KR20090071178A - High strength galvanized wire rod for bridge cable and manufacturing method thereof - Google Patents

High strength galvanized wire rod for bridge cable and manufacturing method thereof Download PDF

Info

Publication number
KR20090071178A
KR20090071178A KR1020070139404A KR20070139404A KR20090071178A KR 20090071178 A KR20090071178 A KR 20090071178A KR 1020070139404 A KR1020070139404 A KR 1020070139404A KR 20070139404 A KR20070139404 A KR 20070139404A KR 20090071178 A KR20090071178 A KR 20090071178A
Authority
KR
South Korea
Prior art keywords
wire
steel wire
strength
diameter
temperature
Prior art date
Application number
KR1020070139404A
Other languages
Korean (ko)
Other versions
KR100928786B1 (en
Inventor
정병인
김현진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070139404A priority Critical patent/KR100928786B1/en
Publication of KR20090071178A publication Critical patent/KR20090071178A/en
Application granted granted Critical
Publication of KR100928786B1 publication Critical patent/KR100928786B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

A galvanized steel wire for a high intensity bridge and a manufacturing method thereof are provided to reduce the construction cost by reducing the construction period and the cable weight. A manufacturing method of a galvanized steel wire for a high intensity bridge comprises: a step of hot-rolling the wire of 11~ 14mm at the temperature range of 950~1200°C after heating a billet at 1000~1250°C; a step of continuously cooling at 3~10°C / s, from cooling start temperature of 1050~1150°C to the pearlite transformation start temperature; a step of winding firstly at a reduction rate of 5~25%; a step of winding secondly at the reduction rate of 78~85% after a LP thermal process; and a step of zinc-plating at the temperature of 450°C or greater.

Description

고강도 교량용 아연도금강선 및 그 제조방법{High Strength Galvanized Wire Rod for Bridge Cable and Manufacturing Method Thereof} High Strength Galvanized Wire Rod for Bridge Cable and Manufacturing Method Thereof}

본 발명은 인장강도 2000MPa 이상의 교량용 케이블 제작을 위한 제조방법에 관한 것으로, 보다 상세하게는 LP열처리 전 1차 신선가공을 하고, 아연도금온도를 한정하는 것을 특징으로 하는 고강도 교량용 아연도금강선의 제조방법에 관한 것이다.The present invention relates to a manufacturing method for manufacturing a cable for bridges with a tensile strength of 2000MPa or more, and more particularly, to the primary wire drawing before the LP heat treatment, and to the galvanizing temperature of the high strength bridge galvanized steel wire. It relates to a manufacturing method.

기존에 교량용 강선을 가공하는 방법은 선경 12~13mm 선재의 표면을 산세를 통해 깨끗이 한 후 신선가공중의 마찰을 줄이기 위해 윤활제를 코팅하고 열처리를 통해 신선가공에 적합한 미세 펄라이트조직(sorbite)을 만들고 신선 가공을 통해 최종 선경(선경 4.92mm)까지 신선하고 내부식성을 향상시키기 위해 Zn로 도금하여 선경 5mm의 강선을 만드는 것이다. Conventionally, steel wire processing for bridges is performed by pickling the surface of wire diameter 12 ~ 13mm by pickling, then coating lubricant to reduce friction during drawing process, and applying fine pearlite structure (sorbite) suitable for drawing process through heat treatment. It is made by wire drawing with Zn to make steel wire 5mm in diameter to improve the corrosion resistance.

교량용 강선의 고강도화는 교량의 장대화와 함께 매우 오랜 세월 동안 진행되어 왔는데, 현재 실제 교량용 강선으로 적용된 강선중 최고 강도를 보유한 강선은 1998 년 일본 명석해협대교에 적용된 1800MPa급 강선이다. The high strength of the bridge steel wire has been going on for a long time with the extension of the bridge. The steel wire which has the highest strength among the steel wires applied as the actual bridge steel wire is the 1800MPa class steel wire applied to the Japan Myeongsegae Bridge in 1998.

교량용 강선의 강도를 획득하는 방법은 도2에서 나타난 것처럼 ① 선재상태의 강도를 증가시키는 방법, ② 가공경화율 혹은 가공경화량을 증가시키는 방법, ③ Zn 도금시 강도의 저하를 억제하는 방법 등이 있다. As shown in Fig. 2, the method of acquiring the strength of the steel wire for a bridge is as follows. There is this.

기존의 1800MPa급 강선까지는 고강도화를 위하여 주로 탄소나 규소, 크롬, 바나듐등의 합금원소를 첨가하여 선재상태의 강도를 증가시키는 방법을 가장 많이 사용하여 왔으며 명석해협대교에 적용된 1800MPa급 강선에서는 규소의 함량을 높여 Zn도금시 강도저하의 낙폭을 줄이는 방법을 적용하기도 했다. 합금원소를 제어하여 상변태를 제어하면 보다 미세한 라멜라 층상간격을 얻을 수 있고 이로부터 가공경화율을 올릴 수도 있다. Up to 1800MPa class steel wire has been used the most to increase the strength of wire rod state by adding alloy elements such as carbon, silicon, chromium and vanadium for the high strength. In other words, a method of reducing the drop in strength during Zn plating has been applied. If the phase transformation is controlled by controlling the alloying elements, finer lamellar layer spacing can be obtained, thereby increasing the work hardening rate.

그러나 가공경화율의 증가에 의한 강도증가를 추구하는 것은 타이어코드 같은 가공량이 매우 많은 경우에는 효과적이나 교량용 강선처럼 가공량이 상대적으로 적은 경우에서는 효과적이지 못하다. 또한 가공경화량을 늘리는 것은 소재의 연성을 심각하게 저하시키므로 강도확보는 손쉽게 달성할 수 있으나 가공상의 문제를 발생시킨다. However, pursuing the increase in strength by increasing the work hardening rate is effective when the processing amount such as tire cord is very large, but it is not effective when the processing amount is relatively small such as steel wire for bridge. In addition, increasing the amount of hardening seriously degrades the ductility of the material, so strength can be easily achieved, but it causes processing problems.

또한 최종제품에 요구되는 인장강도가 증가하면서 신선가공 전 선재 상태에서도 높 은 강도가 필요하게 되었다. 즉, 신선가공 중 가공경화에 의한 소재의 부위별 강도 불균형이 심화되어 신선가공이 적절하게 이뤄지지 않은 경우가 많았다.In addition, as the tensile strength required for the final product increases, high strength is required even in the state of wire rod before drawing. In other words, the strength imbalance of each part of the material due to the work hardening during the drawing was intensified, and thus, the drawing was not performed properly in many cases.

신선에 적합한 미세조직을 갖추기 위해 LP열처리를 가하는 경우에도 선재의 선경이 굵을수록 내부와 외부의 냉각속도 편차가 심해져서 미세조직이 균일하지 않기 때문에 신선가공에 대하여 가공경화되는 정도의 차이가 발생하게 되고 최종제품의 염회특성 불량을 유발하는 문제가 있다.Even when LP heat treatment is applied to prepare a microstructure suitable for drawing, the thicker the wire diameter, the greater the difference in cooling rate between the inside and the outside, so that the microstructure is not uniform. And there is a problem causing bad salt characteristics of the final product.

본 발명은 LP열처리 전 1차 신선가공을 하고, 아연도금온도를 한정함으로써 고강도 교량용 아연도금강선의 제조방법을 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a method for producing a high strength bridge galvanized steel wire by subjecting the primary wire drawing before the LP heat treatment and limiting the zinc plating temperature.

상기 목적을 달성하기 위하여 본 발명의 고강도 교량용 아연도금강선은 중량%로, C: 0.90~1.00%, Si: 1.0~1.6%, Mn: 0.4~0.6%, Cr: 0.2~0.4%, S: 0.015%이하(0%를 포함하지 않음), P: 0.015%이하(0%를 포함하지 않음)와 나머지는 Fe 및 불가피한 불순물을 포함하고, 인장강도가 2000MPa 이상이고, 강선의 파단면이 강선의 길이방향에 대해 직각인 경우를 특징으로 한다.In order to achieve the above object, the high-strength bridge galvanized steel wire of the present invention is a weight%, C: 0.90 to 1.00%, Si: 1.0 to 1.6%, Mn: 0.4 to 0.6%, Cr: 0.2 to 0.4%, S: 0.015% or less (does not contain 0%), P: 0.015% or less (does not contain 0%) and the rest contains Fe and unavoidable impurities, tensile strength is 2000MPa or more, and the fracture surface of the steel wire It is characterized by a right angle to the longitudinal direction.

나아가, 본 발명의 고강도 교량용 아연도금강선의 제조방법은 상기 조성범위로 조성된 빌렛을 1000~1250℃로 가열한 후 선경 11~14mm의 선재로 950~1200℃의 온도범위에서 열간압연하는 단계; 1050~1150℃의 냉각개시온도에서 펄라이트 변태 개시온도까지 3~10℃/s의 냉각속도로 연속냉각하는 단계; 5~25%의 감면율로 1차 신선하는 단계; LP열처리 후 78~85%의 감면율로 2차 신선하는 단계; 및 450℃ 이상의 온도에서 아연도금하는 단계로 구성되는 것을 특징으로 한다.Furthermore, the method for producing a high strength bridge galvanized steel wire of the present invention is a step of hot rolling in the temperature range of 950 ~ 1200 ℃ with a wire diameter of 11 ~ 14mm after heating the billet formed in the composition range to 1000 ~ 1250 ℃. ; Continuous cooling at a cooling rate of 3 to 10 ° C./s from a cooling start temperature of 1050 to 1150 ° C. to a pearlite transformation start temperature; Primary freshness with a reduction rate of 5-25%; After the LP heat treatment step of the second fresh with a reduction rate of 78 ~ 85%; And galvanizing at a temperature of 450 ° C. or higher.

본 발명에 의할 경우, 인장강도 2000MPa 이상의 교량용 강선을 제조할 수 있으므로 이를 통해 향후 중앙경간 2000m 이상의 초장대 케이블교량의 건축에 적용을 하여, 케이블 자중의 감소 및 공사기간의 단축 등이 가능하여 건설비용 절감에 상당한 효과를 볼 수 있다.According to the present invention, steel wire for bridges with a tensile strength of 2000MPa or more can be manufactured, so that it can be applied to the construction of ultra long cable bridges with a center span of 2000m or more, which can reduce the weight of the cable and shorten the construction period. It can have a significant effect on the construction cost reduction.

본 발명은 기존의 교량용 강선에서 합금성분을 첨가하여 선재의 강도를 향상시키는 경우 높은 강도로 인하여 가공성이 확보되지 못하고 궁극적으로 최종 제품의 염회특성이 확보되지 못하는 문제를 해결하고자 하였다. The present invention has been made to solve the problem that the processability is not secured due to the high strength and ultimately the salting property of the final product is not improved when the strength of the wire rod is added by adding an alloy component in the existing steel wire.

염회특성이 확보되지 못한 제품은 염회 테스트시 선재의 축방향을 따라서 균열이 발생하는 delamination 현상을 발생시키게 된다. 최종제품에서 염회특성이 확보되지 못하는 이유는 선재의 강도가 증가할수록 신선가공시 가해지는 하중이 커지기 때문에 소재 내의 불균일한 미세조직 부분이나 신선가공상의 문제로 생성될 수 있는 외적인 결함 등에 균열을 발생시킬 확률이 증가하기 때문이다. 따라서 소재의 미세조직을 보다 균일하게 하고 신선가공량을 줄여주지 않으면 고강도 선재를 신선가공한 뒤 염회특성을 확보하기 어렵다. Products that do not have salt characteristics will cause delamination, which occurs along the axial direction of the wire during salt testing. The reason that the salt property is not secured in the final product is that as the strength of the wire increases, the load applied during the drawing process increases, which may cause cracks in non-uniform microstructures of the material or external defects that may be generated by drawing problems. This is because the probability increases. Therefore, if the microstructure of the material is more uniform and the amount of drawing is not reduced, it is difficult to secure the salt characteristics after drawing the high strength wire.

기존에는 신선가공량을 줄이는 경우 최종제품의 강도를 확보하기 어렵기 때문에 적용하지 않았으나, 본 발명에서는 열처리 전에 소량 신선을 가하여 선재의 선경을 줄여준 뒤 LP열처리를 통해 보다 빠른 냉각속도와 균일한 미세조직을 확보함으로써 강도가 향상된 선재를 이용하여 신선가공량을 줄여서 최종적으로 강도와 염회특성을 모두 우수한 교량용 강선을 제조할 수 있다. Conventionally, when reducing the amount of drawing, it was not applied because it is difficult to secure the strength of the final product. However, in the present invention, a small amount of drawing is applied before heat treatment to reduce the wire diameter of the wire, and thus, a faster cooling rate and a uniform microstructure through LP heat treatment. By securing the steel wire with improved strength, it is possible to reduce the amount of drawing and finally to produce a steel wire for bridges with excellent strength and salt characteristics.

이하, 본 발명의 조성범위의 한정이유에 대하여 구체적으로 설명한다.Hereinafter, the reason for limitation of the composition range of this invention is demonstrated concretely.

C: 0.90~1.00%(이하, 중량%)C: 0.90 to 1.00% (hereinafter, weight%)

탄소(C)는 교량용 과공석강 선재에서 세멘타이트로 형성되어 있다. 세멘타이트는 페라이트와 함께 층상의 펄라이트를 형성하는데 페라이트에 비하여 고강도이므로 세멘타이트의 분율이 증가할수록 선재의 강도는 증가하게 된다. 또한 전체 층상조직이 균질하고 미세할수록 선재의 강도는 올라가게 된다. 탄소의 함량을 증가시키면 세멘타이트의 분율이 증가하고 라멜라 층간간격이 미세해지므로 선재의 강도를 증가시키는데 매우 효과적이다. 본 발명에서는 2000MPa 이상의 인장강도를 목표로 하기 위해 0.90% 이상의 탄소를 첨가하여 강도 향상을 추구하였다. 그러나 탄소의 함량이 1.00%를 초과하면 냉각속도가 충분치 않은 경우 오스테나이트 결정립계에 초석 세멘타이트를 형성시켜 가공성을 열악하게 만드는 문제가 생기기도 한다. 따라서 탄소의 함량을 증가시키는 경우 가공성을 해치지 않기 위해서는 냉각속도를 충분히 확보하거나 다른 합금성분계를 함께 첨가하여 오스테나이트-펄라이트 상변태 kinetics를 제어할 수 있어야 한다. Carbon (C) is formed of cementite in the roughened steel wire for bridges. Cementite forms a layered pearlite together with ferrite, which is higher in strength than ferrite, so as the fraction of cementite increases, the strength of the wire increases. In addition, the more homogeneous and finer the entire layered structure, the higher the strength of the wire rod. Increasing the carbon content increases the fraction of cementite and makes the lamellar spacing fine, which is very effective in increasing the strength of the wire rod. In the present invention, in order to aim at a tensile strength of 2000MPa or more, more than 0.90% of carbon was added to seek strength improvement. However, if the carbon content exceeds 1.00%, if the cooling rate is not enough, there is a problem that the workability is poor by forming the cornerstone cementite at the austenite grain boundary. Therefore, in order to increase the content of carbon in order not to impair the processability, the austenitic-pearlite phase transformation kinetics should be able to be controlled by sufficiently securing the cooling rate or adding other alloying components together.

Si: 1.0~1.6%Si: 1.0-1.6%

규소(Si)는 기지조직인 페라이트에 고용되어 강화시키기도 하지만 아연도금시 세멘타이트 조직 붕괴를 억제하여 강도저하를 억제하는 효과도 가지고 있다고 알려져 있다. 강도저하 억제 메커니즘에 대해서는 펄라이트(Pearlite) 중의 페라이트/세멘타이트(Ferite/Cementite) 계면에 Si 농화층이 생성하여 Cementite의 붕괴를 억제하기 때문이라고 보고되고 있다. 즉 아연도금 처리시의 강선온도는 400℃ 이상까지 상승하는데 이때 강선중의 라멜라 세멘타이트가 나노 사이즈로 입상화하고, 또한 조대화 됨에 따라 강도와 동시에 연성도 저하한다. 규소는 라멜라 세멘타이트 표면에 농화되어 존재하고,온도상승에 의한 라멜라 세멘타이트의 나노 입자의 조대화를 억제함에 따라 강도저하를 방지하여 고연성을 유지하는 역할을 하며, 규소의 함량을 1.0% 미만 첨가시 그 효과가 미미하다. 그러나 규소의 함량이 1.6%를 초과하면 열처리시 소재의 표면에서 탄소가 산화되어 쉽게 제거되므로 신선 가공시 delamination을 일으키기 쉽다. Silicon (Si) is known to have an effect of suppressing strength degradation by inhibiting the collapse of cementite structure during zinc plating, although it is dissolved in ferrite, a matrix structure. It is reported that the strength reduction suppression mechanism is due to the formation of Si-concentrated layers at the ferrite / cementite interface in pearlite, thereby inhibiting the collapse of cementite. In other words, the steel wire temperature during the galvanizing process rises to 400 ° C. or more. At this time, the lamellar cementite in the steel wire is granulated to nano size and coarsened, thereby decreasing strength and ductility. Silicon is concentrated on the surface of lamellar cementite and prevents coarsening of the lamellar cementite nanoparticles due to temperature increase, thereby preventing the decrease in strength and maintaining high ductility. The content of silicon is less than 1.0%. The effect is minimal when added. However, when the silicon content exceeds 1.6%, carbon is easily oxidized and removed from the surface of the material during heat treatment, which is likely to cause delamination during the drawing process.

Mn: 0.4~0.6%Mn: 0.4-0.6%

망간(Mn)은 기지조직 내에 고용체를 형성하여 고용강화하는 원소로 매우 유용한 원소이며 펄라이트 변태를 지연시키기 때문에 다소 느린 냉각속도에서도 미세한 펄라이트가 쉽게 생성되도록 0.4% 이상의 함량을 첨가한다. 그러나 0.60% 초과하여 첨가되면 고용강화 효과보다는 망간편석 발생 및 열처리시에 소재의 표면에 있는 조직의 결정립계가 산화되기 쉬어 제품 특성에 악영향을 미친다. 따라서 망간은 0.60% 이하로 첨가하는 것이 바람직하다. Manganese (Mn) is a very useful element that forms a solid solution in a matrix to enhance the solid solution. Since Mn delays pearlite transformation, an amount of 0.4% or more is added so that fine pearlite is easily produced even at a slow cooling rate. However, when added in excess of 0.60%, the grain boundary of the tissue on the surface of the material is easily oxidized during the generation of manganese segregation and heat treatment rather than the solid solution strengthening effect, which adversely affects the product characteristics. Therefore, manganese is preferably added at 0.60% or less.

Cr: 0.2~0.4%Cr: 0.2 ~ 0.4%

크롬(Cr)은 라멜라 층간간격을 미세화시키며 Si과 마찬가지로 아연도금시 세멘타이트의 분절을 억제하여 강도저하를 최소화하는 효과가 있어 0.2% 이상의 함량을 첨가한다. 그러나 Cr은 가격이 비싸고 0.4% 초과하여 첨가시 소입성을 크게 증가시켜 연속냉각 공정 중에 마르텐사이트를 생성시킬 우려가 있다. 또한 Si 역시 소입성을 크게 증가시키는 원소로 함께 있는 경우 마르텐사이트 형성의 우려가 있다. Chromium (Cr) refines the lamellar spacing and, like Si, suppresses the segmentation of cementite during zinc plating, thereby minimizing the strength reduction. However, Cr is expensive and there is a fear that martensite is generated during the continuous cooling process by greatly increasing the hardenability when added in excess of 0.4%. In addition, there is a fear of martensite formation when Si is also present as an element that greatly increases the hardenability.

S: 0.015%이하(0%를 포함하지 않음)S: 0.015% or less (not including 0%)

황(S)이 0.015%를 초과하여 첨가되는 경우, 저융점 석출물의 형태로 결정립계에 석출되어 열간취화를 유발시키므로 가능한 낮게 관리하는 것이 바람직하다. When sulfur (S) is added in excess of 0.015%, it is preferable to manage as low as possible because it precipitates at grain boundaries in the form of low melting point precipitates, causing hot embrittlement.

P: 0.015%이하(0%를 포함하지 않음)P: 0.015% or less (does not include 0%)

인(P)이 0.015%를 초과하여 첨가되는 경우, 주상정 사이에 편석되어 열간취화를 일으키기도 하고, 또 냉간에서 신선가공시 균열을 유발시키므로 가능한 낮게 관리하는 것이 바람직하다. When phosphorus (P) is added in excess of 0.015%, it is segregated between columnar tablets to cause hot embrittlement, and it is preferable to manage it as low as possible because it causes cracking during cold working.

상기 조성성분 이외에 나머지는 Fe 및 불가피한 불순물을 포함한다.In addition to the above components, the remainder includes Fe and unavoidable impurities.

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.

(1) 열간압연 단계(1) hot rolling stage

일반적인 방법에 의하여 열간압연을 수행하며, 바람직하게는 빌렛을 1000~1250℃의 온도에서 1.5~2.5시간 가열한 다음에, 950℃~1200℃의 온도에서 102/s정도의 변형율속도(strain rate)로서 선경 11~14mm의 선재로 압연한다.Hot rolling is performed by a general method. Preferably, the billet is heated at a temperature of 1000 to 1250 ° C for 1.5 to 2.5 hours, and then a strain rate of about 10 2 / s at a temperature of 950 ° C to 1200 ° C. ) Is rolled into a wire having a diameter of 11 to 14 mm.

(2) 냉각단계(2) cooling stage

일반적인 방법에 의하여 열간압연을 수행하며, 바람직하게는 1050~1150℃의 냉각개시온도에서 펄라이트 변태 개시온도까지 3~20℃/s의 냉각속도로 연속냉각한다.Hot rolling is carried out by a general method, and preferably continuously cooled at a cooling rate of 3 to 20 ° C./s from a cooling start temperature of 1050 to 1150 ° C. to a pearlite transformation start temperature.

(3) 1차 신선단계(3) First Fresh Stage

5~25%의 감면율로 1차 신선하는 단계로서, 선경 5mm까지 신선하는 경우 가공경화량이 너무 많아서 최종제품의 염회 특성에 문제가 되므로 최종 가공량을 줄이고 미세조직을 보다 치밀하게 하기 위함이다.This is the first drawing step with reduction rate of 5 ~ 25%. In the case of drawing up to 5mm wire diameter, there is too much processing hardening, which is a problem for the salt characteristics of the final product, so that the final processing amount is reduced and the microstructure is more dense.

(4) LP열처리 및 2차 신선단계(4) LP heat treatment and 2nd fresh step

LP열처리 후 감면율 78~85%의 단면감소율로 2차 신선하는 단계로서, 최종 신선에서는 가공량이 많아 현재의 미세조직으로 가공을 하는 경우 신선 도중 단선의 우려가 있으므로 열처리를 통해 신선에 적합한 미세조직을 만들어야 하는데 이를 LP(Lead Patenting) 열처리라 한다. 본 발명에서는 1000℃ 이상으로 재가열 후, 540~640℃의 납조에 투입하여 항온변태를 시키게 된다.After the LP heat treatment, the secondary drawing is performed with a reduction ratio of 78 ~ 85% .The final drawing is large, so there is a large amount of processing, so when processing with the current microstructure, there is a risk of disconnection during drawing. This is called LP (Lead Patenting) heat treatment. In the present invention, after reheating to 1000 ℃ or more, it is put into a bath of 540 ~ 640 ℃ to make constant temperature transformation.

(5) 아연도금 단계(5) galvanizing step

최종제품에 내식성을 부여하기 위하여 450℃ 이상의 온도에서 아연도금한다. 최종신선공정을 거치면서 가공경화량이 너무 많아 제품의 연성이 문제가 되므로, 450℃ 이상에서 아연도금을 행하여 연성회복 효과를 얻게 된다.In order to give corrosion resistance to the final product, it is zinc plated at temperature above 450 ℃. Due to the too much amount of work hardening during the final drawing process, the ductility of the product becomes a problem, the zinc plating is performed at 450 ℃ or more to obtain a ductile recovery effect.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

중량%로, C: 0.94%, Si: 1.0%, Mn: 0.5%, Cr: 0.25%, S: 0.012%, P: 0.013% 의 조성을 가진 빌렛을 1000~1250℃의 온도에서 1.5~2.5시간 가열한 다음에, 950℃~1200℃의 온도에서 102/s정도의 변형율속도(strain rate)로서 선경 12mm 선재로 압연한다. 열간압연된 선재는 곧바로 권취온도 850℃까지 1초 정도의 시간 동안 물로써 급냉한 다음 코일형상으로 권취한다. 그리고 권취된 선재는 3℃/s~20℃/s의 냉각속도로 냉각한다.By weight, a billet having a composition of C: 0.94%, Si: 1.0%, Mn: 0.5%, Cr: 0.25%, S: 0.012%, P: 0.013% is heated at a temperature of 1000 to 1250 ° C for 1.5 to 2.5 hours. Then, it is rolled with a wire diameter of 12 mm at a strain rate of about 10 2 / s at a temperature of 950 ° C to 1200 ° C. The hot rolled wire is quenched with water for about one second to the winding temperature of 850 ° C, and then wound in a coil shape. And the wound wire is cooled at a cooling rate of 3 ℃ / s ~ 20 ℃ / s.

선재가 제조되면 표면처리를 해준 뒤 바로 LP 열처리를 행하는 것이 기존의 방법인데 본 발명에서는 표면 처리 뒤 신선을 가하여 선재의 선경을 줄여준 뒤, LP 열처리를 진행하였다. 하기 표1에 기존 선경 12mm 선재를 LP처리 이후에 측정한 인장특성과 선경 10.5, 11, 11.5mm로 신선한 뒤 LP처리 했을 때의 인장특성을 비교하였다.When the wire is manufactured, the surface treatment is performed immediately after the LP heat treatment is a conventional method, in the present invention, after the surface treatment to reduce the wire diameter of the wire by applying fresh, the LP heat treatment. Table 1 compares the tensile properties measured after the LP treatment with the existing wire diameter of 12mm wire and the tensile properties when the LP treatment after fresh with 10.5, 11, 11.5mm wire diameter.

시편 크기Specimen size 기계적 성질Mechanical properties 1차신선 감면율(%)Primary freshness reduction rate (%) 인장강도(MPa)Tensile Strength (MPa) 단면감소율(%)Cross section reduction rate (%) 선재 Wire rod 선경12.0mmDiameter 12.0mm -- 13421342 2727 LP 열처리재LP heat treatment material 선경10.5mmDiameter 10.5mm 2323 14541454 3737 선경11.0mmDiameter 11.0mm 1616 14431443 3535 선경11.5mmDiameter 11.5mm 88 14411441 3636

상기 표1에 나타난 것처럼, LP 열처리를 통해 동일한 온도에서 항온변태를 시키더라도 선경이 가늘어짐에 따라 선재의 냉각속도가 커지므로 보다 미세한 라멜라 조직이 얻어진다는 것을 알 수 있다. 이러한 미세한 라멜라 조직은 가공경화율을 높여주어 신선 가공량을 줄이더라도 최종 신선재에서 강도가 확보되게 한다.As shown in Table 1, even if the constant temperature transformation at the same temperature through the LP heat treatment can be seen that the finer lamellar structure is obtained because the cooling rate of the wire increases as the wire diameter becomes thinner. This fine lamellar structure increases the work hardening rate so that the strength can be secured in the final wire even though the amount of drawing is reduced.

하기의 표2에는 각기 다른 선경에서 신선 가공을 행한 경우 신선 후 기계적 특성 변화를 나타내었다.Table 2 below shows changes in mechanical properties after drawing in the case of drawing in different wire diameters.

선경 변화Change of diameter 2차신선 감면율(%)Secondary freshness reduction rate (%) 인장강도(MPa)Tensile Strength (MPa) 단면감소율(%)Cross section reduction rate (%) 선경10.5mm→선경4.92mmDiameter 10.5mm → Diameter 4.92mm 7878 20412041 4646 선경11.0mm→선경4.92mmDiameter 11.0mm → Diameter 4.92mm 8080 20992099 4141 선경11.5mm→선경4.92mmDiameter 11.5mm → Diameter 4.92mm 8282 21202120 4343

상기 표2에 나타난 것처럼 감면율을 증가시킬수록 강도가 증가하는 것을 알 수 있으며, 감면율 78% 이상부터 강도는 2000MPa 이상임을 확인할 수 있다.As shown in Table 2, it can be seen that the strength increases as the reduction rate is increased. From the reduction rate of 78% or more, the strength is higher than 2000 MPa.

하기 표3에는 최종 Zn 도금 후 인장특성과 염회특성을 나타내었다. 하기 표3의 Delamination 발생여부는 강선의 파단면이 강선의 길이방향에 대하여 직각을 갖는지 여부에 의하여 평가되었다. 그 파단면이 강선의 길이방향에 직각인 경우 Delamination 발생하지 않으며 이를 'X' 로, 직각이 아닌 경우 Delamination 발생하고 이를 'O'로 나타내었다.Table 3 shows the tensile and salt characteristics after the final Zn plating. Delamination occurrence of the following Table 3 was evaluated by whether the fracture surface of the steel wire is perpendicular to the longitudinal direction of the steel wire. Delamination does not occur when the fracture surface is perpendicular to the longitudinal direction of the steel wire, and this is represented by 'X', and when it is not perpendicular, delamination occurs and is represented by 'O'.

구분division 도금온도 (℃)Plating temperature (℃) 선경 변화 (2차신선 감면율%)Wire diameter change (secondary freshness reduction rate%) 인장강도 (MPa)Tensile Strength (MPa) 단면감소율 (%)Cross section reduction rate (%) 염회치 (회)Salted salt (time) Delamination 발생여부Delamination occurrence 비교강1Comparative Steel 1 400이상~ 450미만400 or more ~ less than 450 선경10.5mm→ 선경4.92mm(78%)Diameter 10.5mm → Diameter 4.92mm (78%) 2004 2004 3636 1313 OO 비교강2Comparative Steel 2 선경11.0mm→ 선경4.92mm(80%)Diameter 11.0mm → Diameter 4.92mm (80%) 2042 2042 4040 77 OO 비교강3Comparative Steel 3 선경11.5mm→ 선경4.92mm(82%)Diameter 11.5mm → Diameter 4.92mm (82%) 2089 2089 4242 1212 OO 비교강4Comparative Steel 4 450이상~ 500이하450 or more ~ 500 or less 선경10.5mm→ 선경4.92mm(78%)Diameter 10.5mm → Diameter 4.92mm (78%) 1963 1963 3333 2424 XX 비교강5Comparative Steel 5 선경11.0mm→ 선경4.92mm(80%)Diameter 11.0mm → Diameter 4.92mm (80%) 1998 1998 3434 66 OO 발명강1Inventive Steel 1 선경11.5mm→ 선경4.92mm(82%)Diameter 11.5mm → Diameter 4.92mm (82%) 2033 2033 2929 2525 XX

상기 표3에서 나타난 바와 같이, 통상적으로 염회치가 14회 이상 정도 얻어져야 함을 고려할 때 도금온도 450℃ 미만 조건에서는 모두 염회치 불량에 해당하고 delamination 발생함을 알 수 있다. 450℃ 이상 조건에서는 비교강5를 제외하고 모두 염회치 불량이 발생하지 않았다. 특히 발명강1은 인장강도 2000MPa를 상회하고 염회특성에서도 염회치가 높고 delamination이 전혀 발생하지 않은 것으로 볼 때 최적의 교량용 강선 제조 조건인 것으로 판단된다.As shown in Table 3, when considering that the salt value should be generally obtained about 14 times or more, it can be seen that all of the salt value is poor and delamination occurs under the plating temperature below 450 ° C. Under the condition of 450 ° C. or higher, no salt salt defect occurred except for Comparative Steel 5. In particular, invented steel 1 is considered to be the most suitable condition for the production of steel wire for bridges, given that its tensile strength is higher than 2000 MPa, its salt value is high and its delamination does not occur at all.

도 1은 기존의 교량용 강선 열처리 및 가공 공정과 본 발명의 새로운 열처리 및 가공 공정을 비교하여 보여주는 도면이다. 1 is a view showing a comparison between the existing steel wire heat treatment and processing process for the bridge and the new heat treatment and machining process of the present invention.

도 2는 교량용 강선 제조 공정 진행에 따라 강도가 변화하는 양상을 보여주는 도면이다. Figure 2 is a view showing how the strength changes as the steel wire manufacturing process progresses for the bridge.

Claims (2)

중량%로, C: 0.90~1.00%, Si: 1.0~1.6%, Mn: 0.4~0.6%, Cr: 0.2~0.4%, S: 0.015%이하(0%를 포함하지 않음), P: 0.015%이하(0%를 포함하지 않음)와 나머지는 Fe 및 불가피한 불순물을 포함하고, 인장강도가 2000MPa 이상이고, 강선의 파단면이 강선의 길이방향에 대해 직각인 경우를 특징으로 하는 고강도 교량용 아연도금강선.By weight%, C: 0.90 to 1.00%, Si: 1.0 to 1.6%, Mn: 0.4 to 0.6%, Cr: 0.2 to 0.4%, S: 0.015% or less (not including 0%), P: 0.015% Galvanized steel for high strength bridges characterized by the following (not including 0%) and the remainder containing Fe and unavoidable impurities, tensile strength of 2000 MPa or more, and the fracture surface of the steel wire being perpendicular to the longitudinal direction of the steel wire. Gold wire. 중량%로, C: 0.90~1.00%, Si: 1.0~1.6%, Mn: 0.4~0.6%, Cr: 0.2~0.4%, S: 0.015%이하(0%를 포함하지 않음), P: 0.015%이하(0%를 포함하지 않음)와 나머지는 Fe 및 불가피한 불순물로 구성된 빌렛을By weight%, C: 0.90 to 1.00%, Si: 1.0 to 1.6%, Mn: 0.4 to 0.6%, Cr: 0.2 to 0.4%, S: 0.015% or less (not including 0%), P: 0.015% (Not containing 0%) and the remainder are billets composed of Fe and unavoidable impurities. 1000~1250℃로 가열한 후 선경 11~14mm의 선재로 950~1200℃의 온도범위에서 열간압연하는 단계;Hot-rolling at a temperature range of 950-1200 ° C. with a wire of 11-14 mm in diameter after heating to 1000-1250 ° C .; 1050~1150℃의 냉각개시온도에서 펄라이트 변태 개시온도까지 3~10℃/s의 냉각속도로 연속냉각하는 단계;Continuous cooling at a cooling rate of 3 to 10 ° C./s from a cooling start temperature of 1050 to 1150 ° C. to a pearlite transformation start temperature; 5~25%의 감면율로 1차 신선하는 단계;Primary freshness with a reduction rate of 5-25%; LP열처리 후 78~85%의 감면율로 2차 신선하는 단계; 및After the LP heat treatment step of the second fresh with a reduction rate of 78 ~ 85%; And 450℃ 이상의 온도에서 아연도금하는 단계로 구성되는 것을 특징으로 하는 고강도 교량용 아연도금강선의 제조방법.Method for producing a high strength bridge galvanized steel wire, characterized in that consisting of a step of galvanizing at a temperature of 450 ℃ or more.
KR1020070139404A 2007-12-27 2007-12-27 High strength bridge galvanized steel wire and manufacturing method KR100928786B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070139404A KR100928786B1 (en) 2007-12-27 2007-12-27 High strength bridge galvanized steel wire and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070139404A KR100928786B1 (en) 2007-12-27 2007-12-27 High strength bridge galvanized steel wire and manufacturing method

Publications (2)

Publication Number Publication Date
KR20090071178A true KR20090071178A (en) 2009-07-01
KR100928786B1 KR100928786B1 (en) 2009-11-25

Family

ID=41322619

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070139404A KR100928786B1 (en) 2007-12-27 2007-12-27 High strength bridge galvanized steel wire and manufacturing method

Country Status (1)

Country Link
KR (1) KR100928786B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483550A (en) * 2014-10-07 2016-04-13 高丽制钢株式会社 Prestressed concrete steel strand
CN112322865A (en) * 2020-10-13 2021-02-05 江苏省沙钢钢铁研究院有限公司 Process method for improving quality of high-strength cable steel casting blank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316404B1 (en) 2012-02-29 2013-10-08 주식회사 포스코 Methods of high carbon steel wires
KR101420281B1 (en) * 2012-10-09 2014-08-14 고려제강 주식회사 Wirerope and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261430A (en) * 1985-05-14 1986-11-19 Shinko Kosen Kogyo Kk Manufacture of high strength and toughness steel wire
JPH11229088A (en) 1998-02-17 1999-08-24 Nippon Steel Corp High tensile strength wire rod for steel wire excellent in twisting value and its production
JP4146271B2 (en) * 2003-04-21 2008-09-10 新日本製鐵株式会社 High strength PC steel wire with excellent delayed fracture resistance and method for producing the same
KR100711469B1 (en) * 2005-12-12 2007-04-24 주식회사 포스코 A method for manufacturing 2000mpa grade hypereutectoid steel wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483550A (en) * 2014-10-07 2016-04-13 高丽制钢株式会社 Prestressed concrete steel strand
CN112322865A (en) * 2020-10-13 2021-02-05 江苏省沙钢钢铁研究院有限公司 Process method for improving quality of high-strength cable steel casting blank

Also Published As

Publication number Publication date
KR100928786B1 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
EP2009126B1 (en) Bead wire having light weight and excellent drawability, method for production of the bead wire, and lightweight tire
US10597748B2 (en) Steel wire rod for wire drawing
EP1069199B1 (en) High-fatigue-strength steel wire and production method therefor
KR20190042022A (en) METHOD FOR MANUFACTURING STRENGTH STEEL STRIP WITH IMPROVED CHARACTERISTICS FOR ADDITIONAL TREATMENT
US20200370142A1 (en) Drawn steel wire
KR100711469B1 (en) A method for manufacturing 2000mpa grade hypereutectoid steel wire
CN110832096A (en) High-strength steel wire
KR100928786B1 (en) High strength bridge galvanized steel wire and manufacturing method
KR100882122B1 (en) Manufacturing method of the high strength wire for bridge cable having excellent torsional property
KR100742821B1 (en) A wire rod for steel cord, and method for manufacturing the same
KR101065781B1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
KR101304744B1 (en) High strength wire rod for prestressed concrete stranded wire and prestressed concrete stranded wire and manufacturing method thereof
KR20110066637A (en) Method for manufacturing high strength steel wire for prestressed concrete stranded wire and high strength steel wire for prestressed concrete stranded wire produced by the same
KR20190020694A (en) METHOD FOR MANUFACTURING COOLED ROLLED STEEL STRIP WITH TRIP CHARACTERISTICS CONTAINING HIGH-STRENGTH MANGEN-CONTAINING RIG
KR20150074978A (en) HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT GALVANIZABILITY AND METHOD FOR MANUFACTURING THE SAME
KR102147701B1 (en) Manufacturing method of high carbon steel wire having excellent torsional characteristics and strength
KR20180070213A (en) High-carbon wire rod having high-strength and method for manufacturing same
KR101767822B1 (en) High strength wire rod and steel wire having excellent corrosion resistance and method for manufacturing thereof
KR101696113B1 (en) Wire rod enabling omitting heat treatment, method for manufacturing same and method for manufacturing steel wire using the same
KR101330284B1 (en) Method for manufacturing formable hot-rolled steel having excellent surface quality and the hot-rolled steel by the same method
KR100435460B1 (en) A method for manufacturing steel wire for steel cord
KR101262454B1 (en) High strength wire rod and drawn wire rod for prestressed concrete and method for manufacturing thereof
KR102223272B1 (en) High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire
KR101449113B1 (en) High carbon steel wire having excellent bending-fatigue properties and ductility and method for manufacturing thereof
KR102312331B1 (en) High strenth plated steel wire and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151117

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161108

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191119

Year of fee payment: 11