KR20090066542A - Method for production of starch with a slow digestibility - Google Patents

Method for production of starch with a slow digestibility Download PDF

Info

Publication number
KR20090066542A
KR20090066542A KR1020070134131A KR20070134131A KR20090066542A KR 20090066542 A KR20090066542 A KR 20090066542A KR 1020070134131 A KR1020070134131 A KR 1020070134131A KR 20070134131 A KR20070134131 A KR 20070134131A KR 20090066542 A KR20090066542 A KR 20090066542A
Authority
KR
South Korea
Prior art keywords
starch
amylosucrase
sugar
suspension
minutes
Prior art date
Application number
KR1020070134131A
Other languages
Korean (ko)
Other versions
KR100910081B1 (en
Inventor
문태화
신희정
최승준
손마리
이창주
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070134131A priority Critical patent/KR100910081B1/en
Publication of KR20090066542A publication Critical patent/KR20090066542A/en
Application granted granted Critical
Publication of KR100910081B1 publication Critical patent/KR100910081B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/32Processes or apparatus for dissolving of sugars
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives

Abstract

A method for preparing starch with improved digestibility is provided to slowly increase the blood-sugar level after a meal for obese or diabetic patients by mixing starch and sugar and adding amylosucrase to the mixture. Starch and sugar are suspended in water to prepare a suspension. Amylosucrase(E.C. 2.4.1.4) or amylosucrase-containing liquid is added to the suspension in order to induce an enzyme reaction. The suspension is boiled. The starch is selected among waxy corn starch, corn starch, waxy rice starch, normal rice starch, waxy potato starch and potato starch. The amylosucrase is derived from Neisseria polysaccharea. The amylosucrase-containing liquid represents a culture medium of transformed strains or homogenate. The enzyme reaction is performed at 25~35°C.

Description

지소화성이 증진된 전분의 제조방법{Method for production of starch with a slow digestibility}Method for producing starch with increased digestibility {Method for production of starch with a slow digestibility}

본 발명은 지소화성이 증진된 전분의 제조방법에 관한 것으로, 더욱 상세하게는 전분과 설탕을 혼합한 후, 아밀로수크라아제를 첨가하여 반응시킴으로써 지소화성이 증진된 전분을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing starch having improved plasticization, and more particularly, to a method for preparing starch having improved digestibility by mixing starch and sugar, and then reacting with addition of amylosucrase. will be.

전분은 곡류, 서류 등의 식물체에 들어있는 저장 다당류로 인간의 주요 탄수화물 공급원이다. 전분은 영양학적으로 빠르게 소화되는 전분(rapidly digestible starch, RDS), 지소화성 전분(slowly digestible starch, SDS), 난소화성 전분(resistant starch, RS)으로 나누어진다. 지소화성 전분은 소장에서 완전히 소화되지만 소화 속도가 느린 전분이고, 난소화성 전분은 소장에서 소화되지 않고 대장에서 미생물에 의해 발효되는 전분이다.Starch is a storage polysaccharide found in plants such as cereals and papers, and is a major source of carbohydrates in humans. Starch is divided into nutritionally rapidly digested starch (RDS), slowly digestible starch (SDS) and refractory starch (RS). Localized starch is starch that is completely digested in the small intestine but is slow to digest, and indigestible starch is starch which is not digested in the small intestine but fermented by microorganisms in the large intestine.

지소화성 전분과 난소화성 전분의 생리학적 이점에 대해서는 많은 연구가 이루어져 왔는데, 지소화성 전분은 식후 혈당 수치를 천천히 증가시키는 건강적 효과를 발휘하고, 난소화성 전분은 대장암, 고혈당, 고콜레스테롤 혈증을 예방하고, 지 방의 축적을 방해하는 효과를 발휘한다. Much research has been done on the physiological benefits of digestive starch and indigestible starch, which has the health effects of slowly increasing postprandial blood sugar levels, while indigestible starch has been shown to affect colorectal cancer, hyperglycemia and hypercholesterolemia. Prevents and interferes with the accumulation of fat.

한편, 혈당 수치를 빠르게 증가시키는 식품은 인슐린이 과량 분비되고 반복되면 췌장의 과부하로 인슐린이 분비되어도 그 역할을 제대로 하지 못하는 '인슐린 저항성'을 유발하는데, 혈당 수치를 천천히 증가시키는 지소화성 전분은 비만이나 당뇨병 환자들의 식이에 효과적으로 이용될 수 있다. On the other hand, foods that rapidly increase blood sugar levels cause excessive insulin secretion and repetition, which causes insulin resistance due to pancreatic overload, causing insulin resistance, which is a fat starch that slowly increases blood sugar levels. Or diabetes can be effectively used in the diet.

전분의 지소화성, 난소화성 함량을 높이기 위해서는 통상 물리적 처리, 화학적 처리 및 효소적 처리를 단독 또는 병행하여 사용한다. 이 중 효소적 처리는 환경친화적이며, 소비자들에게 안전하고 건강지향적인 처리이다. 또한 특이적인 반응만을 수행하기 때문에 우리가 원하는 반응만을 유도할 수도 있고, 수율이 높으며 반응의 부산물이 적고, 처리 후 사용을 위한 정제가 용이하다는 장점이 있다.In order to increase the localizable and indigestible content of starch, physical treatment, chemical treatment and enzymatic treatment are usually used alone or in combination. Among these, enzymatic treatment is environmentally friendly, safe and health-oriented for consumers. In addition, since only specific reactions can be induced, we can induce only the reactions we want, yields are high, there are few by-products of the reactions, and there is an advantage that the purification for use after treatment is easy.

따라서, 효소적 반응을 이용하여 전분의 지소화도를 높일 수 있는 기술 개발이 요구된다 할 것인데 종래에 이와 같은 기술의 개발은 미미하였다.Therefore, it would be required to develop a technology that can increase the degree of localization of starch by using an enzymatic reaction.

이에 본 발명은 효소적 반응을 이용하여 전분의 지소화도를 높일 수 있는 기술을 개발하여 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to develop and provide a technique capable of increasing the degree of localization of starch using an enzymatic reaction.

상기 목적을 달성하기 위하여, 본 발명은 전분과 설탕을 물에 현탁시켜 현탁액을 제조하는 단계(a); 아밀로수크라아제(E.C. 2.4.1.4) 또는 이를 함유하는 액을 상기 단계(a)의 현탁액에 첨가하여 효소반응을 유도하는 단계(b);를 포함하는 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of preparing a suspension by suspending starch and sugar in water; (B) adding amylosucrase (EC 2.4.1.4) or a liquid containing the same to the suspension of step (a) to induce an enzymatic reaction; It provides a method of manufacturing.

이하, 본 발명의 과제 해결 수단을 더욱 상세히 설명하고자 한다. Hereinafter, the problem solving means of the present invention will be described in more detail.

전분에 사용되는 효소적인 처리에는 보통 전분 가수분해 효소가 주로 사용되나, 본 발명에서는 기존의 효소적인 처리와는 다른 접근으로 네이세리아 폴리사카레아(Neiserria polysaccharea)에서 분리한 아밀로수크라아제(E.C. 2.4.1.4)를 사용하여 전분의 지소화도를 증진시킨 데 특징이 있다. 아밀로수크라아제는 설탕을 과당과 포도당으로 가수분해하는데, 포도당을 수용체의 비환원성 말단에 연결시켜 α-(1→4)-글루칸을 합성한다. 본 발명의 방법에 의해 사슬의 길이가 길어진 전분은 지소화성을 나타낸다. Generally, starch hydrolase is mainly used for the enzymatic treatment used for starch. However, in the present invention, a different approach from conventional enzymatic treatment is Neiserria. Amylosucrase (EC 2.4.1.4) isolated from polysaccharea ) is used to enhance the degree of localization of starch. Amylosucrase hydrolyzes sugar into fructose and glucose, which binds glucose to the non-reducing end of the receptor to synthesize α- (1 → 4) -glucan. Starches whose length of the chain has been lengthened by the method of the present invention exhibit localization.

전분에 설탕을 첨가한 후 아밀로수크라아제(amylosucrase; AS)를 반응시켜 제조한 실험군은 대조군보다 지소화성 전분의 함량이 증가하였으며, 찰전분에서는 대조군보다 약 25%, 일반전분에서는 약 8%가 각각 증가하였다. The experimental group prepared by adding amylosucrase (AS) to sugar after adding sugar to starch increased the amount of aliphatic starch than the control, about 25% in the starch and about 8% in the normal starch. Increased respectively.

또한, AS반응 후 불용성분획의 수율은 찰전분이 일반전분에 비해 15% 정도 높았고, 기질로 사용된 설탕은 찰전분에서 15시간, 일반전분에서 40시간 후에 대부분 소비되었다. In addition, the yield of insoluble fraction after AS reaction was about 15% higher than that of normal starch, and the sugar used as substrate was mostly consumed after 15 hours in waxy starch and 40 hours in general starch.

또한, 아밀로펙틴 가지 사슬의 중합도(DP)를 분석한 결과, AS처리에 의해 긴사슬(>DP 20)은 증가하고 짧은 사슬(≤DP 20)은 감소하였으며, 전체적인 분자량도 증가하였다. In addition, as a result of analyzing the degree of polymerization (DP) of amylopectin branch chains, the long chain (> DP 20) increased and the short chain (≤DP 20) decreased by AS treatment, and the overall molecular weight also increased.

또한, AS처리한 전분의 X선 회절도는 B형을 보이지만, 대조군의 경우 어떤 피크도 나타나지 않았으며, 상대적 결정화도 또한 AS처리전분이 대조군보다 높게 나타났다. In addition, the X-ray diffractogram of the AS-treated starch showed Form B, but no peak was seen in the control group, and the relative crystallinity was also higher in the AS-treated starch than the control group.

또한, 열적변화 특성 분석에서 대조군은 어떤 피크도 보이지 않았으나, AS처리 전분에서는 노화피크가 나타났고, AS처리 전분의 젤 강도는 생전분의 젤 강도보다 높게 나타났다. In addition, the control group did not show any peak in the thermal change characteristic analysis, but the aging peak appeared in the AS-treated starch, the gel strength of the AS-treated starch was higher than the gel strength of the raw starch.

이와 같은 결과는 전분에 AS처리를 함으로써 지소화성 전분 함량을 증가시킬 수 있다는 것을 의미한다. This result means that the starch can be increased by treating the starch with AS.

한편, 본 발명에 있어서, 전분은 비환원성 말단을 갖고 있기 때문에, 어느 것을 사용하여도 무방하나, 일 예로는 찰옥수수 전분, 옥수수 전분, 찹쌀 전분, 멥쌀 전분, 찰감자 전분 및 감자 전분 중 선택되는 어느 하나를 사용할 수 있다. On the other hand, in the present invention, since the starch has a non-reducing terminal, any one may be used, but examples thereof include waxy corn starch, corn starch, glutinous rice starch, non-glutinous starch, waxy potato starch and potato starch. Either one can be used.

한편, 본 발명에서 사용되는 아밀로수크라아제(E.C. 2.4.1.4)는 설탕을 과당 과 포도당으로 분리한 후, 포도당을 전분의 비환원성 말단에 α-(1→4)- 결합시킬 수 있는 것을 의미하며, 상기와 같은 반응을 수행할 수 있는 것이라면, 특정 미생물 유래의 것으로 한정되는 것은 아니고, 일 예로 네이세리아 폴리사카레아(Neiserria polysaccharea) 유래인 것을 사용할 수 있다. On the other hand, amylosucrase (EC 2.4.1.4) used in the present invention can separate the sugar into fructose and glucose, and then bind the glucose to α- (1 → 4)-at the non-reducing end of the starch. It means that there is, and if the reaction can be carried out as described above, it is not limited to those derived from a specific microorganism, for example Neiserria polysaccharea ( Neiserria polysaccharea ) can be used.

한편, 본 발명에서는 정제된 아밀로수크라아제 외에 아밀로수크라아제를 함유하는 액을 사용할 수 있는데, 그 예로는 아밀로수크라아제를 생산할 수 있게 형질전환된 균주의 배양액 또는 균주 파쇄액이 있다. 정제 효소의 경우에는 비용이 고가인데 반하여, 아밀로수크라아제를 암호화하는 유전자를 균주에 도입시켜 형질전환시킨 후, 이의 배양액 또는 균주의 파쇄액을 회수하여 사용하면, 비용을 절감시킬 수 있어 경제적이기 때문이다. 이때, 균주의 배양액을 사용하는 경우는 아밀로수크라아제를 균주 외로 배출하는 경우이고, 균주의 파쇄액을 사용하는 경우는 아밀로수크라아제를 외부로 배출하지 못하고 내부에 축적하는 경우이다. On the other hand, in the present invention can be used a liquid containing amylosucrase in addition to the purified amylosucrase, for example, the culture medium or strain lysate of the transformed strain to produce amylosucrase is have. In the case of purified enzymes, the cost is high. However, if the gene encoding amylosucrase is introduced into a strain and transformed, the culture solution or the lysate of the strain can be recovered and used to reduce costs. Because it is. In this case, the culture medium of the strain is used to discharge amylosucrase out of the strain, and the use of the strain crushed solution is to accumulate the inside of the amylosucrase without discharging it to the outside.

한편, 본 발명의 지소화성 전분 제조방법은 단계(a) 후, 바람직하게 현탁액을 끓이는 단계(a-1);를 추가로 포함하는 것이 좋은데, 끓임으로써 아밀로수크라아제의 기질에 대한 접근성이 향상되기 때문이다. On the other hand, the method for producing a branched starch of the present invention preferably comprises a step (a), preferably further comprising the step of boiling the suspension (a-1); by boiling the accessibility of the amylosucrase substrate Because it is improved.

한편, 본 발명에 있어서, 단계(b)의 효소반응은 바람직하게 25~35℃에서 수행하는 것이 좋은데, 이 온도 조건에서 아밀로수크라아제의 반응성이 좋기 때문이다. On the other hand, in the present invention, the enzymatic reaction of step (b) is preferably carried out at 25 ~ 35 ℃, because the reactivity of amylosucrase at this temperature condition is good.

한편, 본 발명의 지소화성 전분 제조방법은 단계(b)의 효소반응 후, 바람직하게 반응액을 원심분리하여 불용성 부분을 수득하는 단계(c);를 추가로 포함하는 것이 좋은데, 불용성 부분에 지소화성 전분이 함유되어 있기 때문이다. On the other hand, the method for producing a plasticized starch of the present invention, after the enzymatic reaction of step (b), preferably further comprising the step (c) of obtaining an insoluble portion by centrifugation of the reaction solution; This is because the starch contains Mars.

이상 상기에서 살펴본 본 발명은, 전분에 설탕을 혼합한 후, 아밀로수크라아제를 첨가하여 반응시킴으로써 지소화성이 증진된 전분을 제조할 수 있는데, 이와 같이 지소화성이 증진된 전분은 식후 혈당 수치를 천천히 증가시키는 건강적 효과를 발휘하기 때문에, 비만이나 당뇨병 환자들의 식이에 효과적으로 이용될 수 있다. In the present invention as described above, the starch can be prepared by mixing the sugar with starch, amylosucrase is added to the reaction to increase the localization, starch is improved in the post-prandial blood sugar level Because it has a health effect of increasing slowly, it can be effectively used in the diet of obese or diabetic patients.

이하, 본 발명의 내용을 하기 실시예를 들어 더욱 상세히 설명하지만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다. Hereinafter, the content of the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited only to the following examples, and includes modifications of equivalent technical ideas.

실시예 1~6, Examples 1-6, 비교예Comparative example 1~6,  1-6, 비교예Comparative example 11~16: 전분의 제조 11-16: Preparation of Starch

실시예 1~6(하기 실험에서 'AS처리 전분'으로 표시)으로 찰옥수수(실시예 1), 일반옥수수(실시예 2), 찹쌀(실시예 3), 멥쌀(실시예 4), 찰감자(실시예 5), 일반감자(실시예 6)를 이용한 지소화성이 증진된 전분을 제조하였다.Examples 1 to 6 (indicated as 'AS-treated starch' in the following experiments), Waxy corn (Example 1), General corn (Example 2), Glutinous rice (Example 3), Non-glutinous rice (Example 4), Waxy potato (Example 5), Starch with improved localization was prepared using a general potato (Example 6).

전분 수용액(2%, w/w)과 설탕 100mM을 100mM 구연산삼나트륨 완충액(sodium citrate buffer; pH 6.0)에 현탁시켰다. 효소의 기질에 대한 접근성을 증가시키기 위해 현탁액을 격렬하게 흔들면서 10분간 끓였다. Aqueous starch solution (2%, w / w) and 100 mM sugar were suspended in 100 mM sodium citrate buffer (pH 6.0). The suspension was boiled vigorously for 10 minutes to increase the accessibility of the enzyme to the substrate.

그 후, 30℃ 항온 수조에서 식히고, 총 용액 30 mL 당 2000U의 아밀로수크라아제를 첨가하고 30℃에서 40시간 동안 반응시켰다. 반응이 끝나고 수용성 부분과 불용성 부분을 원심분리(10,000×g, 10분)하였다. Thereafter, the mixture was cooled in a 30 ° C. constant temperature water bath, 2000 U of amylosucrase was added per 30 mL of the total solution, and reacted at 30 ° C. for 40 hours. After the reaction, the water-soluble and insoluble portions were centrifuged (10,000 × g, 10 minutes).

그 후, 불용성 부분에 있는 지소화성 전분의 순도를 높이고자 불용성 부분을 증류수로 여러 번 씻어낸 후, 마지막에 에탄올로 한 번 더 씻어냈다. Thereafter, the insoluble portion was washed several times with distilled water in order to increase the purity of the plasticizable starch in the insoluble portion, and finally washed once more with ethanol.

이 후, 침전물을 동결건조하고 막자 사발로 갈아 가루로 만들어 하기의 실험에서 사용하였다. Thereafter, the precipitate was lyophilized and ground into a mortar and pestle to be used in the following experiment.

한편, 비교예(하기 실험에서 'cooked starch' 또는 '호화전분'으로 표시)로서, 상기의 동결건조된 전분을 제조하는 과정 중 현탁액을 10분간 끓이는 단계까지만 수행하여 비교예 1~6(비교예 1: 찰옥수수, 비교예 2: 일반옥수수, 비교예 3: 찹쌀, 비교예 4: 멥쌀, 비교예 5: 찰감자, 비교예 6: 일반감자)을 제조하였다.Meanwhile, as a comparative example (indicated as 'cooked starch' or 'gelatinized starch' in the following experiment), the preparation of the lyophilized starch was performed only by boiling the suspension for 10 minutes, and Comparative Examples 1 to 6 (Comparative Example) 1: waxy corn, comparative example 2: general corn, comparative example 3: glutinous rice, comparative example 4: non-glutinous rice, comparative example 5: glutinous potato, comparative example 6: general potato)

또한, 또 다른 비교예(하기 실험에서 'control' 또는 '대조군'으로 표시)로서, 상기의 동결건조된 전분을 제조하는 과정과 동일하게 모든 과정을 수행하되, 효소 첨가만 빠진 비교예 11~16(비교예 11: 찰옥수수, 비교예 12: 일반옥수수, 비교예 13: 찹쌀, 비교예 14: 멥쌀, 비교예 15: 찰감자, 비교예 16: 일반감자)을 제조하였다. In addition, as another comparative example (indicated as 'control' or 'control' in the following experiment), all the same process as the process for preparing the lyophilized starch, but the addition of enzymes only Comparative Examples 11-16 (Comparative Example 11: Waxy Corn, Comparative Example 12: General Corn, Comparative Example 13: Glutinous Rice, Comparative Example 14: Non-glutinous Rice, Comparative Example 15: Waxy Potato, Comparative Example 16: General Potato)

한편, 아밀로수크라아제는 구입한 정제효소를 사용할 수도 있으나, 본 실시 예에서는 하기와 같이 미생물에서 발현시켜 분리한 것을 사용하였다. On the other hand, amylosucrase may be used as a purified enzyme purchased, in the present embodiment was used to isolate and express in a microorganism as follows.

먼저, 네이세리아 폴리사카레아(Neiserria polysaccharea)에서 분리한 아밀로수크라아제 유전자를 대장균에서 발현시켰다. 효소는 세포 추출물로부터 Ni-NTA 친화 크로마토그래피를 이용하여 정제하였다. 효소 역가는 'van der Veen et al.(Van der veen, Bar A., Potocki-Veronese, G., Albenne, C., Joucla, G., Monsan, P., Remaud-Simeon, M., 2004. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increase activity. FEBS Letters 560, 91-97)'의 방법을 일부 수정하여 정량하였다. 즉, 0.1mL 의 4% 설탕, 0.1mL 의 1% 글리코겐, 0.05mL 의 희석된 효소, 0.25mL의 100mM 초산 나트륨 완충액(pH 6.0)을 혼합하여 10분간 30℃에서 반응시킨 후 방출된 과당을 DNS(dinitrosalicylic acid) 방법을 사용하여 정량하였다. 이때, 아밀로수크라아제의 1 unit(U)은 분당 1μmole의 설탕을 소비하는 데 필요한 효소의 양으로 정의하였다.First, Neiserria Amylosucrase gene isolated from polysaccharea ) was expressed in E. coli. Enzymes were purified from cell extracts using Ni-NTA affinity chromatography. Enzyme titers are described in van der Veen et al. (Van der veen, Bar A., Potocki-Veronese, G., Albenne, C., Joucla, G., Monsan, P., Remaud-Simeon, M., 2004. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increase activity.FEBS Letters 560, 91-97). That is, 0.1 mL of 4% sugar, 0.1 mL of 1% glycogen, 0.05 mL of diluted enzyme, 0.25 mL of 100 mM sodium acetate buffer (pH 6.0) were mixed and reacted at 30 ° C. for 10 minutes to release the released fructose. Quantification was carried out using the (dinitrosalicylic acid) method. At this time, 1 unit (U) of amylosucrase was defined as the amount of enzyme required to consume 1 μmole of sugar per minute.

실험예Experimental Example 1: 실시예 및  1: Example and 비교예의Comparative Example 전분( Starch RDSRDS , , SDSSDS , , RSRS ) 함량) content

상기 실시예 및 비교예에서 제조한 호화전분(cooked starch), 대조군(control), AS처리 전분을 대상으로 하여 '빠르게 소화되는 전분(rapidly digestible starch, RDS)', '지소화성 전분(slowly digestible starch, SDS)' 및 '난소화성 전분(resistant starch, RS)'의 함량을 측정하고자 하였다. The prepared starch, control, and AS-treated starch prepared in Examples and Comparative Examples, 'rapidly digestible starch (RDS)', 'slowly digestible starch' , SDS) 'and' resistant starch (RS) 'were measured.

'빠르게 소화되는 전분(rapidly digestible starch, RDS)', '지소화성 전 분(slowly digestible starch, SDS)' 및 '난소화성 전분(resistant starch, RS)'의 분류를 위해 각각의 전분에 대해 하기의 과정을 수행하였다. For the classification of 'rapidly digestible starch (RDS)', 'slowly digestible starch (SDS)' and 'resistant starch (RS)', The procedure was performed.

먼저, 해당 전분 30mg에 100mM 초산나트륨 완충액(pH 5.2) 0.75mL와 소화 효소 용액 0.75 mL을 넣고 37℃에서 각각 10, 20, 60, 120, 240분간 소화시켰다. 이 후, 10분간 끓여 효소 반응을 정지시키고, 상층액의 포도당을 GOD-POD방법으로 측정하였다. 이 실험을 통해 10분 이내로 급속히 소화되는 전분(RDS), 10분과 240분 사이에 소화되는 지소화성 전분(SDS), 240분 이후에도 소화되지 않는 난소화성전분(RS)으로 나누었다. 이때, 소화 효소 용액은 판크레아틴(pancreatin) 2g을 24mL의 증류수에 넣고 10분간 교반하고, 원심분리(1,500×g, 10분)한 후 상층액 (20mL)을 0.4mL의 아밀로글루코시다아제(amyloglucosidase)와 3.6mL의 증류수가 담긴 비커에 담아 섞어서 제조한 것을 사용하였다.First, 0.75 mL of 100 mM sodium acetate buffer (pH 5.2) and 0.75 mL of digestive enzyme solution were added to 30 mg of the starch, and digested at 37 ° C. for 10, 20, 60, 120, and 240 minutes, respectively. Thereafter, the reaction was stopped by boiling for 10 minutes, and glucose in the supernatant was measured by the GOD-POD method. This experiment was divided into starch (RDS) rapidly digested within 10 minutes, digestible starch (SDS) digested between 10 and 240 minutes, and indigestible starch (RS) not digested after 240 minutes. At this time, the digestive enzyme solution was added 2 g of pancreatin (pancreatin) in 24 mL of distilled water, stirred for 10 minutes, centrifuged (1,500 × g, 10 minutes) and the supernatant (20 mL) was 0.4 mL of amyloglucosidase ( amyloglucosidase) and 3.6 mL distilled water in a beaker containing mixed and prepared was used.

이상의 방법으로 실험한 결과를 표 1에 나타냈다. The result of experiment by the above method is shown in Table 1.

전분의 종류 및 상태 별 RDS, SDS 및 RS 함량RDS, SDS and RS Content by Starch Type and State 호화전분Gelatinized starch 대조군Control AS처리 전분AS processed starch 전분Starch RDSRDS SDSSDS RSRS RDSRDS SDSSDS RSRS RDSRDS SDSSDS RSRS 찰옥수수 (waxy corn)Waxy corn 74.0±2.574.0 ± 2.5 7.5±0.47.5 ± 0.4 18.5±2.818.5 ± 2.8 53.4±1.353.4 ± 1.3 5.2±1.55.2 ± 1.5 41.4±0.341.4 ± 0.3 24.8±1.324.8 ± 1.3 30.2±1.030.2 ± 1.0 45.0±0.945.0 ± 0.9 일반옥수수 (normal corn)Normal corn 72.4±0.772.4 ± 0.7 7.1±0.57.1 ± 0.5 20.5±0.420.5 ± 0.4 49.6±0.149.6 ± 0.1 3.8±0.63.8 ± 0.6 46.7±0.646.7 ± 0.6 43.2±1.043.2 ± 1.0 12.7±0.812.7 ± 0.8 44.2±1.544.2 ± 1.5 찹쌀 (waxy rice)Glutinous rice 73.9±2.173.9 ± 2.1 7.8±1.77.8 ± 1.7 18.4±0.918.4 ± 0.9 54.6±0.754.6 ± 0.7 4.9±1.24.9 ± 1.2 40.5±0.640.5 ± 0.6 21.2±1.021.2 ± 1.0 29.1±1.229.1 ± 1.2 49.8±1.749.8 ± 1.7 멥쌀 (normal rice)Normal rice 73.4±1.673.4 ± 1.6 6.5±1.86.5 ± 1.8 20.1±2.920.1 ± 2.9 52.7±1.652.7 ± 1.6 4.7±1.24.7 ± 1.2 42.6±0.442.6 ± 0.4 41.4±1.541.4 ± 1.5 12.4±0.612.4 ± 0.6 46.2±1.346.2 ± 1.3 찰감자 (waxy potato)Waxy potato 73.1±2.073.1 ± 2.0 4.1±2.94.1 ± 2.9 22.8±1.322.8 ± 1.3 50.0±1.250.0 ± 1.2 4.4±1.44.4 ± 1.4 45.6±0.845.6 ± 0.8 27.1±1.627.1 ± 1.6 24.2±0.824.2 ± 0.8 48.7±1.748.7 ± 1.7 일반감자 (normal potato)Normal potato 70.6±1.870.6 ± 1.8 3.9±1.23.9 ± 1.2 25.4±1.525.4 ± 1.5 50.9±1.150.9 ± 1.1 3.7±1.43.7 ± 1.4 45.5±0.945.5 ± 0.9 37.2±0.937.2 ± 0.9 10.2±2.010.2 ± 2.0 52.6±1.852.6 ± 1.8

호화전분의 RDS 함량은 70% 이상으로 매우 높은 소화율을 보였는데, 이는 호화 과정 중 생전분 입자의 결정성 구조가 파괴되었기 때문이다. 대조군은 RDS 50%, RS 40% 정도로 나타났는데, 이는 호화전분이 효소반응시간 동안 노화로 인하여 소화율이 낮아졌기 때문이다. AS처리된 전분의 RS함량은 대조군과 비슷하게 나타났지만, RDS는 감소하고, SDS는 증가하였다. The RDS content of gelatinized starch showed a very high digestibility of 70% or more because the crystal structure of raw starch particles was destroyed during gelatinization. The control group showed RDS 50% and RS 40% because the digestibility of gelatinized starch decreased due to aging during the enzyme reaction time. RS content of AS-treated starch appeared similar to the control group, but RDS decreased and SDS increased.

특히, 찰전분(waxy starch)에서 SDS함량이 25% 정도, 일반전분(normal starch)에서 8% 정도 대조군보다 높아 SDS함량 증가에 있어, 찰전분과 일반전분과의 차이를 보이는 것을 알 수 있었다. In particular, the SDS content in the waxy starch (waxy starch) is about 25%, 8% in the normal starch (normal starch) higher than the control group in the increase in the SDS content, it can be seen that the difference between the starch and the normal starch.

실험예Experimental Example 2: 시간에 따른 소화율 측정 2: measuring digestibility over time

호화전분, 대조군, AS처리 전분의 10~240분까지 시간에 따른 소화율을 조사하였는데, 그 결과는 도 1과 같았다. AS처리 전분은 호화전분이나 대조군보다 더 천천히 소화되는 특성을 보였다. 호화전분은 10분 만에 70% 이상이, 대조군은 50%이상이 소화되는 높은 소화율을 보였고, 240분 후에도 비슷한 소화율을 나타냈다. Digestion rate of the gelatinized starch, the control group, and the AS-treated starch from 10 to 240 minutes was investigated. The results were as shown in FIG. AS-treated starches showed slower digestion than gelatinized starches and controls. Gelatinized starch showed high digestibility of more than 70% in 10 minutes and the control group was digested more than 50%, and showed similar digestibility even after 240 minutes.

한편, AS처리 전분 중 찰전분은 10분까지 약 20% 정도 소화, 120분까지 약 40%로 점차 증가, 240분까지 약 50% 약간 넘는 소화율을 보였고, AS처리 전분 중 일반전분은 10분까지 약 40%정도 소화, 240분까지 약 50% 점차 증가를 보였는데, 찰전분과 일반전분이 서로 다른 패턴을 보였다.On the other hand, the starch of AS-treated starch digested about 20% by 10 minutes, gradually increased to about 40% by 120 minutes, and slightly over 50% by 240 minutes. Digestion of about 40% and gradual increase of about 50% until 240 minutes were observed, but the starch and normal starch showed different patterns.

실험예Experimental Example 3:  3: ASAS 처리 후, 전분의 불용성 부분과 수용성 부분 성분 분석Analysis of insoluble and water soluble components of starch after treatment

본 실험예에서는 AS처리 후, 전분의 불용성 부분과 수용성 부분의 성분을 분석하고자 하였다.In this experimental example, after the AS treatment, the components of the insoluble part and the water-soluble part of the starch were analyzed.

AS처리 후 수용성 부분의 분석은 이온 교환 크로마토그래피(high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD))에 의해 수행되었다. 사용된 컬럼은 'Carbo-pack PA 1 anion-exchange column(4×250 mm, Dionex, Sunnyvale, CA, USA)'이었다. 수용성 부분 0.1mL을 0.45μm 멤브레인 필터(Millipore)에 여과한 후 주입하였다. 크로마토그래피에 150mM NaOH가 1mL/분 속도로 흐르게 하고, 용리액은 600mM 초산나트륨(0-5분, 0에서 20%까지 증가; 6-30분, 20에서 45%까지 증가; 31-60분, 45에서 55%까지 증가; 61-80분, 56에서 60%까지 증가; 81-90분, 61에서 65%까지 증가; 91-95분, 66에서 80%까지 증가; 96-100분, 81에서 100%까지 증가)를 이용하여 분리하였다.Analysis of the water soluble portion after AS treatment was performed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The column used was a 'Carbo-pack PA 1 anion-exchange column (4 × 250 mm, Dionex, Sunnyvale, CA, USA). 0.1 mL of the aqueous portion was filtered through a 0.45 μm membrane filter (Millipore) and then injected. The chromatography was allowed to flow 150 mM NaOH at 1 mL / min and the eluent was 600 mM sodium acetate (0-5 minutes, increased from 0 to 20%; 6-30 minutes, increased from 20 to 45%; 31-60 minutes, 45 Up to 55%; 61-80 minutes, 56 to 60%; 81-90 minutes, 61 to 65%; 91-95 minutes, 66 to 80%; 96-100 minutes, 81 to 100 Separated by%).

하기 표 2는 반응 후 불용성 부분의 수율과 수용성 부분의 성분 함량을 나타낸 것인데, 과당과 설탕의 농도는 HPAEC-PAD로 분석하였다.Table 2 below shows the yield of the insoluble portion and the component content of the water-soluble portion after the reaction, and the concentrations of fructose and sugar were analyzed by HPAEC-PAD.

불용성 부분의 수율 및 수용성 부분의 성분 함량Yield of insoluble portion and component content of water soluble portion 전분Starch 수율(%)yield(%) 과당(mM)Fructose (mM) 설탕(mM)Sugar (mM) AS/RawAS / Raw 찰옥수수Waxy corn 68.0±1.368.0 ± 1.3 96.8±0.396.8 ± 0.3 3.4±0.13.4 ± 0.1 1.8±0.01.8 ± 0.0 일반옥수수Common corn 52.7±2.252.7 ± 2.2 92.4±0.192.4 ± 0.1 6.1±0.36.1 ± 0.3 1.4±0.11.4 ± 0.1 찹쌀Glutinous rice 69.1±1.569.1 ± 1.5 96.3±0.296.3 ± 0.2 2.5±0.12.5 ± 0.1 1.9±0.01.9 ± 0.0 멥쌀Rice 57.1±2.757.1 ± 2.7 88.4±0.688.4 ± 0.6 7.7±1.17.7 ± 1.1 1.5±0.11.5 ± 0.1 찰감자Glutinous 66.7±2.766.7 ± 2.7 98.8±0.598.8 ± 0.5 2.3±0.12.3 ± 0.1 1.8±0.11.8 ± 0.1 일반감자General potato 50.7±2.350.7 ± 2.3 90.8±0.490.8 ± 0.4 7.1±0.37.1 ± 0.3 1.4±0.11.4 ± 0.1

40시간 AS반응 후 수용성 부분에는 과당과 설탕만이 존재하였는데, 이는 전분의 사슬 신장 반응만이 일어났다는 것을 의미한다. 초기 설탕 농도가 100mM이었고 반응 동안 소비되어 찰전분은 2~3mM 정도, 일반전분은 6~7mM 정도가 남아있었다. 사슬 신장 반응의 기질로 사용된 설탕이 찰전분에서 더 많이 소비된 것이므로 찰전분에서 사슬의 신장이 더 많이 일어났다고 볼 수 있었고, 설탕 소비가 증가할수록 설탕이 가수분해되어 방출되는 과당의 농도가 증가했다. 따라서, 찰전분의 과당 농도가 일반전분보다 높았다.After 40 hours of AS reaction, only fructose and sugar were present in the water-soluble fraction, indicating that only chain elongation of starch occurred. The initial sugar concentration was 100 mM and was consumed during the reaction, leaving approximately 2 to 3 mM of starch and 6 to 7 mM of normal starch. Since more sugar was used as a substrate for the chain elongation reaction, more chain elongation occurred in the starch, and as the sugar consumption increased, the concentration of fructose released by the hydrolysis of sugar increased. did. Therefore, the fructose concentration of the starch was higher than that of the general starch.

한편, 상기 표 2에서 수율은 다음의 수학식에 의해 계산된 것으로 찰전분에서 일반전분보다 약 15% 높게 나타났다.On the other hand, in Table 2, the yield was calculated by the following equation, which was about 15% higher than normal starch in the waxy starch.

Figure 112007091431931-PAT00001
Figure 112007091431931-PAT00001

상기 표 2에서 AS/Raw 값은 반응 전과 후의 전분 무게의 비율로 설탕을 제외하고 전분만을 기준으로 반응 후 몇 배가 증가했는지 알 수 있는 값이다. 찰전분의 경우 약 2배 증가, 일반전분은 약 1.5배 증가를 보였다.In Table 2, the AS / Raw value is a ratio of the weight of starch before and after the reaction, which is a value that can be seen how many times after the reaction based on starch alone except for sugar. The starch increased about 2 times, and about 1.5 times for normal starch.

실험예Experimental Example 4: 설탕 소비 분석 4: sugar consumption analysis

반응 시간에 따른 설탕의 소비와 과당의 생성 그래프는 HPAEC-PAD로 측정하였고 도 3에 나타냈다. 찹쌀 전분에서는 15시간 동안 설탕이 거의 소비되었으나, 멥쌀 전분에서는 40시간 동안 93% 정도의 설탕이 소비되었다. 이로부터 찹쌀 전분 에서 AS반응이 더 빠르게 일어남을 알 수 있었다. 이와 마찬가지로, 과당의 생성 속도도 찹쌀에서 더 빨랐다.The consumption of sugar and the production of fructose over time were measured by HPAEC-PAD and are shown in FIG. 3. In glutinous rice starch, sugar was almost consumed for 15 hours, but in nonglutinous rice starch, 93% of sugar was consumed for 40 hours. From this, AS reaction occurred more rapidly in glutinous rice starch. Similarly, fructose production was faster in glutinous rice.

실험예Experimental Example 5:  5: 아밀로수크라아제Amylosukrases 처리에 따른 사슬 길이 분포 조사 Investigation of chain length distribution by treatment

아밀로펙틴의 사슬 길이 분포는 전분의 호화온도, 엔탈피 변화, 노화 등에 영향을 미치는데(Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., and Kasemsuwan, T., 1999. Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and Pasting Properties of Starch. Cereal Chemistry 76(5), 629-637), AS처리 전후 전분의 가지를 잘라 HPAEC-PAD로 사슬 길이 분포를 살펴보았다. The chain length distribution of amylopectin affects the gelatinization temperature, enthalpy change and aging of starch (Jane, J., Chen, YY, Lee, LF, McPherson, AE, Wong, KS, Radosavljevic, M., and Kasemsuwan, T., 1999.Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and Pasting Properties of Starch.Cereal Chemistry 76 (5), 629-637), Chain length distribution with HPAEC-PAD by cutting the branches of starch before and after AS treatment I looked at it.

전분의 가지를 자르기 위해 이소아밀라아제(isoamylase; Sigma)라는 α-1,6 결합을 가수분해하는 효소를 이용하였는데, 구체적인 과정은 하기와 같았다. In order to cut the branches of starch, an enzyme that hydrolyzes α-1,6 bond called isoamylase (Sigma) was used.

전분(10mg)을 90% DMSO(0.5mL)에 녹이고 15분간 가열한 후 증류수(0.5mL)를 첨가하였다. 이 용액 0.5mL에 0.49mL의 0.2M 초산나트륨 완충액(pH 3.5)을 섞고, 0.01mL의 이소아밀라아제를 넣어 40℃에서 16시간 반응시켰다. 반응 정지를 위해 끓여준 후 10,000×g에서 10분간 원심분리하고 상층액을 0.45μm 필터에 여과시켰다. 이렇게 준비한 시료를 앞에서 말한 방법과 같은 조건에서 분석하였다. 1부터 7까지 DP값은 말토올리고당의 혼합물(DP1~7, Sigma)을 사용하여 결정하였다.Starch (10 mg) was dissolved in 90% DMSO (0.5 mL), heated for 15 minutes, and distilled water (0.5 mL) was added. 0.49 mL of 0.2 M sodium acetate buffer (pH 3.5) was mixed with 0.5 mL of this solution, 0.01 mL of isoamylase was added thereto, and the mixture was reacted at 40 ° C for 16 hours. After boiling to stop the reaction, the mixture was centrifuged at 10,000 × g for 10 minutes and the supernatant was filtered through a 0.45 μm filter. The sample thus prepared was analyzed under the same conditions as described above. DP values from 1 to 7 were determined using a mixture of maltooligosaccharides (DP1-7, Sigma).

실험 결과는 도 3과 같았는데, 사슬 길이 분포는 전체 피크 면적에 대한 백분율로 나타냈다(Hanashiro, I., Abe, J., Hizukuri, S., 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research 283, 151- 159). Experimental results were shown in Figure 3, where the chain length distribution was expressed as a percentage of the total peak area (Hanashiro, I., Abe, J., Hizukuri, S., 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography.Carbohydrate Research 283, 151-159).

AS처리 후 전분의 사슬 길이는 증가했다. AS처리 전에는 DP20 이하인 짧은 사슬이 많았지만, AS처리 후에는 DP20 이상인 긴 사슬이 더 많아졌다. Starch chain length increased after AS treatment. There were many short chains below DP20 before AS, but more long chains above DP20 after AS.

표 3은 사슬 분포를 DP별로 나누고 상대적인 면적의 합을 요약한 것이다. DP별로 군을 나눈 것은 Hanshiro (Hanashiro, I., Abe, J., Hizukuri, S., 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research 283, 151- 159)을 따랐다. Table 3 divides the chain distribution by DP and summarizes the sum of the relative areas. The grouping by DP was Hanshiro (Hanashiro, I., Abe, J., Hizukuri, S., 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography.Carbohydrate Research 283, 151 -159).

사슬의 분포에 따른 상대적 면적 및 측정 가능한 최장 DPRelative area and measurable longest DP depending on chain distribution 전분Starch 상대적 면적 (%)Relative area (%) 최장 측정 가능 DP Longest measurable DP DP6~12DP6 ~ 12 DP13~24DP13 ~ 24 DP25~36DP25 ~ 36 ≥DP37≥DP37 찹쌀Glutinous rice 생전분Raw starch 38.0 38.0 50.6 50.6 8.9 8.9 2.5 2.5 5252 AS처리 전분AS processed starch 1.2 1.2 32.2 32.2 43.3 43.3 23.3 23.3 7171 멥쌀Rice 생전분Raw starch 33.7 33.7 52.9 52.9 10.0 10.0 3.5 3.5 5454 AS처리 전분AS processed starch 3.6 3.6 38.6 38.6 37.9 37.9 19.9 19.9 7070 찰감자Glutinous 생전분Raw starch 27.1 27.1 55.9 55.9 11.5 11.5 5.5 5.5 5959 AS처리 전분AS processed starch 1.9 1.9 28.4 28.4 47.5 47.5 22.1 22.1 7373 일반감자 General potato 생전분Raw starch 24.6 24.6 55.5 55.5 13.4 13.4 6.5 6.5 5555 AS처리 전분AS processed starch 1.9 1.9 32.7 32.7 45.3 45.3 20.0 20.0 6868

생전분에서 짧은 사슬 (DP6~12)은 24.6~38.0%, 긴사슬(≥DP37)은 2.5~6.5%이었으나, AS처리 전분에서 짧은 사슬은 1.2~3.6%, 긴사슬은 19.9~23.3%로 나타났다. 생전분에서 가장 많은 함량을 차지한 부분은 DP13~24였지만, AS처리 전분에서는 DP25~36였다. 측정할 수 있는 가장 긴 사슬은 생전분에서 DP52~59로 나타났지만, AS처리 전분에서는 DP68~73로, AS처리 후 DP15 증가한 것을 알 수 있었다.The short chain (DP6 ~ 12) was 24.6 ~ 38.0% and the long chain (≥DP37) was 2.5 ~ 6.5% in the raw starch, but the short chain (1.2 ~ 3.6% and long chain 19.9 ~ 23.3%) in the AS starch. . The largest portion of raw starch was DP13 ~ 24, while AS starch was DP25 ~ 36. The longest chain that could be measured was DP52 ~ 59 in raw starch, but DP68 ~ 73 in AS starch and increased DP15 after AS treatment.

실험예Experimental Example 6:  6: HPSECHPSEC -- MALLSMALLS -- RIRI 시스템을 이용한  System ASAS 처리 전후의 분자량 변화 조사Investigation of molecular weight change before and after treatment

고성능 크기배제 크로마토그래피-다각도 레이저 광산란 검출기(HPSEC-MALLS-RI)를 이용하여 AS처리에 따른 분자량의 변화를 조사하고자 하였다.The high molecular weight chromatographic multi-angle laser light scattering detector (HPSEC-MALLS-RI) was used to investigate the change of molecular weight according to AS treatment.

시료(25 mg)를 DMSO 5mL에 녹이고 15분간 끓인 후 25 mL의 에탄올을 넣어 전분을 침전시켰다. 10,000×g에서 10분간 원심분리한 후, 침전된 전분을 5mL 100 mM NaNO3에 다시 녹이고, 10분간 끓이고 뜨거운 상태의 시료를 5.0μm 멤브레인 필터(Millipore)에 여과하여 HPSEC-MALLS-RI 시스템에 주입하였다. 최종 여과된 전분 용액의 농도는 페놀-황산법에 의하여 측정되었다.The sample (25 mg) was dissolved in 5 mL of DMSO, boiled for 15 minutes, and 25 mL of ethanol was added to precipitate starch. After centrifugation at 10,000 × g for 10 minutes, the precipitated starch is dissolved again in 5 mL 100 mM NaNO 3 , boiled for 10 minutes, filtered in a 5.0 μm membrane filter (Millipore) and injected into the HPSEC-MALLS-RI system. It was. The concentration of the final filtered starch solution was measured by the phenol-sulfuric acid method.

HPSEC-MALLS-RI 시스템의 모델명은 'PU-2080 Plus (Jasco, Tokyo, Japan)'이며, '200μL injector loop', 'degasser(NO-OX Vacuum Station, Alltech, Deerfield, IL, USA)', 'differential refractive index detector(Opti-Lab, Wyatt Technology, Santa Barbara, CA, USA)'와 'Shodex OH-Pak 804 및 806 컬럼(Showa Denko, Tokyo, Japan)'을 사용하였다. 크로마토그래피의 이동상은 NaNO3(100 mM)로 유속은 0.4mL/분이고, 'DAWN DSP/OptiLab' 시스템에 데이터를 저장하였고, 'ASTRA software(Version 4.09.07, Wyatt Technology)'를 이용하여 계산하였다.The model name of the HPSEC-MALLS-RI system is' PU-2080 Plus (Jasco, Tokyo, Japan) ',' 200μL injector loop ',' degasser (NO-OX Vacuum Station, Alltech, Deerfield, IL, USA) ',' Differential refractive index detectors (Opti-Lab, Wyatt Technology, Santa Barbara, Calif., USA) and Shodex OH-Pak 804 and 806 columns (Showa Denko, Tokyo, Japan) were used. The mobile phase of the chromatography was NaNO 3 (100 mM) with a flow rate of 0.4 mL / min and data was stored in the 'DAWN DSP / OptiLab' system and calculated using 'ASTRA software (Version 4.09.07, Wyatt Technology)'. .

실험 결과는 표 4와 같았다. 아밀로펙틴의 분자량은 용해 방법이나 측정 기술에 따라 수백만에서 수억까지 나타날 수 있는데(Park, J.H., Kim, H.J., Kim, Y.H., Cha, H.J., Kim, Y.W., Kim, T.J., Kim Y.R., Park K.H., 2007. The action mode of Thermus aquaticus YT-1 4-a-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydrate Polymers 67, 164-173), 모든 전분은 아밀로펙틴과 아밀로스를 분리하지 않고 측정하였다. The experimental results are shown in Table 4. The molecular weight of amylopectin can range from millions to hundreds of millions depending on the dissolution method or measurement technique (Park, JH, Kim, HJ, Kim, YH, Cha, HJ, Kim, YW, Kim, TJ, Kim YR, Park KH, 2007). The action mode of Thermus aquaticus YT-1 4-a-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin.Carbohydrate Polymers 67, 164-173), It was.

전분Starch M w (×107 g/mol) M w (× 10 7 g / mol) 찹쌀Glutinous rice 생전분Raw starch 9.59±1.449.59 ± 1.44 AS처리 전분AS processed starch 13.79±2.4613.79 ± 2.46 멥쌀Rice 생전분Raw starch 3.53±0.513.53 ± 0.51 AS처리 전분AS processed starch 10.21±1.9510.21 ± 1.95 찰감자Glutinous 생전분Raw starch 5.13±0.725.13 ± 0.72 AS처리 전분AS processed starch 10.36±1.7610.36 ± 1.76 일반감자General potato 생전분Raw starch 2.53±0.252.53 ± 0.25 AS처리 전분AS processed starch 4.81±0.684.81 ± 0.68

초기 전분의 분자량은 2.53~9.5×107 g/mol이었고, AS처리 전분은 4.81~13.79×107 g/mol이었는데, 효소반응에 의해 사슬이 신장되어 분자량이 증가했기 때문이다.The initial molecular weight of the starch was 2.53 ~ 9.5 × 10 7 g / mol, and the AS-treated starch was 4.81 ~ 13.79 × 10 7 g / mol, because the molecular weight was increased by the chain extension by the enzymatic reaction.

멥쌀 전분의 RI(refractive index) 크로마토그램은 주로 아밀로펙틴이 차지하는 FI과 주로 아밀로스와 중간분자가 차지하는 FII로 나눌 수 있는데, AS처리 후 앞쪽의 큰 분자량 부분이 증가하고, 뒤쪽의 작은 분자량 부분이 감소하는 것을 알 수 있었다(도 4).RI (refractive index) chromatogram of non-glucose starch can be divided into FI, which occupies mainly amylopectin, and FII, which mainly occupies amylose and intermediate molecules. It was found that (Fig. 4).

또한, 하기 표 5를 보면 FI의 분자량 증가는 매우 크나, FII의 분자량 증가는 크지 않음을 확인할 수 있었는데, 이를 통해 AS의 사슬 신장 반응이 아밀로펙틴에서 아밀로스보다 더 많이 일어났다는 것을 알 수 있었다.In addition, it can be seen from Table 5 that the molecular weight increase of the FI is very large, but the molecular weight increase of the FII is not large, and it can be seen that the chain extension reaction of AS occurred more than amylose in amylopectin.

  M w (×107 g/mol) M w (× 10 7 g / mol) 멥쌀전분Non-glutinous starch FIFI FIIFII 생전분Raw starch 5.10±0.735.10 ± 0.73 1.40±0.141.40 ± 0.14 AS처리 전분AS processed starch 13.75±2.7213.75 ± 2.72 2.57±0.312.57 ± 0.31

실험예Experimental Example 7:  7: ASAS 처리 전후의 X선 X-ray before and after treatment 회절도Diffractogram 패턴 분석 Pattern analysis

'X-ray diffractometer (Model D5005, Bruker, Karlsruhe, Germany) (analysis parameters: 40 KV and 40 mA, CuK radiation λ= 0.15406, time constant = 4 sec, nickel filter)'를 이용하여 AS처리 전후의 X선 회절도 패턴을 분석하였다. 시료는 2θ 값 3°에서 30°까지 측정하였다. 상대적 결정화도는 다음의 식에 의해서 계산되었다.X-ray before and after AS treatment using 'X-ray diffractometer (Model D5005, Bruker, Karlsruhe, Germany) (analysis parameters: 40 KV and 40 mA, CuK radiation λ = 0.15406, time constant = 4 sec, nickel filter)' The diffractogram pattern was analyzed. The sample was measured from 2 ° value 3 ° to 30 °. Relative crystallinity was calculated by the following equation.

Figure 112007091431931-PAT00002
Figure 112007091431931-PAT00002

도 5는 AS처리 전후와 대조군의 X선 회절도 패턴을 나타낸 것이다. 찹쌀과 멥쌀의 생전분의 경우 15, 17, 18, 23°에서 피크가 나타나는 전형적인 A형을 보였지만 AS처리 후 B형으로 변화하였다. 5 shows the X-ray diffraction pattern of the control group before and after the AS treatment. The raw starch of glutinous and non-glutinous rice showed typical type A with peaks at 15, 17, 18 and 23 °, but changed to type B after AS treatment.

찰감자와 일반감자의 생전분의 경우 5.5, 15, 17, 22, 24°에서 피크가 나타 나는 전형적인 B형을 보였으며, AS처리 후 피크 강도가 약해지긴 했지만 B형을 나타냈다. 반면 모든 대조군에서 어떤 피크도 보이지 않았는데, 이는 가열과정 중 결정성을 잃었기 때문이다. The raw starch of glutinous and ordinary potato showed typical type B with peaks at 5.5, 15, 17, 22, and 24 °, and type B, although peak intensity was weakened after AS treatment. On the other hand, no peaks were seen in all the controls, because they lost crystallinity during the heating process.

AS처리 전분의 경우 전분 종류에 상관없이 모두 B형을 보였는데, 이는 사슬의 신장과 효소반응 동안 전분의 노화로 인하여 B형의 결정구조를 보였다고 할 수 있다. 상온에서 노화된 전분 젤의 경우 B형의 결정구조를 보인 연구가 있었는데 (Eerlingen, R.C., Crombez, M., Delcour, J.A., 1993. Enzyme-resistant starch. I. Quantitative and qualitative influence of incubation time and temperature of autoclaved starch on resistant starch formation. Cereal Chemistry 70(3), 339-344; Kim et al., 1997. Acomparative study on retrogradation of rice starch gels by DSC, X-ray and alpha-amylase methods. Starch/St?rke 49 (Nr.2) S71-75), 본 실험에서 AS처리된 전분은 효소 반응 동안 형성되는 젤의 형태와 상온과 비슷한 반응 온도(30℃)를 감안했을 때, 이전 연구와 비슷한 조건이므로 B형의 결정구조를 보였다고 설명할 수 있었다. All starch treated AS showed type B regardless of the starch type, which showed the crystal structure of type B due to starch aging during chain elongation and enzymatic reaction. In the case of starch gel aged at room temperature, there was a study showing B-type crystal structure (Eerlingen, RC, Crombez, M., Delcour, JA, 1993. Enzyme-resistant starch.I. Quantitative and qualitative influence of incubation time and temperature of autoclaved starch on resistant starch formation.Cereal Chemistry 70 (3), 339-344; Kim et al., 1997.Acomparative study on retrogradation of rice starch gels by DSC, X-ray and alpha-amylase methods.Starch / St? rke 49 (Nr.2) S71-75), starch treated with AS in this experiment is a condition similar to that of the previous studies, considering the form of gel formed during the enzymatic reaction and the reaction temperature (30 ° C) similar to room temperature. It could be explained that the crystal structure of the type was shown.

한편, 상대적 결정화도는 표 6에 나타냈는데, 대조군의 경우 생전분보다 낮은 상대적 결정화도를 보였으나, AS처리된 전분은 생전분과 비슷한 수준의 높은 결정화도를 보였다. 이로부터 AS처리된 전분의 신장된 사슬은 무정형영역을 감소시키고 결정성 영역을 증가시킨다고 할 수 있었다. 또한, 더 높은 상대적 결정화도의 형성은 대조군보다 AS처리된 전분이 더 강하고 치밀한 구조가 형성되었다고 할 수 있었다(Cooke, D., Gidley, M.J., 1992. Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate Research 227, 103-112).On the other hand, the relative crystallinity is shown in Table 6, the control group showed a lower relative crystallinity than raw starch, but the AS-treated starch showed a high degree of crystallinity similar to raw starch. From this, it can be said that the stretched chain of AS treated starch reduces the amorphous region and increases the crystalline region. In addition, the formation of higher relative crystallinity can be attributed to the stronger and more dense structure of the AS-treated starch than the control (Cooke, D., Gidley, MJ, 1992. Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition.Carbohydrate Research 227, 103-112).

전분Starch 생전분 (%)Raw starch (%) 대조군 (%)Control (%) AS (%)AS (%) 찹쌀 Glutinous rice 48.1 48.1 10.7 10.7 47.5 47.5 멥쌀 Rice 40.7 40.7 18.6 18.6 39.1 39.1 찰감자 Glutinous 49.1 49.1 11.4 11.4 44.4 44.4 일반감자 General potato 46.0 46.0 19.6 19.6 40.0 40.0

실험예Experimental Example 8:  8: 시차주사열량기를Differential Scanning Calorimeter 이용한  Used ASAS 처리 전후의 열적 특성 변화Changes in thermal properties before and after treatment

시차주사열량기에서 전분에 열을 가하면 결정화된 아밀로펙틴 구조가 풀리면서 엔탈피 변화를 보여 피크가 나타나게 되는데, DSC(Diamond DSC, Perkin-Elmer, USA)를 이용하여 AS처리 전후의 열적 특성 변화를 알아보았다. 인디움(Indium)을 교정 기준으로 잡고, 3mg의 시료와 15mg의 증류수를 세이코(Seiko) 고압 스테인리스 팬에 담고 하루 동안 실온에 둔 후 측정하였다. 시료 팬은 30℃에서 130℃까지 5℃/분의 속도로 올리면서 측정하였다.When the starch is heated in a differential scanning calorimeter, the crystallized amylopectin structure is released, showing peaks with enthalpy changes. The DSC (Diamond DSC, Perkin-Elmer, USA) was used to investigate the thermal characteristics before and after AS treatment. . Indium was used as a calibration standard, and 3 mg of sample and 15 mg of distilled water were placed in a Seiko high pressure stainless steel pan and placed at room temperature for one day. The sample pan was measured at a rate of 5 ° C./min from 30 ° C. to 130 ° C.

실험 결과, 생전분, 대조군, AS처리된 전분의 열적 특성을 표 7에 나타냈다. As a result, the thermal properties of raw starch, control group, and AS-treated starch are shown in Table 7.

전분Starch To (℃)To (℃) Tp (℃)Tp (℃) Tc (℃)Tc (℃) Tc-ToTc-To ΔH(J/g)ΔH (J / g) 찹쌀Glutinous rice 생전분Raw starch 58.3±0.158.3 ± 0.1 64.9±0.264.9 ± 0.2 76.0±0.4 76.0 ± 0.4 17.6±0.317.6 ± 0.3 11.6±0.211.6 ± 0.2 AS처리 전분AS processed starch 75.6±0.575.6 ± 0.5 88.7±0.188.7 ± 0.1 100.1±0.4100.1 ± 0.4 24.4±0.824.4 ± 0.8 7.3±0.5 7.3 ± 0.5 대조군Control 비검출Undetected 멥쌀Rice 생전분Raw starch 55.8±0.755.8 ± 0.7 62.6±0.162.6 ± 0.1 76.5±0.1 76.5 ± 0.1 20.7±0.720.7 ± 0.7 9.8±0.2 9.8 ± 0.2 AS처리 전분AS processed starch 73.7±0.873.7 ± 0.8 88.8±0.288.8 ± 0.2 101.8±1.0101.8 ± 1.0 28.1±0.928.1 ± 0.9 5.3±0.3 5.3 ± 0.3 대조군Control 비검출Undetected 찰감자Glutinous 생전분Raw starch 61.0±0.261.0 ± 0.2 65.7±0.265.7 ± 0.2 70.2±0.2 70.2 ± 0.2 9.1±0.4 9.1 ± 0.4 19.2±1.519.2 ± 1.5 AS처리 전분AS processed starch 70.8±0.470.8 ± 0.4 88.8±0.288.8 ± 0.2 104.2±0.5104.2 ± 0.5 33.4±0.433.4 ± 0.4 9.0±0.5 9.0 ± 0.5 대조군Control 비검출Undetected 일반감자General potato 생전분Raw starch 56.1±0.456.1 ± 0.4 59.9±0.159.9 ± 0.1 64.3±0.3 64.3 ± 0.3 8.2±0.7 8.2 ± 0.7 18.4±0.718.4 ± 0.7 AS처리 전분AS processed starch 80.4±0.680.4 ± 0.6 89.3±1.389.3 ± 1.3 102.0±0.1102.0 ± 0.1 21.6±0.521.6 ± 0.5 7.6±0.5 7.6 ± 0.5 대조군Control 비검출Undetected

생전분은 호화 특성을 나타내는 피크를 보였다. 대조군과 AS처리 전분은 제조과정 중 이미 호화 후 30℃에서 40시간 동안 노화시킨 시료이므로 노화 특성을 나타내는 피크를 보여야 하는데, 대조군의 경우 모든 전분에서 피크가 나타나지 않았으므로 AS처리 전분이 대조군보다 노화의 정도가 더 크다고 볼 수 있다. 대조군에서의 노화는 측정되지 않을 만큼 노화 정도가 작기 때문에 피크가 나타나지 않았다고 판단되었다. Raw starch showed peaks showing gelatinization characteristics. The control and AS-treated starches are samples that have already aged during the manufacturing process and then aged at 30 ° C for 40 hours. Therefore, the control and starch-treated starches should show peaks indicating aging characteristics. The degree is larger. Aging in the control group was judged to have no peak because the degree of aging was small enough not to be measured.

한편, AS처리된 전분은 증가된 사슬 길이 때문에 노화의 정도가 증가된 것인데(Kalichevsky, M. T., Orford, P. D., and Ring, S. G., 1990. The retrogradation and gelation of amylopectins from various botanical sources. Carbohydr. Res. 198, 49-55; Yuan, R. C., Thompson, D. B., and Boyer, C. D., 1993. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 70, 81-89.ichevsky et al., 1990; Yuan et al.), 다른 연구자들은 이 연구와 비슷한 조건에서 노화된 전분의 엔탈피 변화값이 2J/g, Tp값이 50도 정도라고 보고하였다(Kim et al., 1997. Acomparative study on retrogradation of rice starch gels by DSC, X-ray and alpha-amylase methods. Starch/St?rke 49 (Nr.2) S71-75; Kohyama, K., Matsukia, J., Yasuib, T., Sasakia, T., 2004. A differential thermal analysis of the gelatinization and retrogradation of wheat starches with different amylopectin chain lengths. Carbohydrate Polymers 58, 71-77). 이에 비하여 이 실험의 AS처리된 전분은 엔탈피 변화값이 약 5~9 J/g, Tp값이 약 88도 정도로 높게 나타났다. 이는 AS처리된 전분의 결정구조가 다른 노화전분이나 대조군에 비해 더 안정하다는 것을 뜻한다. 일반적으로 아밀로스의 결정이 아밀로펙틴보다 더 안정하나(Shin, S.I., Choi, H.J., Chung, K.M., Hamaker, B.R., Park, K.H., Moon, T.W., 2004. Slowly digestible starch from debranched waxy sorghum starch: preparation and properties. Cereal Chemistry 81(3), 404-408), 매우 긴 사슬을 가진 아밀로펙틴 사슬은 아밀로스와 비슷한 특성을 보이므로 본 실험에서는 AS로 인해 신장된 아밀로펙틴 사슬이 아밀로스와 비슷하게 강하고 빽빽한 결정구조를 형성하였다고 볼 수 있었다.On the other hand, starch treated with AS showed an increased degree of aging due to increased chain length (Kalichevsky, MT, Orford, PD, and Ring, SG, 1990. The retrogradation and gelation of amylopectins from various botanical sources.Carbohydr.Res. 198, 49-55; Yuan, RC, Thompson, DB, and Boyer, CD, 1993. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines.Cereal Chem. 70 , 81-89.ichevsky et al., 1990; Yuan et al.), And other researchers reported changes in enthalpy of starch aged 2J / g and Tp 50 degrees under similar conditions (Kim). et al., 1997. Acomparative study on retrogradation of rice starch gels by DSC, X-ray and alpha-amylase methods.Starch / St®rke 49 (Nr. 2) S71-75; Kohyama, K., Matsukia, J. , Yasuib, T., Sasakia, T., 2004.A differential thermal analysis of the gelatinization and retrogradation of wheat starches with different amylopectin chain lengths.Carbohydrate Polymers 58, 71-77). In contrast, the AS-treated starch of this experiment showed a high enthalpy change of about 5-9 J / g and a Tp of about 88 degrees. This means that the crystal structure of AS-treated starch is more stable than other aged starches or controls. In general, amylose crystals are more stable than amylopectin (Shin, SI, Choi, HJ, Chung, KM, Hamaker, BR, Park, KH, Moon, TW, 2004. Slowly digestible starch from debranched waxy sorghum starch: preparation and properties Cereal Chemistry 81 (3), 404-408), the amylopectin chains with very long chains are similar to those of amylose. Could.

실험예Experimental Example 9:  9: ASAS 처리 전후의 Before and after treatment 유변학적Rheological 특성 조사 Characteristic investigation

전분 젤의 유변학적 특성은 'oscillatory rheometer(Rheostress 1, Thermo HAAKE, Karlsruhe, Germany)'와 'corn-plate system(35mm diameter)'을 사용하여 측정하였다. 먼저, 전분현탁액 2, 4, 6%를 121℃에서 15분간 고압가열하였다. 이 시료를 레오미터(rheometer)에 올리고 25℃에서 한 시간 동안 두어 젤을 형성시킨 후 측정하였다. 주파수(frequency) 범위는 0.1~10Hz이며, 25℃에서 실행하였다.Rheological properties of starch gels were measured using 'oscillatory rheometer (Rheostress 1, Thermo HAAKE, Karlsruhe, Germany)' and 'corn-plate system (35mm diameter)'. First, starch suspension 2, 4, 6% was heated by high pressure at 121 ℃ for 15 minutes. The sample was placed on a rheometer and placed at 25 ° C. for one hour to form a gel and measured. Frequency range was 0.1 ~ 10Hz, it was carried out at 25 ℃.

도 6a 및 6b는 AS처리 전과 후의 유변학적 특성 변화를 나타낸 그래프이다. 2, 4, 6%의 전분 농도로 젤 형성 후 25℃에서 측정하였고, 주파수가 0.1~10Hz로 변화 시에 G’(저장률), G”(손실탄성률)의 변화를 나타냈다. 6A and 6B are graphs showing changes in rheological properties before and after AS treatment. It was measured at 25 ° C. after gel formation with 2, 4, and 6% starch concentration, and showed a change in G ′ (storage rate) and G ”(loss modulus) when the frequency was changed from 0.1 to 10 Hz.

모든 전분에서 전분 농도가 증가할수록 모듈러스(modulus) 값이 증가하였다. 또한, AS처리 후 전분의 모든 모듈러스 값 증가로 젤 형성 능력이 향상되었다. 이는 신장된 아밀로펙틴 사슬이 젤 형성 능력이 좋은 선형의 아밀로스와 비슷한 특성을 보이기 때문이다(Rolland-Sabate, A., Colonna, P., Potocki-Veronese, G., Monsan, P., Planchot, V., 2004. Elongation and insolubilisation of α-glucan by the action of Neisseria polysaccharea amylosucrase. Journal of Cereal Science 40, 17-30). Modulus value increased with increasing starch concentration in all starches. In addition, the gel formation ability was improved by increasing all modulus values of starch after AS treatment. This is because elongated amylopectin chains exhibit similar properties as linear amylose with good gel-forming ability (Rolland-Sabate, A., Colonna, P., Potocki-Veronese, G., Monsan, P., Planchot, V.). , 2004.Elongation and insolubilisation of α-glucan by the action of Neisseria polysaccharea amylosucrase.Journal of Cereal Science 40, 17-30).

생전분은 6%일 때 모든 전분에서 고체형(G'> G") 특성을 지닌 반면, AS처리된 전분의 경우 2%에서 모두 고체형 특성을 보였다. Raw starch had a solid form (G '> G ") in all starches at 6%, while solid starches in 2% of AS-treated starches.

따라서, AS가 처리된 전분의 경우 생전분보다 더 적은 양으로도 생전분이 가지고 있는 젤 형성 능력을 나타낼 수 있으므로, AS처리 전분이 젤 형성 능력면에서 더 효율적인 것으로 판단되었다.Therefore, the AS-treated starch may represent the gel-forming ability of the raw starch even in a smaller amount than the raw starch, so the AS-treated starch was determined to be more efficient in terms of gel-forming ability.

도 1은 다양한 전분의 형태별 시험관 내 소화도를 보여준다. 1 shows in vitro digestibility of various starch types.

도 2는 설탕의 소비 속도를 보여준다. 2 shows the consumption rate of sugar.

도 3은 전분의 사슬 길이 분포를 보여준다.3 shows the chain length distribution of starch.

도 4는 멥쌀 전분의 RI(refractive index) 크로마토그램을 보여준다.Figure 4 shows a refractive index (RI) chromatogram of non-glucose starch.

도 5는 전분의 X-ray 회절도 패턴을 보여준다. 5 shows the X-ray diffractogram pattern of starch.

도 6a 및 6b는 전분의 유변학적 특성 변화를 보여준다. 6a는 찹쌀 전분과 멥쌀 전분의 경우, 6b는 찰감자와 일반감자 전분의 경우이다. 6a and 6b show the change in rheological properties of starch. 6a is for glutinous rice and non-glutinous rice starch, and 6b is for glutinous and regular potato starch.

Claims (7)

전분과 설탕을 물에 현탁시켜 현탁액을 제조하는 단계(a);(A) suspending starch and sugar in water to prepare a suspension; 아밀로수크라아제(E.C. 2.4.1.4) 또는 이를 함유하는 액을 상기 단계(a)의 현탁액에 첨가하여 효소반응을 유도하는 단계(b);를 포함하는 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법(B) adding amylosucrase (EC 2.4.1.4) or a liquid containing the same to the suspension of step (a) to induce an enzymatic reaction; Manufacturing Method 제1항에 있어서,The method of claim 1, 상기 전분은, The starch is, 찰옥수수 전분, 옥수수 전분, 찹쌀 전분, 멥쌀 전분, 찰감자 전분 및 감자 전분 중 선택되는 어느 하나인 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법Method of producing a starch enhanced starch, characterized in that any one selected from waxy corn starch, corn starch, glutinous rice starch, non-glutinous rice starch, glutinous potato starch and potato starch 제1항에 있어서,The method of claim 1, 아밀로수크라아제는,Amylosucrase, 네이세리아 폴리사카레아(Neiserria polysaccharea) 유래인 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법 Neiserria polysaccharea ) method of producing starch with enhanced plasticity , characterized in that derived from 제1항에 있어서, The method of claim 1, 아밀로수크라아제를 함유하는 액은,The liquid containing amylosucrase, 아밀로수크라아제를 생산할 수 있게 형질전환된 균주의 배양액 또는 균주 파쇄액인 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법A method of preparing starch-enhanced starch, characterized in that the culture medium or strain lysate of the transformed strain to produce amylosucrase 제1항에 있어서,The method of claim 1, 상기 지소화성 전분의 제조방법은,The method for producing a branched starch, 단계(a) 후, 현탁액을 끓이는 단계(a-1);를 추가로 포함하는 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법After step (a), the step of boiling the suspension (a-1); a method of producing a starch enhanced starch, characterized in that it further comprises 제1항에 있어서,The method of claim 1, 상기 단계(b)의 효소반응은, The enzyme reaction of step (b), 25~35℃에서 수행하는 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법Process for producing starch enhanced starch, characterized in that carried out at 25 ~ 35 ℃ 제1항에 있어서, The method of claim 1, 상기 지소화성 전분의 제조방법은,The method for producing a branched starch, 단계(b)의 효소반응 후, 반응액을 원심분리하여 불용성 부분을 수득하는 단계(c);를 추가로 포함하는 것을 특징으로 하는 지소화성이 증진된 전분의 제조방법After the enzymatic reaction of step (b), centrifugation of the reaction solution to obtain an insoluble portion;
KR1020070134131A 2007-12-20 2007-12-20 Method for production of starch with a slow digestibility KR100910081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070134131A KR100910081B1 (en) 2007-12-20 2007-12-20 Method for production of starch with a slow digestibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070134131A KR100910081B1 (en) 2007-12-20 2007-12-20 Method for production of starch with a slow digestibility

Publications (2)

Publication Number Publication Date
KR20090066542A true KR20090066542A (en) 2009-06-24
KR100910081B1 KR100910081B1 (en) 2009-07-30

Family

ID=40994519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070134131A KR100910081B1 (en) 2007-12-20 2007-12-20 Method for production of starch with a slow digestibility

Country Status (1)

Country Link
KR (1) KR100910081B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348397A (en) * 2015-12-14 2016-02-24 江南大学 Method for efficiently preparing thermal-stability-type slowly digestible starch by combining chemical method and enzymic method
KR20180070461A (en) * 2016-12-16 2018-06-26 한국식품연구원 Method for manufacturing a recrystallized chestnut starch and recrystallized chestnut starch by using thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486367B1 (en) 2011-09-15 2015-01-26 씨제이제일제당 (주) A sweetener material composition containing slow digestive materials for improving diabetes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860375A1 (en) 1998-12-28 2000-07-06 Aventis Res & Tech Gmbh & Co Alpha amylase-resistant starch for the production of food and pharmaceuticals
DE19959863A1 (en) 1999-12-10 2001-06-13 Axiva Gmbh Process for increasing the content of a-amylase-resistant starch (RS content) of a polysaccharide, polysaccharides, their use and foods with these polysaccharides
ATE446318T1 (en) 2003-10-24 2009-11-15 Bayer Cropscience Ag USE OF LINEAR POLY-ALPHA-1,4-GLUCANS AS RESISTANT STARCH
JP4945096B2 (en) 2004-10-29 2012-06-06 松谷化学工業株式会社 Method for producing indigestible dextrin containing isomerized sugar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348397A (en) * 2015-12-14 2016-02-24 江南大学 Method for efficiently preparing thermal-stability-type slowly digestible starch by combining chemical method and enzymic method
KR20180070461A (en) * 2016-12-16 2018-06-26 한국식품연구원 Method for manufacturing a recrystallized chestnut starch and recrystallized chestnut starch by using thereof

Also Published As

Publication number Publication date
KR100910081B1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
Jane Current understanding on starch granule structures
Liu et al. Pullulanase hydrolysis behaviors and hydrogel properties of debranched starches from different sources
Jo et al. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification
Shin et al. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties
Kim et al. Branch chain elongation by amylosucrase: Production of waxy corn starch with a slow digestion property
Tawil et al. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp
Li et al. Partial branching enzyme treatment increases the low glycaemic property and α-1, 6 branching ratio of maize starch
Kim et al. Kinetic studies of in vitro digestion of amylosucrase-modified waxy corn starches based on branch chain length distributions
Miao et al. Impact of β-amylase degradation on properties of sugary maize soluble starch particles
Kim et al. Production of an in vitro low-digestible starch via hydrothermal treatment of amylosucrase-modified normal and waxy rice starches and its structural properties
Zhang et al. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch
JP5828589B2 (en) Industrial production method of branched glucan having cyclic structure
US10526627B2 (en) Method for producing high molecular weight reduced viscosity starch pastes
Long et al. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles
TW200804428A (en) Production of crystalline short chain amylose
AU2007339488A1 (en) Novel slowly digestible storage carbohydrate
Li et al. Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch
Sun et al. Effect of acid-ethanol treatment and debranching on the structural characteristics and digestible properties of maize starches with different amylose contents
Xia et al. Structural and digestion properties of potato starch modified using an efficient starch branching enzyme AqGBE
Kim et al. Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid
Kim et al. Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production
Liu et al. Effects of extrusion and enzymatic debranching on the structural characteristics and digestibility of corn and potato starches
KR100910081B1 (en) Method for production of starch with a slow digestibility
Liu et al. Development and characterization of resistant starch produced by an extrusion–debranching strategy with a high starch concentration
Lin et al. Molecular weight, chain length distribution and long-term retrogradation of cassava starch modified by amylomaltase

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130704

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140709

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150629

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170811

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee