KR20090051695A - Method of differentiation into cells producing insulin from islet-neighboring cell - Google Patents
Method of differentiation into cells producing insulin from islet-neighboring cell Download PDFInfo
- Publication number
- KR20090051695A KR20090051695A KR1020080112372A KR20080112372A KR20090051695A KR 20090051695 A KR20090051695 A KR 20090051695A KR 1020080112372 A KR1020080112372 A KR 1020080112372A KR 20080112372 A KR20080112372 A KR 20080112372A KR 20090051695 A KR20090051695 A KR 20090051695A
- Authority
- KR
- South Korea
- Prior art keywords
- cells
- islet
- insulin
- peripheral
- pancreatic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/37—Digestive system
- A61K35/39—Pancreas; Islets of Langerhans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
- A61K35/545—Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/34—Sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/44—Thiols, e.g. mercaptoethanol
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/02—Coculture with; Conditioned medium produced by embryonic cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/22—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from pancreatic cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Developmental Biology & Embryology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Reproductive Health (AREA)
- Pharmacology & Pharmacy (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Gynecology & Obstetrics (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
췌도 주변세포인 샘꽈리세포(Acinar cell) 및 췌관세포(ductal cell) 중 선택되는 어느 하나 이상을 포함하는 세포 용액에 최종 농도 기준으로 혈청 15~25%, 글루코스 15~30mmol/l를 첨가하여 배양액을 조성한 후, 배양하는 것을 특징으로 하는 본 발명의 췌도 주변세포를 인슐린을 분비할 수 있는 세포로 분화시키는 방법은 분화 수율이 높으며, 췌도세포를 분리하고 남은 세포 용액으로부터 인슐린을 분비할 수 있는 세포를 분화시킬 수 있기 때문에 매우 효율적인 특징이 있다. To the cell solution containing at least one selected from the surrounding cells of the islet cells (Acinar cell) and pancreatic ductal cells (ductal cell), 15-25% of serum and 15-30 mmol / l of glucose were added based on the final concentration. The method of differentiating the peripheral pancreatic islet cells of the present invention, which is characterized by culturing, into cells capable of secreting insulin, has a high differentiation yield, separates the pancreatic islets and secretes insulin from the remaining cell solution. It is very efficient because it can differentiate.
또한, 본 발명은 배아줄기 세포 또는 부정배체 배아줄기세포를 추가적으로 첨가할 경우, 인슐린을 분비할 수 있는 세포 분화시 발생하는 세포사도 감소시킬 수 있어, 궁극적으로 췌도세포의 부족한 공급을 실질적으로 해결할 수 있는 효과를 발휘한다.In addition, the present invention can further reduce the cell death that occurs during the differentiation of the cells that can secrete insulin when the addition of embryonic stem cells or embryonic embryonic stem cells, ultimately can solve the insufficient supply of pancreatic islet cells substantially It has an effect.
당뇨병, 배아줄기세포, 인슐린, 췌도 Diabetes, Embryonic Stem Cells, Insulin, Pancreatic Islets
Description
본 발명은 췌도 주변세포로부터 인슐린을 분비할 수 있는 세포의 분화과정에 있어, 인슐린을 분비할 수 있는 세포의 수율을 높이고 세포사를 감소시키는 췌도 주변세포를 인슐린을 분비할 수 있는 세포로 분화시키는 방법에 관한 것이다. The present invention is a method of differentiating cells capable of secreting insulin from peripheral cells of the islet, which increases the yield of cells capable of secreting insulin and decreases cell death. It is about.
당뇨병은 췌장소도(췌도)에서 분비되는 글루코스 조절 호르몬인 인슐린이 부족하거나 없을 경우 발생하는 병으로, 타입 I형 당뇨병(인슐린 의존형 당뇨병)과 타입 II형 당뇨병(인슐린 비의존형 당뇨병)으로 구분된다. Diabetes is a disease caused by the lack or absence of insulin, a glucose-regulating hormone secreted by the pancreatic islets, and is classified into type I diabetes (insulin-dependent diabetes) and type II diabetes (insulin-independent diabetes).
타입 I형 당뇨병은 자가면역질환(autoimmune disease)으로서 췌도세포가 면역체계에 의해 파괴됨으로써 인슐린의 분비가 줄어들게 되어 발병되고 인슐린이 외부에서 공급되지 않으면 생명 유지하기 어렵다.Type I diabetes is an autoimmune disease (autoimmune disease) caused by the destruction of the pancreatic islet cells by the immune system is reduced by the secretion of insulin and is difficult to maintain life unless the insulin is supplied from the outside.
췌도 이식은 인슐린으로 혈당조절이 불가능한 타입 I형 당뇨병 환자에 국한되는 치료법으로, 인슐린을 사용하지 않고 당뇨병의 진행을 억제시키고, 환자의 상 태를 호전시킬 수 있으며 궁극적인 당뇨치료를 도모할 수 있다(Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343 (2000), pp. 230-238. 2. Markmann JF, Deng S, Desai NM, Huang X, Velidedeoglu E, Frank A, Liu C, Brayman KL, Lian MM, Wolf B, Bell E, Vitamaniuk M, Doliba N, Matschinsky F, Markmann E, Barker CF, Naji A. The use of non-heart-beating donors for isolated pancreatic islet transplantation. Transplantation. 2003 May 15;75(9):1423-9. Hering BJ, Kandaswamy R, Ansite JD, Eckman PM, Nakano M, Sawada T, Matsumoto I, Ihm SH, Zhang HJ, Parkey J, Hunter DW, Sutherland DE. Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes. JAMA. 2005 Feb 16;293(7):830-5. Erratum in: JAMA. 2005 Apr 6;293(13):1594.). Pancreatic islet transplantation is limited to type I diabetic patients who are unable to control their blood sugar with insulin, which can suppress the progression of diabetes, improve the patient's condition and promote ultimate diabetes treatment without using insulin. (Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.N. Engl. J. Med . 343 (2000), pp. 230-238. 2. Markmann JF, Deng S, Desai NM, Huang X, Velidedeoglu E, Frank A, Liu C, Brayman KL, Lian MM, Wolf B, Bell E, Vitamaniuk M, Doliba N, Matschinsky F, Markmann E, Barker CF, Naji A. The use of non-heart-beating donors for isolated pancreatic islet transplantation.Transplantation.2003 May 15; 75 (9): 1423-9.Hering BJ, Kandaswamy R , Ansite JD, Eckman PM, Nakano M, Sawada T, Matsumoto I, Ihm SH, Zhang HJ, Parkey J, Hunter DW, Sutherland DE.Single-d onor, marginal-dose islet transplantation in patients with type 1 diabetes.JAMA. 2005 Feb 16; 293 (7): 830-5.Eratrat in: JAMA. 2005 Apr 6; 293 (13): 1594.).
한편, 췌장 전체를 이식하는 것은 췌도세포를 이식하는 것보다 성공률이 더 높지만, 대수술을 해야하는 부담이 있는 반면, 췌도세포만을 이식하는 경우는 시술이 쉽고 안전하며 반복할 수 있다는 장점이 있다. On the other hand, transplanting the whole pancreas has a higher success rate than transplanting pancreatic islets, but there is a burden of major surgery, while transplanting only pancreatic islets has the advantage that the procedure is easy, safe and repeatable.
그런데, 췌장을 이용한 췌도세포의 공급은 수요에 비하여 부족할 수밖에 없어, 췌도세포의 공급을 늘릴 수 있는 새로운 방법의 개발이 필요한 실정이다. However, the supply of pancreatic islet cells using the pancreas is inevitably insufficient compared to the demand, and the development of a new method for increasing the supply of pancreatic islets is required.
췌도세포의 공급을 늘리기 위한 방법으로 췌도 주변세포로부터 췌도세포를 분화시키는 것도 하나의 대안으로 고려될 수 있는데, 이에 대한 연구로는 송( Song KH et al.) 등이 보고한 논문(Song KH, Ko SH, Ahn YB, Yoo SJ, Chin HM, Kaneto H, Yoon KH, Cha BY, Lee KW, Son HY. In vitro transdifferentiation of adult pancreatic acinar cells into insulin-expressing cells. Biochem Biophys Res Commun. 2004 Apr 16;316(4):1094-100)이 있다. Differentiating pancreatic islets from peripheral islet cells as a way to increase the supply of pancreatic islets can be considered as an alternative. For this study, Song KH et al. Ko SH, Ahn YB, Yoo SJ, Chin HM, Kaneto H, Yoon KH, Cha BY, Lee KW, Son HY.In vitro transdifferentiation of adult pancreatic acinar cells into insulin-expressing cells.Biochem Biophys Res Commun. 2004 Apr 16; 316 (4): 1094-100).
그런데, 송의 방법은 낮은 췌도세포의 분화 수율과 아포토시스(apoptosis)로 인한 세포사가 문제점으로 발생하였다.However, Song's method was caused by problems of low islet cell differentiation yield and apoptosis (apoptosis).
이에 본 발명은 췌도 주변세포로부터 분화된 인슐린을 분비할 수 있는 세포의 생산 수율을 높이고, 세포사를 방지할 수 있는 방법을 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for increasing the production yield of cells capable of secreting differentiated insulin from peripheral cells of the islet and preventing cell death.
상기의 목적을 달성하기 위하여 본 발명은 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell) 중 선택되는 어느 하나 이상을 포함하는 세포 용액에 최종 농도 기준으로 혈청 15~25%, 글루코스 15~30mmol/l를 첨가하여 배양액을 조성한 후, 배양하는 것을 특징으로 하는 췌도 주변세포를 인슐린을 분비할 수 있는 세포로 분화시키는 방법을 제공한다.In order to achieve the above object, the present invention provides a serum solution of 15-25% based on the final concentration in a cell solution containing any one or more selected from the surrounding cells of the islet cells (acinar cell) and the ductal cells (ductal cells), Provided is a method for differentiating islet-secreting peripheral cells of the pancreatic islet, characterized in that after culturing the culture medium by adding glucose 15 ~ 30mmol / l.
또한, 본 발명은 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell) 중 선택되는 어느 하나 이상을 포함하는 세포 용액에 배아줄기세포(Embryonic stem cell) 또는 부정배체 배아줄기세포(Embryoid body)를 첨가하고, 최종 농도 기준으로 혈청 15~25%, 글루코스 15~30mmol/l를 첨가하여 배양액을 조성한 후, 배양하는 것을 특징으로 하는 췌도 주변세포를 인슐린을 분비할 수 있는 세포로 분화시키는 방법을 제공한다. In addition, the present invention is an embryonic stem cell or an embryonic stem cell (Embryonic stem cell) in a cell solution containing any one or more selected from the surrounding cells (acinar cells) and pancreatic ductal cells (ductal cells), which are peripheral islets ( Embryoid body) was added, and serum was cultured by adding 15-25% of serum and 15-30 mmol / l of glucose based on the final concentration, followed by culturing peripheral pancreatic islet cells, which are characterized by culturing into cells capable of secreting insulin. It provides a method to make it.
이하, 본 발명의 내용을 (1) 인슐린을 분비할 수 있는 세포 분화 수율의 향상 및 (2) 아포토시스(apoptosis)로 인한 세포사 문제의 해결을 둘로 각각 세분하 여 설명하고자 한다. Hereinafter, the present invention will be described in detail by dividing (1) the improvement of the cell differentiation yield capable of secreting insulin and (2) the solution of the cell death caused by apoptosis.
(1) 인슐린을 분비할 수 있는 세포 분화 수율의 향상 (1) Improvement of cell differentiation yield which can secrete insulin
본 발명은 제1형태로서 인슐린을 분비할 수 있는 세포의 분화 수율을 높이고자 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell) 중 선택되는 어느 하나 이상을 포함하는 세포 용액에 최종 농도 기준으로 혈청 15~25%, 글루코스 15~30mmol/l를 첨가하여 배양액을 조성한 후, 배양하는 방법을 제공한다. 상기 송 등(Song KH et al.)의 논문에서는 인슐린을 분비할 수 있는 세포의 분화 수율이 5% 정도인 것에 반해, 본 발명의 인슐린을 분비할 수 있는 세포의 분화 수율은 실험예 1을 통해 20%인 것으로 확인되었다. The present invention provides a cell solution containing any one or more selected from acinar cells and ductal cells, which are peripheral cells of the islet, in order to increase the differentiation yield of cells capable of secreting insulin as a first form. 15 to 25% serum and 15 to 30 mmol / l of glucose are added based on the final concentration. In the paper by Song KH et al., The differentiation yield of the cells capable of secreting insulin is about 5%, whereas the differentiation yield of the cells capable of secreting insulin of the present invention is obtained through Experimental Example 1. It was confirmed that it is 20%.
혈청에는 상피성장인자(epidermal growth factor; EGF), 혈소판 유래 성장인자(platelet-derived growth factor; PDGF) 및 섬유아세포 성장인자(fibroblast growth factor; FGF), 혈관내피 유래 성장인자(ascular endothelial-derived growth factor) 또는 인슐린-유사 성장인자(insulin-like growth factor; IGF-I) 등의 다양한 성장인자들이 들어 있다. 이들 성장인자(groweth factor)들은 세포의 분화(differentiation)를 위해 'PI3kinae pathway'를 사용하고, 세포의 성장(Growth)을 위해 'MAPKinae pathway'와 'PI3Kinase pathway'를 사용한다(Koellensperger E, von Heimburg D, Markowicz M, Pallua N. Human serum from platelet-poor plasma for the culture of primary human preadipocytes. Stem Cells. 2006 May;24(5):1218-25. Epub 2006 Jan 19.). 본 발명에서와 같이 고농도의 혈청을 사 용하게 되면 혈청에 함유되어 있는 성장 인자(growth factor)의 농도도 높아지기 때문에 세포의 분화 및 성장 과정에 큰 영향이 미치어, 인슐린을 분비할 수 있는 세포의 분화 및 성장이 원활히 이루어질 수 있는 것이다.Serum contains epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF), and vascular endothelial-derived growth. factor or insulin-like growth factor growth factor; Various growth factors such as IGF-I). These growth factors use the 'PI3kinae pathway' for cell differentiation and the 'MAPKinae pathway' and 'PI3Kinase pathway' for cell growth (Koellensperger E, von Heimburg). D, Markowicz M, Pallua N. Human serum from platelet-poor plasma for the culture of primary human preadipocytes.Stem Cells. 2006 May; 24 (5): 1218-25.Epub 2006 Jan 19.). As in the present invention, the use of a high concentration of serum increases the concentration of growth factors contained in the serum, which greatly affects the differentiation and growth processes of the cells, thereby inducing insulin secretion. Differentiation and growth can be made smoothly.
본 발명에서는 혈청이 최종 농도 기준으로 배양액에 15~25% 첨가되는데, 15% 미만일 경우에는 인슐린을 분비할 수 있는 세포의 분화 및 성장이 원활히 이루어지지 않아 인슐린을 분비할 수 있는 세포의 수율이 낮아지고, 25%를 초과하는 경우에는 효율성이 떨어진다.In the present invention, the serum is added to the culture medium based on the final concentration of 15 to 25%, if less than 15%, the differentiation and growth of cells that can secrete insulin is not made smoothly low yield of cells that can secrete insulin If it exceeds 25%, the efficiency is lowered.
한편, 본 발명은 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell) 중 선택되는 어느 하나 이상을 포함하는 세포 용액을 최종 농도가 15~30mmol/l 인 고농도의 글루코스가 함유된 배양액에 배양하는데, 그 이유는 2가지로 나눠볼 수 있다.On the other hand, the present invention is a cell solution containing any one or more selected from the surrounding cells (acinar cell) and pancreatic ductal cells (ductal cells), which is the periphery of the islet containing a high concentration of glucose with a final concentration of 15 ~ 30 mmol / l Incubate in the culture, the reason can be divided into two.
첫째, 고농도의 글루코스는 NF-κB 등의 전사 인자(Transcription factor)를 활성화(activation) 시키므로, 세포의 분화가 촉진되어 인슐린을 분비할 수 있는 세포의 분화 및 성장 사이클이 빨라진다(Iwasaki Y, Kambayashi M, Asai M, Yoshida M, Nigawara T, Hashimoto K. High glucose alone, as well as in combination with proinflammatory cytokines, stimulates nuclear factor kappa-B- mediated transcription in hepatocytes in vitro. J Diabetes Complications. 2007 Jan-Feb; 21(1):56-62.).First, high concentrations of glucose activate transcription factors such as NF-κB, which promotes cell differentiation and accelerates the differentiation and growth cycle of cells capable of secreting insulin (Iwasaki Y, Kambayashi M). , Asai M, Yoshida M, Nigawara T, Hashimoto K. High glucose alone, as well as in combination with proinflammatory cytokines, stimulates nuclear factor kappa-B- mediated transcription in hepatocytes in vitro.J Diabetes Complications. 2007 Jan-Feb; 21 (1): 56-62.).
둘째, 글루코스에 의해 췌도 주변세포인 샘꽈리세포 및 췌관세포로부터 생성된 췌도에 의해 인슐린 분비의 증가로, 'PI3 Kinase' 및 'PI3Kinase'와 'MAPKinase pathway' 에 의해 발생하는 세포의 분화 및 성장이 촉진되어 인슐린을 분비할 수 있는 세포의 수율을 높일 수 있다(Pertseva MN, Shpakov AO, Plesneva SA, Kuznetsova LA. A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system. Comp Biochem Physiol B Biochem Mol Biol. 2003 Jan;134(1):11-36.; Amaral ME, Cunha DA, Anhe GF, Ueno M, Carneiro EM, Velloso LA, Bordin S, Boschero AC. Participation of prolactin receptors and phosphatidylinositol 3-kinase and MAP kinase pathways in the increase in pancreatic islet mass and sensitivity to glucose during pregnancy. J Endocrinol. 2004 Dec;183(3):469-76.).Second, the insulin secretion is increased by the pancreatic islets produced by periphery of pancreatic islet cells and the pancreatic duct cells by glucose, and the differentiation and growth of cells caused by 'PI3 Kinase' and 'PI3Kinase' and 'MAPKinase pathway' It can be promoted to increase the yield of cells capable of secreting insulin (Pertseva MN, Shpakov AO, Plesneva SA, Kuznetsova LA.A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system Comp Biochem Physiol B Biochem Mol Biol. 2003 Jan; 134 (1): 11-36 .; Amaral ME, Cunha DA, Anhe GF, Ueno M, Carneiro EM, Velloso LA, Bordin S, Boschero AC.Participation of prolactin receptors and phosphatidylinositol 3-kinase and MAP kinase pathways in the increase in pancreatic islet mass and sensitivity to glucose during pregnancy.J Endocrinol. 2004 Dec; 183 (3): 469-76.).
