KR20090077198A - Method for manufacturing of isolation layer of semiconductor device - Google Patents

Method for manufacturing of isolation layer of semiconductor device Download PDF

Info

Publication number
KR20090077198A
KR20090077198A KR1020080003012A KR20080003012A KR20090077198A KR 20090077198 A KR20090077198 A KR 20090077198A KR 1020080003012 A KR1020080003012 A KR 1020080003012A KR 20080003012 A KR20080003012 A KR 20080003012A KR 20090077198 A KR20090077198 A KR 20090077198A
Authority
KR
South Korea
Prior art keywords
insulating film
insulating material
semiconductor device
gas
oxygen
Prior art date
Application number
KR1020080003012A
Other languages
Korean (ko)
Inventor
민성규
이종민
김찬배
정채오
안현주
이효석
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020080003012A priority Critical patent/KR20090077198A/en
Publication of KR20090077198A publication Critical patent/KR20090077198A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/0231Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to electromagnetic radiation, e.g. UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

An insulating film forming method of the semiconductor device is provided, which can prevent the generation of the stress and contraction by hardening the forming insulating film material coated on the spin-on the semiconductor substrate. The pattern(110) is formed in the semiconductor substrate(100). The insulating material is applied on the semiconductor substrate so that domain for each pattern can be reclaimed. The insulating material is baked. The insulating material is hardened in the oxygen atmosphere by radiating the ultraviolet ray. The insulating material curing step is performed by injecting the ozone gas and oxygen gas. The insulating material is the polysilazane.

Description

반도체 소자의 절연막 형성 방법{Method for manufacturing of isolation layer of semiconductor device}TECHNICAL FIELD OF THE INVENTION An insulating film forming method of a semiconductor device

본 발명은 반도체 소자의 절연막 형성 방법에 관한 것으로서, 보다 상세하게는, 스핀 코팅 공정으로 형성되는 갭필용 절연막의 밀도를 향상시킬 수 있는 반도체 소자의 절연막 형성 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film of a semiconductor device, and more particularly, to a method for forming an insulating film for a semiconductor device capable of improving the density of the gap fill insulating film formed by a spin coating process.

모든 반도체 소자에는 금속 배선이 다층으로 형성되고 상기 다층의 금속 배선을 전기적으로 절연시키기 위하여 상기 금속 배선 사이에는 층간절연막이 형성된다. 그리고, 상기 층간절연막 이외에 반도체 기판에 형성되는 소자들을 전기적으로 격리시키기 위하여 소자분리막용으로 절연막이 형성된다.In all semiconductor devices, metal wirings are formed in multiple layers, and an interlayer insulating film is formed between the metal wirings to electrically insulate the multilayer metal wirings. An insulating film is formed for the device isolation film to electrically isolate the devices formed on the semiconductor substrate in addition to the interlayer insulating film.

일반적으로, 반도체 소자의 소자분리막을 포함하여 각종 층간절연막은 SOD(Spin on dielectric)막, HDP(High density plasma)막, BPSG(Boro phospo silicate glass)막, TEOS(Tetraethylorthosilicate)막, SiO2막 및 저유전막 등과 같이 다양한 산화막 및 화합물막으로 형성된다.In general, various interlayer insulating films, including device isolation layers of semiconductor devices, include spin on dielectric (SOD) films, high density plasma (HDP) films, boro phospo silicate glass (BPSG) films, tetraethylorthosilicate (TEOS) films, SiO 2 films, and the like. It is formed of various oxide films and compound films, such as a low dielectric film.

한편, 최근에는 반도체 기술의 진보와 더불어 디자인 룰이 점점 작아짐에 따 라 반도체 소자의 고집적화가 급속하게 진행되고 있다. 이에 수반하여, 종래 CVD(Chemical vapor deposition) 방법으로 형성되는 TEOS막 또는 HDP막과 같은 절연막은 400℃ 이상의 높은 온도에서 공정이 수행되기 때문에 갭―필(Gap fill) 측면에서 한계가 있다.On the other hand, in recent years, with the progress of semiconductor technology and the design rules are getting smaller, high integration of semiconductor devices is rapidly progressing. In connection with this, an insulating film such as a TEOS film or an HDP film formed by a conventional chemical vapor deposition (CVD) method is limited in terms of gap fill because the process is performed at a high temperature of 400 ° C. or higher.

따라서, 최근에는 상기 절연막의 형성시 발생하는 갭―필 문제를 극복하기 위하여, 액체와 같은 유동성을 가진 물질을 이용한 스핀―코팅(Spin―coating) 방법으로 각종 절연막을 형성하는 방법이 이용되고 있다. Therefore, recently, in order to overcome the gap-fill problem generated during the formation of the insulating film, a method of forming various insulating films by a spin-coating method using a material having fluidity such as liquid has been used.

그러나, 상기 스핀―코팅 방식으로 형성된 절연막은 종래의 CVD 방식으로 형성된 산화막과 같은 절연막에 비하여 매립 특성이 우수한 반면, 절연막의 밀도가 매우 낮고 패턴상에서 박막의 밀도가 균일하지 못하다. However, the insulating film formed by the spin-coating method is superior to the insulating film such as the oxide film formed by the conventional CVD method, while the density of the insulating film is very low and the density of the thin film is not uniform on the pattern.

또한, 탄성계수, 크랙 저항성 등과 같은 기계적 강도가 약하여 크랙과 같은 공정 이슈가 발생하고 있다. In addition, the mechanical strength such as elastic modulus, crack resistance, etc. is weak, causing process issues such as cracks.

따라서, 우수한 갭―필 능력을 가지면서 박막 밀도가 우수한 절연막을 형성하기 위한 새로운 공정이 필요하게 되었다.Thus, there is a need for a new process for forming an insulating film having excellent gap-fill capability and excellent thin film density.

본 발명은 스핀 코팅 공정으로 형성되는 갭필용 절연막의 밀도를 향상시킬 수 있는 반도체 소자의 절연막 형성 방법을 제공한다.The present invention provides a method for forming an insulating film of a semiconductor device capable of improving the density of the gap fill insulating film formed by a spin coating process.

본 발명에 따른 반도체 소자의 절연막 형성 방법은, 반도체 기판에 패턴들을 형성하는 단계; 상기 각 패턴들 사이 영역이 매립되도록 상기 반도체 기판 상에 절연물질을 도포하는 단계; 및 상기 절연물질을 산소분위기에서 자외선을 조사하여 경화시키는 단계를 포함한다. An insulating film forming method of a semiconductor device according to the present invention comprises the steps of forming patterns on a semiconductor substrate; Applying an insulating material on the semiconductor substrate to fill the region between the patterns; And curing the insulating material by irradiating ultraviolet rays in an oxygen atmosphere.

상기 경화시키는 단계는 오존(O3) 가스와 산소(O2) 가스를 주입하여 수행한다.The curing step is performed by injecting ozone (O 3 ) gas and oxygen (O 2 ) gas.

상기 오존(O3) 가스와 산소(O2) 가스는 1 : 10 ∼ 5 : 5의 비율로 주입한다.The ozone (O 3 ) gas and the oxygen (O 2 ) gas are injected at a ratio of 1:10 to 5: 5.

상기 경화시키는 단계는 200 ∼ 400℃의 온도에서 수행한다.The curing step is carried out at a temperature of 200 ~ 400 ℃.

상기 경화시키는 단계는 180 ∼ 280nm 영역의 파장을 갖는 자외선을 이용하여 수행한다.The curing step is performed using ultraviolet light having a wavelength in the region of 180 to 280 nm.

상기 경화시키는 단계는 단일 파장 또는 멀티 파장의 자외선을 이용하여 수행한다.The curing step is performed using a single wavelength or multi wavelength ultraviolet light.

상기 절연물질은 스핀―코팅 방법으로 도포한다.The insulating material is applied by a spin-coating method.

상기 절연물질은 폴리실라잔(Polysilazane)이다.The insulating material is polysilazane.

상기 패턴은 게이트, 비트라인, 트랜치 및 금속배선을 포함한다.The pattern includes gates, bit lines, trenches and metallizations.

상기 절연물질을 도포하는 단계 후, 그리고, 상기 절연물질을 경화시키는 단계 전, 상기 절연물질을 베이킹하는 단계를 더 포함한다.Baking the insulating material after applying the insulating material and before curing the insulating material.

본 발명은 오존 가스와 산소 가스가 주입되고 저온 상태에서 자외선을 이용하여 반도체 기판 상에 스핀―코팅된 절연막 형성 물질을 경화시킴으로서 수축 및 스트레스의 발생을 방지하고 고밀도화되어 기계적 강도가 향상된 절연막을 형성할 수 있다. The present invention is to prevent the occurrence of shrinkage and stress by curing the spin-coated insulating film forming material on the semiconductor substrate using an ultraviolet light in the ozone gas and oxygen gas is injected at a low temperature state to form an insulating film with improved mechanical strength Can be.

본 발명은 오존(O3) 가스와 산소(O2)를 함께 주입하고 저온 상태에서 절연막 형성 물질을 자외선으로 경화시켜 수축률이 낮고, 저온에서도 고밀도화되어 기계적 물성이 우수한 절연막을 형성한다. In the present invention, ozone (O 3 ) gas and oxygen (O 2 ) are injected together and the insulating film forming material is cured by ultraviolet rays at a low temperature to form an insulating film having a low shrinkage rate and a high density at low temperatures, thereby providing excellent mechanical properties.

자세하게, 종래 반도체 소자의 절연막은 폴리실라잔(Polysilazane)과 같은 절연막 형성 물질을 스핀―코팅 방법을 이용하여 반도체 기판 상에 도포한 후, 건식 또는 습식 분위기에서 열에너지를 이용한 경화공정을 수행하여 상기 폴리실라잔을 실리콘산화막으로 변형하는 방법으로 형성하였다.In detail, an insulating film of a conventional semiconductor device is applied to an insulating film forming material such as polysilazane (Polysilazane) on a semiconductor substrate using a spin-coating method, and then performing a curing process using thermal energy in a dry or wet atmosphere to perform the poly Silazane was formed by transforming the silicon oxide film.

상기 열에너지를 이용한 경화 공정은 건식 또는 습식 분위기에서의 경화 공정은 700℃ 이상의 고온에서 수행하거나 또는 400℃ 이하의 저온에서 수행하였으며, 일반적으로 건식 분위기 보다는 산화과정에서 수분이 촉매로 작용하기 때문에 절연막의 고밀도화 측면에서 더 유리한 습식 분위기에서 수행하였다. The curing process using the thermal energy was performed in a dry or wet atmosphere at a high temperature of 700 ° C. or higher or at a low temperature of 400 ° C. or lower. Generally, moisture acts as a catalyst in the oxidation process rather than in a dry atmosphere. It was performed in a wet atmosphere, which is more advantageous in terms of densification.

그러나, 상기 건식 또는 습식 분위기에서의 경화 공정 중 700℃ 이상의 고온에서 수행하는 경화 공정은 형성되는 절연막의 기계적 강도를 증가시키는 반면 기공 발생, 절연막의 수축 및 스트레스를 야기시키는 문제가 있다. However, the curing process performed at a high temperature of 700 ° C. or higher during the curing process in a dry or wet atmosphere increases the mechanical strength of the insulating film to be formed, while causing porosity, shrinkage and stress of the insulating film.

또한, 상기 건식 또는 습식 분위기에서의 경화 공정 중 400℃ 이하의 저온에서 수행하는 경화 공정은 절연막의 수축 및 스트레스 문제는 방지할 수 있으나, 형 성되는 절연막의 기계적 강도가 매우 취약해져 경화 온도를 낮추는데 한계가 있다.In addition, the curing process performed at a low temperature of less than 400 ℃ of the curing process in the dry or wet atmosphere can prevent the shrinkage and stress problems of the insulating film, but the mechanical strength of the insulating film to be formed is very fragile to lower the curing temperature There is a limit.

따라서, 본 발명은 종래 열에너지만을 이용하는 경화방법을 대신하여 저온의 열과 자외선을 동시에 이용하고, 상기 절연막을 형성하기 위한 폴리실라잔의 산화반응을 최적화시키기 위하여 오존(O3) 가스와 산소(O2)가스를 함께 주입하여 절연막을 형성함으로써 수축 및 스트레스의 발생을 방지하고 밀도가 증가되어 기계적 강도가 향상된 절연막을 형성할 수 있다. Accordingly, the present invention uses ozone (O 3 ) gas and oxygen (O 2 ) in order to optimize the oxidation reaction of polysilazane to form the insulating film at the same time using a low temperature heat and ultraviolet light instead of the curing method using only conventional thermal energy. By injecting the gas together to form an insulating film, it is possible to prevent the occurrence of shrinkage and stress and to increase the density to form an insulating film having improved mechanical strength.

이하에서는, 본 발명의 실시예에 따른 반도체 소자의 절연막 형성 방법을 상세히 설명하도록 한다. Hereinafter, a method of forming an insulating film of a semiconductor device according to an embodiment of the present invention will be described in detail.

도 1은 본 발명의 실시예에 따른 절연막 형성 물질로 사용되는 폴리실라잔의 구조를 도시한 도면이며, 도 2a 내지 도 2b는 본 발명의 실시예에 따른 반도체 소자의 절연막 형성 방법을 도시한 도면이다.1 is a view showing a structure of a polysilazane used as an insulating film forming material according to an embodiment of the present invention, Figures 2a to 2b is a view showing a method of forming an insulating film of a semiconductor device according to an embodiment of the present invention to be.

도 2a을 참조하면, 다수의 패턴(110)이 형성된 반도체 기판(100) 상에 절연막 형성 물질(120), 바람직하게, 도 1에 도시된 바와 같은 구조를 갖는 폴리실라잔을 스핀―코팅 방법으로 도포한다. 상기 패턴(110)은 게이트, 비트라인, 트랜치 및 금속배선을 포함한다.Referring to FIG. 2A, an insulating film forming material 120, preferably a polysilazane having a structure as shown in FIG. 1, is formed on a semiconductor substrate 100 having a plurality of patterns 110 by a spin-coating method. Apply. The pattern 110 includes a gate, a bit line, a trench and a metal wiring.

그런 다음, 상기 폴리실라잔(120)이 도포된 상기 반도체 기판(100)에 베이킹(Baking) 공정을 수행하여 상기 폴리실리잔(120)으로 이루어진 박막을 형성한다.Then, a baking process is performed on the semiconductor substrate 100 to which the polysilazane 120 is coated to form a thin film made of the polysilicon 120.

도 2b를 참조하면, 상기 폴리실라잔(120) 박막이 형성된 반도체 기판(100)에 산소분위기 하에서 자외선을 조사하는 경화 공정을 수행하여 상기 패턴(110)들을 감싸는 실리콘산화막(130)을 형성하여 반도체 소자의 절연막 형성을 완료한다. Referring to FIG. 2B, a silicon oxide film 130 is formed to surround the patterns 110 by performing a curing process of irradiating ultraviolet rays under an oxygen atmosphere on the semiconductor substrate 100 on which the polysilazane 120 thin film is formed. The insulating film formation of the element is completed.

상기 자외선을 이용한 경화 공정은 오존(O3) 가스와 산소(O2) 가스가 1 : 10 ∼ 5 : 5의 비율로 혼합된 상태로 함께 주입된 상태에서 200 ∼ 400℃의 온도에서 수행한다. The curing process using the ultraviolet rays is carried out at a temperature of 200 ~ 400 ℃ in a state in which the ozone (O 3 ) gas and oxygen (O 2 ) gas is injected together in a mixed state at a ratio of 1:10 to 5: 5.

상기 경화 공정은 180 ∼ 280nm 범위의 파장을 갖는 자외선을 이용하며, 단일 파장 (Single frequency) 또는 멀티(Multi) 파장의 형태로 조사된다. The curing process uses ultraviolet rays having a wavelength in the range of 180 to 280 nm, and is irradiated in the form of a single frequency or a multi wavelength.

상기 자외선을 이용한 경화 공정시, 상기 산소(O2) 가스와 오존(O3) 가스의 양을 조절하는 이유는 상기 폴리실라잔을 산화시키기 위한 산화 방식 측면에 기인한 것이다. In the curing process using the ultraviolet rays, the reason for controlling the amount of the oxygen (O 2 ) gas and the ozone (O 3 ) gas is due to the aspect of the oxidation method for oxidizing the polysilazane.

즉, 상기 산소(O2) 가스는 상기 자외선 경화 공정에서 자외선에 의해 상기 폴리실라잔을 산화시키도록 상기 폴리실라잔의 산화 반응에 적극 참여하는 산소 라디칼(Radical)을 형성한다. That is, the oxygen (O 2 ) gas forms oxygen radicals actively participating in the oxidation reaction of the polysilazane to oxidize the polysilazane by ultraviolet rays in the ultraviolet curing process.

그리고, 상기 오존(O3)는 상기 자외선에 의해 오존 라디칼 및 산소 라디칼을 형성하며, 상기 오존 라디칼은 상기 폴리실라잔의 산화 반응에서 촉매의 역할을 수행하기 때문에 산화 방식의 측면에서 상기 오존(O3) 가스로부터 생성된 오존 라디칼의 양이 많을수록 상기 폴리실라잔의 산화 반응은 용이해진다. The ozone (O 3 ) forms ozone radicals and oxygen radicals by the ultraviolet rays, and since the ozone radicals play a role of a catalyst in the oxidation reaction of the polysilazane, the ozone (O 3 ) is used in terms of oxidation. 3 ) The greater the amount of ozone radicals generated from the gas, the easier the oxidation reaction of the polysilazane.

따라서, 상기 폴리실라잔의 산화 반응을 최적화시키기 위해서는 일정 부분의 오존 라디칼이 필요하며, 상기 폴리실라잔의 산화 반응을 최적화시키기 위해서는 주입되는 산소(O2) 가스 및 오존(O3) 가스로부터 생성되는 산소 라디칼 및 오존 라디칼 양의 조절이 필요하기 때문에 상기 주입되는 산소(O2) 가스와 오존(O3) 가스의 양은 조절되어야 한다. Therefore, a portion of ozone radicals are required to optimize the oxidation reaction of the polysilazane, and generated from oxygen (O 2 ) gas and ozone (O 3 ) gas injected to optimize the oxidation reaction of the polysilazane. The amount of oxygen (O 2 ) gas and ozone (O 3 ) gas to be injected must be controlled because the amount of oxygen radicals and ozone radicals to be adjusted is necessary.

이상에서와 같이, 본 발명은 오존(O3) 가스와 산소(O2) 가스가 주입되고 저온 상태에서 자외선을 이용하여 반도체 기판 상에 스핀―코팅된 절연막 형성 물질을 경화시킴으로서 종래 절연막에 비하여 수축률이 낮고, 저온에서도 고밀도화되어 기계적 물성이 우수한 절연막을 형성할 수 있다.As described above, the present invention shrinks compared to the conventional insulating film by injecting ozone (O 3 ) gas and oxygen (O 2 ) gas and curing the spin-coated insulating film forming material on the semiconductor substrate using ultraviolet light in a low temperature state. It is possible to form an insulating film having low density and excellent mechanical properties even at low temperatures.

이상, 여기에서는 본 발명을 특정 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니며, 이하의 특허청구의 범위는 본 발명의 정신과 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변형될 수 있다는 것을 당업계에서 통상의 지식을 가진 자가 용이하게 알 수 있다.As mentioned above, although the present invention has been illustrated and described with reference to specific embodiments, the present invention is not limited thereto, and the following claims are not limited to the scope of the present invention without departing from the spirit and scope of the present invention. It can be easily understood by those skilled in the art that can be modified and modified.

도 1은 본 발명의 실시예에 따른 절연막 형성 물질로 사용되는 폴리실라잔의 구조를 도시한 도면.1 is a view showing the structure of polysilazane used as an insulating film forming material according to an embodiment of the present invention.

도 2a 내지 도 2b는 본 발명의 실시예에 따른 반도체 소자의 절연막 형성 방법을 도시한 도면.2A to 2B illustrate a method of forming an insulating film of a semiconductor device in accordance with an embodiment of the present invention.

Claims (10)

반도체 기판에 패턴들을 형성하는 단계; Forming patterns in the semiconductor substrate; 상기 각 패턴들 사이 영역이 매립되도록 상기 반도체 기판 상에 절연물질을 도포하는 단계; 및Applying an insulating material on the semiconductor substrate to fill the region between the patterns; And 상기 절연물질을 산소분위기에서 자외선을 조사하여 경화시키는 단계;를Curing the insulating material by irradiating ultraviolet rays in an oxygen atmosphere; 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.An insulating film forming method of a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 경화시키는 단계는 오존(O3) 가스와 산소(O2) 가스를 주입하여 수행하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.The curing step is performed by injecting ozone (O 3 ) gas and oxygen (O 2 ) gas, characterized in that the insulating film forming method of a semiconductor device. 제 2 항에 있어서,The method of claim 2, 상기 오존(O3) 가스와 산소(O2) 가스는 1 : 10 ∼ 5 : 5의 비율로 주입하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.The ozone (O 3 ) gas and oxygen (O 2 ) gas are injected at a ratio of 1: 10 to 5: 5. 제 1 항에 있어서,The method of claim 1, 상기 경화시키는 단계는 200 ∼ 400℃의 온도에서 수행하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.The hardening step is an insulating film forming method of a semiconductor device, characterized in that performed at a temperature of 200 ~ 400 ℃. 제 1 항에 있어서,The method of claim 1, 상기 경화시키는 단계는 180 ∼ 280nm 영역의 파장을 갖는 자외선을 이용하여 수행하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.The curing step is performed using an ultraviolet ray having a wavelength of 180 ~ 280nm region method of forming an insulating film of a semiconductor device. 제 5 항에 있어서, The method of claim 5, wherein 상기 경화시키는 단계는 단일 파장 또는 멀티 파장의 자외선을 이용하여 수행하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.The curing step is a method of forming an insulating film of a semiconductor device, characterized in that performed using a single wavelength or multi-wavelength ultraviolet light. 제 1 항에 있어서, The method of claim 1, 상기 절연물질은 스핀―코팅 방법으로 도포하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.And the insulating material is coated by a spin-coating method. 제 1 항에 있어서, The method of claim 1, 상기 절연물질은 폴리실라잔(Polysilazane)인 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.The insulating material is polysilazane (Polysilazane), characterized in that the insulating film forming method of a semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 패턴은 게이트, 비트라인, 트랜치 및 금속배선을 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.And the pattern includes a gate, a bit line, a trench, and a metal wiring. 제 1 항에 있어서,The method of claim 1, 상기 절연물질을 도포하는 단계 후, 그리고, 상기 절연물질을 경화시키는 단계 전, 상기 절연물질을 베이킹하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.And baking the insulating material after applying the insulating material and before curing the insulating material.
KR1020080003012A 2008-01-10 2008-01-10 Method for manufacturing of isolation layer of semiconductor device KR20090077198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080003012A KR20090077198A (en) 2008-01-10 2008-01-10 Method for manufacturing of isolation layer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080003012A KR20090077198A (en) 2008-01-10 2008-01-10 Method for manufacturing of isolation layer of semiconductor device

Publications (1)

Publication Number Publication Date
KR20090077198A true KR20090077198A (en) 2009-07-15

Family

ID=41335721

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080003012A KR20090077198A (en) 2008-01-10 2008-01-10 Method for manufacturing of isolation layer of semiconductor device

Country Status (1)

Country Link
KR (1) KR20090077198A (en)

Similar Documents

Publication Publication Date Title
KR100354442B1 (en) Method of forming spin on glass type insulation layer
KR100800495B1 (en) Method of fabricating semiconductor device
KR101571715B1 (en) Method of forming spin on glass type insulation layer using high pressure annealing
KR100436495B1 (en) Method for forming silicon oxide layer in semiconductor manufacturing process using spin-on-glass composition and isolation method using the same method
US20080160716A1 (en) Method for fabricating an isolation layer in a semiconductor device
US20080026594A1 (en) Reduction of Cracking in Low-K Spin-On Dielectric Films
KR20020041224A (en) Forming method for interlayer dielectric of semiconductor device
KR20090077198A (en) Method for manufacturing of isolation layer of semiconductor device
US20120220130A1 (en) Method for fabricating semiconductor device
US20100055868A1 (en) Method of forming insulation layer of semiconductor device and method of forming semiconductor device using the insulation layer
KR100908821B1 (en) Method of forming insulating film of semiconductor device
KR20090077199A (en) Method for manufacturing of isolation layer of semiconductor device
KR20090074499A (en) Method for manufacturing of isolation layer of semiconductor device
KR100423741B1 (en) Method for forming insulating film
KR20090045679A (en) Method for fabricating semiconductor device
KR100431741B1 (en) Method for fabrication of semiconductor device
KR100526748B1 (en) Fabricating method of semiconductor device with spin on dielectric layer and organic solvent
KR101204742B1 (en) Method for forming semiconductor device
JP4982813B2 (en) Method for forming amorphous spin-on-glass film
KR20090011950A (en) Method for manufacturing semiconductor device
KR20090093461A (en) Gapfill method of semiconductor device using spin on dielectric layer
KR100502671B1 (en) Method for gapfilling in semiconductor device
KR20100001860A (en) Method for manufacturing semiconductor device
KR20110024546A (en) Method for forming gapfill dielectric layer in semiconductor device
KR20030090191A (en) Method of performing dielectric layer in semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination