KR20090054859A - Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process - Google Patents

Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process Download PDF

Info

Publication number
KR20090054859A
KR20090054859A KR1020070122389A KR20070122389A KR20090054859A KR 20090054859 A KR20090054859 A KR 20090054859A KR 1020070122389 A KR1020070122389 A KR 1020070122389A KR 20070122389 A KR20070122389 A KR 20070122389A KR 20090054859 A KR20090054859 A KR 20090054859A
Authority
KR
South Korea
Prior art keywords
cement
slag
concrete
hydration
blast furnace
Prior art date
Application number
KR1020070122389A
Other languages
Korean (ko)
Inventor
반봉찬
Original Assignee
순천대학교 산학협력단
와이앤드비소재테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단, 와이앤드비소재테크(주) filed Critical 순천대학교 산학협력단
Priority to KR1020070122389A priority Critical patent/KR20090054859A/en
Publication of KR20090054859A publication Critical patent/KR20090054859A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Blast furnace slag using waste soda sulphate and an activating method for cement and concrete are provided to recycle the waste soda sulphate as an activating agent in order to supplement the properties of the cement. A method for activating blast furnace slag cement and concrete comprises the following steps of: preparing waste soda sulphate; and adding the waste soda sulphate to the blast furnace slag cement and concrete so as to show excellent intensity. The waste soda sulphate consists of 54-67% of sodium sulfate(Na2SO4), 8-14% of sulfur(S), 3-5% of sodium carbonate(Na2CO3), 3-10% of iron oxide(T.Fe) and 1.5-4% of metallic iron(M.Fe). The waste soda sulphate functions as an activating agent for concrete and cement.

Description

폐망초를 이용한 수재슬래그미분, 시멘트 및 콘크리트 활성화 방법{Activation of blast furnace slag, cement and concrete using wasted Na2SO4 from desulfurization process}Activation of blast furnace slag, cement and concrete using wasted Na2SO4 from desulfurization process}

<표1>폐망초의 화학적 조성<Table 1> Chemical Composition of Abandoned Forage

<표2>수재슬래그의 물리적 특성<Table 2> Physical Characteristics of Reclaimed Slag

<표3>고로수재슬래그의 화학조성<Table 3> Chemical Composition of Blast Furnace Slag

<표4>실시 예에 사용된 망초의 화학 조성<Table 4> Chemical Composition of Manganese Used in Examples

<표5>혼합비 및 조건<Table 5> Mixing Ratios and Conditions

<표6>슬래그의 수화율<Table 6> Hydration Rate of Slag

<도1>본 발명에 의한 망초의 이용공정도<Figure 1> Process of using the forget-me-not according to the present invention

<도2>망초첨가시의 여러 조건에 따른 수화물 X선회절분석 패턴<Figure 2> Carbide X-ray Diffraction Patterns According to Various Conditions in Adding Meshes

<도3>활성화제를 갖는 수화물의 시차열분석<Figure 3> Differential Thermal Analysis of Hydrates Having Activators

<도4>활성화제로 망초를 사용할 때의 수화물의 전자 현미경(SEM)사진 (활성화제 첨가량 7%)<Figure 4> Electron microscopy (SEM) photograph of the hydrate when using forget-me-not as an activator (addition of activator 7%)

<도5>활성화제 양에 따른 비수화슬래그의 양 (활성화제 첨가량 3·5·7%)<Figure 5> Amount of non-hydrated slag according to the amount of activator (activator added amount 3 · 5 · 7%)

<도6>활성화제 종류에 따른 비수화슬래그의 양<Figure 6> Amount of Unhydrated Slag According to the Type of Activator

<도7>활성화제 양에 따른 누적 열<Figure 7> Cumulative heat depending on the amount of activator

<도8>활성화제 종류와 양에 따른 열방출율<Figure 8> Heat release rate by type and amount of activator

<도9>망초의 서로 다른 양을 첨가한 AAS모르타르의 압축강도<Figure 9> Compressive strength of AAS mortar with different amounts of forget-me-not

<도10>OPC의 대체율에 따른 AAS모르타르의 압축강도 (활성화제 : Na2SO4)<Figure 10> Compressive strength of AAS mortar according to the replacement rate of OPC (activator: Na 2 SO4)

본 발명은 대기오염 방지를 위한 탈황공정에서 나오는 불순물의 다량 함유되어있는 폐기망초(Na2SO4)인 부산폐기물을 이용하여 고로 수재 슬래그미분 이를 이용한 시멘트 제조시나 콘크리트 레미콘 제조시에 첨가하여 슬래그나 시멘트를 활성화하여, 초기 강도 등의 기계적 물성을 향상시키기 위한 것으로, 제철공정의 저가의 두가지 부산물을 이용, 고부가하여 시멘트 등의 활성화제의 원료로 사용하는 방법이다.The present invention is added to the production of blast furnace slag powder using cement by using the by-product waste (Na 2 SO 4 ) by-product waste containing a large amount of impurities from the desulfurization process to prevent air pollution when added to the slag or concrete manufacturing It is a method of activating cement to improve mechanical properties such as initial strength, and by using two low-cost by-products of the steelmaking process and using them as a raw material for activating agents such as cement.

일반적으로, 시멘트와 콘크리트 재료의 꾸준한 발전추세는 보다 높은 강도와 우수한 내구성을 지니는 것을 목표로 하고 있으나, 보편적인 방법으로 보통포틀랜드 시멘트의 물성을 월등히 향상시킬 수 있는 잠재적 가능성은 한계점에 와 있다. 한편, 에너지 위기 및 환경문제가 대두됨으로서 제련, 제강 등 일련의 공정부산물로 배출되는 폐자원에 활용에 대한 관심이 증대되면서 이들 폐자원의 시멘트 대체 재료로서의 활용연구가 특수용도를 중심으로 활발히 이루어지고 있다. 그 중 슬래그는 제철공업에서 발생되는 부산물로서 슬래그 시멘트, 골재, 노반재, 기타 시멘 트 첨가제로서 건축, 토목분야에 이용되어온 유용한 자원이다. 또한, 고로수쇄슬래그는 콘크리트 장기강도, 저수화열 및 화학적 내구성을 향상시킬 수 있는 매우 유용한 자원이다. 시멘트 혼합재로 사용됨으로서 시멘트 제조에 따른 CO2가스의 발생을 감소시키며 유한한 자원을 절약할 수 있는 자원이기도 하다.In general, the steady development of cement and concrete materials aims to have higher strength and better durability, but the potential to significantly improve the properties of ordinary Portland cement in a universal manner is at its limit. On the other hand, with the rise of energy crisis and environmental problems, interest in the utilization of waste resources emitted as a series of process by-products such as smelting and steelmaking has increased, and research on the utilization of these waste resources as cement substitute materials has been actively conducted mainly for special purposes. have. Among them, slag is a by-product from the steel industry and is a useful resource that has been used in the construction and civil engineering sectors as slag cement, aggregate, roadbed, and other cement additives. In addition, blast furnace slag is a very useful resource to improve the concrete long-term strength, heat of low hydration and chemical durability. Used as a cement mixture, it reduces the generation of CO 2 gas due to cement production and is a resource that can save finite resources.

따라서, 슬래그를 생산하는 철강 산업에서는 보다 재활용성이 높은 수쇄슬래그로 생산하는 것이 바람직하며 수쇄슬래그의 활용성을 향상시켜 재활용을 적극 장려해야 할 것이다.Therefore, in the steel industry that produces slag, it is desirable to produce recycled slag with higher recyclability, and recycling should be actively promoted by improving utilization of the slag.

고로 수쇄 슬래그는 잠재수경성을 갖는 시멘트 물질이므로, 그 수화 특성을 향상시키는 것이 가장 효과적인 방법이라 하겠다. 슬래그는 반응초기 낮은 수화열을 나타내므로 대형구조물 공사에 꼭 필요하며, 콘크리트 장기강도를 향상시키고 화학적 내구성을 향상시킨다. 그러나 낮은 초기 수화열은 한편으로 낮은 초기강도를 의미하므로 슬래그의 활용성에 가장 큰 문제점이다. 메카노케미스트리를 이용한 기계적 활성법과 이러한 문제점의 해결책의 하나로 수산화나트륨(NaOH), 탄산나트륨(Na2CO3), 규산소다(Na2SiO3)등의 알칼리 자극제를 이용하여 활성화하는 것이다.Since blast furnace slag is a latent hydraulic material, it is the most effective way to improve its hydration properties. Since slag shows low heat of hydration in the early stage of reaction, it is essential for the construction of large structures, improving the long-term strength of concrete and improving chemical durability. However, low initial heat of hydration means low initial strength on the one hand, which is the biggest problem in the utilization of slag. Mechanical activation using mechanochemistry and one of the solutions to this problem is the activation using alkali stimulants such as sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3), sodium silicate (Na 2 SiO 3).

일반적으로, 수쇄슬래그는 물과의 반응이 매우 느리게 진행되지만 알카리 분위기에서는 수화활성을 나타낸다. 특히, 강알카리, 예를 들면, 수산화나트륨, 탄산나트륨이나 규산소다 등과 같은 화합물과 공존시 슬래그는 급격한 수화반응을 나타내서 속경성 결합제로서의 활용이 가능하다. 그러나 이것들은 활성화를 시킬 수 있는 활성화제이지만, 실질적으로 현장에서 적용하기에는 비용이 과다하게 든다는 단 점이 있다.In general, hydrolyzed slag proceeds very slowly with water, but exhibits hydration activity in alkaline atmosphere. In particular, when coexisting with strong alkalis, such as sodium hydroxide, sodium carbonate, sodium silicate, etc., the slag exhibits a rapid hydration reaction and can be utilized as a fast-hard binder. However, these are activators capable of activating, but have the disadvantage of being excessively expensive for practical application in the field.

한편, 현재 제철산업에서 이산화황(SO2)을 제거하는 탈황공정에서 부산물로, 불순물이 다량 포함된 망초(Na2SO4)가 발생하며, 년 2만톤 이상에 이르고 있다. 공업적으로는 부산물로 생기는 망초가 대량 얻어지고 있는데, 이는 합성세제의 세척력을 높이기 위해 가하는 첨가제인 빌더나, 펄프제조 유리공업·금속제련·염료공업, 설사약 등의 의약품에 쓰인다. 현재, 망초를 정련하여 공업적으로 쓰이는 고순도의 망초를 얻고 있으나, 많은 비용이 들게 된다. 이와는 달리, 제철공정에서 발생되는 폐망초의 경우는 불순물이 많은 관계로 적당한 사용처를 찾지 못하고 있다. 본 발명에서는 알카리제를 이용하여 수재슬래그와 이를 이용한 시멘트나 콘크리트등의 강도를 증가시키는 일환으로, 폐기되는 폐망초를 선택, 이용하게 되었다.On the other hand, as a by-product in the desulfurization process of removing sulfur dioxide (SO 2 ) in the steel industry, the generation of manganese (Na 2 SO 4 ) containing a large amount of impurities is generated, reaching over 20,000 tons a year. Industrially, by-products are produced in large quantities, which are used in builders, which are additives added to increase the washing power of synthetic detergents, and in medicines such as pulp, glass, metal, dye, and diarrhea. At present, it is possible to refine the forget-me-not to obtain high-purity manure which is used industrially, but it is expensive. On the other hand, in the case of waste forget-me-not generated in the steelmaking process, there is a lot of impurities, and thus, it is impossible to find a suitable use place. In the present invention, as part of increasing the strength of the wood slag and cement or concrete using the alkaline agent, it is to select and use the discarded forage.

<표1> 폐망초의 화학적 조성<Table 1> Chemical Composition of Waste Forage

Figure 112007509374717-PAT00031
Figure 112007509374717-PAT00031

고로 수쇄 슬래그와 그와 관련된 2차 제품은 잠재수경성을 갖는 시멘트 물질이므로, 그 수화 특성을 향상시키는 것이 가장 효과적인 방법이다. 슬래그는 반응 초기 낮은 수화열을 나타내므로, 대형구조물 공사에 꼭 필요하며, 콘크리트 장기강 도를 향상시키고 화학적 내구성을 향상시킨다. 그러나 낮은 초기 수화열은, 한편으로 낮은 초기강도를 의미하므로 슬래그의 활용성에 가장 큰 문제점이다. 이러한 문제점의 해결책의 하나로 본 발명에서는 제철공정에서 나오는 탈황공정에서 발생하여 폐기되는 불순망초를 알칼리 자극제를 이용하고자 하는 것이다.Since the blast-furnace slag and its secondary products are cement materials with latent hydraulic properties, it is the most effective way to improve their hydration properties. Since slag shows low heat of hydration at the beginning of the reaction, it is essential for the construction of large structures, improving the long-term strength of concrete and improving chemical durability. However, low initial heat of hydration, on the one hand, means low initial strength, which is the biggest problem in the utilization of slag. As one of the solutions to this problem, the present invention intends to use an alkali stimulant for impurity forget-me-not generated in the desulfurization process coming out of the steelmaking process.

일반적으로 수쇄슬래그는 물과의 반응이 매우 느리게 진행되지만 알칼리 분위기에서는 수화활성을 나타낸다. 특히, 강알칼리, 예를 들면 수산화나트륨, 규산소다 등과 같은 화합물과 공존시 슬래그는 급격한 수화반응을 나타내서 속경성 결합제로서의 활용이 높으나 가격이 고가이므로, 보다 저가의 알칼리 활성화제가 필요하게 된다. 본 발명자는 현재 불순물이 다량으로 포함되어 폐기되는 망초를 대용품으로 사용하고자 하였다. 따라서, 본 발명에서의 알칼리 활성 방법으로, 고로 수쇄슬래그의 품질을 향상시켜 안정된 물성을 갖는 고로수쇄슬래그의 사용량을 촉진시키고 콘크리트 2차 제품 및 기타 고부가가치 용도로 사용하고자 한다.In general, hydrolyzed slag proceeds very slowly with water, but exhibits hydration activity in alkaline atmosphere. In particular, when coexisting with strong alkalis, such as sodium hydroxide, sodium silicate, and the like, the slag exhibits a rapid hydration reaction, so that the use as a fast-hard binder is high, but the price is high, and thus a lower-cost alkali activator is required. The present inventors have attempted to use a forget-me-not that is discarded by containing a large amount of impurities as a substitute. Therefore, the alkali activation method of the present invention is to improve the quality of the blast furnace slag to promote the amount of blast furnace slag having stable properties and to be used for concrete secondary products and other high value-added applications.

<실시예 1><Example 1>

시료로서 고로수쇄슬래그는 제철소에서 부산물로 나오는 것을 이용하였으며, KS에 나온 규격과 비교한 것을 표2에, 화학조성을 표3에 나타내었다.As a sample, blast furnace slag was used as a by-product from the steel mill, and the chemical composition was shown in Table 2 and the chemical composition in Table 3 in comparison with the specifications shown in KS.

<표2> 수재슬래그의 물리적 특성<Table 2> Physical Properties of Reclaimed Slag

Figure 112007509374717-PAT00002
Figure 112007509374717-PAT00002

<표3> 고로수재슬래그의 화학조성.<Table 3> Chemical Composition of Blast Furnace Reclaimed Slag

Figure 112007509374717-PAT00018
Figure 112007509374717-PAT00018

위의 <표2>에서와 같이 KS 규격에 명시되어 있는 1종 슬래그에 부합 되는 것을 알 수 있다. 나타내어 KS에서 명시된 1.4 이상의 염기도를 갖는 조건에 맞는 것으로 나타났다.As shown in <Table 2>, it can be seen that it meets the type 1 slag specified in the KS standard. It was shown to meet the conditions having a basicity of 1.4 or higher specified in KS.

실시예의 자극제로서는 사용된 폐망초(Na2SO4)의 정확한 화학적 조성도 표 4와 같다.Exemplary stimulants of the examples are also the exact chemical composition of the used forage (Na 2 SO 4 ) is shown in Table 4.

<표3>실시예에 사용된 망초의 화학조성<Table 3> Chemical Composition of Forages Used in Examples

Figure 112007509374717-PAT00019
Figure 112007509374717-PAT00019

수화 및 물리적 실험은 Na2SO4의 경우, 배합조건으로는 Na2O base로 해서 슬래그에 각 각 1, 3, 5, 7wt.% 첨가하여 실험을 하였으며, 물/고체(w/c)비는 0.5로 고정하여 실험을 실시하였다. <표4> 에 알칼리 자극제 및 슬래그의 배합조건을 나타내었다.Hydration and physical experiments were carried out by adding 1, 3, 5, and 7 wt.% Of each to the slag with Na 2 O base as the mixing condition for Na 2 SO 4 , and the water / solid ratio (w / c) Was fixed at 0.5 to perform the experiment. Table 4 shows the mixing conditions of the alkali stimulant and the slag.

<표5> 혼합비 및 조건<Table 5> Mixing Ratios and Conditions

Figure 112007509374717-PAT00020
Figure 112007509374717-PAT00020

페이스트 수화실험은 물/고체(w/s)=0.5로 하여 각각의 자극제를 1, 3, 5, 7wt.%(Na2O base) 슬래그에 첨가하여 3분 교반 후, 플라스틱 용기에 넣어 습도 98%, 온도 23±2℃인 습기함에 보관하였다. 수화시간은 12시간, 1, 3, 5, 7, 28일로 하였으며, 아세톤으로 수화 정지시켜 건조기(45℃)에서 하루동안 건조시킨 후 진공 데시케이터에 보관하였다.Paste hydration experiment water / solid (w / s) = 0.5 in the moisture into the respective stimulator 1, 3, 5, 7wt. % (Na 2 O base) was added to the slag after stirring for 3 minutes, and the plastic container 98 %, And stored in a humidity of 23 ± 2 ℃ temperature. The hydration time was 12 hours, 1, 3, 5, 7, 28 days, hydrated with acetone, dried for one day in a dryer (45 ℃) and stored in a vacuum desiccator.

X선회절분석(XRD)은 이용하여 CuKα,30mA, 스캔닝속도4도/분, 20:5∼65°의 범위로 분석하였다.X-ray diffraction analysis (XRD) was used to analyze CuKα, 30 mA, scanning speed of 4 degrees / min, and 20: 5 to 65 degrees.

시차열분석(DSC)은 승온속도 5℃/분으로 하여 700℃까지 측정하였다. 표준물질로는 Al2O3분말을 이용하였고, 시료량은 20mg으로 하였다.Differential thermal analysis (DSC) was measured at 700 ° C. at a rate of 5 ° C./min. Al2O3 powder was used as a standard material, and the sample amount was 20 mg.

전자현미경 사진(SEM)의 경우는 수화정지된 시편을 이용하여 x5,000의 배율로 수화물의 형성을 분석하였다.In the case of electron micrograph (SEM), the formation of hydrate was analyzed at a magnification of x5,000 using the hydrated stopped specimen.

미반응 슬래그 분석의 경우, 실험시약으로는 살리시릭산, 아세톤, 메탄올 그리고 각각의 조건으로 수화정지 시킨 시료를 이용한다. 먼저 아세톤 35ml와 메탄올 15ml를 혼합하여 혼합용액을 제조한 후, 살리시릭산 2.5g과 시료 0.5g을 비이커에 칙량한다. 칙량된 혼합물은 자력 교반기를 이용하여 1시간 동안 교반을 시킨다. 이때, 교반온도는 상온으로 한다. 이렇게 여과된 후 남은 시료는 전기로에서 850℃ 까지 10분간 열처리한다. 이렇게 열처리한 시료의 무게를 칙량한다. 위의 방법으로 여러가지 시료를 이용하여 시험하였을 때의 미용해% 는 미용해% = 미용해 부분/ 시료 - 연소손실 × 100(중량. %)이다.For unreacted slag analysis, test reagents are salicylic acid, acetone, methanol, and samples hydrated and stopped under the respective conditions. First, 35 ml of acetone and 15 ml of methanol are mixed to prepare a mixed solution, and 2.5 g of salicylic acid and 0.5 g of sample are weighed into a beaker. The weighted mixture is stirred for 1 hour using a magnetic stirrer. At this time, the stirring temperature is at room temperature. The sample remaining after the filtration is heat-treated for 10 minutes to 850 ℃ in an electric furnace. The weight of the heat-treated sample is weighed. The% undissolved when tested using the various samples by the above method is% undissolved = undissolved part / sample-combustion loss x 100 (weight.%) .

미소수화열 분석은 각 시료의 수화발열 속도를 알아보기 위하여 미소수화열량계 (Conduction Calorimeter, TTC형)를 사용하여 측정하였다. 물/고체(W/C=0.5로 시료량을 3g으로 하였으며, 72시간까지 측정하였다.Microhydration heat analysis was performed using a microhydration calorimeter (TTC type) to determine the rate of hydration of each sample. Water / solid (W / C = 0.5, the sample amount was 3g, measured up to 72 hours.

물리적 특성실험은 모르타르 물성 실험은 압축강도의 경우, KSL 5105에 준하여 시멘트 : 표준사 = 1 : 2.45로 하였다. 물비는 OPC를 기준으로 하여 플로우 110±5가 되도록 한 결과 55중량퍼센트로 하였으며, 5×5×5 ㎤ 사각몰드에 성형하여 1일 양생후 탈형하였으며, 습기함에서 3, 7, 28일 동안 양생하여 재령에 따른 압축강도를 측정하였다. 플로우 경우, KSL 5105에 명시된 방법으로 시행하였다.In the physical property test, the mortar physical property test was performed based on KSL 5105 for compressive strength. The water ratio was 55% by weight as a result of flow 110 ± 5 based on OPC, and was molded in 5 × 5 × 5 cm 3 square mold for 1 day curing and demolding for 3, 7, 28 days in moisture. The compressive strength according to age was measured. In the case of flows, it was carried out in the manner specified in KSL 5105.

망초를 첨가한 경우는 침상의 에트린자이트 수화물이 주요 수화물로 나타나고 있으며, 수화시간이 증가할수록 더욱 더 성장하고 있는것을 볼 수 있다. (c)의 망초를 사용한 경우는 3, 5wt% 첨가시에는 거의 유사한 수화정도를 보이고 있고, 7wt.%첨가시 약간 큰 반응성을 보이고 있다. 각각의 28일에서의 수화율은 36, 37, 40%의 슬래그 수화율을 보였는데 다른 자극제를 사용한 경우보다 작은 수화율을 보이는 것으로 나타났다. 이는 미반응 슬래그 정량 분석시 수화생성물인 C-S-H, C4AH13 등을 용해시킴으로서 정량을 한다. 그러나, 망초를 사용한 시료의 경우는 AFt상이 존재하여 살리실산을 이용한 정량분석을 하더라도 약 35%정도의 용해도만을 보여 정확한 정량분석이 이루어지지 않았을 것으로 생각된다.In the case of addition of forget-me-not, needle-like ethrinzide hydrate is shown as the main hydrate, and it can be seen that as the hydration time increases, it grows even more. In the case of using (c) forage, the degree of hydration was almost similar when 3 and 5 wt% was added, and slightly higher reactivity was added when 7 wt.% was added. The hydration rates at 28 days were 36, 37 and 40% slag hydration, which was less than other stimulants. This is quantified by dissolving hydration products CSH, C 4 AH 13 and the like in the unreacted slag quantitative analysis. However, in the case of the sample using the forget-me-not, even if the AFt phase is present in the quantitative analysis using salicylic acid, only about 35% of the solubility seems to have not been accurate.

누적수화열 분석의 경우 (c)는 망초를 자극제로 이용한 것으로써, 전체적으로 아주 낮은 누적수화열을 보이고 있다. 보통 실질적으로 망초는 흡열제로서 사용되는 재료로서 이용된다. 그림에서와 같이 첨가량이 많이 질수록 수화시간이 증가하면서 그 수화열이 큰 폭으로 감소하고 있음을 확인 할 수 있다.In the case of cumulative hydration analysis, (c) shows a very low cumulative hydration heat as a whole using forget-me-not as a stimulant. Usually substantially forget-me-not is used as a material used as a heat absorber. As shown in the figure, as the amount of addition increases, the hydration heat decreases significantly as the hydration time increases.

<도2>에 Na2SO4로 자극된 슬래그의 수화발열곡선을 나타내었다. 그림에서 보는 바와 같이 초기 10시간까지를 제외하고는 다른 자극제를 사용한 것보다 가장 낮은 수화발열곡선을 나타내고 있다. 이는 앞장의 누적수화열 그래프에서와 같이 Na2SO4는 흡열제로 사용되는 재료이다. 초기에 빠른 겔상의 에트린자이트 생성물에 의해 에트린자이트 층이 생기기 시작한다. 이 층에 의해 수화는 잠시 지연이 되며, 이 층은 다시 에트린자이트 침상결정과 주위의 Na+이온에 의해 층이 파괴되어 지속적으로 수화생성물이 발생한다. 그림에서는 1차 피크를 확인 할 수 있었으나, 2차피크는 보이지 않았다.In Fig. 2, the hydration calorific curve of slag stimulated with Na 2 SO 4 is shown. As shown in the figure, the hydration curve is lower than that of other stimulants except for the first 10 hours. This is the material Na 2 SO 4 is used as an endothermic agent, as shown in the cumulative hydration heat graph in the previous section. Initially, a fast gel-like ethrinzite product begins to form an ethrinzite layer. Hydration is delayed temporarily by this layer, which in turn destroys the layer by the ethrinzite acicular crystal and surrounding Na + ions, resulting in continuous hydration products. In the figure, the first peak was confirmed, but the second peak was not seen.

알칼리 자극제를 이용한 고로수쇄슬래그의 수화특성 분석결과, 주요 수화 생성물은 망초에 의해 C-S-H상이 생성되었다. 망초를 첨가하였을 때의 수화생성물로서 AFt(ettringite)와 Al(OH)3의 존재함을 알 수 있었다<도1>.As a result of hydration analysis of blast furnace slag using alkali stimulant, the main hydration product was produced by CSH phase by the forget-me-not. It was found that AFt (ettringite) and Al (OH) 3 exist as hydration products when the forget-me-not is added (Fig. 1).

수화발열특성분석 결과, 상대적으로 낮은 수화열을 보인 경우는 망초를 자극제로 이용한 경우였다. 그러나 이 수화열 데이터의 결과로서 강도에 미치는 영향을 설명하기에는 약간의 어려움이 있었다<도2>,<도7>,<도8>.As a result of hydration fever characterization, the relatively low hydration fever was the case of using forget-me-not as a stimulant. However, there was some difficulty in explaining the influence on the strength as a result of the heat of hydration data <Fig. 2>, <Fig. 7>, and <Fig. 8>.

수화생성물의 생성정도에 따른 슬래그의 수화율을 알아보기 위해 미반응 슬래그 정량분석을 하였다. 결과로서 탄산나트륨(Na2CO3)에 비하여 망초슬래그의 수화율이 낮게 나타났다<도4>,<도6>.In order to determine the hydration rate of slag according to the degree of formation of hydration products, unreacted slag quantitative analysis was performed. As a result, the hydration rate of manganese slag was lower than that of sodium carbonate (Na 2 CO 3 ) <Fig. 4> and <Fig. 6>.

압축강도 실험결과, 망초를 자극제로 사용하였을 경우는 7wt.%첨가시 가장 큰 압축강도를 보였다. 망초를 사용한 경우가 가장 높은 압축강도를 가졌다.<도9> 슬래그 치환율이 증가함에 따라 그 압축강도는 감소하는 것으로 나타났다. Na2SO4는 자극제의 첨가량이 증가함에 따라 그 압축강도도 증가하였다.<도10>As a result of the compressive strength test, when the forget-me-not was used as a stimulant, the highest compressive strength was obtained when 7wt.% Was added. In the case of using a forget-me-not, the compressive strength was the highest. FIG. 9 The compressive strength was found to decrease as the slag substitution rate increased. The compressive strength of Na 2 SO 4 increased as the amount of stimulant added increased.

본 발명은 제철공정에서 가스탈황공정에서 나오는 불순물이 많은 폐기 망초 를 또 다른 부산물인 시멘트용 슬래그의 활성화제로 이용되는 부산물만으로 물정을 상호 보완시키고, 폐기물은 고부가하는 경제적이고 유용한 발명으로 다른 슬래그의 활성화 제도로 사용될 수 있는 유용한 발명이다.The present invention complements each other with only by-products used as an activator of slag for cement, which is another by-product, from the degassing process in the steelmaking process. It is a useful invention that can be used as a system.

Claims (2)

고로수재 슬래그미분, 이를 이용한 시멘트 제조시나 콘크리트 레미콘제조시, 폐망초를 첨가하여 수재 슬래그, 시멘트, 콘크리트를 활성화하여 강도 발현을 시키는 방법Blast furnace slag fine powder, cement production using it or concrete ready-mixed concrete, waste slag is added to activate the slag, cement, concrete to express strength 청구항 1의 폐망초의 화학적 조성이 황산나트륨(Na2SO4) 54∼67%, 유황(S)8∼14%, 탄산나트륨(Na2CO3)3∼5%, 전철분(T.Fe)3∼10%, 금속철(M.Fe)1.5∼4%인 폐망초를 활성화제로 사용하는 방법.The chemical composition of the waste Glauber's salt of claim 1 sodium sulfate (Na 2 SO 4) 54~67% , sulfur (S) 8~14%, sodium carbonate (Na 2 CO 3) 3~5% , train minutes (T.Fe) 3 A method of using a spent forage of ˜10% and metal iron (M.Fe) 1.5 to 4% as an activator.
KR1020070122389A 2007-11-27 2007-11-27 Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process KR20090054859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070122389A KR20090054859A (en) 2007-11-27 2007-11-27 Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070122389A KR20090054859A (en) 2007-11-27 2007-11-27 Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process

Publications (1)

Publication Number Publication Date
KR20090054859A true KR20090054859A (en) 2009-06-01

Family

ID=40986729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070122389A KR20090054859A (en) 2007-11-27 2007-11-27 Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process

Country Status (1)

Country Link
KR (1) KR20090054859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308388B1 (en) * 2013-05-30 2013-09-16 쌍용기초소재주식회사 Compound gypsum composition for ground granulated blast-furance slag and method for manufacturing of the same
KR101359277B1 (en) * 2012-10-26 2014-02-07 재단법인 포항산업과학연구원 Concrete composition having improved initial strength and concrete structure prepared by the same
KR20220094252A (en) * 2020-12-28 2022-07-06 한국세라믹기술원 Optimized Manufacturing Method Of Potassium Sulfate Using Sodium Sulfate And Potassium Chloride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359277B1 (en) * 2012-10-26 2014-02-07 재단법인 포항산업과학연구원 Concrete composition having improved initial strength and concrete structure prepared by the same
KR101308388B1 (en) * 2013-05-30 2013-09-16 쌍용기초소재주식회사 Compound gypsum composition for ground granulated blast-furance slag and method for manufacturing of the same
KR20220094252A (en) * 2020-12-28 2022-07-06 한국세라믹기술원 Optimized Manufacturing Method Of Potassium Sulfate Using Sodium Sulfate And Potassium Chloride

Similar Documents

Publication Publication Date Title
Adesanya et al. Alternative alkali-activator from steel-making waste for one-part alkali-activated slag
Chindaprasirt et al. Comparative study on the characteristics of fly ash and bottom ash geopolymers
Pereira et al. Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag
Tchakouté et al. Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements
Aguilar et al. Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates
Nath et al. Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag–Fly ash blends
CN111847995B (en) Red mud-based solid waste pervious concrete and preparation method and application thereof
Tashima et al. Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure
CN110759655B (en) Industrial waste based geopolymer
Liu et al. Effect of Si/Al molar ratio on the strength behavior of geopolymer derived from various industrial waste: A current state of the art review
Li et al. Recycling of lithium slag extracted from lithium mica by preparing white Portland cement
CN109987892A (en) One kind is based on flyash-iron tailings geo-polymer fibre reinforced materials and preparation method thereof
CN108623196A (en) A kind of lime excitation large dosage industrial residue low-carbon cement and preparation method thereof
Wang et al. Compressive strength, hydration and pore structure of alkali-activated slag mortars integrating with recycled concrete powder as binders
CN107162010B (en) The hydrated calcium silicate for synthesizing the method for hydrated calcium silicate and being synthesized by this method
Cristelo et al. One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride
CN111056764B (en) Efficient solid waste base gelation activity excitant
Zhou et al. One-part alkali activated slag using Ca (OH) 2 and Na2CO3 instead of NaOH as activator: more excellent compressive strength and microstructure
CN113213498A (en) Cement-based material carbonization recycling method and calcium carbonate whisker material
Zhou et al. Influence of ground granulated blast furnace slag on the early hydration and microstructure of alkali-activated converter steel slag binder
Zhang et al. Modification of glass powder and its effect on the compressive strength of hardened alkali-activated slag-glass powder paste
Luo et al. Recycling vanadium-bearing shale leaching residue for the production of one-part geopolymers
KR20090054859A (en) Activation of blast furnace slag, cement and concrete using wasted na2so4 from desulfurization process
Dondrob et al. Synthesis and characterization of geopolymers from coal gangue, fly ash and red mud
CN102320761B (en) Method for preparing cement active mixed material and concrete active admixture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application