KR20090061613A - Methanofullerene compounds having fluorinated substituents and its use for organic electronics - Google Patents

Methanofullerene compounds having fluorinated substituents and its use for organic electronics Download PDF

Info

Publication number
KR20090061613A
KR20090061613A KR1020090042300A KR20090042300A KR20090061613A KR 20090061613 A KR20090061613 A KR 20090061613A KR 1020090042300 A KR1020090042300 A KR 1020090042300A KR 20090042300 A KR20090042300 A KR 20090042300A KR 20090061613 A KR20090061613 A KR 20090061613A
Authority
KR
South Korea
Prior art keywords
alkyl
substituted
aryl
organic
heteroaryl
Prior art date
Application number
KR1020090042300A
Other languages
Korean (ko)
Inventor
윤성철
이재왕
임종선
김동욱
이창진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020090042300A priority Critical patent/KR20090061613A/en
Publication of KR20090061613A publication Critical patent/KR20090061613A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids
    • C07C69/635Halogen-containing esters of saturated acids containing rings in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • C07D333/10Thiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

A fluorinated methanofullerene compound is provided to improve solubility to organic solvents, to increase electronic mobility and to improve self-organization, thereby obtaining excellent photoelectric conversion efficiency. An organic electronic device comprises a methanofullerene compound represented by chemical formula 1 and does not employ an annealing process for self assembly of the methanofullerene compound. In chemical formula 1, R^1 is (C6-C30)aryl or (C4-C30)hetroaryl; R^2 is linear or branched (C1-C30)alkyl substituted with at least one fluorine group, linear or branched (C1-C30)alkyl(C6-C30)aryl substituted with at least one fluorine group, (C6-C30)ar(C1-C30)alkyl substituted with at least one fluorine group, (C4-C30)heteroaryl substituted with at least one fluorine group, or (C4-C30)heteroaryl(C1-C30)alkyl substituted with at least one fluorine group; A is C60, C72, C76, C78 or C84 as a fullerene derivative; and n is an integer of 1-7.

Description

불소기로 치환된 메타노플러렌 화합물 및 이를 이용한 유기전자소자{Methanofullerene Compounds Having Fluorinated Substituents and Its Use for Organic Electronics}Methanofullerene Compounds Having Fluorinated Substituents and Its Use for Organic Electronics {Methanofullerene Compounds Having Fluorinated Substituents and Its Use for Organic Electronics}

본 발명은 신규한 불소기로 치환된 메타노플러렌 화합물(methanofullerene) 및 이를 포함하는 유기전자소자에 관한 것이다.The present invention relates to a novel metanofullerene substituted with a fluorine group and an organic electronic device including the same.

단분자, 고분자를 이용한 유기반도체 재료들은 지난 25 년여 동안 비약적인 발전을 거듭하여 왔다. 기존의 무기물을 이용한 반도체 재료들은 우수한 특성과 신뢰성을 확보하고 있지만, 제조상의 단점과 소자제작공정에서의 어려움으로 인해 점점 그 역할을 유기 반도체 재료 쪽으로 이양하고 있는 게 사실이다. 유기 반도체 재료들은 무기 반도체 재료와 비교하여 제조공정 상 단순하고 소자제작 시 저가공정이 가능하며, 유기물의 특성상 간단한 구조의 변경을 통해 보다 우수한 특성을 발현하는 재료의 개발이 용이하다는 데서 그 원인을 찾을 수 있다. Organic semiconductor materials using single molecules and polymers have progressed dramatically over the past 25 years. Conventional semiconductor materials using inorganic substances have excellent properties and reliability, but it is true that their role is gradually shifting to organic semiconductor materials due to manufacturing disadvantages and difficulties in the device manufacturing process. Organic semiconductor materials are simpler in the manufacturing process compared to inorganic semiconductor materials, and inexpensive processes are possible when manufacturing devices, and due to the characteristics of organic materials, it is easy to develop materials that exhibit superior properties through simple structural changes. I can.

*한편, 유기 반도체 물질이 사용되는 또 다른 예로서는 유기 태양전지를 들 수 있다. 일반적으로 태양 광 전지는 반도체층과 전극을 기본 구성으로 포함한다. 이러한 태양 광 전지는 외부로부터 들어온 빛에 의해 반도체층 내부에서 전자와 정공이 발생하고, 전하들이 각각 P, N극으로 이동하는 현상에 의하여 P극과 N극의 전위차가 발생하게 되면서, 이 때 태양전지에 부하를 연결하면 전류가 흐르는 원리를 이용한 소자이다. 그런데 상기 기술한 바와 마찬가지로 태양 광 전지의 반도체층 역시 고가격, 고온진공 프로세스를 필요로 하는 무기계 물질보다는 유기 반도체 물질을 적용하려는 추세가 나타나고 있다. 특히, 태양 광 전지 소자에 적용할 때, 스핀 코팅 공정으로 소자를 제작할 수 있을 뿐만 아니라, 광(光)량 증가에 따라 전지 효율이 떨어지지 않는 반도체 화합물에 대한 개발이 요구되는 실정이다.* On the other hand, an organic solar cell is mentioned as another example in which an organic semiconductor material is used. In general, a photovoltaic cell includes a semiconductor layer and an electrode as a basic configuration. In such a solar cell, electrons and holes are generated inside the semiconductor layer by light from the outside, and the potential difference between the P and N poles is generated by the phenomenon that charges move to the P and N poles, respectively. It is a device that uses the principle that current flows when a load is connected to the battery. However, as described above, there is a trend to apply an organic semiconductor material rather than an inorganic material requiring a high price and high temperature vacuum process for the semiconductor layer of a solar cell. In particular, when applied to a photovoltaic cell device, it is possible to manufacture the device by a spin coating process, and there is a need for development of a semiconductor compound that does not decrease cell efficiency as the amount of light increases.

또한, 통상의 유기반도체 재료는 정공과 전자의 이동도면에서 큰 차이를 보이는데, 대부분의 경우 정공의 이동도가 전자의 이동도에 비해 적게는 10배에서 많게는 1000배정도 빠른 것으로 보고되어 있다. 그러므로, OTFT 등의 채널(channel) 재료로 이용되는 유기반도체 및 유기태양전지 (Organic Photovoltaic Cells)의 acceptor들 중에 전자이동을 이용한 n-형 재료에 대한 결과는 상대적으로 적게 보고되고 있다. 대표적인 n-형 유기반도체 재료로는 하기의 구조를 갖는 재료들이 있다.In addition, a typical organic semiconductor material shows a large difference in the mobility of holes and electrons. In most cases, it has been reported that the mobility of holes is as low as 10 to as many as 1000 times faster than the mobility of electrons. Therefore, among the acceptors of organic semiconductors and organic photovoltaic cells used as channel materials such as OTFT, there are relatively few results for n-type materials using electron transfer. Representative n -type organic semiconductor materials include materials having the following structures.

Figure 112009029090632-PAT00002
Figure 112009029090632-PAT00002

Fred Wudl 그룹에서는 1995년 PCBM으로 잘 알려진 메타노플러렌 (methanofullerene) 유도체인 {6}-1-(3-(메톡시카보닐)프로필)-{5}-1-페닐[5,6]C61 ({6}-l-(3-(Methoxycarbonyl)propyl)-{5}-l-phenyl[5,6]C61)를 보고하였다. (J. Org. Chem ., 1995, 60, 532). 이 PCBM은 MEH-PPV, MDMO-PPV 및 P3HT 등의 고분자 donor 재료들과의 혼합을 통해 유기태양전지로 활용될 수 있는데, 초기에는 PPV 유도체와 1:3 정도의 혼합비로 소자화되었으며, 최근 들어 PCBM은 P3HT와의 혼합을 통해 제작된 소자를 고온에서 annealing하거나 유기박막 생성시 용매의 증발속도를 조절함을 통하여 약 4%이상의 높은 에너지 변환 효율을 보여준다. 하지만, 이러한 후처리 공정은 재현성을 보장하기 어렵고, 소자가 고온에 방치될 경우 유기막의 모폴로지가 변화하여 효율이나 기타 소자 특성에 치명적인 영향을 미칠 가능성이 높다. In the Fred Wudl group, in 1995, the metanofullerene derivative known as PCBM {6}-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]C61 ( {6}-l-(3-(Methoxycarbonyl)propyl)-{5}-l-phenyl[5,6]C61) was reported. ( J. Org. Chem . , 1995 , 60 , 532). This PCBM can be used as an organic solar cell by mixing with polymer donor materials such as MEH-PPV, MDMO-PPV, and P3HT.In the beginning, it was elementized with a mixing ratio of 1:3 with PPV derivatives. Shows high energy conversion efficiency of about 4% or more by annealing the device manufactured through mixing with P3HT at high temperature or controlling the evaporation rate of the solvent when generating an organic thin film. However, such a post-treatment process is difficult to ensure reproducibility, and when the device is left at a high temperature, the morphology of the organic film is changed, and it is highly likely to have a fatal effect on efficiency or other device characteristics.

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 연구한 결과, 메타노플러렌에 불소기를 도입함으로써, 용해도를 일부 개선하고, 전기화학적으로 전자의 이동도를 증대시킬 수 있는 신규 n-형 유기반도체 화합물을 새로이 밝혀내어, 유기 태양전지 (organic photovoltaic) 및 유기 박막 트랜지스터 (OTFT)의 활성 성분으로서의 용도에 적용가능함을 발견하고 본 발명을 완성하게 되었다. Accordingly, the present inventors have researched to solve the above problems, by introducing a fluorine group into metanofullerene, a novel n -type organic semiconductor compound capable of partially improving the solubility and increasing the mobility of electrons electrochemically. As a result, the present invention has been completed by discovering that it is applicable to the use as an active component of organic photovoltaic and organic thin film transistor (OTFT).

따라서, 본 발명의 목적은 신규한 불소기가 도입된 메타노플러렌 화합물을 제공하는 것이며, 또한, 메타노플러렌 화합물에 불소기를 도입함으로써, 박막상태에서 보다 우수한 전자이동도를 가지게 되어 우수한 n-형 유기반도체의 특성을 가질 수 있는 재료를 제공하는 것이다.Accordingly, an object of the present invention is to provide a novel fluorine group-introduced metanofullerene compound, and also, by introducing a fluorine group into the metanofullerene compound, it has a better electron mobility in a thin film state, thereby providing an excellent n-type organic compound. It is to provide a material that can have the characteristics of a semiconductor.

또한, 본 발명은 신규한 불소기가 도입된 메타노플러렌 화합물들은 고분자 도너 (donor) 즉, 전자주게 재료와 혼합될 때 불소기를 포함하는 작용기간의 상호작용이 더욱 활발하여 어닐링 (annealing) 등의 후처리 공정을 거치지 않더라도 보다 우수한 특성의 소자를 구현하는데 다른 목적이 있다.In addition, in the present invention, the novel fluorine group-introduced metanofullerene compounds are more active in the interaction of the period of action including the fluorine group when they are mixed with a polymer donor, that is, an electron donor material. There is another purpose to implement a device with superior characteristics even without going through a treatment process.

또한, 본 발명은 일반적인 도너 (donor), 즉 전자주게 재료와의 조합을 통해 높은 에너지 전환효율을 갖는 유기태양전지용 억셉터 (acceptor), 즉 전자받게 소재를 제공하는데 또 다른 목적이 있다.In addition, another object of the present invention is to provide an organic solar cell acceptor, that is, an electron acceptor material having high energy conversion efficiency through combination with a general donor, that is, an electron donor material.

본 발명은 하기 화학식 1로 표시되는 신규한 메타노플러렌 화합물(methanofullerene) 및 이를 포함하는 유기전자소자에 관한 것이다.The present invention relates to a novel metanofullerene compound represented by the following Chemical Formula 1 and an organic electronic device including the same.

[화학식 1][Formula 1]

Figure 112009029090632-PAT00003
Figure 112009029090632-PAT00003

[상기 식에서,[In the above formula,

R1은 (C6-C30)아릴 또는 (C4-C30)헤테로아릴이고, 상기 아릴 또는 헤테로아릴은 직쇄 또는 분쇄의 (C1-C30)알킬, (C1-C30)알콕시, (C6-C30)아릴, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, (C6-C30)아르(C1-C30)알콕시, (C4-C30)헤테로아릴, 히드록시, 카르복실, 아미노, 모노 또는 디 (C1-C30)알킬아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카보닐, 벤조일, 페녹시, 시아노, 니트로 또는 불소기로터 선택된 하나 이상의 치환기로 더 치환될 수 있으며, 상기 알킬, 알콕시, 아릴, 아르알킬, 아르알콕시, 헤테로아릴, 알킬카보닐 또는 알콕시카보닐은 하나 이상의 불소기로 더 치환될 수 있으며; R 1 is (C 6 -C 30 )aryl or (C 4 -C 30 )heteroaryl, and the aryl or heteroaryl is linear or branched (C 1 -C 30 )alkyl, (C 1 -C 30 )alkoxy , (C 6 -C 30 )aryl, (C 6 -C 30 )ar(C 1 -C 30 )alkyl, (C 1 -C 30 )alkyl(C 6 -C 30 )aryl, (C 6 -C 30 )Ar(C 1 -C 30 )alkoxy, (C 4 -C 30 )heteroaryl, hydroxy, carboxyl, amino, mono or di (C 1 -C 30 )alkylamino, (C 1 -C 30 )alkyl Can be further substituted with one or more substituents selected from carbonyl, (C 1 -C 30 )alkoxycarbonyl, benzoyl, phenoxy, cyano, nitro or fluorine groups, and the alkyl, alkoxy, aryl, aralkyl, aralkoxy , Heteroaryl, alkylcarbonyl or alkoxycarbonyl may be further substituted with one or more fluorine groups;

R2는 하나 이상의 불소기로 치환된 직쇄 또는 분쇄의 (C1-C30)알킬, 하나 이상의 불소기로 치환된 (C6-C30)아릴, 하나 이상의 불소기로 치환된 직쇄 또는 분쇄의 (C1-C30)알킬(C6-C30)아릴, 하나 이상의 불소기로 치환된 (C6-C30)아르(C1-C30)알킬, 하나 이상의 불소기로 치환된 (C4-C30)헤테로아릴 또는 하나 이상의 불소기로 치환된 (C4-C30)헤테로아릴(C1-C30)알킬이며; R 2 is linear or branched (C 1 -C 30 )alkyl substituted with one or more fluorine groups, (C 6 -C 30 )aryl substituted with one or more fluorine groups, straight-chain or branched (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl substituted with one or more fluorine groups, (C 4 -C 30 ) substituted with one or more fluorine groups Heteroaryl or (C 4 -C 30 ) heteroaryl (C 1 -C 30 ) alkyl substituted with one or more fluorine groups;

A는 플러렌 (fullerene) 유도체로서 C60, C72, C76, C78 또는 C84 이며;A is a fullerene derivative and is C60, C72, C76, C78 or C84;

n은 1 내지 7의 정수이다.]n is an integer of 1 to 7.]

상기 (C6-C30)아릴의 구체적인 예로서는 페닐(phenyl; -C6H5), 나프틸(naphthyl; -C10H7), 비페닐(biphenyl; -C12H9 ), 플루오레닐(fluorenyl; -C13H9), 페난트레닐(phenanthrenyl; -C14H9), 안트라세닐(anthracenyl; -C14H9), 트라이페닐레닐(triphenylenyl; -C18H11), 피레닐(pyrenyl; -C16H9), 크라이세닐(Chrysenyl; -C18H11), 나프타세닐(naphthacenyl; -C18H11)과 같은 방향족 그룹을 포함한다.Specific examples of the (C 6 -C 30 ) aryl include phenyl (phenyl; -C 6 H 5 ), naphthyl (naphthyl; -C 10 H 7 ), biphenyl (biphenyl; -C 12 H 9 ), fluorenyl (fluorenyl; -C 13 H 9 ), phenanthrenyl (-C 14 H 9 ), anthracenyl (-C 14 H 9 ), triphenylenyl (-C 18 H 11 ), pyrenyl (pyrenyl; -C 16 H 9 ), Chrysenyl (-C 18 H 11 ), naphthacenyl (naphthacenyl; -C 18 H 11 ).

상기 (C4-C30)헤테로아릴은 방향족 고리 골격 원자로서 N, O, P 또는 S 중에서 선택된 1 내지 3개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미한다. 상기 헤테로아릴은 고리내 헤테로원자가 산화되거나 사원화되어, 예를 들어 N-옥사이드 또는 4차 염을 형성하는 2가 아릴 그룹을 포함한다. 대표적인 예로는 퓨릴(furyl; -C4H3O), 아이소벤조퓨란일(isobenzofuryl; -C8H5O), 피롤릴(pyrrolyl; -C4H4N), 이미다졸릴(imidazolyl; -C3H3N2), 피라졸릴(pyrazolyl; -C3H3N2), 아이소티아졸릴(isothiazolyl; -C3H2NS), 아이속사졸릴(isoxazolyl; -C3H2NO), 테트라졸릴(tetrazolyl; -CHN4), 피리딜(pyridinyl; -C5H4N), 피라진일(pyrazinyl; -C4H3N2), 피리미딘일(pyrimidinyl; -C4H3N2), 피리다진일(pyridazinyl; -C4H3N2), 인돌리진일(indolizinyl; -C8H6N), 아이소인돌릴(isoindolyl; -C8H6N), 인돌릴(indolyl; -C8H6N), 인다졸릴(indazolyl; -C7H5N2), 아이소퀴놀릴(isoquinolinyl; -C9H6N), 퀴놀릴(quinolinyl; -C9H6N), 카바졸릴(carbazolyl; -C12H8N), 페난트리딘일(phenanthridinyl; -C13H8N) 및 이들의 상응하는 N-옥사이드 (예를 들어, 피리딜 N-옥사이드, 퀴놀릴 N-옥사이드), 이들의 4차 염 등을 포함하지만, 이에 한정되지 않는다.The (C 4 -C 30 )heteroaryl refers to an aryl group in which 1 to 3 heteroatoms selected from N, O, P, or S are included as an aromatic ring skeleton atom, and the remaining aromatic ring skeleton atoms are carbon. The heteroaryl includes divalent aryl groups in which heteroatoms in the ring are oxidized or quaternized to form, for example, N-oxides or quaternary salts. Representative examples include furyl (-C 4 H 3 O), isobenzofuryl (-C 8 H 5 O), pyrrolyl (-C 4 H 4 N), imidazolyl;- C 3 H 3 N 2 ), pyrazolyl (-C 3 H 3 N 2 ), isothiazolyl (-C 3 H 2 NS), isoxazolyl (-C 3 H 2 NO), Tetrazolyl (-CHN 4 ), pyridyl (pyridinyl; -C 5 H 4 N), pyrazinyl (-C 4 H 3 N 2 ), pyrimidinyl (pyrimidinyl; -C 4 H 3 N 2 ), pyridazinyl (-C 4 H 3 N 2 ), indolizinyl (-C 8 H 6 N), isoindolyl (-C 8 H 6 N), indolyl; -C 8 H 6 N), indazolyl (-C 7 H 5 N 2 ), isoquinolinyl (-C 9 H 6 N), quinolinyl (-C 9 H 6 N), carba Zolyl (carbazolyl; -C 12 H 8 N), phenanthridinyl (-C 13 H 8 N) and their corresponding N -oxides (e.g., pyridyl N -oxide, quinolyl N -oxide) , And quaternary salts thereof, but are not limited thereto.

상기 R1의 아릴 또는 헤테로아릴은 단일고리 또는 융합고리로서, 각 고리에 대하여 (C1-C30)알킬, (C1-C30)알콕시, (C6-C30)아릴, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, (C6-C30)아르(C1-C30)알콕시, (C4-C30)헤테로아릴, 히드록시, 카르복실, 아미노, 모노 또는 디 (C1-C30)알킬아미노, (C1-C30)알킬카보닐, (C1-C30)알콕 시카보닐, 벤조일, 페녹시, 시아노, 니트로 또는 불소기로터 선택된 하나 이상의 치환기가 치환될 수 있으며, 구체적으로는 하기의 아릴 또는 헤테로아릴 화합물로서 예시될 수 있으나, 하기의 아릴 또는 헤테로아릴 화합물이 본 발명의 범위를 한정하는 것은 아니다.The aryl or heteroaryl of R 1 is a single ring or a fused ring, for each ring (C 1 -C 30 )alkyl, (C 1 -C 30 )alkoxy, (C 6 -C 30 )aryl, (C 6 -C 30 )ar(C 1 -C 30 )alkyl, (C 1 -C 30 )alkyl(C 6 -C 30 )aryl, (C 6 -C 30 )ar(C 1 -C 30 )alkoxy, (C 4 -C 30 ) Heteroaryl, hydroxy, carboxyl, amino, mono or di (C 1 -C 30 )alkylamino, (C 1 -C 30 )alkylcarbonyl, (C 1 -C 30 )alkoxycycarbonyl , One or more substituents selected from benzoyl, phenoxy, cyano, nitro or fluorine groups may be substituted, and specifically, may be exemplified as the following aryl or heteroaryl compounds, but the following aryl or heteroaryl compounds are the present invention It does not limit the scope of.

Figure 112009029090632-PAT00004
Figure 112009029090632-PAT00004

[상기 식에서, X, Y 및 Z는 서로 독립적으로 수소, 직쇄 또는 분쇄의 (C1-C30)알킬, (C6-C30)아르(C1-C30)알킬 또는 (C1-C30)알킬(C6-C30)아릴이고; m은 1 내지 5의 정수이고; n은 1 내지 3의 정수이고; p는 1 내지 4의 정수이고; q는 1 내지 3의 정수이고; r은 1 또는 2의 정수이고; s는 1 내지 3의 정수이다.][In the above formula, X, Y, and Z are independently of each other hydrogen, straight or branched (C 1 -C 30 )alkyl, (C 6 -C 30 )ar(C 1 -C 30 )alkyl or (C 1 -C) 30 )alkyl(C 6 -C 30 )aryl; m is an integer from 1 to 5; n is an integer from 1 to 3; p is an integer from 1 to 4; q is an integer from 1 to 3; r is an integer of 1 or 2; s is an integer of 1 to 3.]

상기 화학식 1에서 R2는 하나 이상의 불소기로 치환된 직쇄 또는 분쇄의 (C1-C30)알킬, 하나 이상의 불소기로 치환된 (C6-C30)아릴 또는 하나 이상의 불소기로 치환된 (C6-C30)아르(C1-C30)알킬로부터 선택된다.In Formula 1, R 2 is a straight chain or branched (C 1 -C 30 ) alkyl substituted with one or more fluorine groups, (C 6 -C 30 ) aryl substituted with one or more fluorine groups, or (C 6 -C 30 )ar(C 1 -C 30 )alkyl.

본 발명에 따른 메타노플러렌 화합물은 [5,6]이성체 및 [6,6]이성체를 포함하며, 구체적으로는 하기의 화합물로서 예시될 수 있으나, 하기의 화합물이 본 발명의 범위를 한정하는 것은 아니다.The metanofullerene compound according to the present invention includes [5,6] isomers and [6,6] isomers, and may be specifically exemplified as the following compounds, but the following compounds limit the scope of the present invention. no.

Figure 112009029090632-PAT00005
Figure 112009029090632-PAT00005

Figure 112009029090632-PAT00006
Figure 112009029090632-PAT00006

Figure 112009029090632-PAT00007
Figure 112009029090632-PAT00007

Figure 112009029090632-PAT00008
Figure 112009029090632-PAT00008

Figure 112009029090632-PAT00009
Figure 112009029090632-PAT00009

Figure 112009029090632-PAT00010
Figure 112009029090632-PAT00010

Figure 112009029090632-PAT00011
Figure 112009029090632-PAT00011

Figure 112009029090632-PAT00012
Figure 112009029090632-PAT00012

Figure 112009029090632-PAT00013
Figure 112009029090632-PAT00013

Figure 112009029090632-PAT00014
Figure 112009029090632-PAT00014

Figure 112009029090632-PAT00015
Figure 112009029090632-PAT00015

Figure 112009029090632-PAT00016
Figure 112009029090632-PAT00016

Figure 112009029090632-PAT00017
Figure 112009029090632-PAT00017

Figure 112009029090632-PAT00018
Figure 112009029090632-PAT00018

Figure 112009029090632-PAT00019
Figure 112009029090632-PAT00019

Figure 112009029090632-PAT00020
Figure 112009029090632-PAT00020

Figure 112009029090632-PAT00021
Figure 112009029090632-PAT00021

Figure 112009029090632-PAT00022
Figure 112009029090632-PAT00022

Figure 112009029090632-PAT00023
Figure 112009029090632-PAT00023

Figure 112009029090632-PAT00024
Figure 112009029090632-PAT00024

Figure 112009029090632-PAT00025
Figure 112009029090632-PAT00025

Figure 112009029090632-PAT00026
Figure 112009029090632-PAT00026

Figure 112009029090632-PAT00027
Figure 112009029090632-PAT00027

Figure 112009029090632-PAT00028
Figure 112009029090632-PAT00028

Figure 112009029090632-PAT00029
Figure 112009029090632-PAT00029

Figure 112009029090632-PAT00030
Figure 112009029090632-PAT00030

Figure 112009029090632-PAT00031
Figure 112009029090632-PAT00031

Figure 112009029090632-PAT00032
Figure 112009029090632-PAT00032

Figure 112009029090632-PAT00033
Figure 112009029090632-PAT00033

Figure 112009029090632-PAT00034
Figure 112009029090632-PAT00034

본 발명에 따른 화학식 1의 메타노플러렌 화합물의 제조방법을 하기 반응식 1에 C60의 메타노플러렌을 예를 들어 도시하였으며, 하기 반응식 1에 도시된 바와 같이, 아릴 또는 헤테로아릴이 치환된 옥소카르복실산을 하나 이상의 불소기로 치환된 알콜 유도체과 황산 (H2SO4) 촉매하에서 에스테르화 반응시킨 후, p-톨루엔술포닐 하이드라자이드 (p-toluenesulfonyl hydrazide)와의 반응을 통해 p-토실히드라존 (p-tosylhydrazone) 유도체를 형성한다. 여기에 피리딘 하에서 플러렌 (Fullerene)를 넣고 가열하면 p-토실히드라존 유도체가 분해되어 아지드 (azide) 형태를 거쳐 형성된 카벤 (carbene)이 플러렌 (Fullerene)에 부가반응하여 플러렌 (Fullerene)의 탄소수가 5개인 고리와 6개인 고리의 정션에 결합된 형태의 [5,6]-이성질체 (화합물 a)를 제조할 수 있다. 또한, 상기 생성된 [5,6]-이성질체 (화합 물 a)를 1,2-디클로로벤젠 용매하에서 환류시켜 6개 고리간의 정션에 결합된 형태인 [6,6]-이성질체 (화합물 b)를 제조할 수 있다.The method for preparing the metanofullerene compound of Formula 1 according to the present invention is illustrated in the following Scheme 1 for example of C60 metanofullerene, and as shown in Scheme 1 below, an aryl or heteroaryl substituted oxocarboxyl after the alcohol yudochegwa sulfuric acid substituted with at least one fluorine (H 2 SO 4) esterification reaction in which the catalyst, p - toluenesulfonyl hydrazide through reaction of (p -toluenesulfonyl hydrazide) p - tosyl hydrazone (p -tosylhydrazone) derivatives are formed. When fullerene is added under pyridine and heated, the p -tosylhydrazone derivative is decomposed, and the carbene formed through the azide form is added to the fullerene and the carbon number of fullerene is added. [5,6]-isomers (compound a ) in the form of bonded to the junction of five rings and six rings can be prepared. In addition, the generated [5,6]-isomer (compound a ) was refluxed in a 1,2-dichlorobenzene solvent to form the [6,6]-isomer (compound b ) bonded to the junction between the six rings. Can be manufactured.

[반응식 1][Scheme 1]

Figure 112009029090632-PAT00035
Figure 112009029090632-PAT00035

본 발명에 따른 화학식 1의 메타노플러렌 화합물을 포함하는 유기전자소자는 유기발광소자, 유기태양전지, 유기감광체 (OPC), 유기메모리 및 유기트랜지스터로 이루어진 군에서 선택되는 것을 특징으로 한다.The organic electronic device including the metanofullerene compound of Formula 1 according to the present invention is characterized in that it is selected from the group consisting of an organic light emitting device, an organic solar cell, an organic photoreceptor (OPC), an organic memory, and an organic transistor.

이상에서 상술한 바와 같이, 본 발명에 따른 신규한 불소화된 메타노플러렌 유도체는 플러렌에 불소화된 치환기를 도입함으로써, 용해도를 개선하였으며, 불소치환기간의 자기 조립에 의해 보다 효과적으로 전자이동도를 개선할 수 있었다. 이 러한 신규 화합물들은 유기발광소자의 전자수송층, 유기태양전지의 전자받게 (acceptor), 유기감광체 (OPC)의 전자수송층, 유기메모리 및 유기트랜지스터의 n-형 유기반도체 등으로서의 용도에 유용하다.As described above, the novel fluorinated metanofullerene derivative according to the present invention has improved solubility by introducing a fluorinated substituent to fullerene, and more effectively improves electron mobility by self-assembly during the fluorine substitution period. Could. These new compounds are useful for use as an electron transport layer of an organic light emitting device, an electron acceptor of an organic solar cell, an electron transport layer of an organic photoreceptor (OPC), an n-type organic semiconductor of an organic memory and an organic transistor.

이하, 본 발명의 상세한 이해를 위하여 본 발명의 대표적인 화합물을 들어 본 발명에 따른 메타노플러렌 화합물 및 이의 제조방법 및 소자의 특성을 설명하나, 이는 단지 그 실시 양태를 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, for a detailed understanding of the present invention, the metanofullerene compound according to the present invention and the method of manufacturing the same, and characteristics of the device are described with reference to the representative compounds of the present invention, but this is only for illustrating the embodiments thereof, and the present invention It does not limit the scope of.

[[ 제조예Manufacturing example 1] 화합물 1] compound PCBTFEPCBTFE [6,6]-이성질체의 제조 Preparation of [6,6]-isomers

2,2,2-2,2,2- 트리플루오로에틸Trifluoroethyl 4-벤조일부티레이트(2,2,2- 4-benzoylbutyrate (2,2,2- TrifluoroethylTrifluoroethyl 4-benzoyl 4-benzoyl butyratebutyrate )의 제조) Of the manufacture

3구 100 ml 둥근바닥 플라스크에 4-벤조일부티릴산 4.00 g (20.8 mmol), 트리플루오로에탄올 2.50 g (25.0 mmol) 및 진한 황산 0.41 g (5.0 mmol)의 촉매를 톨루엔 30 ml에 첨가하여 24 시간동안 환류하여 반응시켰다. 반응액을 냉각하여 초산염에틸 100 ml를 첨가한 후, 10% 탄산나트륨 용액 (80 mL)으로 3회 세척하고, 다시 증류수 (80 ml)로 3회 세척하였다. 유기층을 분리하여 황산 마그네슘으로 건조한 후, 진공하에서 용매를 제거하고, 이염화메탄과 헥산의 혼합용액 (2/1)을 컬럼 크로마토그래피하여 2,2,2-트리플루오로에틸 4-벤조일부티레이트 (3.22 g, 56%)를 얻었다.To a 3-neck 100 ml round-bottom flask, a catalyst of 4.00 g (20.8 mmol) 4-benzoylbutyrylic acid, 2.50 g (25.0 mmol) trifluoroethanol and 0.41 g (5.0 mmol) concentrated sulfuric acid was added to 30 ml of toluene for 24 hours. It was refluxed for a reaction. The reaction solution was cooled, 100 ml of ethyl acetate was added, washed 3 times with 10% sodium carbonate solution (80 ml), and washed 3 times with distilled water (80 ml). The organic layer was separated, dried over magnesium sulfate, the solvent was removed under vacuum, and a mixed solution of methane dichloride and hexane (2/1) was subjected to column chromatography to perform 2,2,2-trifluoroethyl 4-benzoyl butyrate ( 3.22 g, 56%) was obtained.

1H-NMR (300 MHz, CDCl3) δ 7.95 (d, ArH, 2H, J = 7.5 Hz), 7.60-7.54 (m, ArH, 1H), 7.49-7.44 (m, ArH, 2H), 4.48 (q, -OCH2-, 2H, J = 9 Hz), 3.07 (t, -O=CH2-, 2H, J = 7 Hz), 2.57 (t, -CH2CO2-, 2H, J = 7.2 Hz), 2.09 (m, -CH2CH2CH2-). 1 H-NMR (300 MHz, CDCl 3 ) δ 7.95 (d, ArH, 2H, J = 7.5 Hz), 7.60-7.54 (m, ArH, 1H), 7.49-7.44 (m, ArH, 2H), 4.48 ( q, -OCH 2 -, 2H, J = 9 Hz), 3.07 (t, -O=CH 2 -, 2H, J = 7 Hz), 2.57 (t, -CH 2 CO 2 -, 2H, J = 7.2 Hz), 2.09 (m, -CH 2 CH 2 CH 2 -).

13C-NMR (125 MHz, CDCl3 = 77.00 ppm) δ 198.99, 171.601, 136.64, 133.14, 128.59, 127.92, 60.59, 60.33, 60.30, 60.00, 37.02, 32.64, 18.93. 13 C-NMR (125 MHz, CDCl 3 = 77.00 ppm) δ 198.99, 171.601, 136.64, 133.14, 128.59, 127.92, 60.59, 60.33, 60.30, 60.00, 37.02, 32.64, 18.93.

19F-NMR (CFCl3) δ -74.31. 19 F-NMR (CFCl 3 ) δ -74.31.

FABMS m/z: 274 (M+H): calcd. (C13H13F3O3), 274.24.FABMS m/z : 274 (M + H): calcd. (C 13 H 13 F 3 O 3 ), 274.24.

2,2,2-2,2,2- 트리플루오로에틸Trifluoroethyl 4- 4- 벤조일부티레이트Benzoyl butyrate p- p- 토실히드라존Tosylhydrazone (2,2,2- Trifluoroethyl 4- (2,2,2- Trifluoroethyl 4- benzoylbutyratebenzoylbutyrate pp -- tosylhydrazonetosylhydrazone )의 제조) Of the manufacture

2,2,2-트리플루오로에틸 4-벤조일부티레이트 3.00 g (10.94 mmol), p-톨로엔술포닐 하이드라자이드 (p-toluenesulfonyl hydrazide) 2.47 g (13.24 mmol)을 메탄올 (20 mL)에 용해하여 환류하며 5 시간동안 반응시켰다. 하루 동안 상온에서 더 반응시킨 후, -15 ℃로 냉각하여 여과하였다. 차가운 메탄올로 세척하여 2,2,2-트 리플루오로에틸 4-벤조일부티레이트 p-토실히드라존 (3.14g, 71%)를 얻었다.2,2,2-trifluoroethyl 4-benzoyl butyrate 3.00 g (10.94 mmol), p - Tolo yen sulfonyl hydrazide (p -toluenesulfonyl hydrazide) 2.47 g dissolved in (13.24 mmol) in methanol (20 mL) And reacted for 5 hours under reflux. After further reaction at room temperature for one day, it was cooled to -15 °C and filtered. Washed with cold methanol to give 2,2,2-trifluoroethyl 4-benzoylbutyrate p -tosylhydrazone (3.14g, 71%).

1H-NMR (300 MHz, CDCl3) δ 8.85 (s, NH, 1H), 7.91 (d, HArSO2-, 2H, J = 8.5 Hz), 7.67-7.63 (m, ortho HPh, 2H), 7.37-7.33 (m, 3H), 7.29 (d, HAr SO2-, 2H, J = 8.5 Hz), 4.53 (q, -OCH2-, 2H, J = 8.3 Hz), 2.67-2.62 (m, -N=CCH2-, 2H), 2.49-2.45 (t, -CH2CO2-, 2H, J = 6.0 Hz), 2.41 (s, ArCH3, 3H), 1.80-1.70 (m, -CH2CH2CH2-, 2H). 1 H-NMR (300 MHz, CDCl 3 ) δ 8.85 (s, NH, 1H), 7.91 (d, HArSO 2 -, 2H, J = 8.5 Hz), 7.67-7.63 (m, ortho HPh, 2H), 7.37 -7.33 (m, 3H), 7.29 (d, HAr SO 2 -, 2H, J = 8.5 Hz), 4.53 (q, -OCH 2 -, 2H, J = 8.3 Hz), 2.67-2.62 (m, -N =CCH 2 -, 2H), 2.49-2.45 (t, -CH 2 CO 2 -, 2H, J = 6.0 Hz), 2.41 (s, ArCH 3 , 3H), 1.80-1.70 (m, -CH 2 CH 2 CH 2 -, 2H).

13C-NMR (125 MHz CDCl3) δ 172.59, 153.78, 143.97, 135.99, 135.21, 129.98, 129.60, 129.45, 127.91, 126.18, 61.09, 60.81, 60.51, 60.29, 31.99, 25.63, 21.54, 20.56. 13 C-NMR (125 MHz CDCl 3 ) δ 172.59, 153.78, 143.97, 135.99, 135.21, 129.98, 129.60, 129.45, 127.91, 126.18, 61.09, 60.81, 60.51, 60.29, 31.99, 25.63, 21.54, 20.56.

19F-NMR (CFCl3) δ -74.24 (CF3, 3F). 19 F-NMR (CFCl 3 ) δ -74.24 (CF 3 , 3F).

FABMS m/z: 444 (M+H): calcd. (C20H21F3N2O4S), 442.45.FABMS m/z : 444 (M + H): calcd. (C 20 H 21 F 3 N 2 O 4 S), 442.45.

{6}-l-(3-(2',2',2'-{6}-l-(3-(2',2',2'- 트리플루오로에틸옥시카르보닐Trifluoroethyloxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [5.6]-C61 ({6}-l-(3-(2',2',2'-[5.6]-C61 ({6}-l-(3-(2',2',2'- TrifluoroethyloxycarbonylTrifluoroethyloxycarbonyl )) propylpropyl )-{5}-l-)-{5}-l- phenylphenyl [5.6]-C61)의 합성 Synthesis of [5.6]-C61)

질소 치환된 100 mL 3구 둥근바닥 플라스크에 2,2,2,-트리플루오로에틸 4-벤 조일부티레이트 p-토실하이드라존 (2,2,2-Trifluoroethyl 4-benzoylbutyrate p-tosylhydrazone, 1.77 g, 4.0 mmol)을 10 mL의 건조된 피리딘에 용해시켜 교반시켰다. 여기에 NaOMe (225 mg, 5.0 mmol)를 15분간 서서히 첨가한 후, 플러렌 (Fullerene, 1.44 g, 2 mmol)을 100 mL의 1,2-디클로로벤젠에 녹여 주입하고, 70 ℃에서 22 시간 동안 반응시켰다. 반응이 끝난 후, 감압하에서 용매를 70 mL로 농축하고 실리카겔을 이용해 컬럼크로마토 그래피 (40 x 10 cm)를 사용하여 이염화메탄과 헥산의 1:5 혼합용매를 이용해 전개하여 갈색 고체상의 {6}-l-(3-(2',2',2'-트리플루오로에틸옥시카르보닐)프로필)-{5}-l-페닐-[5.6]-C61 (350 mg, 18%)을 얻었다.Nitrogen-substituted 100 mL 3 2,2,2 gu, round bottom flask-trifluoroethyl 4-benzoyl butyrate p-tosyl hydrazone (2,2,2-Trifluoroethyl 4-benzoylbutyrate p -tosylhydrazone, 1.77 g , 4.0 mmol) was dissolved in 10 mL of dried pyridine and stirred. NaOMe (225 mg, 5.0 mmol) was slowly added thereto for 15 minutes, and then fullerene (1.44 g, 2 mmol) was dissolved in 100 mL of 1,2-dichlorobenzene and injected, followed by reaction at 70° C. for 22 hours. Made it. After the reaction was completed, the solvent was concentrated to 70 mL under reduced pressure and developed using a 1:5 mixed solvent of dichloromethane and hexane using silica gel column chromatography (40 x 10 cm) to form a brown solid {6}. -l-(3-(2',2',2'-trifluoroethyloxycarbonyl)propyl)-{5}-l-phenyl-[5.6]-C61 (350 mg, 18%) was obtained.

1H-NMR (300 MHz, CDCl3) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.47 (q, 2H, OCH2, J = 9 Hz), 2.24 (t, 2H, CH2CO2, J = 7.5 Hz), 1.66-1.63 (m, 2H, CH2CH2CO2), 1.53-1.47 (m, 2H; PhCCH2). 1 H-NMR (300 MHz, CDCl 3 ) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.47 ( q, 2H, OCH 2 , J = 9 Hz), 2.24 (t, 2H, CH 2 CO 2 , J = 7.5 Hz), 1.66-1.63 (m, 2H, CH 2 CH 2 CO 2 ), 1.53-1.47 ( m, 2H; PhCCH 2 ).

{6}-l-(3-(2',2',2'-{6}-l-(3-(2',2',2'- 트리플루오로에틸옥시카르보닐Trifluoroethyloxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [6.6]-C61 ({6}-l-(3-(2',2',2'-[6.6]-C61 ({6}-l-(3-(2',2',2'- TrifluoroethyloxycarbonylTrifluoroethyloxycarbonyl )) propylpropyl )-{5}-l-)-{5}-l- phenylphenyl [6.6]-C61) (화합물 [6.6]-C61) (compound PCBTFEPCBTFE [6,6]-이성질체)의 합성 Synthesis of [6,6]-isomer)

질소대기하에서 100 mL 2구 둥근바닥 플라스크에 300 mg의 {6}-l-(3- (2',2',2'-트리플루오로에틸옥시카르보닐)프로필)-{5}-l-페닐[6.6]-C61을 1,2-디클로로벤젠 용매 (50 mL)에 녹인 진한 보라색의 용액을 24시간 동안 환류하면 [5,6]이성질체가 이성질화반응을 통해 [6,6]이성질체로 변환되었다. 온도를 상온으로 낮춘 후, 감압하에서 용매를 15 mL 정도로 농축한 후 150 mL의 메탄올 용매를 부어 석출시키고 원심분리시켰다. 이렇게 분리된 고체를 10 mL의 1,2-디클로로벤젠에 녹여 메탄올 100 mL를 주입하여 다시 석출하고 원심분리하면 순수한 {6}-l-(3-(2',2',2'-트리플루오로에틸옥시카르보닐)프로필)-{5}-l-페닐[6.6]-C61 (93%)을 얻었다.In a 100 mL 2-neck round bottom flask under nitrogen atmosphere, 300 mg of {6}-l-(3- (2',2',2'-trifluoroethyloxycarbonyl)propyl)-{5}-l- When a dark purple solution of phenyl[6.6]-C61 dissolved in 1,2-dichlorobenzene solvent (50 mL) is refluxed for 24 hours, the [5,6] isomer is converted to the [6,6] isomer through isomerization. Became. After lowering the temperature to room temperature, the solvent was concentrated to about 15 mL under reduced pressure, and then 150 mL of methanol was poured to precipitate and centrifuged. The separated solid was dissolved in 10 mL of 1,2-dichlorobenzene, 100 mL of methanol was injected, precipitated again, and centrifuged to obtain pure {6}-l-(3-(2',2',2'-trifluoro Roethyloxycarbonyl)propyl)-{5}-l-phenyl[6.6]-C61 (93%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.47 (q, 2H, OCH2, J = 9 Hz), 2.27-2.19 (m, 2H; PhCCH2), 1.52 (t, 2H, CH2CO2, J = 7.5 Hz), 1.66-1.63 (m, 2H, CH2CH2CO2). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.47 (q , 2H, OCH 2 , J = 9 Hz), 2.27-2.19 (m, 2H; PhCCH 2 ), 1.52 (t, 2H, CH 2 CO 2 , J = 7.5 Hz), 1.66-1.63 (m, 2H, CH) 2 CH 2 CO 2 ).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 171.42, 148.68, 147.62, 145.19, 145.15, 145.03, 144.79, 144.66, 144.50, 143.75, 143.03, 142.99, 142.92, 142.20, 142.15, 142.11, 142.10, 138.01, 132.06, 128.48, 128.32, 121.78, 79.71, 60.75, 60.46, 60.16, 59.87, 51.59, 33.48, 33.36, 29.70, 22.04. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 171.42, 148.68, 147.62, 145.19, 145.15, 145.03, 144.79, 144.66, 144.50, 143.75, 143.03, 142.99, 142.92, 142.20, 142.15, 148.68, 147.62, 142.15, 142.138. 132.06, 128.48, 128.32, 121.78, 79.71, 60.75, 60.46, 60.16, 59.87, 51.59, 33.48, 33.36, 29.70, 22.04.

19F-NMR (CFCl3) δ 74.12, -74.15, -74.18. 19 F-NMR (CFCl 3 ) δ 74.12, -74.15, -74.18.

FABMS m/z: 979 (M+H): calcd. (C18H15F5O2), 978.25.FABMS m/z : 979 (M + H): calcd. (C 18 H 15 F 5 O 2 ), 978.25.

[[ 제조예Manufacturing example 2] 화합물 2] compound PCBPFPPCBPFP [6,6]-이성질체의 제조 Preparation of [6,6]-isomers

2,2,3,3,3-2,2,3,3,3- 펜타플루오로프로필Pentafluoropropyl 4- 4- 벤조일부티레이트Benzoyl butyrate (2,2,3,3,3- (2,2,3,3,3- PentafluoroPentafluoro propyl 4- propyl 4- benzoylbutyratebenzoylbutyrate )의 제조) Of the manufacture

3구 100 ml 둥근바닥 플라스크에 4-벤조일부티릴산 10.0 g (52.0 mmol), 2,2,3,3,3-펜타플루오로프로판올 9.37 g (62.4 mmol) 및 진한 황산 0.51 g (5.2 mmol)을 사용하여 상기 제조예 1과 동일한 방법으로 2,2,3,3,3-펜타플루오로프로필 4-벤조일부티레이트 (12.4 g, 74%)를 얻었다.To a 3-neck 100 ml round-bottom flask, add 10.0 g (52.0 mmol) of 4-benzoylbutyrylic acid, 9.37 g (62.4 mmol) of 2,2,3,3,3-pentafluoropropanol, and 0.51 g (5.2 mmol) of concentrated sulfuric acid. Using the same method as in Preparation Example 1, 2,2,3,3,3-pentafluoropropyl 4-benzoyl butyrate (12.4 g, 74%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.95 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47(m, ArH, 2H), 4.56 (t, -OCH2-, 2H, J = 12 Hz), 3.07 (t, -O=CH2-, 2H, J = 7 Hz), 2.57 (t, -CH2CO2-, 2H, J = 7.2 Hz), 2.09 (m, -CH2CH2CH2-). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.95 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47 (m, ArH, 2H), 4.56 (t, -OCH 2 -, 2H, J = 12 Hz), 3.07 (t, -O=CH 2 -, 2H, J = 7 Hz), 2.57 (t, -CH 2 CO 2 -, 2H, J = 7.2 Hz), 2.09 ( m, -CH 2 CH 2 CH 2 -).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 198.97, 171.58, 136.64, 133.15, 128.59, 127.92, 59.19, 58.97, 58.75, 37.00, 32.65, 18.87. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 198.97, 171.58, 136.64, 133.15, 128.59, 127.92, 59.19, 58.97, 58.75, 37.00, 32.65, 18.87.

19F-NMR (CFCl3) δ -84.35, -124.02. 19 F-NMR (CFCl 3 ) δ -84.35, -124.02.

FABMS m/z: 326 (M+H): calcd. (C14H13F5O3), 324.24.FABMS m/z : 326 (M + H): calcd. (C 14 H 13 F 5 O 3 ), 324.24.

2,2,3,3,3-2,2,3,3,3- 펜타플루오로프로필Pentafluoropropyl 4- 4- 벤조일부티레이트Benzoyl butyrate pp -- 토실히드라존Tosylhydrazone (2,2,3, 3,3-Pentafluoropropyl 4- (2,2,3, 3,3-Pentafluoropropyl 4- benzoylbutyratebenzoylbutyrate pp -- tosylhydrazonetosylhydrazone )의 제조) Of the manufacture

2,2,3,3,3-펜타플루오로프로필 4-벤조일부티레이트 6.2 g (19.1 mmol), p-톨로엔술포닐 하이드라자이드 (p-toluenesulfonyl hydrazide) 3.92 g (21.0 mmol)을 메탄올 (20 mL)에 용해한 것을 제외하면 상기 제조예 1과 동일한 방법으로 2,2,3,3,3-펜타플루오로프로필 4-벤조일부티레이트 p-토실히드라존 (7.85g, 87%)를 얻었다. 2,2,3,3,3-pentafluoropropyl 4-benzoyl-butyrate 6.2 g (19.1 mmol), p - Tolo yen sulfonyl high methanol the dry Zaid (p -toluenesulfonyl hydrazide) 3.92 g ( 21.0 mmol) (20 mL), 2,2,3,3,3-pentafluoropropyl 4-benzoylbutyrate p -tosylhydrazone (7.85g, 87%) was obtained in the same manner as in Preparation Example 1.

1H-NMR 300 MHz (CDCl3) δ 8.74 (s, NH, 1H), 7.91 (d, HArSO2-, 2H, J = 8.5 Hz), 7.67-7.64 (m, ortho HPh, 2H), 7.37-7.33 (m, 3H), 7.29 (d, HAr SO2-, 2H, J = 8.5 Hz), 4.64 (t, -OCH2-, 2H, J = 13 Hz), 2.66-2.61 (m, -N=CCH2-, 2H), 2.49-2.43 (t, -CH2CO2-, 2H, J = 6.0 Hz), 2.41 (s, ArCH3, 3H), 1.80-1.70 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 8.74 (s, NH, 1H), 7.91 (d, HArSO 2 -, 2H, J = 8.5 Hz), 7.67-7.64 (m, ortho HPh, 2H), 7.37- 7.33 (m, 3H), 7.29 (d, HAr SO 2 -, 2H, J = 8.5 Hz), 4.64 (t, -OCH 2 -, 2H, J = 13 Hz), 2.66-2.61 (m, -N= CCH 2 -, 2H), 2.49-2.43 (t, -CH 2 CO 2 -, 2H, J = 6.0 Hz), 2.41 (s, ArCH 3 , 3H), 1.80-1.70 (m, -CH 2 CH 2 CH 2 -, 2H).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 172.64, 153.71, 143.97, 135.19, 135.21, 129.98, 129.60, 129.45, 127.91, 126.18, 59.72, 59.50, 59.29, 31.97, 25.60, 21.54, 20.52. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 172.64, 153.71, 143.97, 135.19, 135.21, 129.98, 129.60, 129.45, 127.91, 126.18, 59.72, 59.50, 59.29, 31.97, 25.60, 21.54, 20.52.

19F-NMR (CFCl3) δ -84.30 (d, CF3, 3F, J = 15 Hz), -124.00 (t, CF2, 3F, J = 15 Hz). 19 F-NMR (CFCl 3 ) δ -84.30 (d, CF 3 , 3F, J = 15 Hz), -124.00 (t, CF 2 , 3F, J = 15 Hz).

FABMS m/z: 495 (M+H): calcd. (C21H21F5N2O4S), 492.46.FABMS m/z : 495 (M + H): calcd. (C 21 H 21 F 5 N 2 O 4 S), 492.46.

{6}-l-(3-(2',2',3',3',3'-{6}-l-(3-(2',2',3',3',3'- 펜타플루오로프로폭시카르보닐Pentafluoropropoxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [5.6]-[5.6]- C61C61 ({6}-l-(3-(2',2',3',3',3'- ({6}-l-(3-(2',2',3',3',3'- PentafluoropropoxycarbonylPentafluoropropoxycarbonyl )) propylpropyl )-{5}-l- )-{5}-l- phenylphenyl [5.6]-[5.6]- C61C61 )의 제조) Of the manufacture

질소 치환된 100 mL 3구 둥근바닥 플라스크에 2,2,3,3,3-펜타플루오로프로필 4-벤조일부티레이트 p-토실하이드라존 (2,2,3,3,3,-Pentafluoropropyl 4-benzoylbutyrate p-tosylhydrazone, 1.97 g, 4.0 mmol)을 10 mL의 건조된 피리딘에 용해시켜 교반한 것을 제외하면 상기 제조예 1과 동일한 방법으로 갈색 고체상의 {6}-l-(3-(2',2',3',3',3'-펜타플루오로프로폭시카르보닐)프로필)-{5}-l-페닐-[5.6]-C61 (490 mg, 24%)를 얻었다.In a nitrogen-substituted 100 mL 3-neck round bottom flask, 2,2,3,3,3-pentafluoropropyl 4-benzoylbutyrate p -tosylhydrazone (2,2,3,3,3,-Pentafluoropropyl 4- {6}-l-(3-(2', brown solid) in the same manner as in Preparation Example 1, except that benzoylbutyrate p -tosylhydrazone, 1.97 g, 4.0 mmol) was dissolved in 10 mL of dried pyridine and stirred. 2',3',3',3'-pentafluoropropoxycarbonyl)propyl)-{5}-l-phenyl-[5.6]-C61 (490 mg, 24%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.56-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.55 (t, 2H, OCH2, J = 12 Hz), 2.23 (t, 2H, CH2CO2, J = 7 Hz), 1.65-1.62(m, 2H, CH2CH2CO2), 1.52-1.48 (m, 2H; PhCCH2). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.56-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.55 (t , 2H, OCH 2 , J = 12 Hz), 2.23 (t, 2H, CH 2 CO 2 , J = 7 Hz), 1.65-1.62 (m, 2H, CH 2 CH 2 CO 2 ), 1.52-1.48 (m , 2H; PhCCH 2 ).

{6}-l-(3-(2',2',3',3',3'-{6}-l-(3-(2',2',3',3',3'- 펜타플루오로프로폭시카르보닐Pentafluoropropoxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [6.6]-[6.6]- C61C61 ({6}-l-(3-(2',2',3',3',3'- ({6}-l-(3-(2',2',3',3',3'- PentafluoropropoxycarbonylPentafluoropropoxycarbonyl )) propylpropyl )-{5}- l-phenyl[6.6]-C61) (화합물 )-{5}- l-phenyl[6.6]-C61) (compound PCBPFPPCBPFP [6,6]-이성질체)의 제조 Preparation of [6,6]-isomer)

질소대기하에서 100 mL 2구 둥근바닥 플라스크에 300 mg의 {6}-l-(3-(2',2',3',3',3'-펜타플루오로프로필옥시카르보닐)프로필)-{5}-l-페닐[6.6]-C61을 1,2-디클로로벤젠 용매 (50 mL)에 녹인 진한 보라색의 용액을 24시간 동안 환류하면 [5,6]이성질체가 이성질화반응을 통해 [6,6]이성질체로 변환시켰다. 온도를 상온으로 낮춘 후, 감압하에서 용매를 15 mL 정도로 농축한 후 150 mL의 메탄올 용매를 부어 석출시키고 원심분리시켰다. 이렇게 분리된 고체를 10 mL의 1,2-디클로로벤젠에 녹여 메탄올 100 mL를 주입하여 다시 석출하고 원심분리하면 순수한 {6}-l-(3-(2',2',3',3',3'-펜타플루오로프로폭시카르보닐)프로필)-{5}-l-페닐[6.6]-C61 (91%)을 얻었다.In a 100 mL 2-neck round bottom flask under a nitrogen atmosphere, 300 mg of {6}-l-(3-(2',2',3',3',3'-pentafluoropropyloxycarbonyl)propyl)- When a dark purple solution of {5}-l-phenyl[6.6]-C61 dissolved in 1,2-dichlorobenzene solvent (50 mL) is refluxed for 24 hours, [5,6] isomers are [6] ,6] isomer. After lowering the temperature to room temperature, the solvent was concentrated to about 15 mL under reduced pressure, and then 150 mL of methanol solvent was poured to precipitate, followed by centrifugation. The separated solid was dissolved in 10 mL of 1,2-dichlorobenzene, 100 mL of methanol was injected, precipitated again, and centrifuged to obtain pure {6}-l-(3-(2',2',3',3'). ,3'-pentafluoropropoxycarbonyl)propyl)-{5}-l-phenyl[6.6]-C61 (91%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.56-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.55 (t, 2H, OCH2, J = 12 Hz), 2.95-2.90 (m, 2H; PhCCH2), 2.63 (t, 2H, CH2CO2, J = 7 Hz), 2.45-2.19 (m, 2H, CH2CH2CO2). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.56-7.53 (m, 2H, arom), 7.51-7.48 (m, 1H, arom), 4.55 (t , 2H, OCH 2 , J = 12 Hz), 2.95-2.90 (m, 2H; PhCCH 2 ), 2.63 (t, 2H, CH 2 CO 2 , J = 7 Hz), 2.45-2.19 (m, 2H, CH) 2 CH 2 CO 2 ).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 171.36, 147.61, 145.79, 145.19, 145.15, 145.03, 144.78, 144.65, 144.50, 143.74, 143.03, 142.99, 142.91, 142.19, 142.15, 142.11, 142.10, 132.05, 128.48, 128.33, 79.70, 59.34, 59.12, 58.90, 51.59, 33.48, 33.39, 22.04. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 171.36, 147.61, 145.79, 145.19, 145.15, 145.03, 144.78, 144.65, 144.50, 143.74, 143.03, 142.99, 142.91, 142.19, 142.15, 142. 128.48, 128.33, 79.70, 59.34, 59.12, 58.90, 51.59, 33.48, 33.39, 22.04.

19F-NMR (CFCl3) δ 84.24, -123.83, -123.88, -123.93. 19 F-NMR (CFCl 3 ) δ 84.24, -123.83, -123.88, -123.93.

FABMS m/z: 1029 (M+H): calcd. (C14H15F5O2), 1028.26.FABMS m/z : 1029 (M + H): calcd. (C 14 H 15 F 5 O 2 ), 1028.26.

[[ 제조예Manufacturing example 3] 화합물 3] compound PCBPFBPCBPFB [6,6]-이성질체의 제조 Preparation of [6,6]-isomers

3,3,4,4,4-3,3,4,4,4- 펜타플루오로부틸Pentafluorobutyl 4- 4- 벤조일부티레이트Benzoyl butyrate (3,3,4,4,4- (3,3,4,4,4- PentafluoroPentafluoro butyl 4- butyl 4- benzoylbutyratebenzoylbutyrate )의 제조) Of the manufacture

3구 100 ml 둥근바닥 플라스크에 4-벤조일부티릴산 3.00 g (15.6 mmol), 3,3,4,4,4-펜타플루오로부탄올 3.07 g (18.7 mmol) 및 진한 황산 0.31 g (3.2 mmol)을 사용한 것을 제외하면 상기 제조예 1과 동일한 방법으로 3,3,4,4,4-펜타플루오로프로필 4-벤조일부티레이트 (2.6 g, 50%)를 얻었다. To a 3-neck 100 ml round-bottom flask, add 3.00 g (15.6 mmol) of 4-benzoylbutyrylic acid, 3.07 g (18.7 mmol) of 3,3,4,4,4-pentafluorobutanol, and 0.31 g (3.2 mmol) of concentrated sulfuric acid. Except for use, 3,3,4,4,4-pentafluoropropyl 4-benzoyl butyrate (2.6 g, 50%) was obtained in the same manner as in Preparation Example 1.

1H-NMR 300 MHz (CDCl3) δ 7.96 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47(m, ArH, 2H), 4.37 (t, -OCH2-, 1H, J = 6.5 Hz), 4.16 (t, -OCH2-, 1H, J = 6.5 Hz), 3.07 (t, -O=CH2-, 2H, J = 7 Hz), 2.47 (t, -CH2CO2-, 2H, J = 7.2 Hz), 2.17-2.04 (m, -CH2CH2CH2-, CH2CF2, 4H). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.96 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47 (m, ArH, 2H), 4.37 (t, -OCH 2 -, 1H, J = 6.5 Hz), 4.16 (t, -OCH 2 -, 1H, J = 6.5 Hz), 3.07 (t, -O=CH 2 -, 2H, J = 7 Hz), 2.47 (t, -CH 2 CO 2 -, 2H, J = 7.2 Hz), 2.17-2.04 (m, -CH 2 CH 2 CH 2 -, CH 2 CF 2 , 4H).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 199.24, 173.01, 136.71, 133.10, 128.57, 127.94, 62.81, 37.26, 33.10, 19.86, 19.01. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 199.24, 173.01, 136.71, 133.10, 128.57, 127.94, 62.81, 37.26, 33.10, 19.86, 19.01.

19F-NMR (CFCl3) δ -86.24, 118.04. 19 F-NMR (CFCl 3 ) δ -86.24, 118.04.

FABMS m/z: 338 (M+H): calcd. (C14H13F5O3), 338.27.FABMS m/z : 338 (M + H): calcd. (C 14 H 13 F 5 O 3 ), 338.27.

3,3,4,4,4-3,3,4,4,4- 펜타플루오로부틸Pentafluorobutyl 4- 4- 벤조일부티레이트Benzoyl butyrate pp -- 토실히드라존Tosylhydrazone (3,3,4,4,4-Pentafluorobutyl 4- (3,3,4,4,4-Pentafluorobutyl 4- benzoylbutyratebenzoylbutyrate pp -- tosylhydrazonetosylhydrazone )의 제조) Of the manufacture

3,3,4,4,4-펜타플루오로부필 4-벤조일부티레이트 5.00 g (14.8 mmol), p-톨로엔술포닐 하이드라자이드 (p-toluenesulfonyl hydrazide) 3.03 g (16.3 mmol)을 메탄올 (20 mL)에 용해한 것을 제외하면 상기 제조예 1과 동일한 방법으로 3,3,4,4,4-펜타플루오로프로필 4-벤조일부티레이트 p-토실히드라존 (4.20 g, 60%)를 얻었다. 3,3,4,4,4- pentafluorophenyl bupil 4-benzoyl butyrate 5.00 g (14.8 mmol), p - Tolo yen sulfonyl hydrazide (p -toluenesulfonyl hydrazide) 3.03 g ( 16.3 mmol) in methanol (20 mL), 3,3,4,4,4-pentafluoropropyl 4-benzoylbutyrate p -tosylhydrazone (4.20 g, 60%) was obtained in the same manner as in Preparation Example 1.

1H-NMR 300 MHz (CDCl3) δ 9.14 (s, NH, 1H), 7.91 (d, HArSO2-, 2H, J = 8.5 Hz), 7.67-7.62 (m, ortho HPh, 2H), 7.37-7.33 (m, 3H), 7.28 (d, HAr SO2-, 2H, J = 8.5 Hz), 4.27 (t, -OCH2-, 2H, J = 6 Hz), 2.66-2.61 (m, -N=CCH2-, 2H), 2.40 (s, ArCH3, 3H), 2.39-2.34 (t, -CH2CO2-, 2H, J= 6.0 Hz), 2.01-1.96 (m, CH2CF2, 2H), 180-1.70 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 9.14 (s, NH, 1H), 7.91 (d, HArSO 2 -, 2H, J = 8.5 Hz), 7.67-7.62 (m, ortho HPh, 2H), 7.37- 7.33 (m, 3H), 7.28 (d, HAr SO 2 -, 2H, J = 8.5 Hz), 4.27 (t, -OCH 2 -, 2H, J = 6 Hz), 2.66-2.61 (m, -N= CCH 2 -, 2H), 2.40 (s, ArCH 3 , 3H), 2.39-2.34 (t, -CH 2 CO 2 -, 2H, J = 6.0 Hz), 2.01-1.96 (m, CH 2 CF 2 , 2H ), 180-1.70 (m, -CH 2 CH 2 CH 2 -, 2H).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 174.27, 153.55, 143.76, 136.11, 135.31, 133.112, 129.93, 129.54, 128.23, 126.17, 63.73, 32.10, 25.80, 21.54, 20.80. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 174.27, 153.55, 143.76, 136.11, 135.31, 133.112, 129.93, 129.54, 128.23, 126.17, 63.73, 32.10, 25.80, 21.54, 20.80.

19F-NMR (CFCl3) δ -81.02 (-CF3, 3F), -128.19 (-CF2-, 2F). 19 F-NMR (CFCl 3 ) δ -81.02 (-CF 3 , 3F), -128.19 (-CF 2 -, 2F).

FABMS m/z: 507 (M+H): calcd. (C22H23F5N2O4S), 506.49.FABMS m/z : 507 (M + H): calcd. (C 22 H 23 F 5 N 2 O 4 S), 506.49.

{6}-l-(3-(3',3',4',4',4'-{6}-l-(3-(3',3',4',4',4'- 펜타플루오로부톡시카르보닐Pentafluorobutoxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [5.6]-C61 ({6}-l-(3-(3',3',4',4',4'-[5.6]-C61 ({6}-l-(3-(3',3',4',4',4'- PentafluorobutoxycarbonylPentafluorobutoxycarbonyl )) propylpropyl )-{5}-l- phenyl[5.6]-C61)의 제조)-{5}-l-phenyl[5.6]-C61)

질소 치환된 100 mL 3구 둥근바닥 플라스크에 3,3,4,4,4-펜타플루오로부틸 4-벤조일부티레이트 p-토실하이드라존 (3,3,4,4,4-Pentafluorobutyl 4-benzoylbutyrate p-tosylhydrazone, 2.03 g, 4.00 mmol)을 10 mL의 건조된 피리딘에 용해시켜 교반한 것을 제외하면 상기 제조예 1과 동일한 방법으로 갈색 고체상의 {6}-l-(3-(3',3',4',4',4'-펜타플루오로부톡시카르보닐)프로필)-{5}-l-페닐- [5.6]-C61 (370 mg, 18%)을 얻었다.In a nitrogen-substituted 100 mL 3-neck round bottom flask, 3,3,4,4,4-pentafluorobutyl 4-benzoylbutyrate p -tosylhydrazone (3,3,4,4,4-Pentafluorobutyl 4-benzoylbutyrate) {6}-l-(3-(3',3) as a brown solid in the same manner as in Preparation Example 1, except that p -tosylhydrazone, 2.03 g, 4.00 mmol) was dissolved in 10 mL of dried pyridine and stirred. ',4',4',4'-pentafluorobutoxycarbonyl)propyl)-{5}-l-phenyl-[5.6]-C61 (370 mg, 18%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.57-7.53 (m, 2H, arom), 7.50-7.48 (m, 1H, arom), 4.15 (t, 2H, OCH2, J = 6.5 Hz), 2.14 (t, 2H, CH2CO2, J = 7 Hz), 1.93-1.90 (m, 2H, CH2CH2CF2CF3), 1.65-1.63 (m, 2H, CH2CH2CO2), 1.50-1.46 (m, 2H; PhCCH2). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.57-7.53 (m, 2H, arom), 7.50-7.48 (m, 1H, arom), 4.15 (t , 2H, OCH 2 , J = 6.5 Hz), 2.14 (t, 2H, CH 2 CO 2 , J = 7 Hz), 1.93-1.90 (m, 2H, CH 2 CH 2 CF 2 CF 3 ), 1.65-1.63 (m, 2H, CH 2 CH 2 CO 2 ), 1.50-1.46 (m, 2H; PhCCH 2 ).

{6}-l-(3-(3',3',4',4',4'-{6}-l-(3-(3',3',4',4',4'- 펜타플루오로부톡시옥시카르보닐Pentafluorobutoxyoxycarbonyl )프로필)-{5}-l-페닐[6.6]-)Propyl)-{5}-l-phenyl[6.6]- C61C61 ({6}-l-(3-(3',3',4',4',4'- ({6}-l-(3-(3',3',4',4',4'- PentafluorobutoxycarbonylPentafluorobutoxycarbonyl )) propylpropyl )-{5}-l- )-{5}-l- phenylphenyl [6.6]-[6.6]- C61C61 ) (화합물 ) (Compound PCBPFBPCBPFB [6,6]-이성질체)의 제조 Preparation of [6,6]-isomer)

질소대기하에서 100 mL 2구 둥근바닥 플라스크에 300 mg의 {6}-l-(3-(2',2',3',3',3'-펜타플루오로부톡시카르보닐)프로필)-{5}-l-페닐[6.6]-C61을 1,2-디클로로벤젠 용매 (50 mL)에 녹인 진한 보라색의 용액을 24시간 동안 환류하면 [5,6]이성질체가 이성질화반응을 통해 [6,6]이성질체로 변환시켰다. 온도를 상온으로 낮춘 후, 감압하에서 용매를 15 mL 정도로 농축한 후 150 mL의 메탄올 용매를 부어 석출시키고 원심분리시켰다. 이렇게 분리된 고체를 10 mL의 1,2-디클로로벤젠에 녹여 메탄올 100 mL를 주입하여 다시 석출하고 원심분리하면 순수한 {6}-l-(3-(2',2',3',3',3'-펜타플루오로부톡시카르보닐)-프로필)-{5}-l-페닐[6.6]-C61 (93%)을 얻었다.In a 100 mL 2-neck round bottom flask under nitrogen atmosphere, 300 mg of {6}-l-(3-(2',2',3',3',3'-pentafluorobutoxycarbonyl)propyl)- When a dark purple solution of {5}-l-phenyl[6.6]-C61 dissolved in 1,2-dichlorobenzene solvent (50 mL) is refluxed for 24 hours, [5,6] isomers are [6] ,6] isomer. After lowering the temperature to room temperature, the solvent was concentrated to about 15 mL under reduced pressure, and then 150 mL of methanol was poured to precipitate and centrifuged. The separated solid was dissolved in 10 mL of 1,2-dichlorobenzene, 100 mL of methanol was injected, precipitated again, and centrifuged to obtain pure {6}-l-(3-(2',2',3',3'). ,3'-pentafluorobutoxycarbonyl)-propyl)-{5}-l-phenyl[6.6]-C61 (93%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.57-7.53 (m, 2H, arom), 7.50-7.48 (m, 1H, arom), 4.15 (t, 2H, OCH2, J = 6.5 Hz), 2.95-2.89 (m, 2H; PhCCH2), 2.54 (t, 2H, CH2CO2, J = 7 Hz), 2.21-2.15 (m, 2H, CH2CH2CO2), 1.97-1.94 (m, 2H, CH2CH2CF2CF3). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.92 (d, 2H, arom, J = 7.5 Hz), 7.57-7.53 (m, 2H, arom), 7.50-7.48 (m, 1H, arom), 4.15 (t , 2H, OCH 2 , J = 6.5 Hz), 2.95-2.89 (m, 2H; PhCCH 2 ), 2.54 (t, 2H, CH 2 CO 2 , J = 7 Hz), 2.21-2.15 (m, 2H, CH) 2 CH 2 CO 2 ), 1.97-1.94 (m, 2H, CH 2 CH 2 CF 2 CF 3 ).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 172.83, 148.72, 145.17, 145.13, 145.02, 144.77, 144.63, 144.48, 143.73, 143.02, 142.97, 142.91, 142.89, 142.17, 142.15, 142.10, 142.08, 137.98, 132.05, 128.43, 128.26, 79.78, 62.98, 51.74, 33.88, 33.60, 29.68, 27.75, 27.57, 27.39, 22.27, 22.15, 19.89. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 172.83, 148.72, 145.17, 145.13, 145.02, 144.77, 144.63, 144.48, 143.73, 143.02, 142.97, 142.91, 142.89, 142.17, 142.15, 137.98 132.05, 128.43, 128.26, 79.78, 62.98, 51.74, 33.88, 33.60, 29.68, 27.75, 27.57, 27.39, 22.27, 22.15, 19.89.

19F-NMR (CFCl3) δ 80.94, -80.97, -81.0, -115.68, -115.69, -115.70, -115.71, -115.73, -115.75, -115.76, -115.78, -115.80, 115.81, -115.83, -115.84, -115.86, -117.92, -128.12, -128.13. 19 F-NMR (CFCl 3 ) δ 80.94, -80.97, -81.0, -115.68, -115.69, -115.70, -115.71, -115.73, -115.75, -115.76, -115.78, -115.80, 115.81, -115.83,- 115.84, -115.86, -117.92, -128.12, -128.13.

FABMS m/z: 1043 (M+H): calcd. (C15H17F5O2), 1042.3.FABMS m/z : 1043 (M + H): calcd. (C 15 H 17 F 5 O 2 ), 1042.3.

[[ 제조예Manufacturing example 4] 화합물 4] compound PCBPFBZPCBPFBZ [6,6]-이성질체의 제조 Preparation of [6,6]-isomers

펜타플루오로벤질Pentafluorobenzyl 4- 4- 벤조일부티레이트Benzoyl butyrate ( ( PentafluorobenzylPentafluorobenzyl 4- 4- benzoylbenzoyl butyrate)의 제조 butyrate)

3구 100 ml 둥근바닥 플라스크에 4-벤조일부티릴산 3.00 g (15.61 mmol), 펜타플루오로벤질알콜 3.67 g (18.7 mmol) 및 진한 황산 0.31 g (3.2 mmol)을 사용한 것을 제외하면 상기 제조예 1과 동일한 방법으로 펜타플루오로벤질 4-벤조일부티레이트 (5.7 g, 98%)를 얻었다. Preparation Example 1 and the above, except that 3.00 g (15.61 mmol) of 4-benzoylbutyrylic acid, 3.67 g (18.7 mmol) of pentafluorobenzyl alcohol and 0.31 g (3.2 mmol) of concentrated sulfuric acid were used in a 3-neck 100 ml round-bottom flask. In the same manner, pentafluorobenzyl 4-benzoyl butyrate (5.7 g, 98%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.94 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47(m, ArH, 2H), 6.23 (t, CHF2, 1H, J = 5 Hz), 6.06 (t, CHF2, 1H, J= 5 Hz), 5.88 (t, CHF2, 1H, J = 5 Hz), 4.61 (t, -OCH2-, 2H, J = 13.5 Hz), 3.07 (t, -O=CH2-, 2H, J = 7 Hz), 2.57 (t, -CH2CO2-, 2H, J = 7.2 Hz), 2.14-2.09 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.94 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47 (m, ArH, 2H), 6.23 (t, CHF 2 , 1H, J = 5 Hz), 6.06 (t, CHF 2 , 1H, J = 5 Hz), 5.88 (t, CHF 2 , 1H, J = 5 Hz), 4.61 (t, -OCH 2 -, 2H, J = 13.5 Hz), 3.07 (t, -O=CH 2 -, 2H, J = 7 Hz), 2.57 (t, -CH 2 CO 2 -, 2H, J = 7.2 Hz), 2.14-2.09 (m,- CH 2 CH 2 CH 2 -, 2H).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 199.32, 171.75, 136.63, 133.20, 128.59, 127.93, 59.34, 37.02, 32.64, 18.90. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 199.32, 171.75, 136.63, 133.20, 128.59, 127.93, 59.34, 37.02, 32.64, 18.90.

19F-NMR (CFCl3) δ -120.17 ~-120.31, -132.80 ~ -122.99, -124.12 ~ -124.31, -130.14 ~ -130.32, -137.73 ~ -137.98. 19 F-NMR (CFCl 3 ) δ -120.17 to -120.31, -132.80 to -122.99, -124.12 to -124.31, -130.14 to -130.32, -137.73 to -137.98.

FABMS m/z: 508 (M+H): calcd. (C18H14F12O3), 506.28.FABMS m/z : 508 (M + H): calcd. (C 18 H 14 F 12 O 3 ), 506.28.

펜타플루오로벤질Pentafluorobenzyl 4- 4- 벤조일부티레이트Benzoyl butyrate pp -- 토실히드라존Tosylhydrazone ( ( PentafluorobenzylPentafluorobenzyl 4-benzoylbutyrate 4-benzoylbutyrate pp -- tosylhydrazonetosylhydrazone )의 제조) Of the manufacture

펜타플루오로벤질 4-벤조일부티레이트 5.00 g (13.4 mmol), p-톨로엔술포닐 하이드라자이드 (p-toluenesulfonyl hydrazide) 2.75 g (14.8 mmol)을 메탄올 (20 mL)에 용해한 것을 제외하면 상기 제조예 1과 동일한 방법으로 펜타플루오로벤질 4-벤조일부티레이트 p-토실히드라존 (6.30 g, 90%)를 얻었다.Pentafluoroethyl-benzyl-4-benzoyl-butyrate 5.00 g (13.4 mmol), p - , except that dissolved in Tolo yen sulfonyl hydrazide (p -toluenesulfonyl hydrazide) 2.75 g ( 14.8 mmol) in methanol (20 mL) Preparative Example In the same manner as in 1, pentafluorobenzyl 4-benzoylbutyrate p -tosylhydrazone (6.30 g, 90%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 8.99 (s, NH, 1H), 7.91 (d, HArSO2-, 2H, J= 8.5 Hz), 7.66-7.62 (m, orthoHPh, 2H), 7.36-7.33 (m, 3H), 7.28 (d, HAr SO2-, 2H, J = 8.5 Hz), 5.31 (s, -OCH2-, 2H), 2.67-2.61 (m, -N=CCH2-, 2H), 2.41 (s, ArCH3, 3H), 2.40-2.35 (t, -CH2CO2-, 2H, J = 6.0 Hz), 1.77-1.70 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 8.99 (s, NH, 1H), 7.91 (d, HArSO 2 -, 2H, J = 8.5 Hz), 7.66-7.62 (m, ortho HPh, 2H), 7.36- 7.33 (m, 3H), 7.28 (d, HAr SO 2 -, 2H, J = 8.5 Hz), 5.31 (s , -OCH 2 -, 2H), 2.67-2.61 (m, -N=CCH 2 -, 2H ), 2.41 (s, ArCH 3 , 3H), 2.40-2.35 (t, -CH 2 CO 2 -, 2H, J = 6.0 Hz), 1.77-1.70 (m, -CH 2 CH 2 CH 2 -, 2H) .

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 173.61, 153.62, 143.86, 136.07, 135.83, 133.14, 129.93, 129.54, 128.23, 126.17, 53.94, 32.08, 25.73, 21.57, 20.71. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 173.61, 153.62, 143.86, 136.07, 135.83, 133.14, 129.93, 129.54, 128.23, 126.17, 53.94, 32.08, 25.73, 21.57, 20.71.

19F-NMR (CFCl3) δ -142.27 (ArF, 2F), 152.48 (ArF, 1F), 161.75 (ArF, 2F). 19 F-NMR (CFCl 3 ) δ -142.27 (ArF, 2F), 152.48 (ArF, 1F), 161.75 (ArF, 2F).

FABMS m/z: 541 (M+H): calcd. (C25H21F5N2O4S), 540.5.FABMS m/z : 541 (M + H): calcd. (C 25 H 21 F 5 N 2 O 4 S), 540.5.

{6}-l-(3-({6}-l-(3-( 펜타플루오로벤족시카르보닐Pentafluorobenzoxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [5.6]-[5.6]- C61C61 ({6}-l-(3-(Pentafluorobenzoxycarbonyl)propyl)-{5}-l-phenyl[5.6]-C61)의 합성 Synthesis of ({6}-l-(3-(Pentafluorobenzoxycarbonyl)propyl)-{5}-l-phenyl[5.6]-C61)

질소 치환된 100 mL 3구 둥근바닥 플라스크에 펜타플루오로벤질 4-벤조일부티레이트 p-토실하이드라존 (Pentafluorobenzyl 4-benzoylbutyrate p-tosylhydrazone, 2.16 g, 4.00 mmol)을 10 mL의 건조된 피리딘에 용해시켜 교반한 것을 제외하면 상기 제조예 1과 동일한 방법으로 갈색 고체상의 {6}-l-(3-(펜타플루오로벤족시카르보닐)프로필)-{5}-l-페닐-[5.6]-C61 (290 mg, 14%)을 얻었다. By dissolving the tosyl hydrazone (Pentafluorobenzyl 4-benzoylbutyrate p -tosylhydrazone, 2.16 g, 4.00 mmol) in dry pyridine in 10 mL - 4-benzoyl-benzyl butyrate p pentafluorophenyl a 100 mL 3-neck round bottom flask purged with nitrogen {6}-l-(3-(pentafluorobenzoxycarbonyl)propyl)-{5}-l-phenyl-[5.6]-C61 as a brown solid in the same manner as in Preparation Example 1 except for stirring. (290 mg, 14%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 8.99 (s, NH, 1H), 7.91 (d, HArSO2-, 2H, J = 8.5 Hz), 7.66-7.62 (m, ortho HPh, 2H), 7.36-7.33 (m, 3H), 7.28 (d, HAr SO2-, 2H, J = 8.5 Hz), 5.31 (s, -OCH2-, 2H), 2.67-2.61 (m, -N=CCH2-, 2H), 2.41 (s, ArCH3, 3H), 2.40-2.35 (t, -CH2CO2-, 2H, J = 6.0 Hz), 1.77-1.70 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 8.99 (s, NH, 1H), 7.91 (d, HArSO 2 -, 2H, J = 8.5 Hz), 7.66-7.62 (m, ortho HPh, 2H), 7.36- 7.33 (m, 3H), 7.28 (d, HAr SO 2 -, 2H, J = 8.5 Hz), 5.31 (s , -OCH 2 -, 2H), 2.67-2.61 (m, -N=CCH 2 -, 2H ), 2.41 (s, ArCH 3 , 3H), 2.40-2.35 (t, -CH 2 CO 2 -, 2H, J = 6.0 Hz), 1.77-1.70 (m, -CH 2 CH 2 CH 2 -, 2H) .

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 173.61, 153.62, 143.86, 136.07, 135.83, 133.14, 129.93, 129.54, 128.23, 126.17, 53.94, 32.08, 25.73, 21.57, 20.71. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 173.61, 153.62, 143.86, 136.07, 135.83, 133.14, 129.93, 129.54, 128.23, 126.17, 53.94, 32.08, 25.73, 21.57, 20.71.

19F-NMR (CFCl3) δ -142.27 (ArF, 2F), 152.48 (ArF, 1F), 161.75 (ArF, 2F). 19 F-NMR (CFCl 3 ) δ -142.27 (ArF, 2F), 152.48 (ArF, 1F), 161.75 (ArF, 2F).

FABMS m/z: 541 (M+H): calcd. (C25H21F5N2O4S), 540.5.FABMS m/z : 541 (M + H): calcd. (C 25 H 21 F 5 N 2 O 4 S), 540.5.

{6}-l-(3-({6}-l-(3-( 펜타플루오로벤족시옥시카르보닐Pentafluorobenzoxyoxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [6.6]-[6.6]- C61C61 ({6}-l-(3-(Pentafluorobenzoxycarbonyl)propyl)-{5}-l-phenyl[6.6]-C61) (화합물 PCBPFBZ [6,6]-이성질체)의 제조 Preparation of ({6}-l-(3-(Pentafluorobenzoxycarbonyl)propyl)-{5}-l-phenyl[6.6]-C61) (Compound PCBPFBZ [6,6]-isomer)

질소대기하에서 100 mL 2구 둥근바닥 플라스크에 250 mg의 {6}-l-(3-(펜타플루오로벤족시카르보닐)프로필)-{5}-l-페닐[6.6]-C61을 1,2-디클로로벤젠 용매 (50 mL)에 녹인 진한 보라색의 용액을 24시간 동안 환류하면 [5,6]이성질체가 이성질화 반응을 통해 [6,6]이성질체로 변환시켰다. 온도를 상온으로 낮춘 후, 감압하에서 용매를 15 mL 정도로 농축한 후 150 mL의 메탄올 용매를 부어 석출시키고 원심분리시켰다. 이렇게 분리된 고체를 10 mL의 1,2-디클로로벤젠에 녹여 메탄올 100 mL를 주입하여 다시 석출하고 원심분리하면 순수한 {6}-l-(3-(펜타플루오로벤족시카르보닐)-프로필)-{5}-l-페닐[6.6]-C61 (89%)을 얻었다.250 mg of {6}-l-(3-(pentafluorobenzoxycarbonyl)propyl)-{5}-l-phenyl[6.6]-C61 to 1, in a 100 mL 2-neck round bottom flask under nitrogen atmosphere, When a dark purple solution dissolved in 2-dichlorobenzene solvent (50 mL) was refluxed for 24 hours, the [5,6] isomer was converted to the [6,6] isomer through an isomerization reaction. After lowering the temperature to room temperature, the solvent was concentrated to about 15 mL under reduced pressure, and then 150 mL of methanol was poured to precipitate and centrifuged. The separated solid was dissolved in 10 mL of 1,2-dichlorobenzene, 100 mL of methanol was injected, precipitated again, and centrifuged to obtain pure {6}-l-(3-(pentafluorobenzoxycarbonyl)-propyl) -{5}-l-phenyl[6.6]-C61 (89%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.57-7.52 (m, 2H, arom), 7.49-7.44 (m, 1H, arom), 5.20 (s, 2H, OCH2), 2.18 (t, 2H, CH2CO2, J = 7 Hz), 1.62-1.61(m, 2H, CH2CH2CO2), 1.50-1.47 (m, 2H; PhCCH2). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.57-7.52 (m, 2H, arom), 7.49-7.44 (m, 1H, arom), 5.20 (s , 2H, OCH 2 ), 2.18 (t, 2H, CH 2 CO 2 , J = 7 Hz), 1.62-1.61 (m, 2H, CH 2 CH 2 CO 2 ), 1.50-1.47 (m, 2H; PhCCH 2 ).

[[ 제조예Manufacturing example 5] 화합물 5] compound PCBDDFHPCBDDFH [6,6]-이성질체의 제조 Preparation of [6,6]-isomers

3,3,4,4,5,5,6,6,7,7,7-3,3,4,4,5,5,6,6,7,7,7- 도데카플루오로헵틸Dodecafluoroheptyl 4- 4- 벤조일부티레이트Benzoyl butyrate (3,3,4,4,5,5, 6,6,7,7,7-(3,3,4,4,5,5, 6,6,7,7,7- DodecafluoroheptylDodecafluoroheptyl 4- 4- benzoylbutyratebenzoylbutyrate )의 제조) Of the manufacture

3구 100 ml 둥근바닥 플라스크에 4-벤조일부티릴산 10.0 g (52.0 mmol), 3,3,4,4,5,5,6,6,7,7,7-도데카플루오로헵탄올 17.8 g (62.4 mmol) 및 진한 황산 1.27 g (13.0 mmol)을 사용한 것을 제외하면 상기 제조예 1과 동일한 방법으로 3,3,4,4,5,5,6,6,7,7,7-도데카플루오로헵틸 4-벤조일부티레이트 (19 g, 73%)를 얻었다. 10.0 g (52.0 mmol) of 4-benzoylbutyrylic acid, 3,3,4,4,5,5,6,6,7,7,7-dodecafluoroheptanol 17.8 g in a 3-neck 100 ml round bottom flask 3,3,4,4,5,5,6,6,7,7,7-dodeca in the same manner as in Preparation Example 1, except that (62.4 mmol) and 1.27 g (13.0 mmol) of concentrated sulfuric acid were used. Fluoroheptyl 4-benzoylbutyrate (19 g, 73%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.94 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47(m, ArH, 2H), 6.23 (t, CHF2, 1H, J = 5 Hz), 6.06 (t, CHF2, 1H, J= 5 Hz), 5.88 (t, CHF2, 1H, J = 5 Hz), 4.61 (t, -OCH2-, 2H, J = 13.5 Hz), 3.07 (t, -O=CH2-, 2H, J = 7 Hz), 2.57 (t, -CH2CO2-, 2H, J = 7.2 Hz), 2.14-2.09 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.94 (d, ArH, 2H, J = 7.5 Hz), 7.55 (m, ArH, 1H), 7.47 (m, ArH, 2H), 6.23 (t, CHF 2 , 1H, J = 5 Hz), 6.06 (t, CHF 2 , 1H, J = 5 Hz), 5.88 (t, CHF 2 , 1H, J = 5 Hz), 4.61 (t, -OCH 2 -, 2H, J = 13.5 Hz), 3.07 (t, -O=CH 2 -, 2H, J = 7 Hz), 2.57 (t, -CH 2 CO 2 -, 2H, J = 7.2 Hz), 2.14-2.09 (m,- CH 2 CH 2 CH 2 -, 2H).

13C-NMR500 MHz (CDCl3 = 77.00 ppm) δ 199.32, 171.75, 136.63, 133.20, 128.59, 127.93, 59.34, 37.02, 32.64, 18.90. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 199.32, 171.75, 136.63, 133.20, 128.59, 127.93, 59.34, 37.02, 32.64, 18.90.

19F-NMR (CFCl3) δ -120.17 ~-120.31, -132.80 ~ -122.99, -124.12 ~ -124.31, -130.14 ~ -130.32, -137.73 ~ -137.98. 19 F-NMR (CFCl 3 ) δ -120.17 to -120.31, -132.80 to -122.99, -124.12 to -124.31, -130.14 to -130.32, -137.73 to -137.98.

FABMS m/z: 508 (M+H): calcd. (C18H14F12O3), 506.28.FABMS m/z : 508 (M + H): calcd. (C 18 H 14 F 12 O 3 ), 506.28.

3,3,4,4,5,5,6,6,7,7,7-3,3,4,4,5,5,6,6,7,7,7- 도데카플루오로헵틸Dodecafluoroheptyl 4- 4- 벤조일부티레이트Benzoyl butyrate pp -- 토실히드라존Tosylhydrazone (3,3,4,4,5,5,6,6,7,7,7- (3,3,4,4,5,5,6,6,7,7,7- DodecafluoroheptylDodecafluoroheptyl 4- 4- benzoylbutyratebenzoylbutyrate pp -- tosyltosyl hydrazone)의 제조 hydrazone)

3,3,4,4,5,5,6,6,7,7,7-도데카플루오로헵틸 4-벤조일부티레이트 10.0 g (19.8 mmol), p-톨로엔술포닐 하이드라자이드 (p-toluenesulfonyl hydrazide) 4.41 g (23.7 mmol)을 메탄올 (20 mL)에 용해한 것을 제외하면 상기 제조예 1과 동일한 방법으로 3,3,4,4,5,5,6,6,7,7,7-도데카플루오로헵틸 4-벤조일부티레이트 p-토실히 드라존 (7.00 g, 54%)를 얻었다. 3,3,4,4,5,5,6,6,7,7,7-dodecafluoroheptyl 4-benzoylbutyrate 10.0 g (19.8 mmol), p -toloenesulfonyl hydrazide ( p- 3,3,4,4,5,5,6,6,7,7,7- in the same manner as in Preparation Example 1, except that 4.41 g (23.7 mmol) of toluenesulfonyl hydrazide) was dissolved in methanol (20 mL). Dodecafluoroheptyl 4-benzoylbutyrate p -tosylhydrazone (7.00 g, 54%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 1H-NMR 300 MHz (CDCl3) δ 8.82 (s, NH, 1H), 7.91 (d, HArSO2-, 2H, J = 8.5 Hz), 7.66-7.62 (m, ortho HPh, 2H), 7.36-7.33 (m, 3H), 7.28 (d, HAr SO2-, 2H, J = 8.5 Hz), 6.07 (m, -CF2H, 1H), 4.68 (s, -OCH2-, 2H), 2.67-2.61 (m, -N=CCH2-, 2H), 2.50-2.46 (t, -CH2CO2-, 2H, J = 6.0 Hz), 2.41 (s, ArCH3, 3H), 1.78-1.73 (m, -CH2CH2CH2-, 2H). 1 H-NMR 300 MHz (CDCl 3 ) δ 1 H-NMR 300 MHz (CDCl 3 ) δ 8.82 (s, NH, 1H), 7.91 (d, HArSO 2 -, 2H, J = 8.5 Hz), 7.66-7.62 (m, ortho HPh, 2H), 7.36-7.33 (m, 3H), 7.28 (d, HAr SO 2 -, 2H, J = 8.5 Hz), 6.07 (m, -CF 2 H, 1H), 4.68 (s , -OCH 2 -, 2H), 2.67-2.61 (m, -N=CCH 2 -, 2H), 2.50-2.46 (t, -CH 2 CO 2 -, 2H, J = 6.0 Hz), 2.41 (s, ArCH 3 , 3H), 1.78-1.73 (m, -CH 2 CH 2 CH 2 -, 2H).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 173.51, 162.32, 141.64, 136.75, 134.10, 131.71, 129.43, 129.25, 128.90, 127.22, 122.58, 117.63, 115.34, 114.15, 114.51, 112.11, 62.72, 34.0 24.30, 22.66, 18.56. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 173.51, 162.32, 141.64, 136.75, 134.10, 131.71, 129.43, 129.25, 128.90, 127.22, 122.58, 117.63, 115.34, 114.15, 114.51, 112.11, 62.72, 34.0 24.30. , 22.66, 18.56.

FABMS m/z: 675 (M+H): calcd. (C25H21F5N2O4S), 674.5.FABMS m/z : 675 (M + H): calcd. (C 25 H 21 F 5 N 2 O 4 S), 674.5.

{6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-{6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'- 도데카플루오로헵틸옥시카르보닐Dodecafluoroheptyloxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [5.6]-[5.6]- C61C61 ({6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-Dodecafluoro ({6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-Dodecafluoro heptyloxycarbonylheptyloxycarbonyl )) propylpropyl )-{5}-l-)-{5}-l- phenylphenyl [5.6]-[5.6]- C61C61 )의 제조) Of the manufacture

질소 치환된 100 mL 3구 둥근바닥 플라스크에 3,3,4,4,5,5,6,6,7,7,7-도데카플루오로헵틸 p-토실하이드라존 (3,3,4,4,5,5,6,6,7,7,7-dodecafluoroheptyl 4-benzoylbutyrate p-tosylhydrazone, 2.70 g, 4.00 mmol)을 10 mL의 건조된 피리딘 에 용해시켜 교반한 것을 제외하면 상기 제조예 1과 동일한 방법으로 갈색 고체상의 {6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-도데카플루오로헵틸옥시카르보닐)프로필)-{5}-l-페닐[5.6]-C61 (290 mg, 14%)을 얻었다. In a nitrogen-substituted 100 mL 3-neck round bottom flask, 3,3,4,4,5,5,6,6,7,7,7-dodecafluoroheptyl p -tosylhydrazone (3,3,4 ,4,5,5,6,6,7,7,7-dodecafluoroheptyl 4-benzoylbutyrate p -tosylhydrazone, 2.70 g, 4.00 mmol) was dissolved in 10 mL of dried pyridine and stirred. {6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'- Dodecafluoroheptyloxycarbonyl)propyl)-{5}-l-phenyl[5.6]-C61 (290 mg, 14%) was obtained.

1H-NMR 300 MHz (CDCl3) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.56 (m, 2H, arom), 7.49-7.45 (m, 1H, arom), 5.89 (m, -CF2H, 1H), 4.86 (s, 2H, OCH2), 2.10 (t, 2H, CH2CO2, J = 7 Hz), 1.63-1.61 (m, 2H, CH2CH2CO2), 1.51-1.47 (m, 2H; PhCCH2). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.56 (m, 2H, arom), 7.49-7.45 (m, 1H, arom), 5.89 (m , -CF 2 H, 1H), 4.86 (s, 2H, OCH 2 ), 2.10 (t, 2H, CH 2 CO 2 , J = 7 Hz), 1.63-1.61 (m, 2H, CH 2 CH 2 CO 2 ), 1.51-1.47 (m, 2H; PhCCH 2 ).

{6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-{6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'- 도데카플루오로헵틸옥시카르보닐Dodecafluoroheptyloxycarbonyl )프로필)-{5}-l-)Profile)-{5}-l- 페닐Phenyl [6.6]-[6.6]- C61C61 ({6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-Dodecafluoro ({6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-Dodecafluoro heptyloxycarbonylheptyloxycarbonyl )) propylpropyl )-{5}-l-)-{5}-l- phenylphenyl [6.6]-[6.6]- C61C61 ) (화합물 ) (Compound PCBDDFHPCBDDFH [6,6]-이성질체)의 제조 Preparation of [6,6]-isomer)

질소대기하에서 100 mL 2구 둥근바닥 플라스크에 250 mg의 {6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-도데카플루오로헵틸옥시카르보닐)프로필)-{5}-l-페닐[6.6]-C61을 1,2-디클로로벤젠 용매 (50 mL)에 녹인 진한 보라색의 용액을 24시간 동안 환류하면 [5,6]이성질체가 이성질화반응을 통해 [6,6]이성질체로 변환시켰다. 온도를 상온으로 낮춘 후, 감압하에서 용매를 15 mL 정도로 농축한 후 150 mL의 메탄올 용매를 부어 석출시키고 원심분리시켰다. 이렇게 분리된 고체를 10 mL 의 1,2-디클로로벤젠에 녹여 메탄올 100 mL를 주입하여 다시 석출하고 원심분리하면 순수한 {6}-l-(3-(3',3',4',4',5',5',6',6',7',7',7'-도데카플루오로헵틸옥시카르보닐)-프로필)-{5}-l-페닐[6.6]-C61 (91%)을 얻었다. In a 100 mL 2-neck round bottom flask under nitrogen atmosphere, 250 mg of {6}-l-(3-(3',3',4',4',5',5',6',6',7' ,7',7'-dodecafluoroheptyloxycarbonyl)propyl)-{5}-l-phenyl[6.6]-C61 was dissolved in 1,2-dichlorobenzene solvent (50 mL) in a dark purple color solution. When refluxed for 24 hours, the [5,6] isomer was converted to the [6,6] isomer through isomerization. After lowering the temperature to room temperature, the solvent was concentrated to about 15 mL under reduced pressure, and then 150 mL of methanol was poured to precipitate and centrifuged. The separated solid was dissolved in 10 mL of 1,2-dichlorobenzene, 100 mL of methanol was injected, precipitated again, and centrifuged to obtain pure {6}-l-(3-(3',3',4',4'). ,5',5',6',6',7',7',7'-dodecafluoroheptyloxycarbonyl)-propyl)-{5}-l-phenyl[6.6]-C61 (91% ).

1H-NMR 300 MHz (CDCl3) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.56 (m, 2H, arom), 7.49-7.45 (m, 1H, arom), 5.99 (m, -CF2H, 1H), 4.49 (s, 2H, OCH2), 2.87-2.85 (m, 2H; PhCCH2), 2.56 (t, 2H, CH2CO2, J = 7 Hz), 2.20-2.17(m, 2H, CH2CH2CO2), 1.97-1.94 (m, 2H, -CH2CF2-). 1 H-NMR 300 MHz (CDCl 3 ) δ 7.93 (d, 2H, arom, J = 7.5 Hz), 7.59-7.56 (m, 2H, arom), 7.49-7.45 (m, 1H, arom), 5.99 (m , -CF 2 H, 1H), 4.49 (s, 2H, OCH 2 ), 2.87-2.85 (m, 2H; PhCCH 2 ), 2.56 (t, 2H, CH 2 CO 2 , J = 7 Hz), 2.20- 2.17 (m, 2H, CH 2 CH 2 CO 2 ), 1.97-1.94 (m, 2H, -CH 2 CF 2 -).

13C-NMR 500 MHz (CDCl3 = 77.00 ppm) δ 173.16, 148.67, 147.32, 145.19, 145.78, 145.03, 144.88, 144.75, 144.60, 143.14, 143.13, 142.99, 142.92, 142.29, 142.25, 142.21, 142.20, 132.08, 128.40, 128.21, 79.85, 59.34, 59.12, 58.90, 51.59, 33.48, 33.61, 22.38. 13 C-NMR 500 MHz (CDCl 3 = 77.00 ppm) δ 173.16, 148.67, 147.32, 145.19, 145.78, 145.03, 144.88, 144.75, 144.60, 143.14, 143.13, 142.99, 142.92, 142.29, 142.25, 12.21, 142.21, 142.21, 142.25, 12.21, 142. 128.40, 128.21, 79.85, 59.34, 59.12, 58.90, 51.59, 33.48, 33.61, 22.38.

19F-NMR (CFCl3) δ 84.24, -123.83, -123.88, -123.93. 19 F-NMR (CFCl 3 ) δ 84.24, -123.83, -123.88, -123.93.

FABMS m/z: 1211 (M+H): calcd. (C14H15F5O2), 1210.3.FABMS m/z : 1211 (M + H): calcd. (C 14 H 15 F 5 O 2 ), 1210.3.

[[ 실시예Example 1] 본 발명에 따른 1] according to the present invention 메타노플러렌Metanofullerene 화합물의 광학적 특성 및 전기화학적 특성 Optical and electrochemical properties of compounds

본 발명의 상기 제조예 1 내지 5에서 제조된 불소화된 메타노플러렌 화합물(PCBTFE, PCBPFP, PCBPFB, PCBPFBZ 및 PCBDDFH)의 광학적 특성을 관찰하기 위해 UV/Vis 분광기와 PL 분광기를 이용하여 도 2 및 도 3에 UV 흡수 스펙트럼 및 PL 스펙트럼을 도시하였다.In order to observe the optical properties of the fluorinated metanofullerene compounds (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ and PCBDDFH) prepared in Preparation Examples 1 to 5 of the present invention, FIG. 2 and FIG. 3 shows the UV absorption spectrum and the PL spectrum.

또한, 상기 제조예 1 내지 5에서 제조된 불소화된 메타노플러렌 화합물(PCBTFE, PCBPFP, PCBPFB, PCBPFBZ 및 PCBDDFH)의 전기화학적 특성을 관찰하기 위해 Cyclovoltameter를 이용한 산화/환원 특성을 관찰하였다. CV 장비는 BAS 100 cyclovoltametry를 이용하였으며, 전해질로는 0.1M의 Bu4NBF4를 아세토니트릴 용매를 사용하였고, 시료는 10-3M의 농도로 1,2,-디클로로벤젠에 녹였다. 상온에서 Ar하에서 100 mW/s의 스캔속도로 측정하였고, 유리탄소전극 (직경 0.3mm)을 워킹 전극으로 사용하였으며, Pt과 Ag/AgCl 전극을 카운터 전극과 레퍼런스 전극으로 사용하여 그 결과를 도 4에 도시하였다.In addition, in order to observe the electrochemical properties of the fluorinated metanofullerene compounds (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ and PCBDDFH) prepared in Preparation Examples 1 to 5, oxidation/reduction characteristics were observed using a Cyclovoltameter. The CV equipment was BAS 100 cyclovoltametry, 0.1 M of Bu 4 NBF 4 was used as an electrolyte, and acetonitrile solvent was used, and the sample was dissolved in 1,2,-dichlorobenzene at a concentration of 10 -3 M. It was measured at a scanning speed of 100 mW/s under Ar at room temperature, and a glass carbon electrode (diameter 0.3 mm) was used as a working electrode, and Pt and Ag/AgCl electrodes were used as a counter electrode and a reference electrode, and the results are shown in FIG. 4. Shown in.

도 2의 UV 흡수 스펙트럼상에서 본 발명의 불소화된 메타노플러렌 유도체들은 기존의 PCBM ([6,6] phenyl-C61-butyric acid methyl ester), methanofullerene의 일종)과 거의 동일한 흡수특성을 보여주었고, 도 3의 PL 스펙트럼상에서는 거의 동일한 파장에서 발광특성을 보여주었으나, 상대적으로 발광효율이 낮아진 것을 확인할 수 있었다. 상기 결과를 통해 본 발명에 따른 메타노플러렌 화합물은 PCBM 대비 보다 용이하게 흡수된 빛 또는 전기에너지를 전극 쪽으로 전달할 가능성이 있음 을 확인하였다.On the UV absorption spectrum of FIG. 2, the fluorinated metanofullerene derivatives of the present invention showed almost the same absorption characteristics as the conventional PCBM ([6,6] phenyl-C61-butyric acid methyl ester), a kind of methanofullerene). On the PL spectrum of 3, the luminescence characteristics were shown at almost the same wavelength, but it was confirmed that the luminous efficiency was relatively low. Through the above results, it was confirmed that the metanofullerene compound according to the present invention has the potential to transfer absorbed light or electric energy to the electrode more easily than PCBM.

또한, 도 4로부터 본 발명에 따른 메타노플러렌 화합물들은 0V에서 -2.0V의 구간에서 PCBM과 유사한 3개의 quasireversible 환원 준위들을 보여주었는데, PCBM대비 다소 양의 값을 나타냈다. 이러한 결과는 도입된 불소기의 electron withdrawing 특성에서 기인하는 것으로, 보다 전자 친화도가 우수하여 전자를 받을 수 있는 특성이 우수하고, 이를 통해 보다 우수한 n-형 유기반도체 재료임을 확인 할 수 있었다. 또한, 전자의 이송특성도 향상될 수 있을 것으로 예측된다.In addition, the metanofullerene compounds according to the present invention from FIG. 4 showed three quasireversible reduction levels similar to PCBM in the range of 0V to -2.0V, showing a somewhat positive value compared to PCBM. This result is due to the electron withdrawing property of the introduced fluorine group, and it has a better electron affinity than that of which it can receive electrons, and through this, it was confirmed that it is a more excellent n-type organic semiconductor material. In addition, it is predicted that the transfer characteristics of electrons can be improved.

[[ 실시예Example 2] 본 발명에 따른 2] according to the present invention 메타노플러렌Metanofullerene 화합물을 포함하는 유기태양전지 소자 제작 및 에너지 변환효율 측정 Fabrication of organic solar cell devices containing compounds and measurement of energy conversion efficiency

세척된 ITO 유리기판 상에 PEDOT-PSS (Bayer Baytron P, Al 4083)을 40 nm정도 스핀코팅한 후, 폴리(3-헥실티오펜) [Poly-3-(hexylthiophene)]과 본 발명에서 제조된 불소치환된 C60 유도체 (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ 및 PCBDDFH) 중의 한 가지를 선택하여 1,2-디클로로벤젠이나 클로로벤젠, 클로로포름 단독 혹은 이들의 혼합용매에 녹여 스핀코팅 등의 방법을 통해 유기 박막을 형성하였다. 이렇게 형성된 유기막 위에 LiF/Al을 전극으로 진공 하에서 증착한 후, 흡습제를 부착한 유리 캡으로 봉지하였다.After spin-coating PEDOT-PSS (Bayer Baytron P, Al 4083) about 40 nm on the washed ITO glass substrate, poly(3-hexylthiophene) [Poly-3-(hexylthiophene)] and prepared in the present invention Select one of the fluorine-substituted C 60 derivatives (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ, and PCBDDFH) and dissolve in 1,2-dichlorobenzene, chlorobenzene, or chloroform alone or in a mixed solvent thereof and organically through spin coating. A thin film was formed. LiF/Al was deposited as an electrode on the thus formed organic film under vacuum, and then sealed with a glass cap to which a desiccant was attached.

일반적으로 태양전지의 에너지 변화효율 (PCE, power conversion efficiency)는 하기 수학식 1을 통하여 구할 수 있다.In general, the energy conversion efficiency (PCE) of a solar cell can be obtained through Equation 1 below.

[수학식 1][Equation 1]

Figure 112009029090632-PAT00036
Figure 112009029090632-PAT00036

[상기 수학식 1에서,[In Equation 1,

Voc는 open circuit voltage (V)로서 전류가 흐르지 않는 상태에서의 전압을 나타내며; Voc is the open circuit voltage (V) and represents the voltage in the state in which no current flows;

Jsc는 short circuit current (mA/cm2)로서 0 V에서의 전류밀도를 나타내며; Jsc represents the current density at 0 V as short circuit current (mA/cm 2 );

FF는 fill factor로서 최대 전력치를 VocJsc의 곱으로 나눈 값이며; FF is a fill factor and is a value obtained by dividing the maximum power value by the product of Voc and Jsc;

Pinc는 쪼여준 빛의 세기 (mW/cm2)를 나타낸다.] Pinc represents the irradiated light intensity (mW/cm 2 ).]

[표 1] P3HT와의 혼합을 통해 제작된 유기태양전지 소자의 특성 비교.[Table 1] Comparison of characteristics of organic solar cell devices manufactured through mixing with P3HT.

Figure 112009029090632-PAT00037
Figure 112009029090632-PAT00037

상기 표 1에 나타난 바와 같이, 본 발명의 불소화된 메타노플러렌 화합물을 이용한 소자의 경우, 별도의 annealing을 하지 않은 상태에서 기존의 PCBM 대비 높은 효율을 보여주는 것을 확인 할 수 있었다. 특히, 실시예 1과 3의 전자받게 재료를 이용할 경우 3.2% 이상의 높은 효율을 얻을 수 있었다.As shown in Table 1, in the case of the device using the fluorinated metanofullerene compound of the present invention, it was confirmed that the device exhibited higher efficiency compared to the conventional PCBM in a state without separate annealing. In particular, when the electron accepting materials of Examples 1 and 3 were used, high efficiency of 3.2% or more could be obtained.

[[ 실시예Example 3] 본 발명에 따른 3] according to the present invention 메타노플러렌Metanofullerene 화합물을 포함하는 유기태양전지 소자의 Of an organic solar cell device containing a compound annealingannealing 및 열적 안정성 비교 And thermal stability comparison

상기 실시예 2에서 제작된 유기태양전지 소자의 annealing을 통한 특성변화와 열적 안정성을 알아보기 위해 150 ℃에서 각각 5분, 15분, 30분, 60분간 열처리한 후, 소자의 I-V 특성을 조사하였다. PCBM의 경우, 열처리전에 1.8%의 에너지변환효율을 보여주었으며, 150 ℃에서 열처리 시간을 늘려줌에 따라 각각 3.1%, 2.2%, 1.4%로 5분간 처리하였을때 가장 높은 효율을 보여준 후 점차 감소하는 특성을 보여주었다. 하지만, 본 발명의 불소화된 메타노플러렌 유도체들의 경우 열처리시간이 증가함에 따라 Voc는 다소 증가하였으며, 60분 처리후에도 거의 유사한 에너지 변환효율을 유지하는 것을 알 수 있었다. 이 중에서 PCBTFE (제조예 1)과 PCBPFB (제조예 3)의 재료를 이용한 실험결과를 각각 도 6 및 도 7에 도시하였다. In order to examine the characteristics change and thermal stability through annealing of the organic solar cell device prepared in Example 2, heat treatment was performed at 150° C. for 5 minutes, 15 minutes, 30 minutes, and 60 minutes, respectively, and then the IV characteristics of the device were investigated. . In the case of PCBM, the energy conversion efficiency of 1.8% was shown before heat treatment, and as the heat treatment time was increased at 150 ℃, it showed the highest efficiency when treated for 5 minutes at 3.1%, 2.2%, and 1.4%, respectively, and then gradually decreased. Showed characteristics. However, in the case of the fluorinated metanofullerene derivatives of the present invention, Voc slightly increased as the heat treatment time increased, and it was found that almost similar energy conversion efficiency was maintained even after treatment for 60 minutes. Among them, the experimental results using the materials of PCBTFE (Production Example 1) and PCBPFB (Production Example 3) are shown in FIGS. 6 and 7 respectively.

[[ 실시예Example 4] 본 발명에 따른 4] according to the present invention 메타노플러렌Metanofullerene 화합물을 포함하는 유기태양전지 소자의 Of an organic solar cell device containing a compound annealingannealing 전/후의 표면 변화 비교 Comparison of surface change before/after

실시예 2에서 제작된 유기태양전지 소자 중에서 제조예 3의 PCBPFB 화합물을 재료로 이용한 소자와 PCBM을 이용한 소자의 annealing 전/후의 표면을 AFM을 이용 하여 분석하였으며, 그 결과는 도 8에서 보는 바와 같다. 상기 실험을 통해, 본 발명의 불소화된 메타노플러렌 유도체들의 경우, PCBM대비 보다 표면 거칠기가 적었으며, annealing시 30 분까지 미세한 변화만이 관측되었다. 하지만, PCBM을 이용한 경우, 동일조건에서의 열처리를 거친 경우, 표면의 거칠기 변화가 보다 급격하게 일어나는 것을 확인할 수 있어서 15 분 이후의 열처리 후 소자특성이 나빠지는 현상과 관련이 있을 것으로 예측된다.Among the organic solar cell devices prepared in Example 2, the surface of the device using the PCBPFB compound of Preparation Example 3 as a material and before/after annealing of the device using PCBM were analyzed using AFM, and the results are as shown in FIG. . Through the above experiment, in the case of the fluorinated metanofullerene derivatives of the present invention, the surface roughness was less than that of PCBM, and only minute changes were observed until 30 minutes during annealing. However, in the case of using PCBM, it can be confirmed that the roughness change of the surface occurs more rapidly when the heat treatment is performed under the same conditions, so it is predicted to be related to the phenomenon that the device characteristics deteriorate after the heat treatment after 15 minutes.

도 1 - 불소기의 도입을 통해 전자받게 재료간의 응집을 개선할 수 있는 모식도Figure 1-Schematic diagram that can improve the aggregation between materials that accept electrons through the introduction of a fluorine group

도 2 - 제조예 1 내지 5에서 제조된 불소기를 갖는 메타노플러렌 유도체들(PCBTFE, PCBPFP, PCBPFB, PCBPFBZ 및 PCBDDFH)과 PCBM의 UV 흡수 스펙트럼2-UV absorption spectrum of metanofullerene derivatives (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ and PCBDDFH) and PCBM having a fluorine group prepared in Preparation Examples 1 to 5

도 3 - 제조예 1 내지 5에서 제조된 불소기를 갖는 메타노플러렌 유도체들(PCBTFE, PCBPFP, PCBPFB, PCBPFBZ 및 PCBDDFH)과 PCBM의 PL 스펙트럼3-PL spectrum of the metanofullerene derivatives (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ and PCBDDFH) and PCBM having a fluorine group prepared in Preparation Examples 1 to 5

도 4 - 제조예 1 내지 4에서 제조된 불소기를 갖는 메타노플러렌 유도체들(PCBTFE, PCBPFP, PCBPFB 및 PCBPFBZ)과 PCBM의 CV를 통한 전기화학적 특성Figure 4-Electrochemical properties through CV of metanofullerene derivatives (PCBTFE, PCBPFP, PCBPFB and PCBPFBZ) and PCBM prepared in Preparation Examples 1 to 4 having a fluorine group

도 5 - 제조예 1 내지 5에서 제조된 불소기를 갖는 메타노플러렌 유도체들(PCBTFE, PCBPFP, PCBPFB, PCBPFBZ 및 PCBDDFH)과 PCBM을 전자받게로 이용한 유기태양전지 소자의 전류-전압 곡선5-Current-voltage curve of an organic solar cell device using metanofullerene derivatives (PCBTFE, PCBPFP, PCBPFB, PCBPFBZ and PCBDDFH) and PCBM as electron acceptors prepared in Preparation Examples 1 to 5

도 6 - 전자받게 재료로 제조예 1에서 제조된 메타노플러렌 화합물(PCBTFE)과 P3HT를 이용한 소자의 annealing 시간별 전류-전압 곡선의 변화6-Changes in the current-voltage curve for each annealing time of the device using the metanofullerene compound (PCBTFE) prepared in Preparation Example 1 as an electron accepting material and P3HT

도 7 - 전자받게 재료로 제조예 3에서 제조된 메타노플러렌 화합물(PCBPFB)과 P3HT를 이용한 소자의 annealing 시간별 전류-전압 곡선의 변화7-Change of current-voltage curve for each annealing time of the device using the metanofullerene compound (PCBPFB) and P3HT prepared in Preparation Example 3 as an electron accepting material

도 8 - 전자받게 재료로 제조예 3에서 제조된 메타노플러렌 화합물(PCBPFB)과 PCBM을 이용한 소자의 annealing 시간별 AFM을 이용한 표면 특성 분석 결과 ((a), (b), (c) 및 (d) : P3HT/PCBM film에서 annealing time 0, 5, 15 및 60분; (e), (f), (g) 및 (h) : P3HT/PCBPFB(제조예 3) film에서 annealing time 0, 5, 15 및 60분)Figure 8-Surface characteristics analysis results using AFM for each annealing time of a device using a metanofullerene compound (PCBPFB) prepared in Preparation Example 3 as an electron accepting material and PCBM ((a), (b), (c) and (d) ): annealing time 0, 5, 15 and 60 minutes in P3HT/PCBM film; (e), (f), (g) and (h): annealing time 0, 5, in P3HT/PCBPFB (Preparation Example 3) film 15 and 60 minutes)

Claims (6)

하기 화학식 1로 표시되는 메타노플러렌 화합물을 포함하며, 상기 메타노플렌 화합물의 자기조립을 위한 어닐링 공정을 채용하지 않는 유기전자소자.An organic electronic device comprising a metano fullerene compound represented by the following Chemical Formula 1, and does not employ an annealing process for self-assembly of the metanolene compound. [화학식 1][Formula 1]
Figure 112009029090632-PAT00038
Figure 112009029090632-PAT00038
[상기 식에서,[Wherein, R1은 (C6-C30)아릴 또는 (C4-C30)헤테로아릴이고, 상기 아릴 또는 헤테로아릴은 직쇄 또는 분쇄의 (C1-C30)알킬, (C1-C30)알콕시, (C6-C30)아릴, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, (C6-C30)아르(C1-C30)알콕시, (C4-C30)헤테로아릴, 히드록시, 카르복실, 아미노, 모노 또는 디 (C1-C30)알킬아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카보닐, 벤조일, 페녹시, 시아노, 니트로 또는 불소기로터 선택된 하나 이상의 치환기로 더 치환될 수 있으며, 상기 알킬, 알콕시, 아릴, 아르알킬, 아르알콕시, 헤테로아릴, 알킬카보닐 또는 알콕시카보닐은 하나 이상의 불소기로 더 치환될 수 있으며; R 1 is (C 6 -C 30 ) aryl or (C 4 -C 30 ) heteroaryl, wherein the aryl or heteroaryl is straight or branched (C 1 -C 30 ) alkyl, (C 1 -C 30 ) alkoxy , (C 6 -C 30 ) aryl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl, (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl, (C 6 -C 30 ) Ar (C 1 -C 30 ) alkoxy, (C 4 -C 30 ) heteroaryl, hydroxy, carboxyl, amino, mono or di (C 1 -C 30 ) alkylamino, (C 1 -C 30 ) alkyl Carbonyl, (C 1 -C 30 ) alkoxycarbonyl, benzoyl, phenoxy, cyano, nitro or fluorine groups may be further substituted with one or more substituents selected from the above alkyl, alkoxy, aryl, aralkyl, aralkoxy , Heteroaryl, alkylcarbonyl or alkoxycarbonyl may be further substituted with one or more fluorine groups; R2는 하나 이상의 불소기로 치환된 직쇄 또는 분쇄의 (C1-C30)알킬, 하나 이상의 불소기로 치환된 (C6-C30)아릴, 하나 이상의 불소기로 치환된 직쇄 또는 분쇄의 (C1-C30)알킬(C6-C30)아릴, 하나 이상의 불소기로 치환된 (C6-C30)아르(C1-C30)알킬, 하나 이상의 불소기로 치환된 (C4-C30)헤테로아릴 또는 하나 이상의 불소기로 치환된 (C4-C30)헤테로아릴(C1-C30)알킬이며; R 2 is straight or substituted (C 1 -C 30 ) alkyl substituted with one or more fluorine groups, (C 6 -C 30 ) aryl substituted with one or more fluorine groups, straight or substituted (C 1 ) substituted with one or more fluorine groups -C 30) alkyl (C 6 -C 30) aryl, substituted with one or more fluorinated (C 6 -C 30) aralkyl (C 1 -C 30) a (C 4 -C 30 alkyl substituted with one or more fluorine) (C 4 -C 30 ) heteroaryl (C 1 -C 30 ) alkyl substituted with heteroaryl or one or more fluorine groups; A는 플러렌 (fullerene) 유도체로서 C60, C72, C76, C78 또는 C84 이며;A is a fullerene derivative, C60, C72, C76, C78 or C84; n은 1 내지 7의 정수이다.]n is an integer of 1 to 7.]
제 1항에 있어서,The method of claim 1, R1은 하기 구조로부터 선택되는 것을 특징으로 하는 유기전자소자.R 1 is an organic electronic device, characterized in that selected from the following structure.
Figure 112009029090632-PAT00039
Figure 112009029090632-PAT00039
[상기 식에서, X, Y 및 Z는 서로 독립적으로 수소, 직쇄 또는 분쇄의 (C1-C30)알킬, (C6-C30)아르(C1-C30)알킬 또는 (C1-C30)알킬(C6-C30)아릴이고; m은 1 내지 5 의 정수이고; n은 1 내지 3의 정수이고; p는 1 내지 4의 정수이고; q는 1 내지 3의 정수이고; r은 1 또는 2의 정수이고; s는 1 내지 3의 정수이다.][Wherein X, Y and Z are independently of each other hydrogen, straight chain or tricyclic (C 1 -C 30 ) alkyl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl or (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl; m is an integer from 1 to 5; n is an integer from 1 to 3; p is an integer from 1 to 4; q is an integer from 1 to 3; r is an integer of 1 or 2; s is an integer of 1 to 3.]
제 1항에 있어서,The method of claim 1, R2는 하나 이상의 불소기로 치환된 직쇄 또는 분쇄의 (C1-C30)알킬, 하나 이상의 불소기로 치환된 (C6-C30)아릴 또는 하나 이상의 불소기로 치환된 (C6-C30)아르(C1-C30)알킬인 것을 특징으로 하는 유기전자소자.R 2 is straight or branched (C 1 -C 30 ) alkyl substituted with one or more fluorine groups, (C 6 -C 30 ) aryl substituted with one or more fluorine groups or (C 6 -C 30 ) substituted with one or more fluorine groups An organic electronic device, which is ar (C 1 -C 30 ) alkyl. 제 3항에 있어서,The method of claim 3, wherein 하기 화합물로부터 선택되는 메타노플러렌 화합물을 포함하는 것을 특징으로 하는 유기전자소자.An organic electronic device comprising a metano fullerene compound selected from the following compounds.
Figure 112009029090632-PAT00040
Figure 112009029090632-PAT00040
Figure 112009029090632-PAT00041
Figure 112009029090632-PAT00041
Figure 112009029090632-PAT00042
Figure 112009029090632-PAT00042
Figure 112009029090632-PAT00043
Figure 112009029090632-PAT00043
Figure 112009029090632-PAT00044
Figure 112009029090632-PAT00044
Figure 112009029090632-PAT00045
Figure 112009029090632-PAT00045
Figure 112009029090632-PAT00046
Figure 112009029090632-PAT00046
Figure 112009029090632-PAT00047
Figure 112009029090632-PAT00047
Figure 112009029090632-PAT00048
Figure 112009029090632-PAT00048
Figure 112009029090632-PAT00049
Figure 112009029090632-PAT00049
Figure 112009029090632-PAT00050
Figure 112009029090632-PAT00050
Figure 112009029090632-PAT00051
Figure 112009029090632-PAT00051
Figure 112009029090632-PAT00052
Figure 112009029090632-PAT00052
Figure 112009029090632-PAT00053
Figure 112009029090632-PAT00053
Figure 112009029090632-PAT00054
Figure 112009029090632-PAT00054
제 3항에 있어서,The method of claim 3, wherein 하기 화합물로부터 선택되는 메타노플러렌 화합물을 포함하는 것을 특징으로 하는 유기전자소자.An organic electronic device comprising a metano fullerene compound selected from the following compounds.
Figure 112009029090632-PAT00055
Figure 112009029090632-PAT00055
Figure 112009029090632-PAT00056
Figure 112009029090632-PAT00056
Figure 112009029090632-PAT00057
Figure 112009029090632-PAT00057
Figure 112009029090632-PAT00058
Figure 112009029090632-PAT00058
Figure 112009029090632-PAT00059
Figure 112009029090632-PAT00059
Figure 112009029090632-PAT00060
Figure 112009029090632-PAT00060
Figure 112009029090632-PAT00061
Figure 112009029090632-PAT00061
Figure 112009029090632-PAT00062
Figure 112009029090632-PAT00062
Figure 112009029090632-PAT00063
Figure 112009029090632-PAT00063
Figure 112009029090632-PAT00065
Figure 112009029090632-PAT00065
Figure 112009029090632-PAT00066
Figure 112009029090632-PAT00066
Figure 112009029090632-PAT00067
Figure 112009029090632-PAT00067
Figure 112009029090632-PAT00068
Figure 112009029090632-PAT00068
Figure 112009029090632-PAT00069
Figure 112009029090632-PAT00069
제 1항 내지 제 5항에서 선택되는 어느 한 항에 있어서, The method according to any one of claims 1 to 5, 상기 유기전자소자는 유기발광소자, 유기태양전지, 유기감광체 (OPC), 유기메모리 및 유기트랜지스터로 이루어진 군에서 선택되는 것을 특징으로 하는 유기전자소자.The organic electronic device is an organic electronic device, characterized in that selected from the group consisting of an organic light emitting device, an organic solar cell, an organic photoconductor (OPC), an organic memory and an organic transistor.
KR1020090042300A 2009-05-14 2009-05-14 Methanofullerene compounds having fluorinated substituents and its use for organic electronics KR20090061613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090042300A KR20090061613A (en) 2009-05-14 2009-05-14 Methanofullerene compounds having fluorinated substituents and its use for organic electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090042300A KR20090061613A (en) 2009-05-14 2009-05-14 Methanofullerene compounds having fluorinated substituents and its use for organic electronics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020070057423A Division KR100907753B1 (en) 2007-06-12 2007-06-12 Metanofullerene compound substituted with fluorine group and organic electronic device using same

Publications (1)

Publication Number Publication Date
KR20090061613A true KR20090061613A (en) 2009-06-16

Family

ID=40991019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090042300A KR20090061613A (en) 2009-05-14 2009-05-14 Methanofullerene compounds having fluorinated substituents and its use for organic electronics

Country Status (1)

Country Link
KR (1) KR20090061613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659010B2 (en) 2011-08-30 2014-02-25 Samsung Display Co., Ltd. Photo luminescence diode and photoluminescence diplay having the same
KR101458565B1 (en) * 2013-10-10 2014-11-10 재단법인대구경북과학기술원 Organic solar cell and the manufacturing method thereof
KR101493823B1 (en) * 2014-09-05 2015-02-25 한국화학연구원 Fullerene dimer derivatives and organic electronic devices containing them
US9282612B2 (en) 2011-09-23 2016-03-08 Samsung Display Co., Ltd. Dual mode organic light emitting device and pixel circuit including the same
JP2019189626A (en) * 2016-08-10 2019-10-31 昭和電工株式会社 Compound and fullerene derivative production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659010B2 (en) 2011-08-30 2014-02-25 Samsung Display Co., Ltd. Photo luminescence diode and photoluminescence diplay having the same
US9282612B2 (en) 2011-09-23 2016-03-08 Samsung Display Co., Ltd. Dual mode organic light emitting device and pixel circuit including the same
KR101458565B1 (en) * 2013-10-10 2014-11-10 재단법인대구경북과학기술원 Organic solar cell and the manufacturing method thereof
KR101493823B1 (en) * 2014-09-05 2015-02-25 한국화학연구원 Fullerene dimer derivatives and organic electronic devices containing them
JP2019189626A (en) * 2016-08-10 2019-10-31 昭和電工株式会社 Compound and fullerene derivative production method

Similar Documents

Publication Publication Date Title
Yang et al. Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity
Zheng et al. Synthesis of ladder-type thienoacenes and their electronic and optical properties
Cai et al. New donor–acceptor–donor molecules with pechmann dye as the core moiety for solution-processed good-performance organic field-effect transistors
Ramanan et al. Competition between singlet fission and charge separation in solution-processed blend films of 6, 13-bis (triisopropylsilylethynyl) pentacene with sterically-encumbered perylene-3, 4: 9, 10-bis (dicarboximide) s
Yoon et al. High-performance n-channel carbonyl-functionalized quaterthiophene semiconductors: thin-film transistor response and majority carrier type inversion via simple chemical protection/deprotection
Cai et al. Two photon absorption study of low-bandgap, fully conjugated perylene diimide-thienoacene-perylene diimide ladder-type molecules
TWI421246B (en) Conjugated compounds, nitrogen-containing fused ring compounds, nitrogen-containing fused ring polymers, organic thin films, and organic thin film elements
Lee et al. High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%
ES2875962T3 (en) Photoactive organic material for optoelectronic components
Huang et al. Dithienopyrrolobenzotriazole-based organic dyes with high molar extinction coefficient for efficient dye-sensitized solar cells
Liao et al. Novel D–A–D type dyes based on BODIPY platform for solution processed organic solar cells
Zhang et al. Star-shaped carbazole-based BODIPY derivatives with improved hole transportation and near-infrared absorption for small-molecule organic solar cells with high open-circuit voltages
Chang et al. Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties
Ye et al. Effect of the acceptor and alkyl length in benzotriazole-based donor-acceptor-donor type hole transport materials on the photovoltaic performance of PSCs
JP5416282B2 (en) Naphthalenetetracarboxylic acid diimide derivatives fused with sulfur-containing heterocycles and their production methods and applications
Mirloup et al. A deep-purple-grey thiophene–benzothiadiazole–thiophene BODIPY dye for solution-processed solar cells
Chen et al. Catalyst-free one-pot synthesis of unsymmetrical five-and six-membered sulfur-annulated heterocyclic perylene diimides for electron-transporting property
Wu et al. Synthesis, structures, and properties of thieno [3, 2-b] thiophene and dithiophene bridged isoindigo derivatives and their organic field-effect transistors performance
Hong et al. Linear fused dithieno [2, 3-b: 3′ 2′-d] thiophene diimides
JP2007091714A (en) New nitrogen-based semiconductor compound, organic thin membrane transistor, organic solar photovoltaic cell and organic electric field light-emitting element by using the same
Paramasivam et al. Funnel shaped molecules containing benzo/pyrido [1, 2, 5] thiadiazole functionalities as peripheral acceptors for organic photovoltaic applications
KR100907753B1 (en) Metanofullerene compound substituted with fluorine group and organic electronic device using same
KR20090061613A (en) Methanofullerene compounds having fluorinated substituents and its use for organic electronics
Somasundaram et al. Triphenylamine and benzothiadiazole-based DA-A’and A’-ADDA-A’type small molecules for solution-processed organic solar cells
Ali et al. Dithieno [3, 2-b: 2′, 3′-d] thiophene (DTT): an emerging heterocyclic building block for future organic electronic materials & functional supramolecular chemistry

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid