KR20090071813A - Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet - Google Patents

Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet Download PDF

Info

Publication number
KR20090071813A
KR20090071813A KR1020070139718A KR20070139718A KR20090071813A KR 20090071813 A KR20090071813 A KR 20090071813A KR 1020070139718 A KR1020070139718 A KR 1020070139718A KR 20070139718 A KR20070139718 A KR 20070139718A KR 20090071813 A KR20090071813 A KR 20090071813A
Authority
KR
South Korea
Prior art keywords
steel sheet
electrical steel
coating
oriented electrical
coating solution
Prior art date
Application number
KR1020070139718A
Other languages
Korean (ko)
Other versions
KR100954799B1 (en
Inventor
김정우
한민수
홍신협
남영섭
김재관
Original Assignee
주식회사 포스코
주식회사 애경피앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 주식회사 애경피앤씨 filed Critical 주식회사 포스코
Priority to KR1020070139718A priority Critical patent/KR100954799B1/en
Priority to PCT/KR2008/002807 priority patent/WO2009084777A1/en
Priority to CN2008801223940A priority patent/CN101910463B/en
Priority to JP2010540543A priority patent/JP5232246B2/en
Publication of KR20090071813A publication Critical patent/KR20090071813A/en
Application granted granted Critical
Publication of KR100954799B1 publication Critical patent/KR100954799B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

A coating solution of non-orient electrical steel sheet, a method for coating non-orient electrical steel sheet using the same, and a coating film of non-orient electrical steel sheet are provided to improve high insulation capacity and heat resistance of the non-orient electrical steel sheet by using 2 kinds of inorganic fillers having excellent heat resistance. Coating solution of a non-orient electrical steel sheet includes barium sulphate(Ba2SO4) of 20-40 weight%, titanium oxide(TiO2) of 10-20 weight%, ionized water of 15-30 weight%, and melamine resin of 30-50 weight% containing glycerine and ethylene glycol which is high-boiling solvent. The barium sulphate is the size of 1-3 micron and has a bar pillar shape. The barium sulphate has dispersibility with the melamine resin and solution stability. The titanium oxide has a rectangle shape and has the size of 50-200nm.

Description

무방향성 전기강판의 코팅 용액, 이를 이용한 무방향성 전기강판의 코팅 방법 및 무방향성 전기강판의 코팅층 {COATING SOLUTION OF NON-ORIENT ELECTRICAL STEEL SHEET, METHOD FOR COATING NON-ORIENT ELECTRICAL STEEL SHEET USING THE SAME, AND COATING FILM OF NON-ORIENT ELECTRICAL STEEL SHEET}COATING SOLUTION OF NON-ORIENT ELECTRICAL STEEL SHEET, METHOD FOR COATING NON-ORIENT ELECTRICAL STEEL SHEET USING THE SAME, AND COATING FILM OF NON-ORIENT ELECTRICAL STEEL SHEET}

본 발명은 무방향성 전기강판의 코팅 용액, 이를 이용한 무방향성 전기강판의 코팅 방법 및 무방향성 전기강판의 코팅층에 관한 것으로서, 보다 상세하게는 크롬을 포함하지 않는 무방향성 전기강판의 코팅 용액, 이를 이용한 무방향성 전기강판의 코팅 방법 및 무방향성 전기강판의 코팅층에 관한 것이다.The present invention relates to a coating solution of a non-oriented electrical steel sheet, a coating method of a non-oriented electrical steel sheet using the same and a coating layer of the non-oriented electrical steel sheet, more specifically, a coating solution of a non-oriented electrical steel sheet containing no chromium, using the same It relates to a coating method of non-oriented electrical steel sheet and a coating layer of the non-oriented electrical steel sheet.

일반적으로 무방향성 전기강판은 압연판 위의 모든 방향으로 자기적 성질이 균일한 강판으로 모터, 발전기의 철심, 전동기, 소형 변압기 등에 널리 사용되고 있다. 특히, 무방향성 전기강판은 전기손실 저감을 위한 저철손화(냉장고, 공장용 모터), 소형/고효율화를 위한 고자속밀도화(진공청소기용 모터 등) 및 고출력을 위한 주파수 증가에 대응하는 극박화(OA기기, 전기자동차 구동모터) 등을 위한 고급화로 나아가고 있는 추세이다.In general, non-oriented electrical steel sheet is a steel sheet with a uniform magnetic property in all directions on the rolling plate is widely used in motors, generator iron cores, electric motors, small transformers. Particularly, non-oriented electrical steel sheet has low iron loss (refrigerator, factory motor) for reducing electric loss, high magnetic flux density for small size and high efficiency (motor for vacuum cleaner, etc.) and ultra-thinning to increase frequency for high output. There is a trend toward higher quality for (OA equipment, electric motor drive motor).

상기와 같은 고급화 물결을 타고 있는 무방향성 전기강판에서 효율적인 에너 지 이용 측면에서 고절연성을 가지게 하는 두꺼운 절연피막(후막)은 필수적이다. 예를 들어, 중형 및 대형 전동기, 발전기 및 변압기용으로 사용되는 무방향성 전기강판은 강으로부터 형성된 적층체가 펀칭된 상태로 사용되는 경우에 층간 전류손실을 최소화시키기 위해 높은 수준의 절연성을 제공하는 절연피막을 요구한다. 이러한 높은 수준의 절연성은 응력 제거 풀림(Stress-Relief Annealing, SRA)처리 등의 열처리 후에도 요구될 수도 있다.A thick insulating film (thick film) that has high insulating properties in terms of efficient energy use is essential in the non-oriented electrical steel sheet riding the above advanced wave. For example, non-oriented electrical steel sheets used for medium and large electric motors, generators and transformers are insulated coatings that provide a high level of insulation to minimize interlayer current losses when laminates formed from steel are used in a punched state. Requires. This high level of insulation may be required even after heat treatment such as stress-relief annealing (SRA) treatment.

또한, 고급 무방향성 전기강판은 실리콘 함량이 높기 때문에 소재의 경도 증가로 슬릿팅(Slitting) 및 타발(Puching) 가공시 슬리터(Slitter)와 금형(Press)에 많은 스트레스(Stress)를 부여하는 가공성 열위 문제가 대두하고 있으므로 후막에 의한 피막형성이 요구된다. 이러한 고급 무방향성 전기강판은 전기/전자 사업의 미래를 주도할 것으로 예상된다.In addition, the high-quality non-oriented electrical steel sheet has a high silicon content, which increases the hardness of the material, thereby providing a lot of stress to the slitter and the mold during slitting and punching. Since inferiority is on the rise, thick film formation is required. These high quality non-oriented electrical steel sheets are expected to lead the future of the electrical and electronics business.

한편, 무방향성 전기강판 절연피막 형성용 절연피막 용액은 크게 무기, 유기, 유-무기 복합코팅용액의 3종류가 있으며, 무기 코팅용액을 먼저 도포한 후 유기 코팅용액을 코팅하는 방법도 연구되고 있다.On the other hand, there are three types of insulating coating solution for forming non-oriented electrical steel sheet, inorganic, organic, and organic-inorganic composite coating solution, and the method of coating inorganic coating solution and then coating organic coating solution. .

무기계 코팅용액은 인산염 등과 같은 무기물을 주성분으로 하며, 내열성, 용접성, 적층성 등이 우수한 피막을 형성할 수 있어 이아이(EI)코아용으로 사용되고 있다. 그러나 절연피막의 경도가 높기 때문에 타발시 금형의 손상이 유기물 함유 피막재보다 빨라서 타발 가공성에는 유리하지 못한 절연피막 용액이다.The inorganic coating solution has an inorganic substance such as phosphate as a main component and can be used to form an excellent coating film having excellent heat resistance, weldability, lamination properties, and the like. However, since the hardness of the insulating film is high, the damage of the mold at the time of punching is faster than the organic material-containing coating material, which is an insulating coating solution that is not advantageous for punching workability.

유기계 코팅용액은 유기물을 주요성분을 하여 타발성 면에서 매우 뛰어나다. 또한, 막의 두께를 높게 하여도 밀착성이 양호하므로 층간 절연성이 높게 요구되는 대형 철심에 많이 사용된다. 유기피막의 용접성은 용접시 수지 분해가스가 발생하여 양호한 특성을 보이지 못한다.Organic coating solution is very excellent in terms of punchability with organic components as main components. Moreover, since adhesiveness is favorable even if the film thickness is made high, it is used for the large iron core which requires high interlayer insulation. The weldability of the organic film does not show good characteristics due to the generation of resin decomposition gas during welding.

이러한 이유 때문에 내열성, 절연성 등을 중시하여 인산염, 크롬산염 등의 무기질계의 타발 가공성 결점을 보완한 유기질과 무기질를 동시에 사용하는 유-무기 복합 코팅용액이 개발되었다. 이러한 절연코팅용액을 사용하여 형성시킨 피막의 경우 무기질의 특성인 내열성과 유기질의 윤활성 효과를 동시에 만족하여 표면 외관도 미려하다.For this reason, an organic-inorganic composite coating solution using both organic and inorganic materials having been developed to compensate for defects in punching process of inorganic compounds such as phosphate and chromate has been developed with emphasis on heat resistance and insulation. In the case of the coating formed using such an insulating coating solution, the surface appearance is also beautiful by simultaneously satisfying the heat-resistance characteristics of the inorganic properties and the lubricity effect of the organic materials.

또한, 무방향성 전기강판의 절연성 향상을 위해서 여러 가지 조성의 조합이 응용되고 있으며, 현재 주요 제조업체에서 제품화되어 있는 대부분의 무방향성 전기강판의 절연피막용액은 인산염과 크롬산염을 기반으로 하고 있다. 인산염과 크롬산염은 소재 금속의 내열성, 절연성 및 내식성을 크게 향상시키는 역할을 하고 있다.In addition, a combination of various compositions has been applied to improve the insulation of non-oriented electrical steel sheet, and the insulating film solution of most non-oriented electrical steel sheets commercialized by major manufacturers is based on phosphate and chromate. Phosphates and chromates greatly improve the heat resistance, insulation and corrosion resistance of the material metal.

유-무기 코팅제를 이용한 절연피막 형성방법으로는 한국특허 제25106호, 제31208호, 미국특허 4,316,751 그리고 4,498,936 등에 잘 나타나 있다. 또한 일본특허 특공소 50-15013호에는 중크롬산염과 초산비닐, 부타디엔-스티렌 공중합물, 아크릴 수지 등의 유기 수지 에멀젼을 주성분으로 하는 처리액을 이용하고 절연피막을 형성하였다. 크롬산염을 사용할 경우 크롬산염은 소지층의 Fe산화층과 수소결합을 형성하여 우수한 밀착성, 펀칭성 등의 피막특성을 얻을수 있으며, 또한 SRA후에도 양호한 피막특성을 나타낸다. 그러나, 상기 예시한 기존 코팅액 조성은 크롬산화물 함유가 필수적이고, 이에 따른 인체의 악영향과 환경문제를 야기할 수 있다. 상기와 같은 문제로 6가 크롬을 비롯한 중금속물질 사용에 대해 EU 회원국 간의 유해물질 사용금지에 관한 규정(RoHS: Restriction of the use of Hazardous Substances) 등과 같은 환경규제가 강화되고 있는 현실에 비추어 그 용도가 제한적일 수밖에 없는 실정이다.As an insulating coating method using an organic-inorganic coating agent, Korean Patent Nos. 25106, 31208, U.S. Patents 4,316,751 and 4,498,936 are well represented. In Japanese Patent Application No. 50-15013, an insulating coating was formed by using a treatment liquid containing dichromate, an organic resin emulsion such as vinyl acetate, butadiene-styrene copolymer, and acrylic resin as a main component. When chromate is used, chromate forms a hydrogen bond with the Fe oxide layer of the base layer to obtain coating properties such as excellent adhesion and punching properties, and shows good coating properties even after SRA. However, the conventional coating liquid composition exemplified above is required to contain chromium oxide, which may cause adverse effects and environmental problems of the human body. In view of the above-mentioned problems, the use of the metals in the light of the fact that environmental regulations, such as the Restriction of the use of Hazardous Substances (RoHS), have been strengthened among EU member states for the use of heavy metals such as hexavalent chromium. There is no limit to the situation.

따라서, 최근 전기강판 코팅제의 무크롬화가 활발히 진행되고 있는데, 크게 크롬산염 부재에 따른 내식성 및 밀착성 약화를 보강하기 위해 인산염을 도입하는 방법과 콜로이달 실리카 도입을 통한 베리어 효과(Barrier effect)를 유도하는 방법으로 구분될 수 있다. 전자는 일본특허 특개2004-322079 공보에 개시되어 있는 바와 같이 인산 알루미늄(Al(H2PO4)3), 인산 칼슘(Ca(H2PO4)2), 인산 아연(Zn(H2PO4)2)을 적절히 혼합한 금속인산염을 사용하여 밀착성과 내식성을 향상하였다. 그러나 금속 인산염을 사용할 경우 인산염에 존재하는 자유인산이 피막의 스티키(sticky)성을 유발할 수 있다.Therefore, in recent years, chromium-free coating of electrical steel coatings is actively progressed, which greatly induces a barrier effect through the introduction of phosphate and colloidal silica to reinforce corrosion and adhesion weakening due to the lack of chromate. Method can be divided. The former is aluminum phosphate (Al (H 2 PO 4 ) 3 ), calcium phosphate (Ca (H 2 PO 4 ) 2 ), zinc phosphate (Zn (H 2 PO 4 ), as disclosed in Japanese Patent Laid-Open No. 2004-322079. Adhesion and corrosion resistance were improved by using metal phosphate mixed with 2 ). However, when metal phosphates are used, the free phosphates present in the phosphates can cause stickyness of the coating.

한편, 콜로이달 실리카 첨가로 베리어 효과(Barrier effect)를 높인 대표적인 예로서 한국특허 1999-026911, 일본특허 제3370235호에 나타난 바와 같이 콜로이드 실리카, 알루미나 졸, 산화 지르코늄 1 종류 또는 2종류 이상 혼합된 무기물을 사용하여 SRA후 내식성, 밀착성 및 평활성을 확보하고 실란 커플링제 등을 첨가하여 밀착성이나 내용제성을 향상시킨 기술이 제안되었다. 또한 수지와 실리카의 표면적 비율이 적당한 경우 미세한 분산 피막 구조 형성 가능으로 인한 밀착성 및 내식성 향상이 일본특허 P3320983호를 통해 소개되었다. 그러나 상기에서 설명된 인산염 또는 콜로이달 실리카를 주축으로 하는 무크롬 코팅용액 모두 인산염이 가지고 있는 sticky성 및 콜로이달 실리카가 가지고 있는 내식성 향상의 한계를 각각 가지고 있으며 이를 이용하여 완벽한 크롬 산화물 대체기술의 상용화는 아직 어려운 상태이다.On the other hand, as a representative example to increase the barrier effect by adding colloidal silica, as shown in Korean Patent 1999-026911, Japanese Patent No. 3370235, colloidal silica, alumina sol, one kind of zirconium oxide or mixed with two or more kinds After the SRA to secure the corrosion resistance, adhesion and smoothness, and the addition of a silane coupling agent and the like to improve the adhesion and solvent resistance has been proposed. In addition, when the surface area ratio of the resin and the silica is appropriate, the adhesion and the corrosion resistance improvement due to the formation of a fine dispersion film structure are introduced in Japanese Patent P3320983. However, the above-described chromium-free coating solution mainly based on phosphate or colloidal silica has limitations on stickyness of phosphate and corrosion resistance improvement of colloidal silica, respectively. Is still in a difficult state.

상기에서 언급한 코팅제 분류 이외에 무방향성 전기강판 표면에 150℃ 이상의 고온에서 층간의 전류 흐름을 대부분 차단하거나, 무방향성 전기강판 층간의 완전한 절연을 위해 2차 코팅을 수행한 후 1차 코팅층(first layer)과 2차 코팅층(second layer) 사이에 밀착성을 부여하는 것과 같이 표면에 기능성을 강조하는 무기질 filler와 기능성 수지로 후막 코팅용액을 이용한 고기능성 무방향성 전기강판 제품이 유럽 철강사 (Cogent, TKS 등)에 의해 생산되고 있다.In addition to the above-mentioned coatings, the first layer may be applied to the surface of the non-oriented electrical steel sheet at a high temperature of 150 ° C. or more, or after performing the second coating for complete insulation between the non-oriented electrical steel sheets. ) And high functional non-oriented electrical steel products using thick film coating solution with inorganic fillers and functional resins that emphasize functionality on the surface, such as providing adhesion between the second layer and the second layer (European steel company, etc.) Produced by

이 제품은 주로 고부가가치 및 환경 친화적인 제품인 대형 발전기용(수력, 화력, 풍력) 및 고속철도용 모터 제작에 사용되고 있으며 위에서 언급한 고절연성, 내열성 및 2차 코팅성 이외에 무방향성 전기강판 표면에 내식성과 소재와의 밀착성 및 MAG(Metal Argon Gas) 용접성까지 요구하고 있다.This product is mainly used in the manufacture of large value-added and environmentally friendly motors for large generators (hydropower, firepower, wind power) and high-speed railway, and in addition to the high insulation, heat resistance and secondary coating properties mentioned above, It also demands adhesion to materials and MAG (Metal Argon Gas) weldability.

소재의 두께 자승에 비례하는 전류 손실(와전류 손실)을 최소화하기 위해 무방향성 전기강판의 양 표면에 두꺼운 절연피막을 형성하여 높은 수준의 표면 비저항을 제공함과 동시에 표면에 고기능성을 부여한 대표적인 예로는 ARMCO사에서 출원한 특허(98-0056329, 98-1193287) 이다. 이 특허에서 제시한 절연 코팅용액의 조성은 알루미늄 인산염, 무기 미립 규산염과 수용성 유기 용매를 포함한 아크릴 수지로 구성되어 있으며 여기서 사용한 미립자 규산염의 크기는 0.3~60㎛이고 에멀 젼 타입의 아크릴 수지의 입자 크기는 1㎛이하이다. 그러나 상기 특허 또한 금속 인산염을 사용하여 인산염에 존재하는 자유인산이 피막의 스티키(sticky)성과 자유 인산염 석출 문제가 발생할 수 있다. In order to minimize the current loss (eddy current loss) proportional to the square of the thickness of the material, a thick insulating film is formed on both surfaces of the non-oriented electrical steel sheet to provide a high level of surface resistivity and high functionality to the surface. (98-0056329, 98-1193287). The composition of the insulation coating solution proposed in this patent is composed of acrylic resin including aluminum phosphate, inorganic fine silicate and water-soluble organic solvent, and the particle size of particulate silicate used here is 0.3 ~ 60㎛ and particle size of emulsion type acrylic resin Is 1 micrometer or less. However, the patent also uses metal phosphate to cause stickyness and free phosphate precipitation of the free phosphoric acid present in the phosphate film.

본 발명의 목적은 절연성, 내열성, 내식성, 밀착성 및 이차 코팅성이 우수한 무방향성 전기강판의 코팅 용액, 이를 이용한 무방향성 전기강판의 코팅 방법 및 무방향성 전기강판의 코팅층을 제공하는 것이다.An object of the present invention is to provide a coating solution of non-oriented electrical steel sheet having excellent insulation, heat resistance, corrosion resistance, adhesion and secondary coating properties, a coating method of non-oriented electrical steel sheet using the same and a coating layer of the non-oriented electrical steel sheet.

상기 무방향성 전기 강판의 코팅 용액은 중량%로, 황산 바륨(Ba2SO4) 20~40%, 산화 티타늄(TiO2) 10~20%, 이온수 15~30% 및 고비점 용매인 에틸렌 글리콜(ethylene glycol)과 글리세린(glycerin)을 함유하는 멜라민계 수지 30~50%로 이루어진다.The coating solution of the non-oriented electrical steel sheet in weight percent, barium sulfate (Ba 2 SO 4 ) 20-40%, titanium oxide (TiO 2 ) 10-20%, ionized water 15-30% and high boiling point solvent ethylene glycol ( It consists of 30-50% melamine-based resin containing ethylene glycol) and glycerin (glycerin).

상기 황산 바륨은 1~3㎛의 크기이고, 막대기둥 형상이며, 상기 멜라민계 수지와의 분산성과 용액 안정성을 가진다. 상기 산화 티타늄은 구형의 형상을 가지며, 50~200㎚의 크기를 가진다.The barium sulfate has a size of 1 to 3 μm, has a stick shape, and has dispersibility and solution stability with the melamine-based resin. The titanium oxide has a spherical shape and has a size of 50 to 200 nm.

무방향성 전기강판의 코팅 방법은 상기 무방향성 전기강판의 코팅 용액을 강판에 도포한 후, 300~600℃의 온도에서 10~30초간 가열처리하는 것을 특징으로 한다.Coating method of the non-oriented electrical steel sheet is characterized in that after the coating solution of the non-oriented electrical steel sheet is applied to the steel sheet, the heat treatment for 10 to 30 seconds at a temperature of 300 ~ 600 ℃.

본 발명의 실시예에 따르면, 무방향성 전기강판의 코팅용액은 크롬을 포함하지 않으면서도 용액 안정성, 절연성, 내열성, 내식성, 밀착성 및 고객사 2차 코팅 성이 우수하다. 특히, 무방향성 전기강판의 고절연성과 내열성을 확보하기 위해서 내열성이 우수한 서로 다른 형상과 크기를 가진 2종류의 무기질 filler인 황산바륨 및 이산화티타늄을 이용하고, 작업의 안전성을 위해 고비점 용매인 에틸렌 글리콜(ethylene glycol)과 글리세린(glycerin)을 함유한 용액 안정성, 내열성 및 전기강판 소재와 filler 사이의 접착력이 우수한 멜라민계 수지를 이용한다.According to the embodiment of the present invention, the coating solution of the non-oriented electrical steel sheet is excellent in solution stability, insulation, heat resistance, corrosion resistance, adhesion and customer secondary coating properties without containing chromium. In particular, two kinds of inorganic fillers, barium sulfate and titanium dioxide, which have different shapes and sizes with excellent heat resistance, are used to secure high insulation and heat resistance of non-oriented electrical steel sheets, and ethylene, which is a high boiling point solvent, is used for safety of work. Melamine-based resin with excellent solution stability, heat resistance, and adhesion between electrical steel sheet and filler containing ethylene glycol and glycerine is used.

이하에서는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있도록 본 발명의 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 제공되는 것이다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed contents may be thorough and complete, and the technical spirit of the present invention may be sufficiently delivered to those skilled in the art.

상기와 같은 목적을 달성하기 위한 본 발명은 중량%로 크기가 1~3㎛인 막대기둥 형상을 가진 황산 바륨(Ba2SO4) 20~40%, 크기가 50~200nm이고 구형 형상을 가진 TiO2 10~20%, 이온수 15~30% 및 및 고비점 용매인 에틸렌 글리콜(ethylene glycol)과 글리세린(glycerin)을 소량 함유한 접착력이 우수한 멜라민 수지 30~50%로 최적화한 것을 특징으로 한다.The present invention for achieving the above object is 20% to 40% barium sulfate (Ba 2 SO 4 ) having a rod shape having a size of 1 ~ 3㎛ in weight%, 50 ~ 200nm in size and has a spherical TiO 2 10 to 20%, 15 to 30% of ionized water, and high boiling point solvent ethylene glycol (ethylene glycol) and glycerin (glycerin) containing a small amount of excellent adhesion to the melamine resin is characterized in that 30 to 50%.

상기와 같은 중량%로 구성된 조성물은 상온에서 장시간 겔화(gellation)없이안정성이 매우 우수하며 코팅 설비에 의해 편면당 4~8㎛범위가 되도록 도포한 후, 300~600℃의 온도 범위에서 10~30초간 가열처리하여 절연피막을 형성하면 무방향성 전기강판의 표면에 아주 우수한 절연성, 내열성, 내식성, 밀착성 및 고객사 이차 코팅성을 가진 피복조성물을 제공하게 된다.The composition composed of the weight percent as described above is very excellent in stability without gelation for a long time at room temperature, and after coating so as to be in the range of 4 ~ 8㎛ per side by coating equipment, 10 ~ 30 in the temperature range of 300 ~ 600 ℃ Forming an insulating coating by heating for a second provides a coating composition having excellent insulation, heat resistance, corrosion resistance, adhesion, and customer secondary coating property on the surface of the non-oriented electrical steel sheet.

한편, 본 발명자는 고기능성을 가진 고급 무방향성 전기강판의 표면 품질을 향상시키기 위하여 고기능성을 가진 절연피막을 형성시킬 수 있는 절연피막 용액 개발에 관한 연구를 수행하였으며, 그 결과에 근거하여 본 발명을 제안한다. On the other hand, the present inventors carried out a study on the development of an insulating coating solution capable of forming an insulating coating having a high functionality to improve the surface quality of high-quality non-oriented electrical steel sheet having a high functionality, based on the results Suggest.

이하, 실시 예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

상기에서 언급하였듯이 본 발명의 기본 개념은 무방향성 전기강판용 코팅용액에 환경규제 물질인 Cr과 자유인산염 석출문제를 가지고 있는 금속인산염을 배제하면서도 전기강판 표면에 고기능성을 부여하는 데 있다. 본 코팅용액은 크게 2단계로 구분하여 제조하였다.As mentioned above, the basic concept of the present invention is to impart high functionality to the surface of the electrical steel sheet while excluding the metal phosphate having the problem of precipitation of Cr and free phosphate as an environmental regulation material in the coating solution for non-oriented electrical steel sheet. This coating solution was prepared by dividing it into two stages.

첫번째 단계는 무기질 filler와 에멀젼 수지의 상용성 (compatibility)을 평가하기 위해 filler 종류와 에멀젼 수지를 결정하는 단계이다. 무기질 filler와 에멀젼 수지의 상용성 평가 방법은, 먼저 중량%로 에멀젼 수지 50과 무기질 filler 50을 혼합하여 고속의 agitator(high speed agitator: 1000-3000RPM)로 1시간 혼합(blending)시키고 상온에서 24시간 유지시킨 이후에 용액의 겔화(gellation) 및 상분리(phase separation) 정도에 따라 용액의 상용성(compatibility)을 평가하였다.The first step is to determine the filler type and emulsion resin in order to assess the compatibility of the inorganic filler with the emulsion resin. In order to evaluate the compatibility of the inorganic filler and the emulsion resin, first, the emulsion resin 50 and the inorganic filler 50 are mixed in weight percent, and then blended with a high speed agitator (1000-3000 RPM) for 1 hour and at room temperature for 24 hours. After maintenance, the compatibility of the solution was evaluated according to the degree of gelation and phase separation of the solution.

본 발명에서 사용된 무기질 filler는 황산바륨(Ba2SO4), 이산화티타늄(TiO2), 탄산칼슘(CaCO3), 이산화규소(SiO2) 및 탈크(3MgO.4SiO2.H2O)를 사용하였고 각 무기질 filler의 형상 및 기본 물성은 표 1에 명시하였다. Inorganic fillers used in the present invention include barium sulfate (Ba 2 SO 4 ), titanium dioxide (TiO 2 ), calcium carbonate (CaCO 3 ), silicon dioxide (SiO 2 ) and talc (3MgO.4SiO 2 .H 2 O). The shape and basic physical properties of each inorganic filler are shown in Table 1.

filer 종류filer type filler 크기filler size 형상(Shape)Shape 밀도(g/㎤)Density (g / cm 3) 황산바륨(Ba2SO4)Barium Sulfate (Ba 2 SO 4 ) 1~3㎛1 ~ 3㎛ 막대기둥형Stick figure 4.4994.499 이산화티타늄(TiO2)Titanium Dioxide (TiO 2 ) 50~100㎚50-100 nm 구형rectangle 3.8~4.23.8 ~ 4.2 탄산칼슘(CaCO3)Calcium Carbonate (CaCO 3 ) 2~4㎛2 ~ 4㎛ 무정형Amorphous 2.932.93 이산화규소(SiO2)Silicon Dioxide (SiO 2 ) 2~3㎛2 ~ 3㎛ 무정형Amorphous 2.3~2.52.3 ~ 2.5 탈크(3MgO·4SiO2·H2O)Talc (3MgO, 4SiO 2 , H 2 O) 다양various 판상결정,괴상Plate crystal, block 2.58~2.832.58-2.83

또한 에멀젼 수지로는 에스터(Ester)계 수지, 멜라민(Melamin)계 수지 에폭시(Epoxy)계 수지 및 아크릴(Acrylic)계 수지를 사용하였고 각 수지의 기본 물성은 표 2에 나타내었다.Ester resin, melamine resin, epoxy resin and acrylic resin were used as the emulsion resin, and the basic physical properties of each resin are shown in Table 2.

에멀젼 종류Emulsion type 점도(cp)Viscosity (cp) 비중importance pHpH 고형분Solid content ester계 수지ester resin 4040 1.31.3 2.52.5 3030 Melamine계 수지Melamine resin 2525 1.21.2 8.58.5 4040 Epoxy계 수지Epoxy resin 3030 1.181.18 55 3030 Acrylic계 수지Acrylic resin 100100 1.0481.048 2.22.2 4242

상기의 표 1과 표 2의 무기질 filler와 에멀젼 수지를 20종류의 조합에 의한 용액의 상용성(compatibility) 평가 결과를 표 3에 도시하였다. 무기질 filler와 에멀젼 수지의 상용성 평가 구분은 ⊙ 매우좋음, Ο 좋음, △ 미흡, Χ 매우 미흡으로 표시하였다. Table 3 shows the compatibility evaluation results of the solution obtained by combining 20 kinds of the inorganic filler and the emulsion resin of Table 1 and Table 2 above. The compatibility evaluation of the inorganic filler and the emulsion resin was classified as ⊙ Very good, Ο Good, △ Inadequate, Χ Very poor.

Ester계 수지Ester resin Melamine계 수지Melamine resin Epoxy계 수지Epoxy resin Acrylic계 수지Acrylic resin 황산바륨(Ba2SO4)Barium Sulfate (Ba 2 SO 4 ) ΧΧ 이산화티타늄(TiO2)Titanium Dioxide (TiO 2 ) ΟΟ ΧΧ 탄산칼슘(CaCO3)Calcium Carbonate (CaCO 3 ) ΟΟ ΟΟ 이산화규소(SiO2)Silicon Dioxide (SiO 2 ) ΧΧ ΧΧ ΧΧ ΧΧ 탈크(3MgO·4SiO2·H2O)Talc (3MgO, 4SiO 2 , H 2 O) ΧΧ ΧΧ ΧΧ ΧΧ

표 3의 평가 결과에서 알 수 있듯이 전반적으로 에스터(Ester)계 수지, 멜라민(Melamin)계 수지와 아크릴(Acrylic)계 수지가 황산바륨(Ba2SO4), 이산화티타늄(TiO2) 및 탄산칼슘(CaCO3)과 양호한 상용성은 보였으면 특히 멜라민(Melamin)계 수지는 황산바륨(Ba2SO4), 이산화티타늄(TiO2) 및 탄산칼슘 (CaCO3)과 우수한 상용성을 나타내었다. As can be seen from the evaluation results of Table 3, ester resins, melamine resins, and acrylic resins generally contain barium sulfate (Ba 2 SO 4 ), titanium dioxide (TiO 2 ), and calcium carbonate. (CaCO 3) and good compatibility castle beam yeoteumyeon especially melamine (Melamin) based resin exhibited a barium (Ba 2 SO 4), titanium dioxide (TiO 2) and calcium carbonate (CaCO 3) and good compatibility.

표 4는 상기 표 3에서 얻은 결과를 바탕으로 용액 상용성이 아주 우수한 4종류의 무기질 filler와 에멀젼 수지의 조합으로 용액을 제조하여 용액의 기본적인 물성인 분산성과 작업성 그리고 무방향성 전기강판 표면에 도포 및 건조후 표면의 기본적인 특성을 나타내었다. 4종류의 무기질 filler와 에멀젼 수지의 조합은 황산바륨과 Melamine계 수지, 이산화티타늄과 Melamine계 수지, 탄산칼슘과 Melamine계 수지 및 이산화티타늄과 Acrylic계 수지의 조합으로 용액을 제조하여 여러 가지 Bar coater로 무방향성 전기강판 시편을 4~6㎛으로 도포하여 300~500℃ 건조로에서 20~30초간 건조시킨 후 표면상태, 밀착성, 내식성을 평가하였다.Table 4 is based on the results obtained in Table 3 to prepare a solution with a combination of four kinds of inorganic fillers and emulsion resins with excellent solution compatibility and applied to the surface properties of dispersibility, workability and non-oriented electrical steel sheet, which is the basic physical properties of the solution And basic properties of the surface after drying. Combination of 4 kinds of inorganic filler and emulsion resin is made by combining barium sulfate and Melamine resin, titanium dioxide and Melamine resin, calcium carbonate and Melamine resin, titanium dioxide and Acrylic resin, The non-oriented electrical steel sheet was applied at 4 ~ 6㎛ and dried in a 300 ~ 500 ℃ drying furnace for 20 ~ 30 seconds to evaluate the surface condition, adhesion and corrosion resistance.

분산성Dispersibility 작업성Workability 표면상태Surface condition 밀착성Adhesion 내식성Corrosion resistance 황산바륨+MelamineBarium Sulfate + Melamine ΟΟ ΟΟ 이산화티타늄+MelamineTitanium Dioxide + Melamine ΟΟ ΟΟ ΟΟ 이산화티타늄+AcrylicTitanium Dioxide + Acrylic ΟΟ ΟΟ 탄산칼슘+MelamineCalcium Carbonate + Melamine ΟΟ ΧΧ ΧΧ

표 4의 평가 결과에서 알 수 있듯이 용액의 작업성과 분산성은 황산바륨과 Melamine계 수지, 탄산칼슘과 Melamine계 수지 조합으로 이루어진 용액이 우수하였다. 이는 황산바륨과 탄산칼슘의 filler size가 1-3㎛로 이산화티타늄 50-100nm보다 상대적으로 크기 때문에 분산이 용이하고 코팅시 엉김이나 bar coater에 막힘 현상 없어서 작업성이 양호한 것으로 생각된다. 건조 이후의 표면상태, 밀착성 및 내식성은 이산화티타늄과 Melamine계 수지와 이산화티타늄과 Acrylic계 수지 조합이 황산바륨과 Melamine계 수지과 탄산칼슘과 Melamine계 수지 조합 대비 우수하였다. 이는 filler 크기가 상대적으로 작기 때문에 코팅층이 조밀하여 상대적으로 우수한 표면 특성을 나타내었다. 이상의 결과로부터 코팅용액차원의 분산성과 안전성, 표면특성면차원의 밀착성과 고절연성을 동시에 만족할 수 있는 것은 황산바륨과 Melamine계 수지, 이산화티타늄과 Melamine계 수지로 구성된 용액이다.As can be seen from the evaluation results of Table 4, the workability and dispersibility of the solution was excellent in the solution consisting of a combination of barium sulfate and Melamine resin, calcium carbonate and Melamine resin. This is because the filler size of barium sulfate and calcium carbonate is 1-3㎛, which is relatively larger than 50-100nm of titanium dioxide, so that it is easy to disperse and there is no entanglement or clogging phenomenon in the bar coater. The surface condition, adhesion and corrosion resistance after drying were superior to those of barium sulfate, melamine, calcium carbonate and melamine resin in combination with titanium dioxide, melamine resin, titanium dioxide and acrylic resin. Since the filler size is relatively small, the coating layer is dense and thus shows excellent surface properties. From the above results, it is the solution composed of barium sulfate, Melamine-based resin, titanium dioxide and Melamine-based resin which can satisfy both dispersibility and safety of coating solution level and adhesion and high insulating property of surface level.

두번째 단계는 상기에서 결정된 무기질 filler와 에멀젼 수지를 바탕으로 우수한 표면 특성을 확보하기 위한 무기질 filler와 수지의 최적 조성비를 결정하는 단계이다. 본 더불어 본 발명에서는 코팅층 내의 치밀성을 향상시키기 위해 서로 다른 크기를 가진 2 종류의 무기질 filler를 사용하는 것을 특징으로 한다. 표 5에서는 표4의 결과에서 보였듯이 분산성과 안전성이 우수한 멜라민수지와 서로 다른 크기를 가진 2 종류의 무기질 filler의 종합에 의해 혼합(blending)된 용액의 물성을 나타내었다. 여기서 황산바륨과 탄산칼슘은 유사한 입자 크기를 가지고 있기 때문에 황산바륨과 탄산칼슘의 조합은 코팅층의 치밀성 면에서 불리하기 때문에 본 발명에서는 황산바륨과 이산화티타늄 및 탄산칼슘과 이산화티타늄의 혼합으로 구성하였다. 또한 주입된 전체 무기질 filler와 멜라민 수지의 조성비는 4:6으로 고정하여 작업성, 분산성 및 전기강판 표면특성을 측정하였다.The second step is to determine the optimal composition ratio of the inorganic filler and the resin to ensure excellent surface properties based on the inorganic filler and the emulsion resin determined above. In addition, the present invention is characterized by using two kinds of inorganic fillers having different sizes to improve the compactness in the coating layer. As shown in the results of Table 4, Table 5 shows the physical properties of the solution (blending) by the combination of two kinds of inorganic fillers of different sizes and melamine resins having excellent dispersibility and safety. Since barium sulfate and calcium carbonate have a similar particle size, the combination of barium sulfate and calcium carbonate is disadvantageous in terms of the compactness of the coating layer. In addition, the composition ratio of the total inorganic filler and melamine resin injected was fixed at 4: 6 to measure workability, dispersibility and surface characteristics of electrical steel sheet.

점도(cp)Viscosity (cp) 작업성Workability 분산성Dispersibility Melamine계 수지: 전체 filler = 4:6 Melamine Resin: Total Filler = 4: 6 Ba2SO4:TiO2 =3:1Ba 2 SO 4 : TiO 2 = 3: 1 5050 ΟΟ Ba2SO4:TiO2 =1:1Ba 2 SO 4 : TiO 2 = 1: 1 7575 ΟΟ Ba2SO4:TiO2 =1:3Ba 2 SO 4 : TiO 2 = 1: 3 9090 ΟΟ CaCO3:TiO2 =3:1CaCO 3 : TiO 2 = 3: 1 8585 CaCO3:TiO2 =1:1CaCO 3 : TiO 2 = 1: 1 9595 CaCO3:TiO2 =1:3CaCO 3 : TiO 2 = 1: 3 140140

표 6은 상기 표 5에서 나타낸 조성에 의해 서로 다른 크기를 가진 2종류의 무기질 filler를 멜라민계 수지에 분산시켜 코팅용액을 제조한 후 Bar coater에 이용하여 무방향성 전기강판 시편을 4-6㎛되게 일정하게 도포하여 300~500℃ 건조로에서 20~30초간 건조시킨 후 표면 특성을 측정하였다. 여기서 코팅두께는 두께측정기(delta scope)에 의한 측정하였으며, 내식성은 염수분무시험(35℃, 5%NaCl, 95% humidity, 8Hr)유지후 발청 상태를 측정하였다. 또한 피막 절연성은 프랭크린 절연 시험기(Franklin Insulation Tester)로 측정하였고, 밀착성은 bending tester를 이용하여 10mΦ에서 코팅 시편을 180o 구부렸을 때 내측면의 피막박리 여부를 관찰하였다. 2차 코팅성은 2차 코팅용액으로 1차 코팅층위에 도포 및 건조후 1차 코팅층과 2차 코팅층의 표면상태와 밀착성을 측정하였고, 내열성은 Aging 조건(Thermal level H 180oC, 24 Hr)이후 표면의 밀착성과 박리 유무를 측정하였다.Table 6 shows two kinds of inorganic fillers having different sizes in the melamine-based resin according to the composition shown in Table 5 to prepare a coating solution, and then use a bar coater to make non-oriented electrical steel sheet specimens 4-6㎛. After constant application and drying in a 300 ~ 500 ℃ drying furnace for 20 to 30 seconds, the surface properties were measured. The coating thickness was measured by a delta scope, and the corrosion resistance was measured after maintaining the salt spray test (35 ℃, 5% NaCl, 95% humidity, 8Hr). In addition, the film insulation was measured by a Franklin Insulation Tester, and the adhesion was observed by peeling of the inner surface when the coating specimen was bent 180 ° at 10 mΦ using a bending tester. Secondary coating castle second was coated with the solution as a primary measure the primary coating layer and the second surface state and the adhesiveness of the coating layer after coating and drying on the coating layer surface after the heat resistance Aging Conditions (Thermal level H 180 o C, 24 Hr) The adhesiveness of and the presence or absence of peeling were measured.

표면상태Surface condition 코팅두께 (㎛)Coating thickness (㎛) 내식성Corrosion resistance 내열성Heat resistance 밀착성Adhesion 절연성 (㎃)Insulation 2차 코팅성Secondary coating Ba2SO4:TiO2 =3:1Ba 2 SO 4 : TiO 2 = 3: 1 ΟΟ 4~64 ~ 6 ΟΟ 〈10〈10 Ba2SO4:TiO2 =1:1Ba 2 SO 4 : TiO 2 = 1: 1 ΟΟ 4~64 ~ 6 ΟΟ 〈10〈10 Ba2SO4:TiO2 =1:3Ba 2 SO 4 : TiO 2 = 1: 3 ΟΟ 4~64 ~ 6 〈10〈10 CaCO3:TiO2 =3:1CaCO 3 : TiO 2 = 3: 1 4~64 ~ 6 ΟΟ ΟΟ 〈20〈20 ΟΟ CaCO3:TiO2 =1:1CaCO 3 : TiO 2 = 1: 1 ΧΧ 4~64 ~ 6 ΧΧ 〈20〈20 ΟΟ CaCO3:TiO2 =1:3CaCO 3 : TiO 2 = 1: 3 ΧΧ 4~64 ~ 6 ΧΧ 〈20〈20 ΟΟ

표 6의 실험의 결과로부터 알 수 있듯이 황산바륨과 이산화티타늄 조합에 의해 구성된 표면 특성이 탄산칼슘과 이산화티타늄 조합에 의해 구성된 표면보다 내식성, 밀착성, 절연성 및 2차 코팅성이 우수함을 보이고 있다. 이는 황산바륨 무기질 filler입자가 탄산칼슘 무기질 filler입자보다 상대적으로 작기 때문에 이산화티타늄과의 치밀성이 우수하기 때문인 것으로 해석된다. 그러므로 본 발명에서 사용된 2 종류의 무기질 filler는 황산바륨과 이산화티타늄으로 결정하였으며 표 1에서 명시하였듯이 황산바륨은 입자 크기가 1-3㎛이고 막대기둥 형상이고 이산화티타늄은 구형이면서 입자크기가 50-100nm이였다. 도 1은 2종류 무기질 filler인 황산바륨과 이산화티타늄의 분산 방법을 도시하였다. 그림에서 도시하였듯이 먼저 이산화티타늄과 황산바륨을 순차적으로 멜라민 수지에 넣고 2000rpm 이상의 고속 agitator로 1시간 이상 교반하여 분산 및 제조하였다. As can be seen from the results of the experiment in Table 6, the surface properties composed of barium sulfate and titanium dioxide combination showed better corrosion resistance, adhesion, insulation and secondary coating properties than the surfaces composed of calcium carbonate and titanium dioxide combination. This is because the barium sulfate inorganic filler particles are relatively smaller than the calcium carbonate inorganic filler particles, which is interpreted to be excellent in density with titanium dioxide. Therefore, the two kinds of inorganic fillers used in the present invention were determined to be barium sulfate and titanium dioxide. As shown in Table 1, barium sulfate has a particle size of 1-3 μm, a stick shape, titanium dioxide is spherical, and the particle size is 50-. 100 nm. 1 illustrates a method of dispersing two kinds of inorganic fillers, barium sulfate and titanium dioxide. As shown in the figure, first, titanium dioxide and barium sulfate were sequentially added to the melamine resin, and dispersed and prepared by stirring for 1 hour or more with a high speed agitator of 2000 rpm or more.

이상의 실험 결과로부터 선정된 2종류 무기질 filler와 멜라민계 수지로 코팅 작업성과 표면특성을 동시에 만족할 수 있는 수지와 무기질 filler의 조성 최적화 실험을 실시하였다. 표 7은 수지와 filler의 조성에 따른 작업성 및 표면 특성을 실험한 결과를 나타내었다. 특히 표 7은 roll coater에 적용 가능한 작업성을 확보하기 위해서 각 용액마다 일정비율의 물을 첨가하여 점도를 45-50cP로 조절한 후 무방향성 전기강판 표면에 도포하였다.Two kinds of inorganic fillers and melamine-based resins were selected from the above test results. Table 7 shows the results of experimenting with the workability and surface properties according to the composition of the resin and filler. In particular, Table 7 is applied to the surface of the non-oriented electrical steel sheet after adjusting the viscosity to 45-50 cP by adding a certain ratio of water to each solution to ensure the workability applicable to the roll coater.

구분  division 코팅액 성분Coating solution component 작업성 및 표면 특성Workability and Surface Characteristics 수지  Suzy filler filler 작업성  Workability 내열성/절연성  Heat / insulation 내식성  Corrosion resistance 밀착성  Adhesion 2차 코팅성  Secondary coating Ba2SO4 Ba 2 SO 4 TiO2 TiO 2 발명예1Inventive Example 1 2020 6464 1616 발명예2Inventive Example 2 2020 6060 2020 ΟΟ 발명예3Inventive Example 3 2020 4040 4040 ΟΟ 발명예4Inventive Example 4 2020 2020 6060 ΟΟ 발명예5Inventive Example 5 4040 5050 1010 ΟΟ 발명예6Inventive Example 6 4040 4545 1515 ΟΟ 발명예7Inventive Example 7 4040 3030 3030 ΟΟ ΟΟ 발명예8Inventive Example 8 4040 1515 4545 ΟΟ 발명예9Inventive Example 9 6060 3535 55 발명예10Inventive Example 10 6060 3030 1010 ΟΟ 발명예11Inventive Example 11 6060 2020 2020 발명예12Inventive Example 12 6060 1010 3030

표 7의 결과로부터 멜라민계 수지와 전체 무기질 filler의 질량비가 3:7 ~ 5:5의 범위에 있을 때 표면 특성이 가장 우수하였으며, 수지와 전체 무기질 filler의 비가 3:7이하일 경우 멜라민 수지의 함량이 부족하여 밀착성이 열위한 경량을 보였고 5:5이상일 경우 코팅층에 filler의 치밀도가 낮아 내식성이 열위한 경향을 보였다. From the results of Table 7, the surface properties were the best when the mass ratio of melamine resin and total inorganic filler was in the range of 3: 7 to 5: 5, and the content of melamine resin when the ratio of resin and total inorganic filler was 3: 7 or less. This lack of adhesion resulted in poor light weight, and in the case of 5: 5 or more, the filler had a low density of filler in the coating layer, which showed poor tendency for corrosion resistance.

또한 황산 바륨과 이산화티타늄의 질량비가 3:1 이상일 경우 2종류의 무기질 filler로 구성된 코팅층의 치밀도가 낮아 내식성이 열위한 경향을 보였고, 만일 1:1이하의 질량비에서는 nano 입자 크기의 이산화티타늄 분말의 엉김 현상이 발생하여 작업성이 열위하였다. 따라서 황산 바륨과 이산화티타늄의 질량비가 3:1 ~ 1:1의 범위에서 작업성이 가장 우수하였다.In addition, when the mass ratio of barium sulfate and titanium dioxide was 3: 1 or more, the coating layer composed of two kinds of inorganic fillers showed low density, and thus, corrosion resistance was poor.If the mass ratio is less than 1: 1, titanium dioxide powder having nano particle size An agglomeration phenomenon occurred and the workability was inferior. Therefore, the workability was the best in the mass ratio of barium sulfate and titanium dioxide in the range of 3: 1 to 1: 1.

이상의 결과로부터 본 발명은 내열성 확보를 위해 무기질(Ba2SO4, TiO2) filler를 사용하였으며 고절연성, 밀착성 및 내식성을 동시에 만족시키기 위해 형상과 입자 크기가 다른 2 종류 무기질 filler를 사용하였다. 또한 용액 제조 방법으로 고속 회전 Agitator를 이용하여 분산제 없이 수지와 filler을 균일하게 혼합하였다.From the above results, the present invention used inorganic (Ba 2 SO 4 , TiO 2 ) fillers to secure heat resistance, and used two kinds of inorganic fillers having different shapes and particle sizes to satisfy high insulation, adhesion and corrosion resistance at the same time. In addition, the resin and filler were uniformly mixed without a dispersant using a high-speed rotating agitator as a solution preparation method.

도 1 내지 6은 발명 예 6의 조성비로 전기강판 표면에 도포 및 건조한 이후의 표면, 단면 및 표면 특성을 사진으로 나타내었다. 도 1은 코팅층의 표면을 SEM 사진으로 표면 거칠기(Ra)가 약 0.25㎛로 아주 낮으며, 연필 경도가 9H로 아주 우수하다. 도 2는 표면 밀착성을 보여주는 도면으로서, cross cut test 및 tape peel test로 측정한 결과 박리현상이 없으며, 밀착성이 5B 수준으로 우수하다. 도 3은 salt spray tester(5% NaOH, 35℃, 8Hr) 결과로서, 표면에 녹이 일부 발생하나 내식성은 아주 양호한 수준임을 알 수 있었다. 도 4는 1차 코팅층 상에 2차 코팅층(varnish)를 도포한 경우로서, 코팅 두께가 11㎛ 이상에서도 2차 코팅층이 우수하였다. 도 5는 2차 코팅 후에 cross cut test 및 tape peel test 결과로서, 밀착성이 5B 정도로 매우 우수하였다.1 to 6 are photographs showing the surface, cross section and surface characteristics after coating and drying the surface of the electrical steel sheet in the composition ratio of Inventive Example 6. 1 is a SEM photograph of the surface of the coating layer, the surface roughness (Ra) is very low as about 0.25㎛, pencil hardness is very excellent as 9H. 2 is a view showing the surface adhesion, as a result of the measurement by the cross cut test and tape peel test, there is no peeling phenomenon, the adhesion is excellent to 5B level. 3 is a result of the salt spray tester (5% NaOH, 35 ℃, 8Hr), it was found that some rust occurs on the surface but the corrosion resistance is very good. 4 is a case where a secondary coating layer (varnish) is applied on the primary coating layer, even if the coating thickness is 11㎛ or more was excellent in the secondary coating layer. 5 is a cross cut test and a tape peel test result after the secondary coating, the adhesion was very good as 5B.

도 6은 소재(10) 상에 코팅층(20)이 도포된 상태를 보여주는 사진이다. 서로 다른 형상과 크기를 가진 무기질 filler가 코팅층에서 아주 치밀하게 분포되어 있음을 알 수 있고 코팅층의 두께는 5~6 ㎛이였다.6 is a photograph showing a state in which the coating layer 20 is applied on the material 10. It can be seen that the inorganic fillers having different shapes and sizes are very densely distributed in the coating layer, and the thickness of the coating layer was 5-6 μm.

도 1 내지 6은 본 발명의 실시예에 따른 무방향성 전기강판의 코팅층의 우수한 성질을 나타내는 도면들이다.1 to 6 are views showing the excellent properties of the coating layer of the non-oriented electrical steel sheet according to an embodiment of the present invention.

Claims (5)

중량%로, 황산 바륨(Ba2SO4) 20~40%, 산화 티타늄(TiO2) 10~20%, 이온수 15~30% 및 고비점 용매인 에틸렌 글리콜(ethylene glycol)과 글리세린(glycerin)을 함유하는 멜라민계 수지 30~50%로 이루어진 것을 특징으로 하는 무방향성 전기강판의 코팅 용액.By weight%, 20% to 40% of barium sulfate (Ba 2 SO 4 ), 10% to 20% of titanium oxide (TiO 2 ), 15% to 30% of ionized water, and high boiling point solvents of ethylene glycol and glycerin Coating solution of a non-oriented electrical steel sheet comprising a melamine resin containing 30 to 50%. 청구항 1에 있어서,The method according to claim 1, 상기 황산 바륨은 1~3㎛의 크기이고, 막대기둥 형상이며, 상기 멜라민계 수지와의 분산성과 용액 안정성을 가지는 것을 특징으로 하는 무방향성 전기강판의 코팅 용액.The barium sulfate has a size of 1 ~ 3㎛, bar-shaped, coating solution of a non-oriented electrical steel sheet, characterized in that it has a dispersibility and solution stability with the melamine-based resin. 청구항 1에 있어서,The method according to claim 1, 상기 산화 티타늄은 구형의 형상을 가지며, 50~200㎚의 크기를 가지는 무방향성 전기강판의 코팅 용액.The titanium oxide has a spherical shape, the coating solution of the non-oriented electrical steel sheet having a size of 50 ~ 200nm. 청구항 1의 무방향성 전기강판의 코팅 용액을 강판에 도포한 후, 300~600℃의 온도에서 10~30초간 가열처리하는 것을 특징으로 하는 무방향성 전기강판의 코팅 방법.After coating the coating solution of the non-oriented electrical steel sheet of claim 1 to the steel sheet, the coating method of the non-oriented electrical steel sheet, characterized in that the heat treatment for 10 to 30 seconds at a temperature of 300 ~ 600 ℃. 청구항 4의 방법으로 제조된 무방향성 전기강판의 코팅층.Coating layer of the non-oriented electrical steel sheet prepared by the method of claim 4.
KR1020070139718A 2007-12-28 2007-12-28 Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet KR100954799B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070139718A KR100954799B1 (en) 2007-12-28 2007-12-28 Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet
PCT/KR2008/002807 WO2009084777A1 (en) 2007-12-28 2008-05-20 Coating solution for non-oriented electrical steel sheet, method of coating non-oriented electrical steel sheet using the same, and coating film of non-oriented electrical steel sheet
CN2008801223940A CN101910463B (en) 2007-12-28 2008-05-20 Coating solution for non-oriented electrical steel sheet, method of coating non-oriented electrical steel sheet using the same, and coating film of non-oriented electrical steel sheet
JP2010540543A JP5232246B2 (en) 2007-12-28 2008-05-20 COATING SOLUTION FOR NONDIRECTIONAL ELECTRIC STEEL, COATING METHOD FOR NONDIRECTIONAL ELECTRIC STEEL USING THE SAME, AND COATING LAYER OF NONDIRECTIONAL ELECTRIC STEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070139718A KR100954799B1 (en) 2007-12-28 2007-12-28 Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet

Publications (2)

Publication Number Publication Date
KR20090071813A true KR20090071813A (en) 2009-07-02
KR100954799B1 KR100954799B1 (en) 2010-04-28

Family

ID=40824471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070139718A KR100954799B1 (en) 2007-12-28 2007-12-28 Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet

Country Status (4)

Country Link
JP (1) JP5232246B2 (en)
KR (1) KR100954799B1 (en)
CN (1) CN101910463B (en)
WO (1) WO2009084777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160045492A (en) * 2014-10-17 2016-04-27 주식회사 포스코 Insulation coating composition for non-oriented electrical sheet, method for manufacturing non-oriented electrical sheet to which the same is applied, and non-oriented electrical sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934190B (en) * 2015-07-02 2017-07-04 庆邦电子元器件(泗洪)有限公司 A kind of electroless plating, the core inductance of environment-friendly type and its processing technology
CN112126937A (en) * 2019-06-25 2020-12-25 宝山钢铁股份有限公司 Production method of non-oriented silicon steel for super-huge type generator and insulating coating thereof
CN114318127B (en) * 2020-09-30 2022-12-16 宝山钢铁股份有限公司 Production method of ultra-low anisotropy non-oriented silicon steel for super-large generator
JP7215644B1 (en) * 2021-03-31 2023-01-31 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
WO2023145800A1 (en) * 2022-01-26 2023-08-03 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711449A (en) * 1993-06-24 1995-01-13 Daiabondo Kogyo Kk Adhesive composition for plating
JPH0770717A (en) * 1993-06-24 1995-03-14 Kawasaki Steel Corp Electrical steel sheet for laminated iron core having excellent edge face weldability and low magnetic field characteristics
KR100496231B1 (en) * 1997-01-27 2005-06-20 스미토모 긴조쿠 고교 가부시키가이샤 Surface treating agent of steel material and surface treated steel material
DE19706810C1 (en) * 1997-02-21 1998-04-02 Basf Coatings Ag Internal varnish for container caps, e.g. crown corks
JP3606155B2 (en) * 2000-03-31 2005-01-05 Jfeスチール株式会社 Electrical steel sheet with chromium-free insulating coating with excellent corrosion resistance
KR20020052864A (en) * 2000-12-26 2002-07-04 이구택 Non-oriented silicon steel coated with organic inorganic complex coating solution
JP3835227B2 (en) * 2001-09-21 2006-10-18 住友金属工業株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP4046322B2 (en) 2002-07-24 2008-02-13 日新製鋼株式会社 Heat-resistant clear pre-coated metal sheet with excellent design
KR101119022B1 (en) * 2004-06-30 2012-03-12 주식회사 포스코 Electric steel sheet and refining method for electric steel sheet
TWI284668B (en) 2004-07-02 2007-08-01 Eternal Chemical Co Ltd Acrylate resin compositions capable of absorbing ultraviolet light
CN100554352C (en) * 2006-10-19 2009-10-28 上海大学 The preparation method of the nanometer aqueous automobile paint of scrape resistant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160045492A (en) * 2014-10-17 2016-04-27 주식회사 포스코 Insulation coating composition for non-oriented electrical sheet, method for manufacturing non-oriented electrical sheet to which the same is applied, and non-oriented electrical sheet

Also Published As

Publication number Publication date
JP5232246B2 (en) 2013-07-10
CN101910463B (en) 2012-08-29
KR100954799B1 (en) 2010-04-28
CN101910463A (en) 2010-12-08
JP2011508084A (en) 2011-03-10
WO2009084777A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5877252B2 (en) Insulating coating composition of non-oriented electrical steel sheet, method for producing the same, and non-oriented electrical steel sheet to which the insulating coating composition is applied
JP4644317B2 (en) Electrical steel sheet having insulating coating and method for producing the same
KR100954799B1 (en) Coating solution of non-orient electrical steel sheet, method for coating non-orient electrical steel sheet using the same, and coating film of non-orient electrical steel sheet
EP2902509B1 (en) Grain oriented electrical steel flat product comprising an insulation coating
US7976902B2 (en) Coating solution for forming insulating film with excellent corrosion resistance property and film close adhesion property and film intensity without chrome and a method for making the insulation film on non-oriented electrical steel sheet by using it
KR101264231B1 (en) Coating solution with excellent insulating property, method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it
JP4461861B2 (en) Magnetic steel sheet with chrome-free insulation coating
KR20130026475A (en) Electromagnetic steel sheet and process for production thereof
KR101025008B1 (en) Method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it
KR20150074817A (en) Adhesive coating composition for non-oriented electrical steel, non-oriented electrical steel product, and method for manufacturing the product
KR101481128B1 (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
KR101448598B1 (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
JP5423465B2 (en) Electrical steel sheet and method for producing electrical steel sheet
EP0049077B1 (en) Interlaminar coating compositions cured at low temperatures
KR101481127B1 (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
JP2006169568A (en) Electromagnetic steel sheet having insulating coating
KR100733367B1 (en) Thick-film coating solution for a non-oriented electrical steel sheet with excellent solution stability and method for manufacturing non-oriented electrical steel sheet having resistance against corrosion and insulation property using the same
KR20230092608A (en) Insulation coating composition for electrical steel sheet, electrical steel sheet, and method for manufacturing the same
KR20230095561A (en) Insulation coating composition for electrical steel sheet, electrical steel sheet, and method for manufacturing the same
JPWO2019093521A1 (en) Coating liquid for forming an insulating film for grain-oriented electrical steel sheets, and manufacturing method for grain-oriented electrical steel sheets
KR101419473B1 (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130417

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170419

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190410

Year of fee payment: 10