한편, 본 발명에서는 글루코스가 배양액에 최종 농도 기준으로 15~30mmol/ 첨가되는데, 15mmol/l 미만일 경우에는, 샘꽈리세포 또는 췌관세포의 분화 및 성장이 원활히 일어나지 않아 인슐린을 분비할 수 있는 세포의 분화 수율이 낮아지고, 30mmol/l를 초과하는 경우에는 효율성이 떨어지게 된다. On the other hand, in the present invention, the glucose is added to the culture medium based on the final concentration of 15 ~ 30mmol /, when less than 15mmol /, the differentiation and growth of the apoptotic cells or pancreatic duct cells does not occur smoothly the differentiation of cells that can secrete insulin The yield is lowered, and the efficiency is lowered if it exceeds 30 mmol / l.
한편, 본 발명에서 사용하는 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell)를 포함하는 세포 용액은 특정 방법에 의해 수득된 것에 한정되는 것은 아니나, 바람직하게 적출된 췌장에 콜라젠을 분해할 수 있는 효소를 처리하여 콜라젠을 분해함으로써 세포 간 결합을 끊어 주는 단계; 세포 간 결합을 끊어준 후, 췌도세포를 분리하여 제거하는 단계;를 포함하는 방법으로부터 수득된 것이 좋은데, 콜라젠을 분해할 수 있는 효소는 일예로 사람의 경우 과거에는 콜라 젠아제(Collagenase), 리버라제(Liberase) 등을 사용하였고 현재는 NP-1을 사용하며 마우스 등 동물인 경우 주로 콜라젠아제 P(collagenase P) 및 콜라젠아제(collagenase)를 사용한다. On the other hand, the cell solution containing the acinar cells (acinar cell) and the ductal cells (peripheral islet cells) used in the present invention is not limited to those obtained by a specific method, preferably collagen in the extracted pancreas Treating the enzymes capable of degrading the enzyme to break down the collagen, thereby breaking the intercellular binding; After breaking the intercellular binding, isolating islet cells is preferably obtained from a method comprising a, including, the enzyme that can degrade collagen, for example in the past in the case of human collagen (Collagenase), River Laase (Liberase), etc. were used, and now NP-1 is used, and in the case of animals such as mice, collagenase P (collagenase P) and collagenase (collagenase) are mainly used.
한편, 본 발명에서 사용하는 배양액에는 바람직하게 췌도세포(islet cell)를 포함하는 것이 좋은데, 이때, 샘꽈리세포(acinar cell), 췌관세포(ductal cell) 및 췌도세포(islet cell)을 포함하는 세포 용액은 가장 바람직하게 적출된 췌장에 콜라젠을 분해할 수 있는 효소를 처리하여 콜라젠을 분해함으로써 세포 간 결합을 끊어 주는 단계;를 포함하는 방법으로부터 수득된 것이 좋다. 또한, 샘꽈리세포(acinar cell), 췌관세포(ductal cell) 및 췌도세포(islet cell)을 포함하는 세포 용액은 가장 바람직하게 적출된 췌장에 콜라젠을 분해할 수 있는 효소를 처리하여 콜라젠을 분해함으로써 세포 간 결합을 끊어 주는 단계; 세포 간 결합을 끊어준 후, 췌도세포를 일부 분리하여 제거하는 단계; 를 포함하는 방법으로 수득된 것이 좋다.On the other hand, the culture medium used in the present invention preferably includes islet cells (islet cells), in this case, cells containing acinar cells (acinar cells), pancreatic cells (ductal cells) and islet cells (islet cells). The solution is most preferably obtained from a method comprising a step of breaking down the intercellular bonds by digesting the collagen by treating an enzyme capable of digesting collagen to the isolated pancreas. In addition, the cell solution including acinar cells, ductal cells and islet cells is most preferably treated with enzymes capable of degrading collagen in the isolated pancreas, thereby degrading collagen. Breaking intercellular binding; After breaking the intercellular binding, isolating and removing some of the islet cells; What is obtained by a method comprising a.
췌도 이식시 췌장에서 췌도를 분리한 후, 남은 잉여액은 버려지게 되는데, 잉여액에는 췌도세포 2~3%와 췌관세포(ductal cell) 및 샘꽈리세포(acinar cell)가 포함되어 있다. 따라서, 이와 같이 적출된 췌장에서 췌도세포를 일부 분리한 잉여액도 췌도세포, 췌관세포 및 샘꽈리세포를 함유하고 있기 때문에 본 발명에서 이용한 방법을 사용하여 분화시킨다.After the islets are isolated from the pancreas, the surplus is discarded. The surplus contains 2-3% of pancreatic islets, ductal cells, and acinar cells. Therefore, the surplus from which the pancreatic islets are partially separated from the pancreas thus removed also contains the islets, the pancreatic duct cells, and the sacrificial cells, which are differentiated using the method used in the present invention.
한편, 배아줄기세포(Embryonic stem cell) 또는 부정배체 배아줄기세포(Embryoid body)를 추가로 첨가하지 않는 상기 본 발명의 제1형태에 있어, 전체 총 배양 기간은 특정의 시간에 반드시 국한되는 것은 아니나, 분화 수율 및 경제적인 측면을 고려할 때, 3~6일인 것이 좋다. On the other hand, in the first aspect of the present invention without additionally adding embryonic stem cells or embryonic stem cells, the total total culture period is not necessarily limited to a specific time. Considering differentiation yield and economic aspects, it should be 3-6 days.
(2) 아포토시스(apoptosis)로 인한 세포사 문제의 해결(2) solving the problem of cell death due to apoptosis
본 발명은 본 발명의 제2형태로, 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell) 중 선택되는 어느 하나 이상을 포함하는 세포 용액에 배아줄기세포(Embryonic stem cell) 또는 부정배체 배아줄기세포(Embryoid body)를 첨가하고, 최종 농도 기준으로 혈청 15~25%, 글루코스 15~30mmol/l를 첨가하여 배양액을 조성한 후, 배양하는 것을 특징으로 하는 췌도 주변세포를 인슐린을 분비할 수 있는 세포로 분화시키는 방법을 제공한다. According to a second aspect of the present invention, an embryonic stem cell or an embryonic stem cell is contained in a cell solution containing any one or more selected from acinar cells and ductal cells. Embryonic stem cells (Embryoid body) is added, 15 ~ 25% serum, 15 ~ 30mmol / l of glucose is added to form a culture medium, and then cultured around the pancreatic islet, characterized in that the secretion of insulin Provided are methods for differentiating cells into cells.
이와 같이 배아줄기세포 또는 부정배체 배아줄기세포를 사용하는 것은 배아줄기세포 또는 부정배체 배아줄기세포의 트로픽 이펙트(trophic effect)를 이용하여 췌도 주변세포를 포함하는 세포용액으로부터 인슐린을 분비할 수 있는 세포로 분화되는 과정에 발생하는 아포토시스(apoptosis)를 감소시키기 위해서이다. As described above, the use of embryonic stem cells or maploid embryonic stem cells utilizes the trophic effect of embryonic stem cells or embryonic stem cells to allow insulin to secrete insulin from cell solutions including peripheral islet cells. To reduce apoptosis in the process of differentiation.
트로픽 이펙트(trophic effect)란 세포의 성장에 중요한 성장인자와 영양을 공급해주어 세포가 잘 자랄 수 있게 해주는 것을 말한다(Lu DP, Chandrakanthan V, Cahana A, Ishii S, O'Neill C. Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development. J Cell Sci. 2004 Mar 15;117(Pt 8):1567-76.).Tropic effects are those that provide growth factors and nutrients that are important for cell growth so that cells grow well (Lu DP, Chandrakanthan V, Cahana A, Ishii S, O'Neill C. Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development.J Cell Sci. 2004 Mar 15; 117 (Pt 8): 1567-76.).
한편, 본 발명의 제2형태에 있어, 췌도 주변세포인 샘꽈리세포(acinar cell) 및 췌관세포(ductal cell)를 포함하는 세포 용액은 바람직하게 본 발명의 제1형태와 마찬가지로 적출된 췌장에 콜라젠을 분해할 수 있는 효소를 처리하여 콜라젠을 분해함으로써 세포 간 결합을 끊어 주는 단계; 세포 간 결합을 끊어준 후, 췌도세포를 분리하여 제거하는 단계;를 포함하는 방법으로부터 수득되는 것을 사용할 수 있다. On the other hand, in the second aspect of the present invention, a cell solution containing acinar cells and ductal cells, which are peripheral cells of the islets, is preferably collagen in the pancreas extracted as in the first embodiment of the present invention. Treating the enzymes capable of degrading the enzyme to break down the collagen, thereby breaking the intercellular binding; After breaking the intercellular binding, the islets obtained from the method comprising; isolating and removing the islet cells.
또한, 본 발명의 제2형태에 있어, 배양액은 바람직하게 췌도세포(islet cell)을 포함하고 있는 것을 사용할 수 있다. 이때, 샘꽈리세포(acinar cell), 췌관세포(ductal cell) 및 췌도세포(islet cell)을 포함하는 세포 용액은 가장 바람직하게 적출된 췌장에 콜라젠을 분해할 수 있는 효소를 처리하여 콜라젠을 분해함으로써 세포 간 결합을 끊어 주는 단계;를 포함하는 방법으로부터 수득되는 것을 사용할 수 있다. 또한, 적출된 췌장에 콜라젠을 분해할 수 있는 효소를 처리하여 콜라젠을 분해함으로써 세포 간 결합을 끊어 주는 단계; 세포 간 결합을 끊어준 후, 췌도세포를 일부 분리하여 제거하는 단계; 를 포함하는 방법으로부터 수득되는 것을 사용할 수 있다.In addition, in the second aspect of the present invention, the culture medium may preferably be one containing islet cells. At this time, the cell solution including acinar cells, ductal cells and islet cells is most preferably treated with enzymes capable of degrading collagen in the isolated pancreas to decompose collagen. Breaking the intercellular binding; can be used to obtain from the method comprising a. In addition, by treating the extracted pancreas with an enzyme capable of degrading collagen to break down the intercellular binding by degrading collagen; After breaking the intercellular binding, isolating and removing some of the islet cells; What is obtained from the method containing can be used.
한편, 본 발명의 제2형태에 있어, 글로코스 농도는 배양하는 동안 바람직하게 초기 시작 농도인 15~30mmol/l에서 10~20mmol/l, 5.5~10mmol/l로 순차적으로 낮추는 것이 좋다.On the other hand, in the second aspect of the present invention, during the culturing, it is preferable to sequentially lower the initial concentration from 15 to 30 mmol / l to 10 to 20 mmol / l and 5.5 to 10 mmol / l.
한편, 본 발명의 제2형태에 있어, 총 배양 기간은 특정의 기간으로 반드시 한정되는 것은 아니나, 분화 수율 및 경제적인 측면을 고려하여 바람직하게는 7~15일 정도인 것이 좋다.On the other hand, in the second aspect of the present invention, the total culture period is not necessarily limited to a specific period, but preferably 7 to 15 days in consideration of differentiation yield and economic aspects.
한편, 본 발명의 제2형태에 있어, 배아줄기세포(Embryonic stem cell) 또는 부정배체 배아줄기세포(Embryoid body)를 첨가하는 시기는, 배양 기간 중 특정의 시기에 반드시 국한되는 것은 아니나, 바람직하게 배양 시작 시점부터 배양 시작 후 6일 이내의 임의 시점에 첨가하는 것이 좋다. On the other hand, in the second aspect of the present invention, the timing of adding embryonic stem cells or embryonic stem cells is not necessarily limited to a specific time period during the culture period, but preferably It is recommended to add at any time within 6 days after the start of the culture from the start of the culture.
상기에서 살펴본 바와 같이 본 발명의 췌도 주변세포를 인슐린을 분비할 수 있는 세포로 분화시키는 방법은 인슐린을 분비할 수 있는 세포의 분화 수율을 높이고, 세포 분화시 발생하는 세포사를 감소시킬 수 있기 때문에 부족한 췌도세포의 공급을 실질적으로 해결할 수 있는 효과를 발휘한다. As described above, the method of differentiating the peripheral islets of the present invention into cells capable of secreting insulin is insufficient because it can increase the differentiation yield of cells capable of secreting insulin and reduce cell death that occurs during cell differentiation. It is effective to substantially solve the supply of pancreatic islets.
또한, 폐기되던 췌도를 분리하고 남은 잉여 세포 용액으로부터 인슐린을 분비할 수 있는 세포를 분화시킬 수 있기 때문에 매우 경제적이다. In addition, it is very economical because it is possible to separate the discarded pancreatic islets and differentiate the cells capable of secreting insulin from the remaining excess cell solution.
이하, 본 발명의 내용에 대해 하기 실시예에서 더욱 상세히 설명하지만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 이와 등가의 기술적 사상의 변형까지를 포함한다. Hereinafter, the content of the present invention will be described in more detail in the following examples, but the scope of the present invention is not limited only to the following examples, and includes modifications of equivalent technical ideas.
실시예 1: 배아줄기 세포를 이용하지 않고Example 1 Without Embryonic Stem Cells 췌도 주변세포로부터 인슐린을 분비할 수 있는 세포를 분화Differentiate cells that can secrete insulin from peripheral islet cells
사람의 췌장(human pancreas)은 구하기가 어려운 관계로, 마우스의 췌장(mouse pancreas)을 사용하여 실험하였다.Since human pancreas is difficult to obtain, it was tested using mouse pancreas.
마우스 췌장에 콜라게나제P(collagenaseP(2mg/ml))를 3ml 정도 주사한 후, 췌장을 떼어내어 37℃에서 12분간 워터베스에서 효소를 활성화시켜 'digestion' 시켰다. 'islet gradient'를 이용하여 밀도 구배를 한 후, 췌도세포(islet; 도 3)와 췌도주변세포(ductal cell, acinar cell; 도 4)를 분리해 냈다.The mouse pancreas was injected with collagenase P (collagenase P (2mg / ml)) about 3ml, and then the pancreas was detached and activated by enzyme in water bath at 37 ° C. for 12 minutes to 'digestion'. After the density gradient using the 'islet gradient', islet cells (islet; FIG. 3) and peripheral cells (ductal cells, acinar cells; FIG. 4) were separated.
25mmol/l 글루코스(high glucose Dulbeccos modified Eagles medium; DMEM)와 와 20%의 혈청(fetal bovine serum; FBS; Gibco BRL, Gaithersburg, MD, http://www.gibcobrl.com), 0.55 mM ß-멜캅토에탄올(ß-mercaptoethanol), HEPES 버퍼, 100 units/ml 페니실린(penicillin), 100 μg/ml 스트렙토마이신(streptomycin), 100 μg/ml 비필수아미노산(nonessential amino acids) 조건의 'bacteria culture dish'내에서 췌도 주변세포를 4일간 배양하였다. 25 mmol / l glucose (high glucose Dulbeccos modified Eagles medium; DMEM) and 20% serum (fetal bovine serum; FBS; Gibco BRL, Gaithersburg, MD, http://www.gibcobrl.com), 0.55 mM ß-mel In 'bacteria culture dish' with ß-mercaptoethanol, HEPES buffer, 100 units / ml penicillin, 100 μg / ml streptomycin, 100 μg / ml nonessential amino acids Peripheral islet cells were cultured for 4 days.
4일 후, 췌도 주변세포들에서 분화된 인슐린을 분비할 수 있는 세포들을 확인하기 위해 'Dithizone staining을' 하였다. 'Dithizone Staining'은 인슐린 분비를 확인하는 데 사용되는 염색법으로서 인슐린이 분비될 때 나오는 아연(zinc)과 반응하여 붉은 색을 띈다. 측정 결과(도 1), 분화된 세포들로부터 인슐린이 분비되는 것을 확인할 수 있었다. 다만, 세포사가 증가하는 것이 관찰되었다. Four days later, 'dithizone staining' was performed to identify cells capable of secreting differentiated insulin from peripheral islets. 'Dithizone Staining' is a staining method used to check insulin secretion. It reacts with the zinc produced when insulin is secreted and turns red. As a result of the measurement (FIG. 1), it was confirmed that insulin was secreted from the differentiated cells. However, an increase in cell death was observed.
실시예 2: 사람 부정배체 배아줄기 세포를 첨가하여 췌도 주변세포로부터 인슐린을 분비할 수 있는 세포를 분화Example 2: Differentiating Cells That Can Secrete Insulin from Peripheral Islet Cells by Addition of Human Maltegrant Embryonic Stem Cells
사람의 췌장은 구하기가 어려운 관계로, 마우스의 췌장을 사용하였고, 췌도 주변 세포로부터 인슐린을 분비할 수 있는 세포로 분화과정 시, 세포사를 감소시키기 위해 배아줄기 세포를 사용하였는데, 이는 인간으로부터 유래한 것을 사용하였다.Since the human pancreas is difficult to obtain, mouse pancreas was used and embryonic stem cells were used to reduce cell death during differentiation into cells capable of secreting insulin from cells around the pancreatic islets. Was used.
마우스 췌장에 콜라게나제 P(collagenaseP(2mg/ml))를 3ml 정도 주사한 후, 췌장을 떼어내어 37℃에서 12분간 워터베스에서 효소를 활성화시켜 'digestion' 시켰다. 'islet gradient'를 이용하여 밀도구배를 한 후, 췌도세포(islet; 도 3)와 췌도주변세포(ductal cell, acinar cell; 도 4)를 분리해 냈다.Mouse pancreas was injected with collagenase P (collagenaseP (2mg / ml)) about 3ml, and then the pancreas was detached and activated by enzyme in water bath at 37 ° C for 12 minutes to 'digestion'. After the density gradient using the 'islet gradient', islet cells (islet; FIG. 3) and peripheral cells (ductal cells, acinar cells; FIG. 4) were separated.
25mmol/l 글루코스(high glucose Dulbeccos modified Eagles medium; DMEM)와 20%의 혈청(fetal bovine serum; FBS; Gibco BRL, Gaithersburg, MD, http://www.gibcobrl.com), 0.55mM ß-멜캅토에탄올(ß-mercaptoethanol), HEPES 버퍼, 100units/ml 페니실린(penicillin), 100 μg/ml 스트렙토마이신(streptomycin), 100μg/ml 비필수아미노산(nonessential amino acids) 조건의 'bacteria culture dish'내에서 췌도 주변세포와 사람부정 배체 배아줄기세포(human embryiod body; 도 5)를 섞어서 5일간 배양하였는데, 3일째, 마우스의 췌도주변세포와 사람 부정배체 배아줄기세포(human Embryoid body)사이에서 'cell cluster fusion'이 발생하는 것을 확인하였다(도 6).25 mmol / l glucose (high glucose Dulbeccos modified Eagles medium; DMEM) and 20% serum (fetal bovine serum; FBS; Gibco BRL, Gaithersburg, MD, http://www.gibcobrl.com), 0.55 mM ß-melcapto Around the pancreatic islets in a 'bacteria culture dish' with ethanol (ß-mercaptoethanol), HEPES buffer, 100 units / ml penicillin, 100 μg / ml streptomycin, 100 μg / ml nonessential amino acids The cells were mixed with human embryiod bodies (FIG. 5) and cultured for 5 days. On the third day, 'cell cluster fusion' was established between peripheral cells of the mouse and human embryoid bodies. It was confirmed that this occurred (Fig. 6).
5일 후, 20%의 혈청조건을 유지하면서 15.25 mmol/l 글루코스 조건으로 3일, 10.38 mmol/l 글루코스 조건으로 2일을 성숙기간을 가졌다. After 5 days, the maturation period was 3 days with 15.25 mmol / l glucose condition and 2 days with 10.38 mmol / l glucose condition while maintaining a serum condition of 20%.
실험예 1: 인슐린을 분비할 수 있는 세포의 수율 분석Experimental Example 1: Analysis of yield of cells capable of secreting insulin
본 실험예 1은 상기 실시예 1에서 분화된 세포의 수율을 분석하였다. Experimental Example 1 analyzed the yield of cells differentiated in Example 1.
25mmol/l 글루코스(high glucose Dulbeccos modified Eagles medium (DMEM))와 20%의 혈청(fetal bovine serum (FBS)), 0.55mM ß-멜캅토에탄올(ß-mercaptoethanol), HEPES 버퍼, 100units/ml 페니실린(penicillin), 100 μg/ml 스트렙토마이신(streptomycin), 100μg/ml 비필수아미노산(nonessential amino acids) 조건의 'bacteria culture dish'내에서 췌도 주변세포와 사람 부정배체 배아줄기세포를 섞어서 4 일간 배양한 후, ficoll을 이용하여 밀도 구배를 하였다. 이때 췌도 밀도(islet density)에 해당하는 영역에서 약 20%의 'transdifferentiated cell'이 분리가 되었고, 'dithizone staining'을 통해 인슐린(insulin)의 분비를 확인하였다.25 mmol / l glucose (high glucose Dulbeccos modified Eagles medium (DMEM)), 20% serum (fetal bovine serum (FBS)), 0.55 mM ß-mercaptoethanol, HEPES buffer, 100 units / ml penicillin ( penicillin), 100 μg / ml streptomycin and 100 μg / ml non-essential amino acids in a 'bacteria culture dish' mixed with surrounding peri-islet cells and human embryonic embryonic stem cells for 4 days , density gradient was performed using ficoll. At this time, about 20% of 'transdifferentiated cells' were separated in the region corresponding to the islet density, and the secretion of insulin was confirmed through 'dithizone staining'.
수율은 총 10번 측정하였고, 총 세포부피(cell volume)와 분리 후 세포 부피(cell volume)로 나타냈다. 수율 측정 결과(도 2), 3 ml의 총 부피 중 ficoll로 분리된 세포 부피(cell volume)가 0.6, 0.72, 0.42, 0.66, 0.54, 0.48, 0.6, 0.78, 0.66, 0.54 ml로, 약 20% 정도에 해당되는 부피가 측정되었고, 이것은 특히 'dithizone staining'에 의해 염색되는 양이었다.Yield was measured a total of 10 times, expressed as the total cell volume (cell volume) and the cell volume after separation. Yield measurement results (FIG. 2), the cell volume separated by ficoll in the total volume of 3 ml was 0.6, 0.72, 0.42, 0.66, 0.54, 0.48, 0.6, 0.78, 0.66, 0.54 ml, about 20% The volume corresponding to the degree was measured and this was especially the amount stained by 'dithizone staining'.
이는 송 등(Song KH et al.)의 논문에서 보고한 인슐린을 분비할 수 있는 세포의 수율 5%에 비해 현저히 상승된 것이다. This is a significant increase compared to the 5% yield of cells capable of secreting insulin, reported in a paper by Song KH et al.
실험예 2: 배아줄기 세포와 함께 배양한 췌도 주변세포로부터 분화된 세포의 인슐린 분비를 RT-PCR로 측정Experimental Example 2 Insulin Secretion of Differentiated Cells from Peripheral Islet Cells Cultured with Embryonic Stem Cells by RT-PCR
상기 실시예 2로부터 회수한 분화된 세포들로부터 인슐린이 분비되는지 RT-PCR을 통해 확인하였다. It was confirmed by RT-PCR whether insulin is secreted from the differentiated cells recovered from Example 2 above.
측정 결과(도 7), Insulin 1/Preproinsulin 1(도 7에서 좌측 레인), Insulin 2/Prproinsulin 2(도 7에서 우측 레인) 이 분화된 세포들로부터 나오는 것을 확인할 수 있었다. As a result of the measurement (FIG. 7), it was confirmed that Insulin 1 / Preproinsulin 1 (left lane in FIG. 7) and Insulin 2 / Prproinsulin 2 (right lane in FIG. 7) emerge from the differentiated cells.
실험예 3: 췌도 주변세포로부터 생성된 인슐린을 분비할 수 있는 세포의 이식Experimental Example 3 Transplantation of Cells capable of Secreting Insulin Produced from Peripheral Islet Cells
마우스나 동물에 당뇨를 유발하는 제제인 스트렙토조토신(streptozotocin, Sigma)을 이용하여 당뇨마우스를 만든 후, 상기 실시예 2에서 분화된 인슐린을 분비할 수 있는 세포들을 누드마우스(nude mouse)의 신장캡슐에 이식하였다. 인슐린을 분비할 수 있는 세포를 이식한 누드 마우스와 이식하지 않은 마우스(대조군)의 혈당을 측정한 결과(도 8), 대조군은 혈당이 줄지 않고, 18일에 걸쳐 모두 죽었지만, 분화된 인슐린을 분비할 수 있는 세포를 이식한 누드 마우스(nude mouse)는 점진적으로 혈당이 감소하는 것을 확인할 수 있었다.Diabetic mice were made using streptozotocin (Sigma), a drug that induces diabetes in mice or animals, and the cells capable of secreting insulin differentiated in Example 2 were given to kidneys of nude mice. Transplanted into capsules. As a result of measuring blood glucose of nude mice transplanted with cells capable of secreting insulin and non-transplanted mice (control) (FIG. 8), the control group did not reduce blood glucose and died all over 18 days, but differentiated insulin Nude mice implanted with secretory cells were found to gradually reduce blood glucose levels.
도 1은 배아 줄기 세포를 사용을 하지 않고, 췌도주변세포로부터 분화된 인슐린을 분비할 수 있는 세포를 'dithizone Staining'을 하여 인슐린 분비의 유무를 확인한 도이다. 1 is a diagram showing the presence or absence of insulin secretion by 'dithizone Staining' cells that can secrete insulin differentiated from peripheral cells of the pancreatic islets without using embryonic stem cells.
도 2는 인슐린을 분비할 수 있는 세포의 수율을 측정한 도이다. Figure 2 is a measure of the yield of cells capable of secreting insulin.
도 3은 췌도세포에 대한 사진도이다.3 is a photograph of pancreatic islets.
도 4는 췌도주변세포(ductal cell, acinar cell)에 대한 사진도이다.Figure 4 is a photograph of the peripheral cells (ductal cells, acinar cells).
도 5는 부정배체 배아줄기세포(embryoid body)에 대한 사진도이다.Figure 5 is a photograph of the embryonic embryonic stem cells (embryoid body).
도 6은 마우스의 췌도 주변세포(Mouse ductal cell, acinar cell)와 사람부정배체 배아줄기세포(human Embryoid body)를 함께 배양한 3일째에 췌도 주변세포와 사람부정 배체 배아 줄기 세포 사이에서 발생한 'cell cluster fusion'를 나타낸 사진도이다.FIG. 6 shows' cells generated between peripheral pancreatic islets and human negative embryonic stem cells on day 3 of culturing mouse ductal cells (acinar cells) and human embryoid bodies together. FIG. It is a photograph showing cluster fusion.
도 7은 췌도 주변세포(ductal cell, acinar cell)와 배아줄기세포를 함께 배양한 후, 분화된 세포로부터 인슐린의 분비를 RT-PCR로 측정한 것을 나타낸 도이다. FIG. 7 is a diagram showing that the secretion of insulin from differentiated cells was measured by RT-PCR after culturing together peripheral cells (ductal cells, acinar cells) and embryonic stem cells.
도 8은 췌도 주변세포(ductal cell, acinar cell)와 배아줄기세포를 함께 배양하여 생성된 인슐린을 분비할 수 있는 세포를 이식한 누드 마우스와 이식하지 않은 마우스(대조군)의 혈당을 측정한 도이다. FIG. 8 is a diagram illustrating blood glucose levels of nude mice transplanted with cells capable of secreting insulin generated by culturing peripheral cells (ductal cells, acinar cells) and embryonic stem cells together, and mice (control) without transplantation. .
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070117979 | 2007-11-19 | ||
KR20070117979 | 2007-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090051695A true KR20090051695A (en) | 2009-05-22 |
Family
ID=40667982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080112372A KR20090051695A (en) | 2007-11-19 | 2008-11-12 | Method of differentiation into cells producing insulin from islet-neighboring cell |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20090051695A (en) |
WO (1) | WO2009066922A2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004527249A (en) * | 2001-04-19 | 2004-09-09 | デヴェロゲン アクチエンゲゼルシャフト フュア エントヴィックルングスビオローギッシェ フォルシュング | Method of differentiating stem cells into insulin producing cells |
WO2003102134A2 (en) * | 2002-05-28 | 2003-12-11 | Becton, Dickinson And Company | Pancreatic acinar cells into insulin producing cells |
-
2008
- 2008-11-12 KR KR1020080112372A patent/KR20090051695A/en not_active Application Discontinuation
- 2008-11-18 WO PCT/KR2008/006796 patent/WO2009066922A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2009066922A2 (en) | 2009-05-28 |
WO2009066922A3 (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100907248B1 (en) | Transplantation of differentiated immature adipocytes and biodegradable scaffold for tissue augmentation | |
US20040132183A1 (en) | Methods and compositions for expanding and differentiating insulin-producing cells | |
Silva et al. | Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges | |
CZ2004696A3 (en) | Endocrine pancreas differentiation of adipose tissue-derived stromal cells and uses thereof | |
CN102899288B (en) | Method for constructing human islet-derived pancreatic stem cell line and method for differentiation of human islet-derived pancreatic stem cell line into insulin-producing cells | |
ES2377099T3 (en) | Cultured cells from pancreatic islets | |
CN101974488B (en) | Immortalized porcine pancreatic stem cell line and construction and differentiation methods thereof | |
US20150086518A1 (en) | Methods for generating pancreatic tissue | |
US20200199540A1 (en) | Enrichment of nkx6.1 and c-peptide co-expressing cells derived in vitro from stem cells | |
US20240124843A1 (en) | Functional feline pancreatic cells from adipose tissue | |
CN113528441B (en) | Rapid and efficient clinical-grade pigment epithelial cell induction method, kit and application | |
CN116574670B (en) | Method for inducing mesenchymal stem cells to differentiate into islet-like cells and application thereof | |
WO2006073692A2 (en) | Isolation and purification of human insulin producing cells for the treatment of insulin dependent diabetes | |
KR20090051695A (en) | Method of differentiation into cells producing insulin from islet-neighboring cell | |
KR20100053315A (en) | Method of differentiation into cells producing insulin from islet-neighboring cell | |
CN115044534B (en) | Method for producing islet beta cells in vitro by utilizing BMP7 factor, obtained islet beta cells and application | |
US20210324337A1 (en) | Generation of pancreatic progenitor cells and beta cells from human pluripotent stem cells | |
KR101792865B1 (en) | Method for inducing differentiation of pluripotent stem cell into insulin producing cells using co-culture with mature islet cells | |
CN115120600B (en) | Application of diosgenin and analogues thereof in preparing medicines for preventing or treating diabetes | |
CN109486770A (en) | A kind of microRNA-181c-5p promotion source of people iPS directed differentiation is the method for beta Cell of islet | |
KR20110009505A (en) | Method for production of artificial pancreas | |
EP2518141A1 (en) | Stem cells derived from the carotid body and uses thereof | |
Roche et al. | Generation of new islets from stem cells | |
Peng et al. | COMPARISON OF HUMAN (FOETAL) PRIMARY WITH HUMAN IPS CELL-DERIVED DOPAMINERGIC NEURON GRAFTS IN THE RAT MODEL FOR PARKINSON’S DISEASE | |
Peng | iPS cell therapy for Parkinson’s disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |