccgtcgaga 2160 ttttgcaggg caagaagaat attcgcatcc ttgttgttga gcatgaagta ccagcagtag 2220 aggtcaaaga aatctctggt ggccgtctgc tgcaggaagc agacgtttac caggctgagg 2280 gcgataaggc ttcgagttgg actttggctg ccggcgaagc tgcatccgag gaaaagctcg 2340 cggagctgga attcgcttgg cgcgcagtac gctcggtaaa gtccaacgcc atcttgttgg 2400 cgcatgaagg tgcaaccgtt ggcgtgggta tgggccaggt caaccgcgtt gattcggcga 2460 agttggctgt tgaccgcgcg aatactttgg ctgattccgc agagcgtgct cgcggttccg 2520 tcgcagcatc ggatgcgttc ttcccattcg ccgatggctt gcaggtgctt atcgatgccg 2580 gcgtttccgc cgttgtccag cccggcggct ccatccgcga tgaagaagtt attgctgccg 2640 ctgaagcagc cggtatcacc atgtacttca ctggcacccg ccacttcgcg cactaaagct 2700 ttcctccgct tcgcgtccgg gaagctttag cccggaagag atagcaaaag gggcctgttc 2760 acccgcaatt ttaacggtgt gaacaggccc cttggctttc tagagctcga cttttaaata 2820 tcgagcttta agcgtcgatg ttctcgtctg cgtttcccag ccacggcgcg atgacctggt 2880 ctgacttctt cggacaacaa 2900 <210> 13 <211> 2615 <212> DNA <213> Corynebacterium ammoniagenes <400> 13 taccaacgcg gataagctca agagcgaacc agagcgcatg gcgcaggttg agtgggaaca 60 aggaaagtcg tcttccggtg ctttcgctgc aaccttgcag ctagaagcgc tcgataggca 120 aggcctgctc tttgaggtca ccaaggtatt taccgaagcg aagctgaacg tattatccat 180 gcgctcggtt cgaggtgaag accatattgc gaccctgcag tttacttttt cggtctcaga 240 taccaagcag cttggttctt tgatgacaac gttgcgtaat actgaaggcg tattcgacgt 300 ctatcgcgtg actgcttagt tgccccttct gcggggtagc taagccacta gcaggtggcg 360 tgaagttaaa gctgtggtga attattttca tcgacgcggt aaatgcggag gtggtgcaaa 420 accattgcac tgcttagata atttaaaggc gatataaaga ctcctgtaag taatttctca 480 ttattctcac aggagaaccc gtgtctaagt ttcgccgttt tggccgtctg ctggctgcaa 540 ccaccgtatc cgccaccatc gtagttggcg cgcccgtagc ctttggtcaa gaagataatg 600 ttgttgattt ctcagtcacc aatatcactg acttccatgg ccacctttct acgcaggagg 660 ctgacgctcc tgatgccaac tcagagatgg gggcggccaa gctcaaggaa ctgattgagt 720 acgttaatca ggaccaggaa tacatcatga ctacctccgg cgataacgtc ggcggtagcg 780 ctttcgtctc ggcaatcgct gatgatgagc caaccctaga tgtcctcaac atgctcggcg 840 ttgacgtctc tgcggtaggt aaccatgaat tcgaccgcgg ctatgacgat ttgctcggtc 900 gtattgctga aaaatccgcc tacccattgc tgggcgcgaa tgtcacctta aacggtgaac 960 cgatgttgga tgcttcctac gttcaagaaa ttgacggcgt caaggtggga tttgtcggta 1020 ctgtgaccac cttgactaag gacaaggtcg caccatccgc agttgaaggt gtggagtttt 1080 ctgaccccgt cgaggctacg aataaggaat ctgaccgtct gaaggaatct ggcgaagcag 1140 acgttgttgt agcgctcatg cacgaggacg cgcagcagta cgctgctggc ttcaacaaca 1200 atgtggatat ccttttcgga ggcgactctc accagcgctc gcagggcatc atcgaacgtg 1260 atggtgcgca gccactgcac tgggcgcagg ggcatgaata tggcaaggtt ctccaagacg 1320 ccgatatttc ctttaacaag gacaccggcg aaattgagtc cgtcgaaatc acccagtacg 1380 accgctcgat gcctgaggtt gaagcactag cccctgatgc agaaattgcc gctcgcgtgg 1440 cagccgctga ggcagaagct gaagagcttg gagctaaagt tgtcggccag atggaccgcg 1500 ctactttccg tggtcaagat gagggcgcag gagcggggag caaccgcggt gttgaatcta 1560 cgttgaactc gctaattgct gatgccaacc gcgcatcagt tgctaaggcg actggtgcgg 1620 acgtggattt gggcattatg aatgctggtg gcgtacgtgc tgaccttcct gcaggcgatg 1680 tcactttcca ggatgtgctt accgtgcagc ctttcggcaa ttcgattgca tacggcactt 1740 tgaccggcca agatattttg gatgctttgg aagctcagtg gcagccagga tcgtctcgtc 1800 cacgcttggc tttgggtcta tctgctggat ttgagtacgc ctacgaccca actgcagagc 1860 aaggccagcg cgttatctcc gcgaccttgg atggcgaaga aattgaccca tcagcggaat 1920 acactgttgc aacttccacg ttcctcttcg atggtggcga caacttcgca tctctggcca 1980 atgtccaaaa cctcactgac gtgggctaca tggactactc agttctcaat gactacatca 2040 aagatggcgc agaggtacag gaaggccagt ctgatatcgg tatcagcacc gaaggcaccc 2100 tggcagctgg tgaagaagtt accttcaacc tcacctcgct taactacact atggaagaag 2160 atccacaagc caccacagcg accgtcaccg tgggcgacgt gcaagaaacc gccgatatcg 2220 acgctcagtg gaatgctgaa gaagatccgc agaagaatga atttggccgt gctagcgtaa 2280 cgctgactct gccagaggac attgaggaaa ccgacttggt taccgtaacc accgatgccg 2340 gcaccgagat tactgtgccg ctgagggcct tgggcaccaa cgagggcacg gacggcggct 2400 ccaatcctgg cagcagcgca cctggcacag gtaagggctc ttctcggggt gcttcggctg 2460 ctgcaggaat cgctggagtg ttggcagcga ttgcgggcat cgccgcgttt attggtctga 2520 acggtcagtt tgatcagttc atcccagcta acatgcagcg cgctcttggt gacctgcgca 2580 gtcagctcaa cgaggttagc cacatcaaat tctag 2615  

Claims (13)

포스포리보실글리신아마이드 포밀트랜스퍼라제(phosphoribosylglycinamide formyltransferase) 및 이노신산 사이클로하이드롤라아제(inosinic acid cyclohydrolase) 효소를 암호화하는 purNH 유전자가 염색체 내에 2 카피 이상 존재하여 상기 효소의 활성을 강화시킴으로써 5'-크산틸산의 생산능이 향상된 것을 특징으로 하는 코리네박테리움 속 미생물.Phosphoribosylglycinamide formyltransferase and inosine acid cyclohydrolase enzymes that encode A microorganism of the genus Corynebacterium, wherein purNH gene is present in two or more copies in a chromosome, thereby enhancing the activity of the enzyme, thereby improving the production capacity of 5'-xanthyl acid. 제1항에 있어서,The method of claim 1, 상기 purNH 유전자는 서열번호 12의 염기 서열을 가지는 것을 특징으로 하는 코리네박테리움 속 미생물.The purNH gene is a microorganism of the genus Corynebacterium, characterized in that it has a nucleotide sequence of SEQ ID NO: 12. 제1항에 있어서, The method of claim 1, 상기 효소의 활성이 코리네박테리움 속 미생물이 천연상태로 가지고 있는 내재 purNH 유전자에 더하여 1 카피 이상의 purNH 유전자가 새로 도입됨으로써 강화된 것을 특징으로 하는 코리네박테리움 속 미생물.The activity of the enzyme in the microorganism is Corynebacterium genus Corynebacterium microorganism, characterized in that the reinforcement being embedded with one or more copy of the introduced gene in addition to the purNH purNH gene in a natural state. 제1항에 있어서,The method of claim 1, 추가적으로 5'-뉴클레오티다제 (5'-nucleotidase)를 암호화하는 ushA 유전자의 활성이 불활성화된 것을 특징으로 하는 코리네박테리움 속 미생물.And a microorganism of the genus Corynebacterium, characterized in that the activity of the ushA gene encoding 5'-nucleotidase is inactivated. 제4항에 있어서,The method of claim 4, wherein 상기 ushA 유전자가 서열번호 13의 염기서열을 가지는 것을 특징으로 하는 코리네박테리움 속 미생물.Microorganism of the genus Corynebacterium, characterized in that the ushA gene has a nucleotide sequence of SEQ ID NO: 13. 제4항에 있어서,The method of claim 4, wherein 상기 ushA 유전자의 활성이 치환, 결손, 삽입에 의해서 불활성화된 것을 특징으로 하는 코리네박테리움 속 미생물.Microorganism of the genus Corynebacterium, characterized in that the activity of the ushA gene is inactivated by substitution, deletion, insertion. 제4항에 있어서,The method of claim 4, wherein 상기 ushA 유전자의 활성이 염색체의 ushA 유전자 내부에 하나의 염기가 삽입됨으로써 불활성화된 것을 특징으로 하는 코리네박테리움 속 미생물.The microorganism of the genus Corynebacterium, characterized in that the activity of the ushA gene is inactivated by inserting one base into the ushA gene of the chromosome. 제1항에 있어서,The method of claim 1, 상기 코리네박테리움 속 미생물은 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes) KCCM-10530인 것을 특징으로 하는 코리네박테리움 속 미생물.The genus Corynebacterium microorganisms Corynebacterium ammonia Ness's (Corynebacterium ammoniagenes ) Microorganism of the genus Corynebacterium, characterized in that KCCM-10530. 제1항에 있어서,The method of claim 1, 상기 코리네박테리움 속 미생물은 코리네박테리움 암모니아게네 스(Corynebacterium ammoniagenes) KCJ-0001 (수탁번호 : KCCM-10913P)인 것을 특징으로 하는 코리네박테리움 속 미생물.The genus Corynebacterium microorganism is Corynebacterium ammoniagenes gene's (Corynebacterium ammoniagenes ) Microorganism of the genus Corynebacterium, characterized in that KCJ-0001 (Accession Number: KCCM-10913P). 제1항에 있어서,The method of claim 1, 상기 코리네박테리움 속 미생물은 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes) KCJ-0002 (수탁번호 : KCCM-10914P)인 것을 특징으로 하는 코리네박테리움 속 미생물.The genus Corynebacterium microorganisms Corynebacterium ammonia Ness's (Corynebacterium ammoniagenes ) Microorganism of the genus Corynebacterium, characterized in that KCJ-0002 (Accession Number: KCCM-10914P). 포스포리보실글리신아마이드 포밀트랜스퍼라제(phosphoribosylglycinamide formyltransferase) 및 이노신산 사이클로하이드롤라아제(inosinic acid cyclohydrolase) 효소를 암호화하는 purNH 유전자를 포함하는 것을 특징으로 하는 벡터.A vector comprising a purNH gene encoding a phosphoribosylglycinamide formyltransferase and an inosine acid cyclohydrolase enzyme. 내부에 임의의 염기가 삽입된 5'-뉴클레오티다제 (5'-nucleotidase)를 암호화하는 ushA 유전자를 포함하는 것을 특징으로 하는 벡터.A vector comprising a ushA gene encoding a 5'-nucleotidase having any base inserted therein. 제1항에 따른 코리네박테리움 속 미생물을 배양하여 세포 또는 배양물 중에 5'-크산틸산을 생산하는 단계; 및Culturing the microorganism of the genus Corynebacterium according to claim 1 to produce 5'-xanthyl acid in a cell or culture; And 상기 세포 또는 배양물로부터 5'-크산틸산을 회수하는 단계;Recovering 5'-xanthyl acid from the cell or culture; 를 포함하는, 5'-크산틸산을 생산하는 방법.Including, the method of producing 5'-xanthyl acid.
KR1020080006537A 2008-01-22 2008-01-22 A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same KR100957690B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080006537A KR100957690B1 (en) 2008-01-22 2008-01-22 A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080006537A KR100957690B1 (en) 2008-01-22 2008-01-22 A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same

Publications (2)

Publication Number Publication Date
KR20090080654A true KR20090080654A (en) 2009-07-27
KR100957690B1 KR100957690B1 (en) 2010-05-12

Family

ID=41291727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080006537A KR100957690B1 (en) 2008-01-22 2008-01-22 A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same

Country Status (1)

Country Link
KR (1) KR100957690B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115439A3 (en) * 2010-03-19 2012-01-12 씨제이제일제당 (주) Microorganism with improved production of 5'-xanthosine monophosphate and 5'-guanine monophosphate, and production method of 5'-xanthosine monophosphate and 5'-guanine monophosphate using same
US8815545B2 (en) 2008-12-17 2014-08-26 Cj Cheiljedang Corporation Corynebacteria strain having enhanced 5′-xanthosine monophosphate productivity and a method of producing 5′-xanthosine monophosphate using the same
WO2019235680A1 (en) * 2018-06-07 2019-12-12 씨제이제일제당 (주) Microorganism producing 5'-xanthylic acid and method for producing 5'-xanthylic acid by using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056872B1 (en) 2008-10-22 2011-08-12 씨제이제일제당 (주) Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576341B1 (en) * 2003-12-15 2006-05-03 씨제이 주식회사 Microorganisms of Corynebacterium having an enactivated gene encoding 5'-nucleotidase and processes for the preparation of 5'-inosinic acid using the same
KR20070056491A (en) * 2005-11-30 2007-06-04 씨제이 주식회사 Microorganisms having a gene purf and production method of xanthosine 5'-monophosphate using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815545B2 (en) 2008-12-17 2014-08-26 Cj Cheiljedang Corporation Corynebacteria strain having enhanced 5′-xanthosine monophosphate productivity and a method of producing 5′-xanthosine monophosphate using the same
WO2011115439A3 (en) * 2010-03-19 2012-01-12 씨제이제일제당 (주) Microorganism with improved production of 5'-xanthosine monophosphate and 5'-guanine monophosphate, and production method of 5'-xanthosine monophosphate and 5'-guanine monophosphate using same
US8859236B2 (en) 2010-03-19 2014-10-14 Cj Cheiljedang Corporation Microorganism with improved production of 5′-xanthosine monophosphate and 5′-guanine monophosphate, and production method of 5′-xanthosine monophosphate and 5′-guanine monophosphate using same
WO2019235680A1 (en) * 2018-06-07 2019-12-12 씨제이제일제당 (주) Microorganism producing 5'-xanthylic acid and method for producing 5'-xanthylic acid by using same
US10844348B2 (en) 2018-06-07 2020-11-24 Cj Cheiljedang Corporation Microorganism of the genus Corynebacterium producing 5′-xanthosine monophosphate and method for preparing 5′-xanthosine monophosphate using the same
CN112210522A (en) * 2018-06-07 2021-01-12 Cj第一制糖株式会社 Microorganism of corynebacterium genus producing 5 '-xanthosine-monophosphate and method for preparing 5' -xanthosine-monophosphate using the same
AU2018386357B2 (en) * 2018-06-07 2021-04-29 Cj Cheiljedang Corporation Microorganism of the genus Corynebacterium producing 5’-xanthosine monophosphate and method for preparing 5’-xanthosine monophosphate using the same
US11332708B2 (en) 2018-06-07 2022-05-17 Cj Cheiljedang Corporation Microorganism of the genus Corynebacterium producing 5′-xanthosine monophosphate and method for preparing 5′-xanthosine monophosphate using the same
TWI790378B (en) * 2018-06-07 2023-01-21 南韓商Cj第一製糖股份有限公司 Microorganism of the genus corynebacterium producing 5'-xanthosine monophosphate and method for preparing 5'-xanthosine monophosphate using the same
CN112210522B (en) * 2018-06-07 2024-01-05 Cj第一制糖株式会社 Microorganism of corynebacterium genus producing 5 '-xanthosine-monophosphate and method for producing 5' -xanthosine-monophosphate using the same

Also Published As

Publication number Publication date
KR100957690B1 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
EP2415861B1 (en) Microorganisms of corynebacterium with improved 5&#39;-inosinic acid productivity, and method for producing nucleic acids using same
US8048650B2 (en) Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same
US8058036B2 (en) Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same
US11661616B2 (en) Microorganism having increased glycine productivity and method for producing fermented composition using the same
JP2007167064A (en) Corynebacterium microorganism having improved l-lysine productivity and method for producing l-lysine by using the same
KR101210704B1 (en) Microorganism having enhanced 5&#39;-xanthosine monophosphate and 5&#39;-guanine monophosphate productivity and a method of producing 5&#39;-xanthosine monophosphate or 5&#39;-guanine monophosphate using the same
EP2115120B1 (en) Microorganism producing inosine and method of producing inosine using the same
CN106604987B (en) L-tryptophan-producing microorganism belonging to the genus escherichia and method for producing L-tryptophan using the same
KR100957690B1 (en) A microorganism of corynebacterium genus having enhanced xanthosine 5&#39;-monophosphate productivity and method of producing xanthosine 5&#39;-monophosphate using the same
KR101072708B1 (en) A corynebacteria having enhanced 5&#39;-xanthosine monophosphate productivity and a method of producing 5&#39;-xanthosine monophosphate using the same
KR101072720B1 (en) A corynebacteria having enhanced 5&#39;-guanosine monophosphate productivity and a method of producing 5&#39;-guanosine monophosphate using the same
KR101056872B1 (en) Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same
KR100785248B1 (en) 5&#39;- microorganism overexpressed purc gene and the process for production method of 5&#39;-inosinic acid using the same
KR100964078B1 (en) Corynebacterium ammoniagenes having enhanced 5&#39;-inosinic acid productivity and method of producing 5&#39;-inosinic acid using the same
KR101049023B1 (en) Corynebacterium ammoniagenes with 5&#39;-inosinic acid production capacity and method for producing 5&#39;-inosine acid using the same
KR100547586B1 (en) Recombinant Escherichia spp. microorganisms in which the uShA gene is inactivated and 5&#39;-guanylic acid synthase using the same
KR20100038639A (en) Microorganism comprising modified purc gene and process for production method of inosine using the same
KR20100088906A (en) Microorganism having enhanced inosine productivity and process for producing inosine using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130315

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190225

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 11