KR20090080620A - A light modulator by the photonic crystals including the controllable layer of reflective index - Google Patents

A light modulator by the photonic crystals including the controllable layer of reflective index Download PDF

Info

Publication number
KR20090080620A
KR20090080620A KR1020080006483A KR20080006483A KR20090080620A KR 20090080620 A KR20090080620 A KR 20090080620A KR 1020080006483 A KR1020080006483 A KR 1020080006483A KR 20080006483 A KR20080006483 A KR 20080006483A KR 20090080620 A KR20090080620 A KR 20090080620A
Authority
KR
South Korea
Prior art keywords
light
poly
polymers
optical
layer
Prior art date
Application number
KR1020080006483A
Other languages
Korean (ko)
Other versions
KR101325327B1 (en
Inventor
서동학
최진식
조영석
김원중
육주영
장은호
김남주
Original Assignee
서동학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서동학 filed Critical 서동학
Priority to KR1020080006483A priority Critical patent/KR101325327B1/en
Publication of KR20090080620A publication Critical patent/KR20090080620A/en
Application granted granted Critical
Publication of KR101325327B1 publication Critical patent/KR101325327B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A light control device using optical crystal and having a refractive index control layer is provided to obtain a light modulating device and achieve high energy efficiency by adding birefringence index function of liquid crystal to prior optical crystal. A light control device includes a refractive index control layer and uses optical crystal. Two kinds of polymers having different refractive indexes are alternatively formed between transparent electrodes. Electric fields are applied through the transparent electrodes in one dimensional optical crystal in which total reflection occurs in a certain wavelength band. Thus, liquid crystal, anisotropic material and organic or inorganic nano particle which exist within the polymers are aligned. Therefore, the refractive index is changed and light transmission and reflection are controlled. The liquid crystal and anisotropic material has a structure of being chemically coupled to linear and cross-linked polymer.

Description

굴절률 제어층이 포함된 광학결정에 의한 광 제어 장치{A light modulator by the photonic crystals including the controllable layer of reflective index}A light modulator by the photonic crystals including the controllable layer of reflective index}

본 발명은 1차원 광학 결정을 활용한 광제어 소자로 광 변조 장치 뿐만 아니라 디스플레이에 적용이 가능한 기술이다.The present invention is a light control device utilizing a one-dimensional optical crystal is a technology that can be applied to a display as well as an optical modulation device.

기존의 광학결정은 입사 파장 (λ)의 n(λ/4) (n=홀수)에 해당하는 광 경로를 소재의 굴절률 (RI)을 이용하여 다층으로 제작하여 빛의 전반사를 발생시키는 기능을 보유하고 있으나, 외부의 전기적 신호에 의해 광 제어 기능을 보유하지 못하는 단점이 있다. 또한, 평판 디스플레이 소자에서 자체 발광을 하지 않고 외부에서 입사하는 빛을 제어하여 화면에 표시하는 광 변조 방식인 액정 디스플레이(LCD)는 하부 기판과 컬러 필터로 구성된 상부 기판 사이에 액정을 주입하는 구성되며, 액정을 기준으로 양면에 편광판을 설치하여 액정의 복 굴절률 제어에 의한 광 스위칭을 구현하는 복잡한 광학 기구를 포함하고 있어 광 이용 효율이 낮고 자체적으로 색 제어를 할 수 없는 단점이 있다. Conventional optical crystals have a function of generating total reflection of light by making a multi-layered optical path corresponding to n (λ / 4) (n = odd) of the incident wavelength λ using the refractive index of the material (RI). However, there is a disadvantage in that it does not have a light control function by an external electrical signal. In addition, a liquid crystal display (LCD), which is a light modulation method for controlling light displayed from the outside without self-luminescence in a flat panel display device, is configured to inject liquid crystal between a lower substrate and an upper substrate composed of color filters. In addition, since a polarizing plate is installed on both sides based on the liquid crystal and includes a complicated optical mechanism that implements light switching by controlling the refractive index of the liquid crystal, there is a disadvantage in that light utilization efficiency is low and color control cannot be performed by itself.

본 발명은 빛의 반사와 간섭을 이용한 디스플레이용 광 변조 소자로 다층 박박의 필름형인 1차원 광학결정으로 외부 전계에 의한 광 제어가 가능하고, 기존 LCD와 달리 복잡한 광학 기구의 추가적 설치가 없이 빛의 제어 및 변조가 가능한 장점이 있다. The present invention is a light modulation device for display using the reflection and interference of light as a one-dimensional optical crystal of a multi-layer thin film is capable of light control by an external electric field, and unlike conventional LCD, light without additional installation of complicated optical instruments There is an advantage that can be controlled and modulated.

기존의 1차원 광학 결정은 굴절률 값이 일정하게 유지되는 물질을 사용하여 구현함에 따라 그 특성이 정하여 지는 단점이 있으나 본 발명은 액정, 이방성 물질 및 유·무기 나노입자를 적용하여 외부에서 인가된 전기적 자극에 의해 내부 물질 층의 굴절률을 제어함으로하여 주어진 조건의 1차원 광학 결정의 전반사 조건을 유지 및 파괴하여 광을 제어하는 것이다. The conventional one-dimensional optical crystal has a disadvantage that the characteristics are determined by using a material that maintains a constant refractive index value, but the present invention is applied to the outside by applying liquid crystal, anisotropic material and organic and inorganic nanoparticles By controlling the refractive index of the inner material layer by stimulation, light is controlled by maintaining and destroying the total reflection condition of the one-dimensional optical crystal of a given condition.

본 발명은 광 제어 기능이 없는 기존의 광학 결정에 액정의 복 굴절률 기능을 부가하여 광변조가 가능한 소자를 제공할 수 있으며, 또한 복잡한 광학 기구를 갖고 있어 광 이용 효율이 낮은 기존의 LCD를 대체하여 에너지 효율이 높고, 색 제어가 가능한 신규 평판 디스플레이 소자를 구현할 수 있는 신기술이다. The present invention can provide a device capable of optical modulation by adding the birefringence function of the liquid crystal to the existing optical crystal without the light control function, and also has a complex optical mechanism to replace the conventional LCD with low light utilization efficiency It is a new technology that can realize a new flat panel display device with high energy efficiency and color control.

1. 광 변조 원리 및 빛 제어 방식 1 . Light modulation principle and light control method

광(전자기파)은 자유공간에서 각속도 (angular frequency, ω=2πf)와 파수 (wave number, k=2πλ0) 사이에 ω=ck 같은 관계를 가진다. 굴절률이 R인 균일한 물질에서는 빛의 속도 c대신 c/R을 사용하므로 빛의 파장에 대해 진동수 (f)는 항상 선형의 함수관계를 유지한다. 그러나 균일하지 않은 물질에서는 선형 함수관계가 파괴되고, 굴절률이 주기적으로 변하는 경우 두 물질 층의 물리량의 관계가 선형을 유지하지 못하고 비선형 함수 관계로 변형된다. 따라서 특정 각 속도 영역에서는 빛이 투과하지 못하고 완전히 반사되고 이때 빛의 진동수 영역을 광 밴드갭이라 칭하고, 이러한 구조를 가진 물질을 광학결정이라 한다. 특히 1차원 주기 구조에서 얻어진 광 밴드갭은 맥스웰 방정식을 이용한 해를 구하지 않고, 간단히 브래그 법칙(mλ=2nd sinθ ; m, n= 정수)에 의해서도 해석이 가능한 장점이 있다. 즉 큰 굴절률(RL) 층이 nλ/RL (n=정수) 의 두께를 갖고, 작은 굴절률 (RS) 층이 (nλ)/(4×RS) (n=홀수)의 두께를 갖는 다층 구조의 1차원 광학결정은 파장 λ을 갖는 빛을 전 반사 시킬 수 있는 조건을 갖추게 된다. 이때 전 반사는 두 물질 층의 굴절률 차이와 구성된 물질 층수의 관계에 의해 결정된다. 따라서 굴절률 차이가 클수록, 물질 구성 층수가 많을수록 전 반사에 유리한 조건을 만들 수 있다. Light (electromagnetic waves) has a relation ω = ck between an angular frequency (ω = 2πf) and a wave number (k = 2πλ 0 ) in free space. In a homogeneous material with a refractive index of R, c / R is used instead of the speed c, so the frequency (f) is always a linear function of the wavelength of light. However, in non-uniform materials, the linear functional relationship is destroyed, and if the refractive index changes periodically, the relationship between the physical quantities of the two material layers does not maintain linearity and deforms into a nonlinear functional relationship. Therefore, light is not transmitted in a specific angular velocity region but is completely reflected. At this time, the frequency region of light is called an optical bandgap, and a material having such a structure is called an optical crystal. In particular, the optical bandgap obtained in the one-dimensional periodic structure has an advantage that it can be analyzed even by the Bragg's law (mλ = 2nd sinθ; m, n = integer) without obtaining a solution using Maxwell's equation. That is, the large refractive index (R L ) layer has a thickness of nλ / R L (n = integer), and the small refractive index (R S ) layer has a thickness of (nλ) / (4 × R S ) (n = odd) The one-dimensional optical crystal of the multilayer structure has a condition capable of totally reflecting light having a wavelength λ. The total reflection is then determined by the relationship between the refractive index difference of the two material layers and the number of material layers constructed. Thus, the greater the difference in refractive index and the greater the number of layers of material, the more favorable the conditions for total reflection.

본 발명은 주어진 파장에서 이러한 전반사 조건을 만족하는 다층 고분자 1차원 광학결정에서 내부에 포함된 액정 및 이방성 물질을 전기적으로 배향시켜 내부 굴절률을 3~95%까지 변화를 발생시키고, 이로 인하여 초기 광원(λ)의 전반사 조건이 파괴되어 이를 투과시키는 결과를 유도할 수 있는 특징을 보유한 것이다. 또한 이러한 액정 및 이방성 물질을 대신하여 유기 및 무기 나노 입자를 사용하여 외부 전계 인가에 의한 공간상에 정렬을 통하여 내부의 분포 밀도를 제어하여 물질 층의 굴절률 변화 시키는 방법도 포함한다.The present invention generates an internal refractive index change of 3 to 95% by electrically aligning liquid crystals and anisotropic materials contained therein in a multilayer polymer 1-dimensional optical crystal satisfying these total reflection conditions at a given wavelength, thereby causing an initial light source ( The total reflection condition of [lambda]) is destroyed and has the characteristic of inducing a result of transmitting it. It also includes a method of changing the refractive index of the material layer by controlling the distribution density of the interior through the alignment on the space by the application of an external electric field using organic and inorganic nanoparticles instead of the liquid crystal and anisotropic materials.

이때 소자를 구성하는 고분자는 선형 및 가교 고분자로 액정 및 이방성 물질이 화학적으로 결합된 구조이거나, 선형 및 가교 고분자를 기지로 하고 그 내부에 이들 액정 및 이방성 물질이 독립적으로 존재하는 구조를 가진다. 또한 이들 두 구조가 동시에 존재하는 구조도 활용 가능하다. 특히, 소자의 가역적 구동과 고속 구동을 위해서는 유리전이 온도가 낮은 고분자, 탄성고분자, 겔(Gel)상태의 고분자 및 플라스틱 크리스탈를 가지는 고분자가 유리하다. 이들 고분자중 선형의 경우 고분자의 분자량 분포가 좁은 것이 유리하며, 가교 고분자도 Crosslink 고분자와 상호침투(IPN) 고분자와 열가소성 엘라스토머 모두를 포함한다. 겔 상태의 경우 용제와 단분자 액정 혹은 이방성 물질을 함께 사용하거나 단분자 액정 및 이방성자체를 사용하여 다층 필름의 팽윤하여 사용할 수 있으며, 고분자의 종류에 따라서는 이온성을 지닌 액정 및 이방성 물질도 가능하다. At this time, the polymer constituting the device is a linear and cross-linked polymer having a structure in which the liquid crystal and the anisotropic material are chemically bonded, or have a structure based on the linear and cross-linked polymer and the liquid crystal and anisotropic material independently present therein. It is also possible to utilize a structure in which these two structures exist at the same time. In particular, a polymer having a low glass transition temperature, an elastic polymer, a polymer in a gel state, and a polymer having a plastic crystal are advantageous for reversible driving and high speed driving of the device. In the case of linear polymers, a narrow molecular weight distribution of the polymers is advantageous, and the crosslinked polymers include both Crosslink polymers, interpenetrating (IPN) polymers, and thermoplastic elastomers. In the case of gel state, solvent and monomolecular liquid crystal or anisotropic material can be used together, or monomolecular liquid crystal and anisotropic body can be used for swelling of multi-layered film. Do.

소자 구성에 있어서도 각 층의 물리적 두께와 굴절률의 관계에 의해 제어하려는 빛의 파장 대역에 대한 광학적 두께가 결정되며, 350nm - 2000nm에 이르는 폭넓은 광대역의 파장을 제어할 수 있으며 자세히는 가시광선 대역, 각각 Red(800nm 대역), Green(600nm 대역), Blue (400nm 대역)를 제어할 수 있는 소자뿐만 아니라 이들 사이의 파장 대역(예; 500nm 대역, 700nm대역 등등)도 광학적 두께 제어에 의해 이룩 할 수 있어 다양한 광 대역 제어가 가능한 특징이 있다. UV 및 또한 Near IR(800-2000nm) 파장영역도 제어가 가능하다. 특히 이러한 다양한 파장 대역에 해당하는 소자들을 다층으로 적층하여 구성할 경우, 기존의 디스플레이 소자보다도 우수한 광 제어가 가능하여 자연광에 준하는 소자의 구현이 이루어 질 수 있으며, 또한 완전한 빛의 차단도 가능한 장점이 있다. In the device configuration, the optical thickness of the wavelength band of light to be controlled is determined by the relationship between the physical thickness of each layer and the refractive index, and the wavelength of a wide band of 350 nm to 2000 nm can be controlled. In addition to devices capable of controlling Red (800 nm band), Green (600 nm band) and Blue (400 nm band), wavelength bands (eg 500 nm band, 700 nm band, etc.) between them can be achieved by optical thickness control. There is a feature that can control a wide range of broadband. UV and also near IR (800-2000nm) wavelength ranges can be controlled. In particular, when the devices corresponding to the various wavelength bands are stacked in a multi-layered structure, superior light control can be achieved than conventional display devices, and thus devices that conform to natural light can be realized. have.

2. 도면 설명2. Drawing Description

도1의 구성에서 ①과 ②은 투명전극으로 유리 및 플라스틱 계열의 투명 기판으로 그 아래는 광원이 존재하여 빛이 입사하는 통로를 제공함과 동시에 하부투명전극과 상부투명전극으로 작동하여 소자의 전기적 신호를 전달하는 기능을 수행한다. 또한 적용 디스플레이 사양에 따라서는 Thin Film Transistor (TFT)와 연결된 전극일 수도 있다. 그 구성 물질로는 ITO가 대표적이며, 투명전도성 고분자도 가능하다. ③과 ④는 굴절률이 서로 다른 물질 층으로 선형 및 가교 고분자 다층 박막으로 구성되며, ③은 굴절률(R)이 큰 물질 층으로 그 두께는 적용 광원의 파장(λ)에 nλ/RL (n=정수)를 갖고, ④는 굴절률이 낮은 물질 층으로 두께가 적용 광원의 파장에 (nλ)/(4×RS) (n=홀수)의 두께를 가지는 빛(λ)의 반사 조건이 충족하는 것이 특징이다. 이때 2종의 고분자 층 중 1종 또는 2종에 액정 및 이방성 물질이 포함되며, 고분자 층은 선형 및 가교 고분자로 액정 및 이방성 물질이 화학적으로 결합된 구조이거나, 선형 및 가교 고분자를 기지로 하고 그 내부에 이들 액정 및 이방성 물질 이 독립적으로 존재하는 구조를 가진다. 또한 이들 두 구조가 동시에 존재하는 구조도 활용 가능하다. 또한 소자의 성능을 개선하기 위해 탄성 고분자, 열가소성 엘라스토머, 겔 고분자 층을 적용할 수 있고 고분자를 용제에 팽윤시켜 사용할 수도 있다. 특히 이때 사용되는 용제는 일반 용제뿐만 아니라 액정 및 이방성 물질 자체를 용제로 사용될 수도 있고 일반 용제와 액정 및 이방성 물질을 혼합하여 사용할 수 도 있다. 이렇게 구성된 물질 층 전체적인 조합에 의해 굴절률이 결정되며 또한 이에 준하는 광학적 두께를 갖도록 제어되어야 한다. In the configuration of FIG. 1, ① and ② are transparent electrodes of glass and plastic series, and a light source exists below the light source to provide a path for incidence of light, and act as a lower transparent electrode and an upper transparent electrode, thereby providing electrical signals of the device. Performs the function of passing it. It may also be an electrode connected to a thin film transistor (TFT), depending on the application display specification. ITO is a representative material of the composition, and a transparent conductive polymer is also possible. ③ and ④ are layers of material having different refractive indices and are composed of linear and crosslinked polymer multilayer thin films. ③ is a material layer having a large refractive index R. The thickness is nλ / R L (n = Is a material layer having a low refractive index, and ④ is a layer having a thickness of (nλ) / (4 × R S ) (n = odd) at a wavelength of an applied light source to satisfy a reflection condition of light (λ). It is characteristic. At this time, one or two of the two polymer layers include a liquid crystal and an anisotropic material, the polymer layer is a structure in which the liquid crystal and the anisotropic material is chemically bonded to the linear and crosslinked polymer, or based on the linear and crosslinked polymer It has a structure in which these liquid crystals and anisotropic materials independently exist. Also, a structure in which these two structures exist at the same time can be utilized. In addition, in order to improve the performance of the device, an elastic polymer, a thermoplastic elastomer, a gel polymer layer may be applied, and the polymer may be used by swelling the solvent. In particular, the solvent used at this time may be used as a solvent as well as the liquid crystal and the anisotropic material itself as a general solvent may be used by mixing the general solvent and the liquid crystal and anisotropic material. The refractive index is determined by the entire combination of the material layers thus configured and must be controlled to have an optical thickness corresponding thereto.

상기 조건을 충족할 경우 ①을 통하여 입사한 광원은 ⑤에서와 같이 고 굴절률 층 사이의 저 굴절률 두께를 가진 층에서 반사에 의해 입사한 빛이 반사되어 투과하지 못하는 상태가 된다. ⑥은 소자의 구동에 요구되는 전원 및 구동 스위칭 소자이다. When the above conditions are met, the light source incident through ① is in a state in which light incident by reflection is reflected and not transmitted through the layer having the low refractive index thickness between the high refractive index layers as in ⑤. ⑥ is a power supply and driving switching element required for driving the element.

도2는 ⑦의 전원 스위치의 작동으로 소자 양단에 전압이 인가되어 각층의 액정및 이방성 물질이 배향하게 되며, 이때 발생된 굴절률 값의 변화 (RL→RL * RS→RS *)인하여 반사 조건인 nλ/RL과 nλ/(4×RS)를 충족시킬 수 없는 조건인 nλ/RL *과 nλ/(4×RS *)로 빛은 투과하게 되어 ⑧에서와 같이 빛이 투과하게 된다. 이때, 액정 및 이방성 물질은 고 굴절률 소재에만 또는 저 굴절률 소재에만 존재 할 수도 있고 모두에 존재할 수도 있다. 2 is a voltage is applied across the device by the operation of the power switch of ⑦ to orient the liquid crystal and anisotropic materials of each layer, the change of the refractive index value (R L → R L * and Light transmits through nλ / R L * and nλ / (4 × R S * ), which are conditions that cannot satisfy the reflection conditions nλ / R L and nλ / (4 × R S ) due to R S → R S * ) As in ⑧, light is transmitted. In this case, the liquid crystal and the anisotropic material may be present only in the high refractive index material or only in the low refractive index material, or may be present in both.

도3은 각각 빨강(R), 초록(G), 파랑(B),에 대한 광 변조가 가능한 1차원 광학 결정을 적층하여 구성한 것으로 전계가 인가되지 않을 시에는 R, G, B 모두 통과할 수 없는 상태를 나타내며, 도4는 G에 해당하는 소자에 전계를 인가하여 G에 해당하는 파장만 통과되는 것을 나타낸다. 3 is a stack of one-dimensional optical crystals capable of optical modulation for red (R), green (G), and blue (B), respectively, and can pass through all of R, G, and B when no electric field is applied. 4 shows that only the wavelength corresponding to G is passed by applying an electric field to the device corresponding to G. FIG.

또한, 도5는 R과 G에 해당하는 소자에 전계를 인가하여 R과 G가 통과하고 B는 통과하지 못하는 것을 나타낸다. 따라서 빛의 3원색을 각각뿐만 아니라 조합으로도 통제할 수 있음에 따라 컬러를 구현할 수 있는 디스플레이 소자에 적용이 가능하다. In addition, FIG. 5 shows that R and G pass while B does not pass by applying an electric field to devices corresponding to R and G. FIG. Therefore, the three primary colors of light can be controlled not only in combination but also in combination, and thus can be applied to display devices that can realize colors.

(실시예 1)(Example 1)

ITO Glass에 저 굴절률 층은 polystyrene (PS)에 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 고 굴절률 층으로 poly(N-vinylcarbazole) (PVK)에 1,2-Bis(trichlorosilyl)hexane을 Anhydrous 1,2-chloroethane에 몰 비율 1:1로 혼합하여 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 4번 반복하고 최종 코팅층은 PS와 1,2-Bis(trichlorosilyl)hexane층이 되도록 구성한 후 Sample을 p-methoxybenzylidene-p,n-butylaniline (액정)에 넣어 팽윤 시켜 녹색(400nm)으로 변화될 때 까지 둔 후 샘플의 ITO Glass로 구성한 소자로 400nm대역의 광원과 포토디텍터를 이용한 광 변조를 평가 The low refractive index layer of ITO Glass was mixed with polystyrene (PS) and 1,2-Bis (trichlorosilyl) hexane in anhydrous toluene with a molar ratio of 1: 1 to spin coating and dried under vacuum at 100 ° C for 2hr. Poly (N-vinylcarbazole) (PVK) is mixed with 1,2-Bis (trichlorosilyl) hexane in anhydrous 1,2-chloroethane in a molar ratio of 1: 1 to spin coating and dried under the same conditions. Each of these processes was repeated four times, and the final coating layer was composed of PS and 1,2-Bis (trichlorosilyl) hexane layers, followed by swelling the sample in p-methoxybenzylidene-p, n-butylaniline (liquid crystal) and swelling green (400 nm). It is a device composed of ITO Glass of sample after evaluation until it is changed to and it evaluates light modulation using 400nm light source and photodetector.

(소자 구성)(Element configuration)

Figure 112008005141508-PAT00002
Figure 112008005141508-PAT00002

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00003
Figure 112008005141508-PAT00003

(실시예 2)(Example 2)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건 조하고, 고 굴절률 층으로 poly(N-vinylcarbazole) (PVK)에 1,2-Bis(trichlorosilyl)hexane을 Anhydrous 1,2-chloroethane에 몰 비율 1:1로 혼합하여 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates와 1,2-Bis(trichlorosilyl)hexane층이 되도록 구성한 후 Sample을 ether vapor 분위기에 12시간 노출하여 LC 층이 ether에 의해 팽윤이 발생되도록 한다. 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광 변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 800nm 대력의 특성에 맞는 광학적 두께를 가진다.Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. After drying in vacuo, and spin coating by mixing poly (N-vinylcarbazole) (PVK) with 1,2-Bis (trichlorosilyl) hexane in anhydrous 1,2-chloroethane in a molar ratio 1: 1 Dry under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates and 1,2-Bis (trichlorosilyl) hexane layer, and the sample was exposed to ether vapor atmosphere for 12 hours to expose the LC layer to ether. Swelling is caused by. Since the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 800 nm large force.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate)

Figure 112008005141508-PAT00004
Figure 112008005141508-PAT00004

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00005
Figure 112008005141508-PAT00005

(실시예 3)(Example 3)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 고 굴절률 층으로 poly(N-vinylcarbazole) (PVK)에 1,2-Bis(trichlorosilyl)hexane을 Anhydrous 1,2-chloroethane에 몰 비율 1:1로 혼합하여 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane와 1,2-Bis(trichlorosilyl)hexane층이 되도록 구성한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 600nm 대역의 특성에 맞는 광학적 두께를 가진다. Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. Dried in vacuo and mixed with poly (N-vinylcarbazole) (PVK) with 1,2-Bis (trichlorosilyl) hexane in anhydrous 1,2-chloroethane in a molar ratio of 1: 1 to spin coating Dry under conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane and 1,2-Bis (trichlorosilyl) hexane layer. Evaluated. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 600nm band.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane 의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane)

Figure 112008005141508-PAT00006
Figure 112008005141508-PAT00006

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00007
Figure 112008005141508-PAT00007

(실시예 4)(Example 4)

Side Chain Liquid-Crystalline Biphenyl-Phenyl을 가진 Acrylated polymer와 Carbazole group을 가진 Acrylated polymer (아래그림)을 사용하여 총 9층이 교대로 구성된 다층 필름을 ITO가 코팅된 Glass 기판에 형성하였다. 이때 각각의 고분자 층은 코팅 후 UV를 이용하여 광유도 가교 고분자로 형성되었다. 이후 용매인 THF Vapor에 노출하여 다층 필름이 붉은색이 나타나도록 한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 800nm 대역의 광원과 포토디텍터를 이용하였다A multilayer film consisting of 9 layers of alternating layers was formed on an ITO-coated glass substrate using Acrylated polymer with Side Chain Liquid-Crystalline Biphenyl-Phenyl and Acrylated polymer with Carbazole group (Figure below). At this time, each polymer layer was formed of a photo-induced crosslinked polymer using UV after coating. Thereafter, the multilayer film appeared red after exposure to a solvent, THF Vapor, and the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. In this case, a light source and a photodetector in the 800 nm band were used.

(적용된 고분자 층의 분자구조)(Molecular Structure of Applied Polymer Layer)

Figure 112008005141508-PAT00008
Figure 112008005141508-PAT00008

Figure 112008005141508-PAT00009
Figure 112008005141508-PAT00009

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00010
Figure 112008005141508-PAT00010

(실시예 5)(Example 5)

Polystyrene과 Copolymer를 이룬 Acrylated polymer와 Carbazole group을 가진 Acrylated polymer (아래그림)을 사용하여 총 13층이 교대로 구성된 다층 필름을 ITO가 코팅된 Glass 기판에 형성하였다. 이때 각각의 고분자 층은 코팅 후 UV를 이용하여 광유도 가교 고분자로 형성되었다. 이후 샘플을 p-methoxybenzylidene-p,n-butylaniline (액정)이 녹아 있는 용매 chloroform에 dipping하여 다층 필름이 녹색이 나타나도록 한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 600nm 대역의 광원과 포토디텍터를 이용하였다A multilayer film composed of 13 layers of alternating layers was formed on an ITO-coated glass substrate by using an acrylated polymer composed of polystyrene and a copolymer and an acrylated polymer having a carbazole group (Figure below). At this time, each polymer layer was formed of a photo-induced crosslinked polymer using UV after coating. After dipping the sample into solvent chloroform in which p-methoxybenzylidene-p, n-butylaniline (liquid crystal) was dissolved, the multilayer film appeared green. Then, the ITO upper substrate was combined to complete the device and evaluated the light modulation characteristics. In this case, a 600 nm light source and a photo detector were used.

(적용된 고분자 층의 분자구조)(Molecular Structure of Applied Polymer Layer)

Figure 112008005141508-PAT00011
Figure 112008005141508-PAT00012
Figure 112008005141508-PAT00011
Figure 112008005141508-PAT00012

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00013
Figure 112008005141508-PAT00013

(실시예 6)(Example 6)

poly(ethylene oxide)-b-poly{11-[4-(4-butylphenylazo)phenoxy]-undecyl methacrylate (아래그림)을 ITO가 코팅된 Glass 기판에 Langmuir-Blodgett (LB) 기술을 사용하여 형성하고, 샘플을 건조한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 또한 필름 형성 후 샘플을 건조한 후 용매 Hexan에 노출하여 공중합 체 중 소수성 영역인methacrylate영역에 침투시켜 하여 샘플이 파란 색이 나타나도록 하였다. 이때 코팅된 블록 공중합체의 구조는 자기 적층에 의해 다층 구조를 갖고 있었으며 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 400nm 대역의 광원과 포토디텍터를 이용하였다. Poly (ethylene oxide) -b -poly {11- [4- (4-butylphenylazo) phenoxy] -undecyl methacrylate (shown below) was formed on ITO-coated glass substrate using Langmuir-Blodgett (LB) technology. After the samples were dried, the ITO top substrates were combined to complete the device and to evaluate the light modulation characteristics. In addition, after forming the film, the sample was dried and exposed to a solvent Hexan to penetrate into the hydrophobic region of the copolymer methacrylate so that the sample appeared blue. At this time, the structure of the coated block copolymer had a multilayer structure by magnetic lamination, and then the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. In this case, a light source and a photodetector having a 400 nm band were used.

(적용된 고분자 층의 분자구조)(Molecular Structure of Applied Polymer Layer)

Figure 112008005141508-PAT00014
Figure 112008005141508-PAT00014

( as-received 광 변조 결과)(as-received optical modulation result)

Figure 112008005141508-PAT00015
Figure 112008005141508-PAT00015

(용매 팽윤 후 광 변조 결과)(Light modulation result after solvent swelling)

Figure 112008005141508-PAT00016
Figure 112008005141508-PAT00016

(실시예 7)(Example 7)

Polystyrene-b-quaternized poly(2-vinyl pyridine)을 ITO가 코팅된 Glass 기판에 Spin Coating 한 후 1,4-dibromobutane이 함유된 hexane에 Dipping하여 vinyl pyridine에서 Crosslink를 형성하여 겔을 형성 하였으며, 이후 샘플을 건조한 후 p-methoxybenzylidene-p,n-butylaniline (액정)을 이용하여 침윤 시켜 붉은 색이 나타 나도록 준비하였다. 이때 코팅된 블록 공중합체의 구조는 자기 적층에 의해 다층 구조를 갖고 있었으며 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 800nm 대역의 광원과 포토디텍터를 이용하였다. Polystyrene- b -quaternized poly (2-vinyl pyridine) was spin-coated on ITO-coated glass substrate, then dipping into hexane containing 1,4-dibromobutane to form a crosslink in vinyl pyridine to form a gel. After drying, the mixture was infiltrated with p-methoxybenzylidene-p, n-butylaniline (liquid crystal) to prepare a red color. At this time, the structure of the coated block copolymer had a multilayer structure by magnetic lamination, and then the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. In this case, a light source and a photodetector in the 800 nm band were used.

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00017
Figure 112008005141508-PAT00017

(실시예 8)(Example 8)

Side Chain 액정과 가교 linkage를 가진 Polysiloxane과 고굴절률인 carbazole 그룹과 Crosslinkage를 갖는 Acrylate 고분자를 ITO가 코팅된 Glass 기판에 교대로 Spin Coating 한 후 각각을 UV를 이용하여 가교 시켜 총 9층의 다층막을 형성하였다. 코팅된 필름은 적층된 막들의 두께에 의해 녹색을 나타내었고 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 600nm 대역의 광원과 포토디텍터를 이용하였다. Polysiloxane with side chain liquid crystal and crosslink linkage, carbazole group with high refractive index and Acrylate polymer with crosslinkage are alternately spin coated on ITO-coated glass substrate and crosslinked with UV to form a total of 9 layers It was. The coated film appeared green by the thickness of the laminated films, and then the ITO upper substrate was bonded to complete the device and to evaluate the light modulation characteristics. In this case, a light source and a photodetector of 600 nm band were used.

(적용된 고분자 층의 분자구조)(Molecular Structure of Applied Polymer Layer)

Figure 112008005141508-PAT00018
Figure 112008005141508-PAT00019
Figure 112008005141508-PAT00018
Figure 112008005141508-PAT00019

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00020
Figure 112008005141508-PAT00020

(실시예 9)(Example 9)

Side Chain 액정을 가진 열가소성 고분자와 carbazole 그룹을 갖는 Acrylate 고분자를 ITO가 코팅된 Glass 기판에 교대로 Spin Coating 한 후 11층의 다층막을 형성하였다. 코팅된 필름은 적층된 막들의 두께에 의해 붉은색을 나타내었고 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 800nm 대역의 광원과 포토디텍터를 이용하였다. The thermoplastic polymer having the side chain liquid crystal and the Acrylate polymer having the carbazole group were alternately spin coated on an ITO-coated glass substrate to form 11 layers of multilayers. The coated film was red by the thickness of the laminated films, and then the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. In this case, a light source and a photodetector in the 800 nm band were used.

(적용된 고분자 층의 분자구조)(Molecular Structure of Applied Polymer Layer)

Figure 112008005141508-PAT00021
Figure 112008005141508-PAT00021

Figure 112008005141508-PAT00022
Figure 112008005141508-PAT00022

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00023
Figure 112008005141508-PAT00023

(실시예 10)(Example 10)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 엘라스토머의 대표 물질인 poly(ε-caprolactone)-block-poly(bytylene terephthalate)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates와 poly(ε-caprolactone)-block -poly(bytylene terephthalate)층이 되도록 구성한 후 Sample을 ether vapor 분위기에 12시간 노출하여 LC 층이 ether에 의해 팽윤이 발생되도록 한다. 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광 변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 800nm 대력의 특성에 맞는 광학적 두께를 가진다.Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. After drying under vacuum, poly (ε-caprolactone) -block-poly (bytylene terephthalate) (pictured below), a representative material of thermoplastic elastomer, is spin coated and dried under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates and poly (ε-caprolactone) -block-poly (bytylene terephthalate) layers, and the sample was exposed to ether vapor atmosphere for 12 hours. This allows the LC layer to swell with ether. Since the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 800 nm large force.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate)

Figure 112008005141508-PAT00024
Figure 112008005141508-PAT00024

poly(ε-caprolactone)-block-poly(bytylene terephthalate의 분자구조)poly (ε-caprolactone) -block-poly (molecular structure of bytylene terephthalate)

Figure 112008005141508-PAT00025
Figure 112008005141508-PAT00025

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00026
Figure 112008005141508-PAT00026

(실시예 11)(Example 11)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 엘라스토머의 대표 물질인 poly(tetramethylene oxide)-block -poly(tetramethylene 2,6-naphthalene dicarboxylate)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates와 poly(tetramethylene oxide)-block-poly(tetramethylene 2,6-naphthalene dicarboxylate) 층이 되도록 구성한 후 Sample을 ether vapor 분위기에 12시간 노 출하여 LC 층이 ether에 의해 팽윤이 발생되도록 한다. 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광 변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 800nm 대력의 특성에 맞는 광학적 두께를 가진다.Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. After drying in vacuum, poly (tetramethylene oxide) -block-poly (tetramethylene 2,6-naphthalene dicarboxylate) (Figure below), a representative material of thermoplastic elastomer, is spin coated and dried under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates and poly (tetramethylene oxide) -block-poly (tetramethylene 2,6-naphthalene dicarboxylate) layers. After 12 hours of exposure, the LC layer causes swelling by ether. Since the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 800 nm large force.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate)

Figure 112008005141508-PAT00027
Figure 112008005141508-PAT00027

(Poly(tetramethylene oxide)-block-poly(tetramethylene 2,6-naphthalenedicarboxylate)의 분자구조)Molecular Structure of Poly (tetramethylene oxide) -block-poly (tetramethylene 2,6-naphthalenedicarboxylate)

Figure 112008005141508-PAT00028
Figure 112008005141508-PAT00028

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00029
Figure 112008005141508-PAT00029

(실시예 12)(Example 12)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 엘라스토머의 대표 물질인 poly(ε-caprolactone)-block-poly(bytylene terephthalate)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane와 poly(ε-caprolactone)-block -poly(bytylene terephthalate) 층이 되도록 구성한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 600nm 대역의 특성에 맞는 광학적 두께를 가진다. Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. After drying under vacuum, poly (ε-caprolactone) -block-poly (bytylene terephthalate) (pictured below), a representative material of thermoplastic elastomer, is spin coated and dried under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane and poly (ε-caprolactone) -block-poly (bytylene terephthalate) layers, and then combined with the ITO upper substrate to complete the device. And light modulation characteristics were evaluated. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 600nm band.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane 의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane)

Figure 112008005141508-PAT00030
Figure 112008005141508-PAT00030

(poly(ε-caprolactone)-block-poly(bytylene terephthalate)의 분자구조)(Molecular structure of poly (ε-caprolactone) -block-poly (bytylene terephthalate))

Figure 112008005141508-PAT00031
Figure 112008005141508-PAT00031

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00032
Figure 112008005141508-PAT00032

(실시예 13)(Example 13)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건 조하고, 열가소성 엘라스토머의 대표 물질인 poly(tetramethylene oxide)-block- poly(tetramethylene 2,6-naphthalene dicarboxylate)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane와 poly(tetramethylene oxide)-block-poly(tetramethylene 2,6-naphthalene dicarboxylate)층이 되도록 구성한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 600nm 대역의 특성에 맞는 광학적 두께를 가진다. Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. After drying under vacuum, poly (tetramethylene oxide) -block-poly (tetramethylene 2,6-naphthalene dicarboxylate) (pictured below), a representative material of thermoplastic elastomer, is spin coated and dried under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane and poly (tetramethylene oxide) -block-poly (tetramethylene 2,6-naphthalene dicarboxylate) layers, and then bonded to the ITO top substrate. The device was completed and the light modulation characteristics were evaluated. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 600nm band.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane 의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane)

Figure 112008005141508-PAT00033
Figure 112008005141508-PAT00033

(poly(tetramethylene oxide)-block-poly(tetramethylene 2,6-naphthalenedicarboxylate)의of (poly (tetramethylene oxide) -block-poly (tetramethylene 2,6-naphthalenedicarboxylate)

분자구조) Molecular structure)

Figure 112008005141508-PAT00034
Figure 112008005141508-PAT00034

(광 변조 결과)(Optical modulation result)

(실시예 14)(Example 14)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 플라스틱과 합성고무의 블록공중합체의 대표 물질인 polyester-polysiloxane block copolymers(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates와 polyester-polysiloxane block copolymers층이 되도록 구성한 후 Sample을 ether vapor 분위기에 12시간 노출하여 LC 층이 ether에 의해 팽윤이 발생되도록 한다. 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광 변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 800nm 대력의 특성에 맞는 광학적 두께를 가진다.Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. While drying under vacuum, spin-coating polyester-polysiloxane block copolymers (pictured below), which is representative of block copolymers of thermoplastics and synthetic rubber, and drying them under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates and polyester-polysiloxane block copolymers.The sample was then exposed to ether vapor atmosphere for 12 hours, and the LC layer was swollen by ether. To be generated. Since the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 800 nm large force.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate)

Figure 112008005141508-PAT00035
Figure 112008005141508-PAT00035

(polyester-polysiloxane block copolymers의 분자구조)(Molecular Structure of Polyester-polysiloxane Block Copolymers)

Figure 112008005141508-PAT00036
Figure 112008005141508-PAT00036

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00037
Figure 112008005141508-PAT00037

(실시예 15)(Example 15)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 플라스틱과 합성고무의 블록공중합체의 대표 물질인 polyester-polysiloxane block copolymers(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane와 polyester-polysiloxane block copolymers층이 되도록 구성한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 600nm 대역의 특성에 맞는 광학적 두께를 가진다. Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. While drying under vacuum, spin-coating polyester-polysiloxane block copolymers (pictured below), which is representative of block copolymers of thermoplastics and synthetic rubber, and drying them under the same conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane and polyester-polysiloxane block copolymer layers, and the ITO upper substrate was combined to complete the device and evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 600nm band.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane 의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane)

Figure 112008005141508-PAT00038
Figure 112008005141508-PAT00038

(polyester-polysiloxane block copolymers의 분자구조)(Molecular Structure of Polyester-polysiloxane Block Copolymers)

Figure 112008005141508-PAT00039
Figure 112008005141508-PAT00039

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00040
Figure 112008005141508-PAT00040

(실시예 16)(Example 16)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 플라스틱과 하이드로 젤의 블록공중합체의 대표 물질인 poly(DL-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(DL-lactic acid-co-glycolic acid)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates와 poly(DL-lactic acid-co-glycolic acid)-poly(ethylene glycol)- poly(DL-lactic acid-co-glycolic acid)층이 되도록 구성한 후 Sample을 ether vapor 분위기에 12시간 노출하여 LC 층이 ether에 의해 팽윤이 발생되도록 한다. 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광 변조 특 성을 평가하였다. 이때 각 층의 광학적 특성은 800nm 대력의 특성에 맞는 광학적 두께를 가진다.Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. Dried in vacuo, and poly (DL-lactic acid-co-glycolic acid) -poly (ethylene glycol) -poly (DL-lactic acid-co-glycolic acid), which is representative of block copolymers of thermoplastics and hydrogels Spin coating the below figure and dry it under the same condition. Each of these processes was repeated eight times and the final coating layer was Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates and poly (DL-lactic acid-co-glycolic acid) -poly (ethylene glycol) -poly (DL-lactic acid-co- After the glycolic acid) layer is formed, the sample is exposed to ether vapor atmosphere for 12 hours to cause the LC layer to swell by ether. The ITO top substrate was then combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 800 nm large force.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate)

Figure 112008005141508-PAT00041
Figure 112008005141508-PAT00041

(poly(DL-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(DL-lactic acid-co-glycolic acid)의 분자구조)(Molecular structure of poly (DL-lactic acid-co-glycolic acid) -poly (ethylene glycol) -poly (DL-lactic acid-co-glycolic acid))

Figure 112008005141508-PAT00042
Figure 112008005141508-PAT00042

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00043
Figure 112008005141508-PAT00043

(실시예 17)(Example 17)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 플라스틱과 하이드로 젤의 블록공중합체의 대표 물질인 poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates와 poly(ethylene oxide)-block-poly(propylene oxide)-block -poly(ethylene oxide)층이 되도록 구성한 후 Sample을 ether vapor 분위기에 12시간 노출하여 LC 층이 ether에 의해 팽윤이 발생되도록 한다. 이후 ITO 상부 기판을 결합하여 소자를 완성하고 광 변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 800nm 대력의 특성에 맞는 광학적 두께를 가진다.Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. Dried under vacuum and spin coated with poly (ethylene oxide) -block-poly (propylene oxide) -block-poly (ethylene oxide) (Figure below) Dry under conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylates and poly (ethylene oxide) -block-poly (propylene oxide) -block-poly (ethylene oxide) layers. Exposure to ether vapor atmosphere for 12 hours causes the LC layer to swell by ether. Since the ITO upper substrate was combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 800 nm large force.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polyacrylate)

Figure 112008005141508-PAT00044
Figure 112008005141508-PAT00044

(poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)의 분자구조)(Molecular structure of poly (ethylene oxide) -block-poly (propylene oxide) -block-poly (ethylene oxide))

Figure 112008005141508-PAT00045
Figure 112008005141508-PAT00045

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00046
Figure 112008005141508-PAT00046

(실시예 18)(Example 18)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 플라스틱과 하이드로 젤의 블록공중합체의 대표 물질인 poly(DL-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(DL-lactic acid-co-glycolic acid)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane와 poly(DL-lactic acid-co-glycolic acid)- poly(ethylene glycol)-poly(DL-lactic acid-co-glycolic acid)층이 되도록 구성한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 600nm 대역의 특성에 맞는 광학적 두께를 가진다. Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. Dried in vacuo, and poly (DL-lactic acid-co-glycolic acid) -poly (ethylene glycol) -poly (DL-lactic acid-co-glycolic acid), which is representative of block copolymers of thermoplastics and hydrogels Spin coating the below figure and dry it under the same condition. Each of these processes was repeated eight times and the final coating layer was Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane and poly (DL-lactic acid-co-glycolic acid) -poly (ethylene glycol) -poly (DL-lactic acid-co- After the glycolic acid layer was formed, the device was completed by combining the upper substrate of ITO and the light modulation characteristics were evaluated. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 600nm band.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane 의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane)

Figure 112008005141508-PAT00047
Figure 112008005141508-PAT00047

(poly(DL-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(DL-lactic acid-co-glycolic acid)의 분자구조)(Molecular structure of poly (DL-lactic acid-co-glycolic acid) -poly (ethylene glycol) -poly (DL-lactic acid-co-glycolic acid))

Figure 112008005141508-PAT00048
Figure 112008005141508-PAT00048

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00049
Figure 112008005141508-PAT00049

(실시예 19)(Example 19)

Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (아래그림) 와 1,2-Bis(trichlorosilyl)hexane을 Anhydrous Toluene에 몰비율 1:1로 혼합하여 ITO가 코팅된 Glass 하부 기판에 Spin Coating 하여 100℃에서 2hr 동안 진공에서 건조하고, 열가소성 플라스틱과 하이드로 젤의 블록공중합체의 대표 물질인 poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)(아래그림)를 Spin Coating 한 후 동일 조건에서 건조한다. 이들 각각의 공정을 8회 반복하고 최종 코팅층은 Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane와 poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)층이 되도록 구성한 후 ITO 상부 기판을 결합하여 소자를 완성하고 광변조 특성을 평가하였다. 이때 각 층의 광학적 특성은 600nm 대역의 특성에 맞는 광학적 두께를 가진다. Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane (Figure below) and 1,2-Bis (trichlorosilyl) hexane are mixed with Anhydrous Toluene in a molar ratio of 1: 1. Dried under vacuum and spin coated with poly (ethylene oxide) -block-poly (propylene oxide) -block-poly (ethylene oxide) (Figure below) Dry under conditions. Each of these processes was repeated eight times, and the final coating layer was composed of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane and poly (ethylene oxide) -block-poly (propylene oxide) -block-poly (ethylene oxide) layers. The substrates were combined to complete the device and to evaluate the light modulation characteristics. At this time, the optical characteristics of each layer has an optical thickness that matches the characteristics of the 600nm band.

(Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane 의 분자구조)(Molecular Structure of Side Chain Liquid-Crystalline Biphenyl-Phenyl Polysiloxane)

Figure 112008005141508-PAT00050
Figure 112008005141508-PAT00050

poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)의 of poly (ethylene oxide) -block-poly (propylene oxide) -block-poly (ethylene oxide)

분자구조)Molecular structure)

Figure 112008005141508-PAT00051
Figure 112008005141508-PAT00051

(광 변조 결과)(Optical modulation result)

Figure 112008005141508-PAT00052
Figure 112008005141508-PAT00052

(실시예 20)(Example 20)

실시예 3의 구성을 갖는 물질로 Red(800nm), Green(600nm), Blue(400nm) 각각의 파장을 제어할 수 있도록 다층막의 두께를 제어하여 소자를 각각 제어하여 이들을 결합하여 하나의 소자로 구성하여 백색광을 이용한 광 제어 평가 결과The material having the structure of Example 3 is controlled by controlling the thickness of the multilayer film so as to control the wavelengths of each of Red (800 nm), Green (600 nm), and Blue (400 nm), and controlling the respective devices to combine them to form one device. Evaluation results of light control using white light

(소자 구조 및 구동)(Element structure and driving)

Figure 112008005141508-PAT00053
Figure 112008005141508-PAT00053

(소자 구동에 따른 투과광)(Transmitted light due to device driving)

Figure 112008005141508-PAT00054
Figure 112008005141508-PAT00054

도1은 광변조기의 OFF 상태의 소자 단면을 나타내며 정상상태에서 주어진 파장을 가진 빛의 전 반사 조건이 만족되어 입사한 빛이 투과 되지 않는 상태를 나타낸다.Fig. 1 shows an element cross section in the OFF state of the optical modulator and shows a state in which the incident light is not transmitted because the full reflection condition of the light having the given wavelength is satisfied in the steady state.

도2는 광변조기의 ON 상태의 소자 단면을 나타내며, 전기적 제어에 의해 소자 내부의 액정 및 이방성 물질의 배향에 의해 굴절률 변화로 빛의 광 경로가 바뀌어 정상 상태의 반사 조건이 파괴 되어 빛이 투과 되는 상태를 나타낸다.Figure 2 shows the device cross section of the ON state of the optical modulator, the light path of the light is changed by the refractive index change by the orientation of the liquid crystal and anisotropic material inside the device by the electrical control, the light reflects in the normal state is destroyed, the light is transmitted Indicates the state.

도3은 각각 Red, Green, Blue에 해당하는 다층의 광 변조 소자를 다층으로 적층하여 정상 상태에서 RGB 모든 빛이 투과하지 못하는 상태를 나타낸다.FIG. 3 illustrates a state in which all of the RGB light cannot be transmitted in a normal state by stacking multiple light modulation devices corresponding to red, green, and blue in multiple layers.

도4는 다층으로 적층된 소자 중 Green에 해당하는 소자에 전계가 인가됨에 따라 다른 빛은 반사되고 Green 만이 투과하는 것을 나타내는 것이다. Figure 4 shows that as the electric field is applied to the device corresponding to Green among the devices stacked in multiple layers, other light is reflected and only the Green is transmitted.

도5는 다층으로 적층된 소자 중 Red와 Green에 해당하는 소자에 전계가 인가됨에 따라 Blue는 반사되고 Red와 Green이 투과하여 새로운 색이 나타내는 것으로 광 스위칭 및 파장 제어가 가능함을 나타낸다. 5 shows that as the electric field is applied to the devices corresponding to the red and the green among the devices stacked in the multilayer, the blue is reflected and the red and the green are transmitted to show a new color, so that light switching and wavelength control are possible.

Claims (5)

투명 전극 사이에 굴절률이 다른 2종의 고분자가 교대로 이루어져 일정 파장 대역에서 전반사가 발생하는 1차원 광학 결정에서, 투명 전극을 통한 전계인가로 이들 고분자 내부에 존재하는 액정, 이방성 물질 및 유무기 나노 입자의 정렬로 인하여 굴절률이 변화되어 빛의 투과 및 반사가 제어되는 광 변조 소자 및 장치. In one-dimensional optical crystals in which two kinds of polymers having different refractive indices are alternately formed between transparent electrodes to generate total reflection at a predetermined wavelength band, liquid crystals, anisotropic materials, and organic-inorganic nanoparticles existing inside these polymers by applying an electric field through the transparent electrode. An optical modulation device and apparatus in which the refractive index is changed due to the alignment of particles to control the transmission and reflection of light. 청구항 1의 1차원 광학 결정을 구성하는 2종의 고분자 다층막에서 1종이상의 층은 액정, 이방성 물질 및 유무기 나노 입자를 포함한다.In the two kinds of polymer multilayer films constituting the one-dimensional optical crystal of claim 1, at least one layer contains a liquid crystal, an anisotropic substance and organic-inorganic nanoparticles. 청구항 1과 2의 액정 및 이방성 물질은 선형 및 가교 고분자에 화학적으로 결합된 구조이거나, 선형 및 가교 고분자를 기지로 하고 그 내부에 이들 액정, 이방성 물질 및 유무기 나노 입자들이 독립적으로 존재하는 구조를 가지며, 또한 이들 두 구조가 동시에 존재하는 경우도 포함된다. The liquid crystals and anisotropic materials of claims 1 and 2 are chemically bonded to linear and crosslinked polymers, or have structures based on linear and crosslinked polymers and in which these liquid crystals, anisotropic materials and organic-inorganic nanoparticles are independently present. It also includes the case where these two structures are present at the same time. 청구항 3의 선형 및 가교 고분자는 열가소성고분자, 가교고분자, 탄성 고분자, 열가소성 엘라스토머, 고분자 겔(Gel) 및 플라스틱 크리스탈을 포함하고, 2종의 고분자 대신 열가소성고분자, 가교고분자, 엘라스토머 및 고분자 겔이 블록 공중합체를 이룬 물질로 자기 조립에 의해 다층이 구현된 것도 포함한다.The linear and crosslinked polymers of claim 3 include thermoplastic polymers, crosslinked polymers, elastic polymers, thermoplastic elastomers, polymer gels, and plastic crystals. It also includes a multi-layered material by self-assembly made of a coalescing material. 350-2000nm 사이의 각기 다른 파장 대역을 제어할 수 있도록 구성된 청구항 1의 소자 2종 이상을 다층으로 적층하여 각 소자의 전기적 제어에 의해 빛의 투과 및 반사를 변조하는 장치.An apparatus for modulating the transmission and reflection of light by electrical control of each element by stacking two or more kinds of the elements of claim 1 configured to control different wavelength bands between 350-2000 nm.
KR1020080006483A 2008-01-22 2008-01-22 A light modulator by the photonic crystals including the controllable layer of reflective index KR101325327B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080006483A KR101325327B1 (en) 2008-01-22 2008-01-22 A light modulator by the photonic crystals including the controllable layer of reflective index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080006483A KR101325327B1 (en) 2008-01-22 2008-01-22 A light modulator by the photonic crystals including the controllable layer of reflective index

Publications (2)

Publication Number Publication Date
KR20090080620A true KR20090080620A (en) 2009-07-27
KR101325327B1 KR101325327B1 (en) 2013-11-08

Family

ID=41291697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080006483A KR101325327B1 (en) 2008-01-22 2008-01-22 A light modulator by the photonic crystals including the controllable layer of reflective index

Country Status (1)

Country Link
KR (1) KR101325327B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045006A (en) * 2015-08-17 2015-11-11 武汉华星光电技术有限公司 Liquid crystal display panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060059992A (en) * 2006-01-31 2006-06-02 닛토덴코 가부시키가이샤 Interferential optical filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045006A (en) * 2015-08-17 2015-11-11 武汉华星光电技术有限公司 Liquid crystal display panel
WO2017028297A1 (en) * 2015-08-17 2017-02-23 武汉华星光电技术有限公司 Liquid crystal display panel
CN105045006B (en) * 2015-08-17 2017-10-24 武汉华星光电技术有限公司 A kind of liquid crystal display panel
GB2556605A (en) * 2015-08-17 2018-05-30 Wuhan China Star Optoelectronics Technology Co Ltd Liquid crystal display panel
EA035303B1 (en) * 2015-08-17 2020-05-26 Ухань Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд Flexible touch panel and oled display panel
GB2556605B (en) * 2015-08-17 2021-04-14 Wuhan China Star Optoelectronics Technology Co Ltd Flexible touch panel and oled display panel

Also Published As

Publication number Publication date
KR101325327B1 (en) 2013-11-08

Similar Documents

Publication Publication Date Title
Saeed et al. Recent advances in the polymer dispersed liquid crystal composite and its applications
Zhang et al. Stimuli‐Responsive Polymers for Actuation
Zhang et al. Unlocking chemically encrypted information using three types of external stimuli
US9046704B2 (en) Apparatus and method for guiding optical waves
US4767169A (en) Thin film waveguide electrooptic modulator
Wang et al. Robust Mechanochromic Elastic One‐Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays
KR101957151B1 (en) Viologen compound, electrolyte, light-transmittance variable panel and display device having the compound
Lu et al. Electrically tunable block copolymer photonic crystals with a full color display
Yin et al. Soft display using photonic crystals on dielectric elastomers
Li et al. Tunable circularly polarized luminescence with a high dissymmetry factor emitted from luminogen-bonded and electrically controlled polymer-stabilized cholesteric liquid crystals
Yang et al. Mechanochromic responses of cholesteric liquid crystal droplets with nanoscale periodic helical structures showing reversible and tunable structural color
Dai et al. Achieving circularly polarized surface emitting perovskite microlasers with all-dielectric metasurfaces
van Heeswijk et al. Paintable encapsulated body-temperature-responsive photonic reflectors with arbitrary shapes
KR20180135503A (en) Dye compound, polarizer using the same and display device using the dye compound
CN107203077A (en) Image display device
JP2014527202A (en) Liquid crystal cell
Lu et al. Fast electrically driven photonic crystal based on charged block copolymer
JP6519893B2 (en) Liquid crystal element
KR101325327B1 (en) A light modulator by the photonic crystals including the controllable layer of reflective index
Liu et al. Janus photochemical/photothermal azobenzene inverse opal actuator with shape self-recovery toward sophisticated motion
Xu et al. Mechano-optical response behavior of polymer-dispersed cholesteric liquid crystals for reversible and highly sensitive force recorders
Saeed et al. Electrostatically powered multimode liquid crystalline elastomer actuators
KR20160120485A (en) Vertical alignment layer and liquid crystal device comprising the same
Kim et al. Stabilization of excited 2, 3-bis (2-methyl [b] benzothiophen-3-yl) maleic anhydride in a poly (ethylene glycol)-g-polysiloxane
Huang et al. Enhancing NIR Electrochromism with Twisted Copolymer Films of Corannulene-Carbazole and 3, 4-Ethylenedioxythiophene

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170926

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee