KR20090058420A - Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles - Google Patents

Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles Download PDF

Info

Publication number
KR20090058420A
KR20090058420A KR1020070125187A KR20070125187A KR20090058420A KR 20090058420 A KR20090058420 A KR 20090058420A KR 1020070125187 A KR1020070125187 A KR 1020070125187A KR 20070125187 A KR20070125187 A KR 20070125187A KR 20090058420 A KR20090058420 A KR 20090058420A
Authority
KR
South Korea
Prior art keywords
dextran
acetate
dextran acetate
drug
microparticles
Prior art date
Application number
KR1020070125187A
Other languages
Korean (ko)
Inventor
이기영
정경환
김진
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020070125187A priority Critical patent/KR20090058420A/en
Publication of KR20090058420A publication Critical patent/KR20090058420A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

A preparation method of dextran acetate nanoparticles is provided to prepare dextran acetate nanoparticles with excellent delivery property of insoluble drug and radio-labelled material, and to ensure excellent biodegradation property and bioapplication. A preparation method of dextran acetate nanoparticles comprises the steps of: (a) manufacturing dextran solution by dissolving dextran in polar organic solvent; (b) adding an organic base and acetic anhydride in the dextran solution; and (c) separating the reaction product. A preparation method of dextran acetate drug delivery media comprises the steps of: mixing the dextran acetate nanoparticles with at least one organic solvent selected from hydrophobic drug or radio-labelled materials to prepare the mixed solution; putting the mixed solution in a dialysis tube and dialyzing the solution; and freeze-drying the obtained drug delivery media.

Description

약물전달을 위한 덱스트란 아세테이트 미세입자 제조 방법 및 이를 이용한 약물 전달체 제조 방법{Preparation method of Dextran Acetate Nanoparticles for Drug Delivery and of Drug Delivery Media using Dextran Acetate Nanoparticles}Preparation method of Dextran Acetate Nanoparticles for Drug Delivery and of Drug Delivery Media using Dextran Acetate Nanoparticles}

본 발명은 효과적인 약물 전달체 및 방사성 표지물질 전달체의 제조 방법에 관한 것으로 제조 과정은 생물화학 분야에 속하며 응용 분야는 진단 및 치료 의학 분야에 속한다.The present invention relates to a method for preparing an effective drug carrier and a radiolabeled carrier, wherein the manufacturing process belongs to the field of biochemistry and the fields of application belong to the field of diagnostic and therapeutic medicine.

사이클로스포린 A (cyclosporin A)는 면역 억제제로 장기 이식 환자에게 적용되는 매우 중요한 약제이다. 사이클로스포린 A는 Tolypocladium inflatum Gams 곰팡이에서 추출된 물질로, 아미노산으로 이루어진 환 구조 폴리 펩타이드 11개 중 7개의 아미노산이 메틸화 되어 있으며 구조 내 3개의 수소결합이 있어 매우 안정하며 지질 친화성이 큰 난용성 약제이다. 사이클로스포린 A는 면역 억제 효과가 높아 조직이식 환자에게 투여되고 있다. 그러나 사이클로스포린 A는 난용성으로 생체 적용성이 낮아 치료에 적용하는 데 제약이 따른다. 사이클로스포린 A를 경구를 통해 투여할 경우 혈색소 감소성 빈혈이나 림프구 감소증 등 부작용이 나타나는 경우가 있다. 따라서 사이클로스포린 A의 치료 효과를 높이고 부작용을 없애기 위해서는 생체 적용성을 높이고 약제 전달 효율을 높일 수 있는 약물 전달체를 필요로 한다.Cyclosporin A is an immunosuppressive agent and is a very important drug applied to organ transplant patients. Cyclosporine A is Tolypocladium inflatum It is a substance extracted from Gams mold, and 7 amino acids out of 11 amino acid cyclic polypeptides are methylated and have three hydrogen bonds in the structure. Cyclosporin A is highly administered to patients with tissue transplantation because of its high immunosuppressive effect. Cyclosporin A, however, is poorly soluble and bioavailable, which limits its application to treatment. Oral administration of cyclosporin A can cause side effects, such as hemochromatogenic anemia and lymphocytosis. Therefore, in order to increase the therapeutic effect and eliminate side effects of cyclosporin A, a drug carrier that can increase bioavailability and drug delivery efficiency is required.

덱스트란은 수용성이며 생체 적합성이 높아 작은 분자크기의 약제, 단백질, 펩타이드 등의 전달체로 이용된다. 그러나 소수성 약제를 덱스트란에 인입시켰을 때 덱스트란의 친수성 때문에 약물이 전달되지 않고 응결되는 현상이 일어나 사용에 제약을 받는다. 이러한 덱스트란의 친수 성질 때문에 약물 운반체로 적용하기 위한 방안으로 덱스트란 고분자 물질 등 여러 가지 덱스트란 유도체가 제안되고 있다.Dextran is water-soluble and highly biocompatible, and is used as a carrier for small molecule size drugs, proteins and peptides. However, when the hydrophobic agent is introduced into the dextran, the hydrophilicity of the dextran causes the drug to be delivered without condensation, thereby limiting its use. Because of the hydrophilic nature of the dextran, various dextran derivatives, such as dextran polymer materials, have been proposed as a method for application as a drug carrier.

덱스트란을 이용하여 방사성 표지물질을 전달하는 운반체로 사용하려는 시도도 있다. 그러나 덱스트란은 콜로이드 오염과 낮은 표지 효율 때문에 표지물질 전달체로 적용하지 못하는 문제점이 있다. 이를 개선하기 위해 덱스트란에 시스티아민(cysteamine) 등을 결합시켜 덱스트란 유도체를 만드는 방법 등 다양한 덱스트란 유도체 개발에 관심이 모아지고 있다.There are also attempts to use dextran as a carrier to deliver radiolabels. However, dextran has a problem in that it cannot be applied as a label carrier because of colloidal contamination and low labeling efficiency. In order to improve this, there is a great interest in developing various dextran derivatives, such as a method of making dextran derivatives by combining cysteamine and the like with dextran.

덱스트란의 단점을 개선시킨 덱스트란 유도체는 난용성 약물의 전달체로 사용할 수 있을 뿐만 아니라 방사성 표지물질의 전달체로 적용할 수 있어 효용가치가 매우 높다. 따라서 기능이 우수한 덱스트란 유도체를 개발하는 것이 매우 중요하다.Dextran derivatives, which improve the shortcomings of dextran, can be used as carriers for poorly soluble drugs and can be applied as carriers for radiolabelled substances, and thus have high utility value. Therefore, it is very important to develop a dextran derivative having excellent function.

사이클로스포린 A는 경구 투여시 흡수율 즉, 생체 적용률이 매우 낮고 개체 간 변동도 크다. 뿐만 아니라 유효 혈중 농도 범위가 매우 좁고, 높은 농도에서 신독성, 고혈압, 간독성 및 신경독성 등 심각한 부작용을 나타내기 때문에 사용하는데 많은 제한을 받고 있다.Cyclosporin A has a very low absorption rate oral bioavailability and oral variation between individuals upon oral administration. In addition, the effective blood concentration range is very narrow, and high concentrations have serious limitations such as nephrotoxicity, hypertension, hepatotoxicity and neurotoxicity.

이러한 문제점들을 개선하기 위해 리포좀이나 다당류를 이용한 약물 전달체가 제안되고 있다. 그러나 리포좀은 약물 봉입율과 안정성이 낮기 때문에 임상적으로 폭넓게 적용되지는 못하고 있으며, 다당류 마이크로 입자는 경구 투여시 소장을 통해 흡수되므로 림프계로 이행하기에는 입자가 커서 제약을 받는다.In order to improve these problems, drug delivery vehicles using liposomes or polysaccharides have been proposed. However, liposomes are not widely applied clinically because of low drug encapsulation rate and stability, and the polysaccharide microparticles are absorbed through the small intestine upon oral administration.

최근에는 효과적인 약물 전달체 개발을 위해 천연 고분자를 이용한 나노입자 개발에 대한 관심이 고조되고 있다. 천연 고분자를 이용한 생분해성 나노입자는 대부분 투여 후 수술하여 제거할 필요가 없고 특정부위로 약물을 표적화하거나 방출을 제어할 수 있어 독성이나 알레르기 등에 의한 부작용을 감소시킬 수 있을 뿐만 아니라 생체 적용률을 향상시킬 수 있는 등 많은 장점을 가지고 있다.Recently, interest in developing nanoparticles using natural polymers for the development of effective drug carriers has been increasing. Biodegradable nanoparticles using natural polymers do not need to be surgically removed after most administration, and can target the drug or control the release to specific sites, which can reduce side effects due to toxicity or allergy and improve bioavailability. It can have many advantages.

생분해성이나 생적합성이 좋은 천연 고분자로 덱스트란, 키토산, 젤라틴 등이 있다. 이 중 덱스트란은 α-1,3 결합 분자가 있는 α-1,6-글루코파이라노즈(α-1,6-glucopyranose) 결합으로 이루어진 직선형 다당으로 독성이나 면역성이 없고 생체적합성이 뛰어나서 혈장 확장제로서 널리 사용되고 있으며, 비경구용 전달체로도 적용되기도 한다. 그러나 덱스트란은 수용성이어서 난용성 약제의 전달체로 사 용할 수 없으므로 화학적 모사에 의해 난용성으로 전환시키는 것이 필요하다. Biodegradable and biocompatible natural polymers include dextran, chitosan and gelatin. Among these, dextran is a linear polysaccharide composed of α-1,6-glucopyranose bonds with α-1,3 binding molecules, and is toxic, immune, and biocompatible. It is also widely used as a parenteral carrier. However, since dextran is water soluble and cannot be used as a carrier for poorly soluble drugs, it is necessary to convert it into poorly soluble by chemical simulation.

본 발명에서는 덱스트란이 안고 있는 문제점을 해결하여 사이클로스포린 A 등 소수성 약제를 효율적으로 체내에 전달하고, 영상 진단을 위한 방사성 표지물질에 대해 표지 전달 효율과 표지 안정성이 높은 표지물질 전달체를 제조하는 방법을 제공하여 이러한 문제점을 해결하고자 한다.The present invention solves the problem of dextran to provide a hydrophobic drug such as cyclosporin A to the body efficiently, and to provide a label transporter with high label delivery efficiency and label stability for radiolabeling for imaging To solve this problem by providing.

본 발명에서는 화학적인 전환반응에 의해 수용성 덱스트란으로부터 난용성 덱스트란 아세테이트를 제조하는 방법을 제공하여 상기 문제를 해결하고자 한다. 또한 덱스트란 아세테이트 미세입자에 난용성 약제를 봉입하여 전달할 수 있는 약물 전달체를 제조하는 방법을 제공하여 생분해성과 생체 적합성이 우수한 약물 전달체를 제공하고자 한다. 아울러 림프관 투여에 의해 약물을 전달하기 위해 본 발명에 의한 덱스트란 아세테이트 미세입자를 채택하여 상기 문제점을 해결하고자 한다. 본 발명에 따른 덱스트란 아세테이트 미세입자를 이용하여 영상 진단을 위한 방사성 표지물질을 적재하여 림프관을 통해 전달할 수 있도록 하며, 여기에 사이클로스포린 A와 같은 난용성 약제도 함께 전달할 수 있도록 하여 진단과 치료에 적용할 수 있도록 한다.In the present invention, to solve the above problems by providing a method for producing poorly soluble dextran acetate from water-soluble dextran by chemical conversion reaction. In addition, the present invention provides a method for producing a drug carrier that can be delivered by encapsulating poorly soluble drugs in dextran acetate microparticles to provide a drug carrier with excellent biodegradability and biocompatibility. In addition, to solve the above problems by adopting the dextran acetate microparticles according to the present invention to deliver the drug by lymphatic vessel administration. By using the dextran acetate microparticles according to the present invention, a radiolabeled material for imaging can be loaded and delivered through lymphatic vessels, and also poorly soluble drugs such as cyclosporin A can be applied to diagnosis and treatment. Do it.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. 또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art. In addition, repeated description of the same technical configuration and operation as in the prior art will be omitted.

본 발명은 덱스트란 아세테이트 미세입자의 제조방법, 이로부터 제조된 덱스트란 아세테이트 미세입자, 상기 덱스트란 아세테이트 미세입자에 소수성 약물 또는 방사성 표지물질로부터 선택되는 1종 이상을 봉입하는 약물 전달체 제조방법을 제공한다. 또한 본 발명은 보다 구체적으로는 약물 전달체로서 덱스트란 아세테이트 미세입자에 소수성 약물로서 사이클로스포린이 결합된 덱스트란 아세테이트-사이클로스포린 결합체를 제공한다.The present invention provides a method for preparing a dextran acetate microparticles, a method for producing a drug carrier for encapsulating at least one selected from a hydrophobic drug or a radiolabeled substance in the dextran acetate microparticles prepared therefrom, the dextran acetate microparticles. do. The present invention also more specifically provides a dextran acetate-cyclosporin conjugate in which cyclosporin is bonded as a hydrophobic drug to dextran acetate microparticles as a drug carrier.

본 발명에 따른 덱스트란 아세테이트 미세입자의 제조방법은 하기의 단계를 포함한다.The method for preparing dextran acetate microparticles according to the present invention includes the following steps.

a) 덱스트란을 극성 유기용매에 용해하여 덱스트란 용액을 제조하는 단계;a) dissolving dextran in a polar organic solvent to prepare a dextran solution;

b) 상기 덱스트란 용액에 유기 염기 및 아세트무수물을 첨가하여 반응시키는 단계; 및b) reacting the dextran solution by adding an organic base and acetic anhydride; And

c) 반응 생성물을 분리하는 단계.c) separating the reaction product.

상기 덱스트란은 D-글루코오스의 α-1,6 결합에 의한 중합체로 α-1,3 또는 α-1,4 결합이 분지되어 있는 구조의 화합물로 분자량은 60,000 내지 90,000의 중량평균분자량 범위를 가진다.The dextran is a polymer of α-1,6 bonds of D-glucose and has a structure in which α-1,3 or α-1,4 bonds are branched and has a molecular weight in the range of 60,000 to 90,000. .

상기 극성 유기 용매로는 포름아미드, 디메틸설폭사이드(DMSO), N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc), 디메틸포름아미드(DMF), 디메틸이미다졸리돈(DMI) 또는 이들의 혼합물을 사용할 수 있으며, 포름아미드를 사용하는 것이 보다 바람직하다.The polar organic solvent may be formamide, dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylimidazolidone (DMI) or these Mixtures of these may be used, more preferably using formamide.

상기 유기 염기는 피리딘 또는 아민 화합물로부터 선택하여 사용할 수 있으며 아민화합물로는 1차 아민, 2차 아민 또는 3차 아민화합물을 들 수 있다.The organic base may be selected from pyridine or amine compound, and examples of the amine compound include primary amine, secondary amine or tertiary amine compound.

상기 b) 단계의 반응 온도는 40~100 ℃의 범위로 조절하는 것이 바람직한데, 이는 상기 반응 온도가 40℃ 미만인 경우 반응속도가 너무 낮아질 수 있으며, 상기 반응 온도가 100 ℃를 초과하는 경우 반응 부산물 생성에 의해 반응 수율이 저하될 수 있기 때문이다.The reaction temperature of step b) is preferably adjusted to the range of 40 ~ 100 ℃, which may be too low when the reaction temperature is less than 40 ℃, reaction by-products when the reaction temperature exceeds 100 ℃ This is because the yield of the reaction can be reduced by production.

상기 c)단계의 반응 생성물의 분리는 증류수를 가하여 생성되는 침전물을 원심분리한 후 세척 및 투석하는 과정으로 이루어진다.Separation of the reaction product of step c) consists of a process of centrifuging the precipitate produced by adding distilled water, followed by washing and dialysis.

상기의 제조 단계를 거쳐 덱스트란의 히드록시기가 아세테이트기로 전환되어 소수성의 덱스트란 아세테이트 미세 입자가 제조된다. 덱스트란 아세테이트 미세입자는 평균 입경이 0.05 내지 1 ㎛, 보다 구체적으로는 0.1 내지 0.5 ㎛의 범위를 가진다. 본 발명의 바람직한 실시예에 따른 덱스트란 아세테이트 미세입자는 도 1에 도시한 바와 같이 구형이고 평균 입경이 200~300 nm의 분포를 가진다. The hydroxyl group of dextran is converted to an acetate group through the above preparation step to produce hydrophobic dextran acetate fine particles. Dextran acetate microparticles have an average particle diameter in the range of 0.05 to 1 μm, more specifically 0.1 to 0.5 μm. Dextran acetate microparticles according to a preferred embodiment of the present invention is spherical as shown in Figure 1 has an average particle diameter of 200 ~ 300 nm distribution.

또한 본 발명은 상기의 제조방법으로 제조된 덱스트란 아세테이트 미세 입자를 이용한 약물 전달체의 제조방법을 제공한다. 본 발명의 약물 전달체의 제조방법은 구체적으로 하기의 단계를 포함한다.In another aspect, the present invention provides a method for producing a drug carrier using the dextran acetate fine particles prepared by the above method. The method for producing a drug carrier of the present invention specifically includes the following steps.

1) 상기 제조방법으로 제조된 덱스트란 아세테이트 미세입자와, 소수성 약물 또는 방사성 표지물질로부터 선택되는 1종 이상을 유기 용매와 혼합하여 혼합액을 제조하는 단계;1) preparing a mixed solution by mixing the dextran acetate microparticles prepared by the above method and at least one selected from a hydrophobic drug or a radiolabel with an organic solvent;

2) 상기 혼합액을 투석 튜브에 봉입한 후 투석하는 단계; 및2) dialysis of the mixed solution in the dialysis tube; And

3) 수득된 약물 전달체를 동결 건조하는 단계.3) lyophilizing the obtained drug carrier.

상기 소수성 약물은 파클리탁셀(paclitaxel), 암포테리신 B(amphotericin B), 캠포데신(camptothecin), 비페닐 디메칠 디카르복실레이트(biphenyl dimethyl dicarboxylate(DDB)), 이데베논(idebenone), 피포슬판(piposulfan), 다나졸(danazole), 사이클로스포린 A(cyclosporin A), 탁소티어(taxotere), 아드리아마이신(adriamycin), 테니포사이드(teniposide), 에토포사이드(etoposide), 이트라코나졸(itraconazole), 아자치오프린(azathioprine), 나이스타틴(nystatin), 헤모글로빈(hemoglobin) 및 그의 유도체, 토포테칸(topotekan), 에토도락(etodolac) 및 오메프라졸(omeprazole)로부터 선택되는 1종 이상을 들 수 있으며, 보다 바람직하게는 사이클로스포린 A(cyclosporin A)를 포함한다.The hydrophobic drug may be paclitaxel, amphotericin B, camptothecin, biphenyl dimethyl dicarboxylate (DDB), idebenone, or pipefosnel. (piposulfan), danazole, cyclosporin A, taxotere, adriamycin, teniposide, etoposide, itraconazole, azathioprine ), Nystatin, hemoglobin and derivatives thereof, and one or more selected from topotekan, etodolac and omeprazole, and more preferably cyclosporin A ( cyclosporin A).

상기 유기 용매는 디메틸포름아미드(DMF), 디메틸설폭시드(DMSO), 디메틸아세트아미드(DMAc), 디옥산, 클로로포름, n-헥산, 톨루엔, 디클로로메탄, 에틸 아세테이트, 클로로포름, 아세토니트릴, 아세톤 또는 이들의 혼합물로부터 선택하여 사용할 수 있다.The organic solvent is dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dioxane, chloroform, n-hexane, toluene, dichloromethane, ethyl acetate, chloroform, acetonitrile, acetone or these It can be used from a mixture of.

상기 방사성 표지 물질은 테크네튬-99m 퍼테크네테이트(99mTc pertechnetate), 갈륨-67(Ga-67, Gallium-67), 레늄-188(Re-188, Rhenum-188), 또는 탈륨-201(Tl-201, Thallium-201)로부터 선택하여 사용할 수 있다.The radiolabelled material is 99m Tc pertechnetate, gallium-67 (Ga-67, Gallium-67), rhenium-188 (Re-188, Rhenum-188), or thallium-201 (Tl- 201, Thallium-201).

또한 본 발명은 상기 제조방법에 의해 제조된 덱스트란 아세테이트 미세입자와 소수성 약물인 사이클로스포린과 결합하여 제조된 덱스트란 아세테이트-사이클 로스포린 결합체를 제공하며, 상기 덱스트란 아세테이트-사이클로스포린 결합체는 추가로 방사성 표지물질을 더 포함할 수 있다. 상기 덱스트란 아세테이트-사이클로스포린 결합체에서 덱스트란 아세테이트 입자에 대한 사이클로스포린의 결합 량은 덱스트란 아세테이트 중량 대비 최대 50중량% 정도이며, 구체적으로는 10 내지 50중량%의 범위를 가진다.In another aspect, the present invention provides a dextran acetate-cyclosporine conjugate prepared by combining the dextran acetate microparticles prepared by the above method and the hydrophobic drug cyclosporin, wherein the dextran acetate-cyclosporine conjugate further comprises a radiolabel It may further comprise a substance. The amount of the cyclosporin bound to the dextran acetate particles in the dextran acetate-cyclosporine conjugate is up to 50% by weight based on the weight of dextran acetate, specifically, in the range of 10 to 50% by weight.

본 발명에 따른 일실시예로서 덱스트란 아세테이트-사이클로스포린 결합체에 대한 약물 방출 특성을 확인한 결과 도 3에 도시한 바와 같이 인공 장액 및 인공 위액에서 우수한 약물 방출 특성을 나타낸다. 또한, 본 발명에 따른 덱스트란 아세테이트-사이클로스포린 결합체에 방사선 표지물질인 테크네튬-99m 퍼테크네테이트를 적재한 후 표지 효과를 확인한 결과 도 4에 도시한 바와 같이 12시간 동안 80% 이상의 높고 안정적인 표지효율을 나타낸다.As an example of the present invention, the drug release characteristics of the dextran acetate-cyclosporine conjugate showed excellent drug release characteristics in artificial intestinal and artificial gastric juices, as shown in FIG. 3. In addition, as a result of confirming the labeling effect after loading the dextran acetate-cyclosporin conjugate according to the present invention, the technetium-99m pertechnetate as a radiolabel, as shown in FIG. Indicates.

본 발명은 덱스트란 아세테이트 미세입자를 제조하여 이를 약물전달체로 이용함으로써 생분해성과 생체 적합성이 우수한 천연고분자 덱스트란의 특성을 활용하고 난용성 약제를 효율적으로 전달할 수 있는 효과가 있다. The present invention has the effect of utilizing the properties of natural polymer dextran excellent in biodegradability and biocompatibility and efficiently deliver poorly soluble drugs by preparing dextran acetate microparticles and using it as a drug carrier.

또한 덱스트란 아세테이트 미세입자는 방사성 표지물질에 대한 전달 효율도 높아 림프관을 통한 방사성 표지물질 전달에 적용할 수 있다. 또한, 방사성 표지물질과 치료 약물을 동시에 적재할 수 있으므로 표지물질 전달에 의한 진단 효과와 약물 전달에 의한 치료 효과를 동시에 얻을 수 있다. In addition, dextran acetate microparticles have high delivery efficiency for radiolabelled substances and can be applied to radiolabelled substances delivered through lymphatic vessels. In addition, since the radiolabelled substance and the therapeutic drug can be loaded at the same time, the diagnostic effect by the delivery of the label and the therapeutic effect by the drug delivery can be simultaneously obtained.

본 발명에서 제공하는 덱스트란 아세테이트 미세입자는 림프관 전달에 효과 적으로 이용될 수 있으며, 캡슐화된 약물의 독성을 줄이며 특정 조직 부위로 표적화할 수 있어 방사성 의약품으로 영상 진단 분야에 유용한 물질로 사용될 수 있을 것으로 판단된다.Dextran acetate microparticles provided in the present invention can be effectively used for lymphatic vessel delivery, reduce the toxicity of encapsulated drugs and target specific tissue sites, and thus can be used as radiopharmaceuticals as useful materials for imaging. It seems to be.

이하에서 본 발명에 따른 덱스트란 아세테이트 미세입자의 구체적인 제조 방법, 상기 덱스트란 아세테이트 미세입자에 약물을 봉입하는 방법, 덱스트란 아세테이트 약물 전달체의 약물 전달 효과, 및 방사성 표지물질을 상기 덱스트란 아세테이트 약물 전달체에 적재하여 림프관을 통해 표지물질이 전달되는 현상을 실시예를 통하여 보다 구체적으로 설명하고자 한다. 그러나, 하기 실시예는 본 발명의 예시에 불과한 것으로서 본 발명의 특허 청구 범위가 이에 따라 한정되는 것은 아니다.Hereinafter, a method for preparing a dextran acetate microparticle according to the present invention, a method for encapsulating a drug in the dextran acetate microparticle, a drug delivery effect of a dextran acetate drug carrier, and a radiolabeled dextran acetate drug carrier It will be described in more detail with reference to the phenomenon that the labeling material is delivered through the lymph vessel by loading on. However, the following examples are merely examples of the present invention, and the claims of the present invention are not limited thereto.

[실시예 1] 덱스트란 아세테이트 미세입자의 제조 Example 1 Preparation of Dextran Acetate Microparticles

수용성 다당류인 덱스트란을 수불용성인 덱스트란 아세테이트로 전환시키는 반응을 수행하였다. 덱스트란(중량평균분자량 70,000, Hayashibara Co., Japan) 6 g을 포름아미드(formamide) 60 ml 에 분산시킨 후 55 ℃에서 격렬히 교반하여 용해시켰다. 피리딘 18 ml와 아세트무수물(acetic anhydride) 40 ml 를 반응용액에 첨가한 후 50 ℃에서 48시간 동안 반응시켰다. 반응 종료 후 증류수 200 ml를 가하여 침전시킨 다음, 침전물을 원심분리하고 여러차례 세척한 후, 침전물을 디메틸설폭사이드(Dimethylsulfoxide)에 용해시킨 후 4일 동안 투석과정을 거친 후 4일 동안 동결건조 시켜 덱스트란 아세테이트 미세입자를 제조하였다.A reaction was performed to convert dextran, an aqueous polysaccharide, to dextran acetate, which is water insoluble. 6 g of dextran (weight average molecular weight 70,000, Hayashibara Co., Japan) was dispersed in 60 ml of formamide and dissolved by vigorous stirring at 55 ° C. 18 ml of pyridine and 40 ml of acetic anhydride were added to the reaction solution and reacted at 50 ° C. for 48 hours. After completion of the reaction, 200 ml of distilled water was added to precipitate the precipitate. The precipitate was centrifuged and washed several times. The precipitate was dissolved in dimethylsulfoxide, then dialyzed for 4 days, and then lyophilized for 4 days. Acetate microparticles were prepared.

합성된 덱스트란 아세테이트 미세입자는 FT-IR 분석을 통해 합성 여부를 판단하고 주사전자현미경(SEM) 측정을 통해 입자의 모양과 크기를 측정하였다. 도 1의 주사전자현미경 사진을 참조하면, 덱스트란 아세테이트 미세입자는 구형을 이루며, 평균 입경은 약 250 nm 이었다. 덱스트란 아세테이트의 생성여부를 확인하기 위해 측정한 FT-IR 스펙트럼인 도 2를 참조하면, 제조한 덱스트란 아세테이트는 덱스트란의 FT-IR 스펙트럼과 달리 1747 cm-1에서 C=O 결합 밴드가 나타났으며, 1431 cm-1 에서 CH3 결합 밴드, 604 cm-1에서 O-C=O 결합 밴드 등 덱스트란아세테이트 특성 결합 밴드가 나타났다. 상기의 결과로부터 덱스트란이 덱스트란 아세테이트로 전환되었음을 확인할 수 있었다.The synthesized dextran acetate microparticles were synthesized by FT-IR analysis and the shape and size of the particles were measured by scanning electron microscopy (SEM). Referring to the scanning electron micrograph of Figure 1, the dextran acetate microparticles are spherical, the average particle diameter was about 250 nm. Referring to FIG. 2, which is an FT-IR spectrum measured to confirm the formation of dextran acetate, the prepared dextran acetate exhibits a C═O bond band at 1747 cm −1 unlike the FT-IR spectrum of dextran. Dextran acetate-specific binding bands such as a CH 3 binding band at 1431 cm −1 and an OC═O binding band at 604 cm −1 were observed. From the above results, it was confirmed that dextran was converted to dextran acetate.

[실시예 2] 약물이 봉입된 덱스트란 아세테이트 약물 전달체 제조 Example 2 Preparation of Dextran Acetate Drug Carrier Enclosed with Drug

실시예 1에서 제조한 덱스트란 아세테이트 미세입자에 약물을 봉입하기 위해 다음과 같은 과정을 거쳐 약물이 봉입된 덱스트란 아세테이트 약물 전달체를 제조하였다. 덱스트란 아세테이트 미세입자 40 mg과 사이클로스포린 A 20 mg을 디메틸술폭사이드(dimethylsulfoxide,DMSO) 10 ml에 30분 동안 용해시킨 후, 차단 분자량(molecular weight cutoff, MWCO)이 12,000 g/mol인 투석튜브에 약물을 봉입한 후 24시간 동안 3시간 주기로 증류수를 갈아주면서 투석작용을 반복한 후, 투석된 약물을 0.45 ㎛ 멤브레인 필터로 여과한 후 동결 건조하여 덱스트란 아세테이트 약물전달체를 제조하였다. 제조된 약물전달체에 봉입된 사이클로스포린의 함량은 덱스트란 아세테이트 중량에 대하여 약 50%이었다.In order to encapsulate the drug in the dextran acetate microparticles prepared in Example 1, a dextran acetate drug carrier in which the drug was encapsulated was prepared as follows. After dissolving 40 mg of dextran acetate microparticles and 20 mg of cyclosporine A in 10 ml of dimethylsulfoxide (DMSO) for 30 minutes, the drug was placed in a dialysis tube having a molecular weight cutoff (MWCO) of 12,000 g / mol. After the dialysis was repeated while distilled water was changed at intervals of 3 hours for 24 hours, the dialysis drug was filtered through a 0.45 μm membrane filter, and then lyophilized to prepare a dextran acetate drug carrier. The content of cyclosporin encapsulated in the prepared drug carrier was about 50% by weight of dextran acetate.

본 발명에서 제시한 방법으로 제조한 덱스트란 아세테이트 약물 전달체의 약물 방출 특성을 다음과 같은 약물전달 실험을 통해 조사하였다. 포스페이트버퍼살린(phosphate buffer saline)을 사용하여 pH가 7.4인 인공 장액을 제조하였다. 또한 인공 위액을 제조하기 위해 pH가 1.2인 염산 용액을 제조하였다. 이 용액을 각각 50 ml 씩 튜브에 넣은 후 사이클로스포린 A가 봉입된 덱스트란 아세테이트 약물전달체를 투입하여 37 ℃로 조정된 배양기에서 방출실험을 행하였다. 약물의 농도 경계층을 제거하기 위해 일정한 속도로 교반하였고, 일정 시간을 간격으로 1 ml 씩 샘플을 채취하여 방출된 약물을 액체크로마토그래피(HPLC)를 이용하여 방출된 약물의 양을 분석하였다. Drug release characteristics of the dextran acetate drug carrier prepared by the method of the present invention were investigated through the following drug delivery experiments. An artificial intestinal fluid having a pH of 7.4 was prepared using phosphate buffer saline. In addition, a hydrochloric acid solution having a pH of 1.2 was prepared to prepare artificial gastric juice. Each 50 ml of the solution was added to a tube, followed by a dextran acetate drug carrier enclosed with cyclosporin A, followed by a release experiment in an incubator adjusted to 37 ° C. The solution was stirred at a constant speed to remove the concentration boundary layer of the drug, and samples were taken at a predetermined time interval by 1 ml, and the released drug was analyzed by liquid chromatography (HPLC).

인공 장액(pH 7.4)과 인공 위액(pH 1.2)에서 사이클로스포린 A가 봉입된 덱스트란 아세테이트 미세입자에서 약물이 방출되는 현상을 도 3에 나타내었다. 사이클로스포린 A는 이틀 정도 경과 후 인공장액에서 50% 정도 방출되었고, 인공위액에서는 35% 이상 방출되어 비교적 우수한 약물 방출 특성을 보였다.3 shows the release of the drug from the dextran acetate microparticles containing cyclosporin A in artificial intestinal fluid (pH 7.4) and artificial gastric fluid (pH 1.2). Cyclosporin A was released about 50% in the intestinal fluid after 2 days, and more than 35% in the gastric juice showed relatively good drug release properties.

[실시예 3]Example 3

본 발명에서 제공하는 덱스트란 아세테이트 미세입자의 방사성 표지물질에 대한 표지 효과를 조사하였다. 실시예 2에서 제조한 사이클로스포린 A가 봉입된 덱스트란 아세테이트 미세입자를 포스페이트버퍼살린 용액이 들어있는 진공 바이알에 넣는다. 새로운 바이알에 주석산을 넣고 데크네튬(technetium)-99m 퍼테크네테이트(99mTc-pertechnetate) 표지물질을 주입하였다. 이 혼합 용액을 위 진공 바이알 에 주입하고 실온에서 혼합시켜 방사성 표지물질을 적재시켰다.The labeling effect of the dextran acetate microparticles provided on the present invention was investigated. The cyclosporin A-embedded dextran acetate microparticles prepared in Example 2 were placed in a vacuum vial containing phosphate buffered saline solution. Tartrate was added to a new vial and injected with 99m Tc-pertechnetate label. This mixed solution was injected into the stomach vacuum vial and mixed at room temperature to load the radiolabel.

표지 효과는 박막크로마토그래피(thin layer chromatography)를 이용하여 측정하였다. 박막크로마토그래피 분석은 살린(saline)과 아세테이트(acetate) 이동상을 이용하여 측정하였다. 텍스트란 아세테이트 입자에 대한 표지효과를 비교하기 위해 일반적으로 널리 사용되는 휴먼세럼알부민(human serum albumin)에 동일한 표지물질을 인입하여 표지 효과를 비교하였다. 표지 직후 30분, 1시간, 2시간, 4시간, 12시간마다 표지 효과를 조사하였다. 이와 같은 방법으로 조사한 덱스트란 아세테이트 미세입자의 표지 효율을 도 4에 나타내었다. 표지효율은 80% 이상으로 나타났으며, 12 시간 동안 80% 이상 높은 표지 효율을 보여 안정적인 표지 효율을 보였다.The labeling effect was measured using thin layer chromatography. Thin layer chromatography analysis was performed using saline and acetate mobile phases. To compare the labeling effect on textan acetate particles, the labeling effect was compared by introducing the same labeling material into human serum albumin. Immediately after labeling, labeling effects were examined every 30 minutes, 1 hour, 2 hours, 4 hours and 12 hours. The labeling efficiency of the dextran acetate microparticles irradiated in this manner is shown in FIG. 4. The labeling efficiency was over 80%, and the labeling efficiency was over 80% for 12 hours, indicating stable labeling efficiency.

사이클론스포린 A와 방사성 표지물질이 인입된 덱스트란 아세테이트 미세입자를 0.1 ml (약 0.25 mCi) 씩 마우스(NTacSam: SD, 암컷, 16주, 250 g) 5 마리의 왼쪽 발목에 각각 주사하여 림프관을 통해 전달되도록 하였다. 휴먼세럼알부민에 동일한 표지물질을 인입하여 동일한 방법으로 마우스에 주사하였다. 방사성 표지물질의 전달 이미지를 감마 카메라를 이용하여 영상을 촬영하였다. 이와 같은 방법으로 촬영한 이미지를 도 5에 보였다. 표지물질의 전달 정도를 시간이 경과함에 따른 영상으로 확인한 결과 덱스트란 아세테이트 미세입자에 인입시킨 방사성 표지물질(도 5의 (a))과 널리 사용되고 있는 휴먼세럼알부민에 적재되어 전달된 표지물질(도 5의 (b))은 시간이 40분 경과하면 서혜부에 전달되는 것을 영상을 통해 확인할 수있었다. 주입 후 70분이 경과하면 두 전달체 모두 신장까지 표지물질을 전달하였 다. 본 발명에서 제공한 방법으로 제조한 덱스트란 아세테이트 미세입자에 방사성 표지물질과 난용성 약제를 봉입시켜 림프관을 통해 전달시킨 결과, 현재 널리 사용되고 있는 휴먼세럼알부민과 비슷한 정도로 표지물질을 전달할 수 있었다. 0.1 ml (approximately 0.25 mCi) of cyclosporin A and radiolabelled dextran acetate microparticles were injected into the left ankle of each mouse (NTacSam: SD, female, 16 weeks, 250 g) through the lymphatic vessel, respectively. To be delivered. Human serum albumin was introduced with the same label and injected into mice in the same manner. An image of the delivered radiolabeled image was taken using a gamma camera. An image photographed in this manner is shown in FIG. 5. As a result of confirming the degree of delivery of the labeling material over time, the radioactive labeling material (FIG. 5 (a)) introduced into dextran acetate microparticles and the labeling material loaded on human serum albumin which are widely used (FIG. 5 (b)) was able to confirm that the time passed to the inguinal part after 40 minutes through the image. Seventy minutes after injection, both carriers delivered labeling to the kidneys. The dextran acetate microparticles prepared by the method provided by the present invention were encapsulated with a radiolabeling agent and a poorly soluble drug, and delivered through the lymphatic vessel. As a result, the labeling substance was delivered to a degree similar to that of human serum albumin.

도 1은 덱스트란 아세테이트 미세입자의 주사형 전자현미경 사진이고,1 is a scanning electron micrograph of dextran acetate microparticles,

도 2는 덱스트란(a)과 덱스트란 아세테이트 미세입자(b)의 FT-IR 스펙트럼이고,2 is an FT-IR spectrum of dextran (a) and dextran acetate microparticles (b),

도 3은 덱스트란 아세테이트 미세입자에 봉입된 사이클로스포린 A의 인공 장액(a)과 인공위액(b)에서 방출 결과를 나타낸 것이고,Figure 3 shows the results of the release in artificial intestinal fluid (a) and gastric juice (b) of cyclosporin A encapsulated in dextran acetate microparticles,

도 4는 덱스트란 아세테이트 미세입자에 봉입된 방사성 포지물질의 표지효율 지속성(표지 안정성) 결과이며,4 is a result of sustaining label efficiency (label stability) of radioactive waste material encapsulated in dextran acetate microparticles,

도 5는 표지물질 전달 현상을 감마 카메라로 촬영한 영상 사진으로 (a)는 덱스트란 아세테이트에 적재된 표지물질의 전달 영상이고, (b)는 휴먼세럼알부민에 적재된 표지물질의 전달 영상이다.FIG. 5 is an image photograph taken by a gamma camera of a label material transfer phenomenon, (a) is a delivery image of a label material loaded on dextran acetate, and (b) is a delivery image of a label material loaded on human serum albumin.

Claims (12)

a) 덱스트란을 극성 유기용매에 용해하여 덱스트란 용액을 제조하는 단계;a) dissolving dextran in a polar organic solvent to prepare a dextran solution; b) 상기 덱스트란 용액에 유기 염기 및 아세트무수물을 첨가하여 반응시키는 단계; 및b) reacting the dextran solution by adding an organic base and acetic anhydride; And c) 반응 생성물을 분리하는 단계;c) separating the reaction product; 를 포함하는 덱스트란 아세테이트 미세입자 제조방법.Dextran acetate microparticles manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 극성 유기 용매는 포름아미드, 디메틸설폭사이드(DMSO), N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc), 디메틸포름아미드(DMF), 디메틸이미다졸리돈(DMI) 중에 어느 하나 또는 이들의 혼합물로부터 선택되는 것을 특징으로 하는 덱스트란 아세테이트 미세입자 제조방법.The polar organic solvent is any one of formamide, dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethylimidazolidone (DMI). Or dextran acetate fine particles. 제 1 항에 있어서,The method of claim 1, 상기 유기 염기는 피리딘 또는 아민 화합물로부터 선택되는 것을 특징으로 하는 덱스트란 아세테이트 미세입자 제조방법.The organic base is a method for producing dextran acetate microparticles, characterized in that selected from pyridine or amine compound. 제 1 항에 있어서,The method of claim 1, 상기 b) 단계 반응 온도는 40~100 ℃인 것을 특징으로 하는 덱스트란 아세테 이트 미세입자 제조방법.The b) step reaction temperature is a dextran acetate microparticles manufacturing method, characterized in that 40 ~ 100 ℃. 제 1 항에 있어서,The method of claim 1, 상기 c)단계의 분리는 증류수를 가하여 생성되는 침전물을 원심분리한 후 세척 및 투석하는 것을 특징으로 하는 덱스트란 아세테이트 미세입자 제조방법.Separation of step c) is a method for producing dextran acetate microparticles, characterized in that the precipitate produced by the addition of distilled water, followed by washing and dialysis. 1) 제 1 항 내지 제 5 항으로부터 선택되는 어느 한 항의 제조방법으로 제조된 덱스트란 아세테이트 미세입자와, 소수성 약물 또는 방사성 표지물질로부터 선택되는 1종 이상을 유기 용매와 혼합하여 혼합액을 제조하는 단계;1) preparing a liquid mixture by mixing dextran acetate microparticles prepared by the method of any one of claims 1 to 5 and at least one selected from hydrophobic drugs or radiolabels with an organic solvent. ; 2) 상기 혼합액을 투석 튜브에 봉입한 후 투석하는 단계; 및2) dialysis of the mixed solution in the dialysis tube; And 3) 수득된 약물 전달체를 동결 건조하는 단계;3) freeze drying the obtained drug carrier; 를 포함하는 덱스트란 아세테이트 약물 전달체의 제조방법.Dextran acetate drug delivery method comprising a. 제 6 항에 있어서,The method of claim 6, 상기 소수성 약물은 사이클로스포린인 것을 특징으로 하는 덱스트란 아세테이트 약물 전달체의 제조방법.The hydrophobic drug is a method for producing a dextran acetate drug carrier, characterized in that the cyclosporin. 제 6 항에 있어서,The method of claim 6, 상기 방사성 표지 물질은 테크네튬-99m 퍼테크네테이트(99mTc pertechnetate), 갈륨-67(Ga-67, Gallium-67), 레늄-188(Re-188, Rhenum-188), 또는 탈륨-201(Tl-201, Thallium-201)로부터 선택되는 것을 특징으로 하는 덱스트란 아세테이트 약물 전달체의 제조방법.The radiolabelled material is 99m Tc pertechnetate, gallium-67 (Ga-67, Gallium-67), rhenium-188 (Re-188, Rhenum-188), or thallium-201 (Tl- 201, Thallium-201). 제 6 항에 있어서,The method of claim 6, 상기 유기 용매는 디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 디메틸아세트아미드(DMAc), 디옥산, 클로로포름, n-헥산, 톨루엔, 디클로로메탄, 에틸 아세테이트, 클로로포름, 아세토니트릴, 아세톤 중에 어느 하나 또는 이들의 혼합물로부터 선택되는 것을 특징으로 하는 덱스트란 아세테이트 약물 전달체의 제조방법.The organic solvent is any one of dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), dioxane, chloroform, n-hexane, toluene, dichloromethane, ethyl acetate, chloroform, acetonitrile and acetone. A method for preparing a dextran acetate drug carrier, characterized in that it is selected from one or a mixture thereof. 덱스트란 아세테이트 입자에 사이클로스포린이 결합된 텍스트란 아세테이트-사이클로스포린 결합체.Textan acetate-cyclosporine conjugate in which cyclosporine is bound to dextran acetate particles. 제 10 항에 있어서,The method of claim 10, 상기 결합체는 방사성 표지 물질을 더 포함하는 것을 특징으로 하는 텍스트란 아세테이트/사이클로스포린 결합체.And said conjugate further comprises a radiolabelled substance. 제 11 항에 있어서,The method of claim 11, 상기 방사성 표지 물질은 테크네튬-99m 퍼테크네테이트(99mTc pertechnetate), 갈륨-67(Ga-67, Gallium-67), 레늄-188(Re-188, Rhenum-188), 또는 탈륨-201(Tl-201, Thallium-201)로부터 선택되는 것을 특징으로 하는 텍스트란 아세테이트/사이클로스포린 결합체.The radiolabelled material is 99m Tc pertechnetate, gallium-67 (Ga-67, Gallium-67), rhenium-188 (Re-188, Rhenum-188), or thallium-201 (Tl- 201, Thallium-201). Textan acetate / cyclosporine conjugate.
KR1020070125187A 2007-12-04 2007-12-04 Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles KR20090058420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070125187A KR20090058420A (en) 2007-12-04 2007-12-04 Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070125187A KR20090058420A (en) 2007-12-04 2007-12-04 Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles

Publications (1)

Publication Number Publication Date
KR20090058420A true KR20090058420A (en) 2009-06-09

Family

ID=40988895

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070125187A KR20090058420A (en) 2007-12-04 2007-12-04 Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles

Country Status (1)

Country Link
KR (1) KR20090058420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058196A1 (en) * 2010-09-03 2012-03-08 Bend Research Inc. Pharmaceutical compositions of dextran polymer derivatives and a carrier material
CN102766220A (en) * 2012-07-23 2012-11-07 暨南大学 Hydrophobic modified beta-1, 3-D-glucan and preparation method and applications thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058196A1 (en) * 2010-09-03 2012-03-08 Bend Research Inc. Pharmaceutical compositions of dextran polymer derivatives and a carrier material
US8815294B2 (en) * 2010-09-03 2014-08-26 Bend Research, Inc. Pharmaceutical compositions of dextran polymer derivatives and a carrier material
CN102766220A (en) * 2012-07-23 2012-11-07 暨南大学 Hydrophobic modified beta-1, 3-D-glucan and preparation method and applications thereof

Similar Documents

Publication Publication Date Title
AU2008240545B2 (en) Nanoparticles comprising a cyclodextrin and a biologically active molecule and uses thereof
CN105727309B (en) The preparation and application of sensitive amphiphilic polysaccharide-adriamycin conjugate and its pharmaceutical compositions
Xue et al. Glutathione responsive cubic gel particles cyclodextrin metal-organic frameworks for intracellular drug delivery
KR102190093B1 (en) Biodegradable amphiphilic polymers specifically targeting ovarian cancer, polymer cyclists prepared therefrom, and uses
CN103301472A (en) Amphiphilic polysaccharide-anti-tumor medicament conjugate capable of releasing medicines specifically at lesion site of living body, as well as preparation method and application of medicinal composition of amphiphilic polysaccharide-anti-tumor medicament conjugate
CN109464421B (en) Functionalized mesoporous silicon-based tumor targeted transportation controlled release system and preparation method thereof
CN103143028A (en) Sulfhydrylated amphipathic chitosan polymer carrier as well as preparation method and application thereof
CN113024638B (en) Small molecular peptide and preparation method and application thereof as nano drug-loaded carrier
CN108578369B (en) Preparation and application of surface double-modified targeted human serum albumin nano-drug carrier
CN108771763B (en) Preparation method and application of cerebral ischemia targeted nano drug delivery system
CN111632032A (en) Natural small molecule co-assembled nano-drug delivery system and preparation method and application thereof
KR101334780B1 (en) Iodine-containing radial-shape macromolecular compounds, preparation method thereof and contrast medium compositions for CT comprising the same
US20070140972A1 (en) Targeting compositions and preparation therof
KR101072389B1 (en) Sensitivity drug delivery system to thiol comprising amphiphilic polymer
CN107375939A (en) For treating the amphotericin B polypeptide hydrogel medicine-carried system of fungal infection
KR20090058420A (en) Preparation method of dextran acetate nanoparticles for drug delivery and of drug delivery media using dextran acetate nanoparticles
CN105920614B (en) A kind of supramolecular hydrogel drug and gene double carrier material and preparation method thereof
KR101429668B1 (en) Nanoparticles comprising amphiphilic low molecular weight hyaluronic acid complex and a process for the preparation thereof
US9018156B2 (en) Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
CN110974976A (en) Carboxymethyl chitosan modified drug-loaded vesicle and preparation and application thereof
CN105769821B (en) Tacrolimus self-assembly polymer nanoparticle drug delivery system and preparation method thereof
CN110960491B (en) Preparation method and application of tanshinone IIA-loaded water-soluble chitosan/gamma-polyglutamic acid nano-composite
CN109666087B (en) Cyclodextrin derivative and preparation method and application thereof
CN105395491B (en) A kind of preparation method of the porous microsphere of heptapeptide containing adriamycin
CN102114247A (en) Conjugate of SSA, PEG and anticancer drugs and preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
SUBM Surrender of laid-open application requested