KR20090049656A - Process for preparing n-butanol - Google Patents

Process for preparing n-butanol Download PDF

Info

Publication number
KR20090049656A
KR20090049656A KR1020070115831A KR20070115831A KR20090049656A KR 20090049656 A KR20090049656 A KR 20090049656A KR 1020070115831 A KR1020070115831 A KR 1020070115831A KR 20070115831 A KR20070115831 A KR 20070115831A KR 20090049656 A KR20090049656 A KR 20090049656A
Authority
KR
South Korea
Prior art keywords
copper
catalyst
butanoic acid
butanol
producing
Prior art date
Application number
KR1020070115831A
Other languages
Korean (ko)
Other versions
KR100903008B1 (en
Inventor
이정호
장종산
황영규
김형록
송봉근
조광명
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020070115831A priority Critical patent/KR100903008B1/en
Publication of KR20090049656A publication Critical patent/KR20090049656A/en
Application granted granted Critical
Publication of KR100903008B1 publication Critical patent/KR100903008B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms

Abstract

본 발명은, 구리계 촉매를 사용하여 물을 사용하지 않는 반응 조건 하에서, n-부탄산을 단독으로 직접 기상 수소화시키거나 또는 무수 n-부탄산이나 n-부탄산의 n-부틸에스테르와 같은 부탄산 유도체를 함유한 n-부탄산을 직접 기상 수소화하는 공정에 있어서 부반응의 억제 하에 높은 선택성 및 높은 공간 수율로 n-부탄올을 제조할 수 있는 수소화 방법을 제공하는 것이다. 구체적으로, 본 발명은, 환원된 구리계 촉매 상에서 n-부탄산을 수소에 의하여 직접 기상 환원시키는 것을 포함하는, n-부탄올의 제조 방법으로서, 상기 환원형 구리계 촉매가, 실리카, 알루미나, 티타니아 및 산화아연으로 이루어진 군에서 선택되는 하나 이상의 희석제와 산화구리 성분의 복합 산화물을 환원시켜 수득된 구리계 촉매이거나, 또는 상기 촉매에 코발트, 아연, 망간, 루테늄, 레늄, 팔라듐, 백금, 은, 텔루륨, 셀레륨, 마그네슘 및 칼슘으로 이루어진 군에서 선택되는 하나 이상의 개량성분을 추가로 포함한 촉매로서, 산화구리 성분의 함량이 40~95wt%이고 산화구리 입자크기가 50nm 이하가 되도록 제조된 촉매이다.According to the present invention, a copper-based catalyst is used to directly vapor-phase hydrogenate n-butanoic acid alone or under a reaction condition that does not use water, or a part such as n-butyl ester of n-butanoic acid or n-butanoic anhydride In the process of directly gas-phase hydrogenation of n-butanoic acid containing a carbonic acid derivative, there is provided a hydrogenation method capable of producing n-butanol with high selectivity and high space yield under the suppression of side reactions. Specifically, the present invention is a method for producing n-butanol, comprising directly gas phase reduction of n-butanoic acid with hydrogen on a reduced copper-based catalyst, wherein the reduced-type copper-based catalyst is silica, alumina, titania. And a copper-based catalyst obtained by reducing a complex oxide of at least one diluent selected from the group consisting of zinc oxide and copper oxide, or cobalt, zinc, manganese, ruthenium, rhenium, palladium, platinum, silver, tellurium A catalyst further comprising at least one improved component selected from the group consisting of rulium, selenium, magnesium, and calcium, wherein the content of the copper oxide component is 40-95 wt% and the copper oxide particle size is 50 nm or less.

n-부탄산, n-부탄올, 바이오부탄올, 환원형 구리계 촉매 n-butanoic acid, n-butanol, biobutanol, reduced copper catalyst

Description

n―부탄올의 제조 방법 {PROCESS FOR PREPARING n-BUTANOL}Production method of n-butanol {PROCESS FOR PREPARING n-BUTANOL}

본 발명은 n-부탄산(n-butanoic acid)으로부터 n-부탄올(n-butanol)을 제조하는 방법에 관한 것으로, 자세하게는 제한된 특성을 갖는 구리계 촉매 하에서 n-부탄산을 직접 기상 수소화하여 n-부탄올을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing n-butanol from n-butanoic acid, and specifically, n-butanoic acid under direct catalytic gas phase hydrogenation under a copper-based catalyst having limited properties. It relates to a method for producing butanol.

석유자원의 고갈과 전 지구적인 환경 문제의 부각으로, 자동차 연료의 탈석유화를 위한 연구가 지속적으로 이루어져 왔고, 현재 바이오에탄올이 석유 대체 운송 연료로서 일부 국가에서 사용되고 있다. 한편, 바이오부탄올은 바이오에탄올이 갖는 자동차 부식이나 비점이 낮다는 문제 등이 없고, 또한 석유연료를 사용하는 자동차 시스템의 특별한 개조 없이도 사용할 수 있으며, 바이오에탄올에 비해서 부피기준 연료 효율이 높다는 점 등의 여러 장점을 갖는 연료이나, 바이오부탄올 제조 공정은 아직까지는 바이오에탄올 제조공정에 비해 수율 및 생산성이 낮으며, 경제적으로 제조할 수 있는 바이오공정이 개발되지 못하고 있다.Due to the depletion of petroleum resources and the rise of global environmental issues, research on the deoiling of automobile fuels has been continuously conducted, and bioethanol is currently used in some countries as an alternative fuel for transporting petroleum. On the other hand, biobutanol has no problems of corrosion or low boiling point of bioethanol, and can be used without special modification of automobile system using petroleum fuel, and has higher volumetric fuel efficiency than bioethanol. A fuel having a number of advantages, but the biobutanol manufacturing process is still low yield and productivity compared to the bioethanol manufacturing process, has not been developed a bio process that can be economically produced.

이에, 바이오부탄올 제조 공정의 한 가지 대안으로서, 자연 순환 자원인 바이오매스(biomass)로부터 바이오공정에 의해서 n-부탄산을 제조하고, n-부탄산을 촉매 화학적인 방법으로 환원시켜 n-부탄올을 제조하는 바이오-화학(bio-chem) 복 합 기술이 고려되고 있다.Accordingly, as an alternative to the biobutanol manufacturing process, n-butanoic acid is produced by bioprocessing from biomass, a natural circulation resource, and n-butanol is reduced by catalytic chemical method to reduce n-butanol. Bio-chem compounding techniques are being considered.

한편, 지금까지 n-부탄올은 석유화학 공정에서 프로필렌의 하이드로포밀화 (hydroformylation) 반응 후 수소화 반응을 통해 대량으로 제조되어 왔으며, 용매나 가소제, 아미노 레진, 부틸아민 등의 제조에 사용되고 있다.   Meanwhile, n-butanol has been produced in large quantities through a hydrogenation reaction after hydroformylation of propylene in a petrochemical process, and has been used in the manufacture of solvents, plasticizers, amino resins, butylamines, and the like.

n-부탄산과 같은 카르복실산 (carboxylic acid)을 환원 반응시켜 n-부탄올과 같은 일급 알콜을 제조하는 것은 화학적으로 용이한 반응이다. 그러나 이러한 화학적 환원 반응의 경우, 리튬알루미늄하이드라이드(LiAlH4)와 같은 고가의 강력한 환원제를 사용하여야 하기 때문에, 그러한 환원제를 사용하는 환원 반응은 n-부탄올과 같은 범용 일급 알콜을 공업적 규모로 대량 생산하는 데 적합하지 않다.It is a chemically easy reaction to produce a primary alcohol such as n-butanol by reducing a carboxylic acid such as n-butanoic acid. However, such chemical reduction reactions require the use of expensive and powerful reducing agents such as lithium aluminum hydride (LiAlH 4 ), so that reduction reactions using such reducing agents can be carried out on an industrial scale for general purpose primary alcohols such as n-butanol. Not suitable for production

한편, 일급 알콜을 공업적 규모로 생산하기 위하여 수소화 촉매 상에서 환원제로서 수소를 사용하는 수소화 반응이 사용되고 있다. 그러나 이러한 수소화 반응은 통상적으로 카르복실산의 직접 수소화에는 응용되지 못하고 있는데, 이것은 일반적으로 사용되고 있는 수소화 촉매가 반응물인 카르복실산에 용해되어 카르복실산의 존재 하에서 촉매활성을 장기간 유지하지 못하거나, 또는 촉매 성분이 카르복실산의 탈 카르본산화를 유발하여 카르복실산의 직접 수소화 반응은 선택성이 낮기 때문이다.On the other hand, a hydrogenation reaction using hydrogen as a reducing agent on a hydrogenation catalyst is used to produce a primary alcohol on an industrial scale. However, such a hydrogenation reaction is not usually applied to direct hydrogenation of carboxylic acid, which is generally used because the hydrogenation catalyst is dissolved in the reactant carboxylic acid to maintain the catalytic activity in the presence of carboxylic acid for a long time, Or because the catalyst component causes decarbonation of the carboxylic acid so that the direct hydrogenation of the carboxylic acid has low selectivity.

이에 따라, 대부분의 카르복실산 수소화 공정은 카르복실산을 메탄올이나 에탄올과 에스테르화 반응시키고, 이렇게 수득된 에스테르화물을 수소화 반응시켜 일급 알콜을 제조하는 2단계 방법으로 제조되고 있다 [예를 들어, 1,4-부탄디올은 말 레인산이나 무수말레인산과 메탄올 또는 에탄올과의 에스테르화물을 수소화 반응 시켜 제조되고 있다 (USP 6,100,410, USP 6,077,964, USP 5,981,769, USP 5,414,159, USP 5,334,779)].Accordingly, most of the carboxylic acid hydrogenation processes are prepared by a two-step process in which a carboxylic acid is esterified with methanol or ethanol, and the esterified product is hydrogenated to produce a primary alcohol [for example, 1,4-butanediol is prepared by hydrogenation of esters of maleic acid, maleic anhydride with methanol or ethanol (USP 6,100,410, USP 6,077,964, USP 5,981,769, USP 5,414,159, USP 5,334,779).

그러나 이러한 공정은 카르복실산을 수소화시키는데 있어서 에스테르화 반응 공정 및 에스테르화 반응에 사용되는 알콜의 회수, 정제 공정이 추가되어야하고, 수소화 반응 후에 미반응 에스테르화물을 회수, 정제하여야 하는 등 반응 공정이 복잡하게 되고, 또한 생산 비용 측면에서도 불리한 점 등의 문제가 있다.  However, such a process requires the addition of an esterification step, recovery of alcohol used for the esterification reaction, and purification step for hydrogenation of the carboxylic acid, and recovery and purification of unreacted esterified product after the hydrogenation reaction. There are problems such as complexity and disadvantages in terms of production cost.

이와 같은 문제점들 때문에 일급 알콜을 생산하는데 있어서 반응 공정을 단축시키기 위해 많은 연구가 이루어지고 있다.  Because of these problems, much research is being done to shorten the reaction process in producing primary alcohols.

예를 들어, USP 6,495,730 및 동 특허에 인용된 특허에는, 카르복실산에 비해 과량의 물이 공급되는 반응조건 하에서 말레인산이나 숙신산(Succinic acid)을 직접 수소화시켜 1,4-부탄디올을 제조하는 수소화 촉매계가 공지되어 있다 [루테늄-주석/활성탄소(activated carbon); 루테늄-철산화물; 루테늄-주석/ 티타늄 또는 알루미나; 루테늄-주석 및 알칼리금속이나 알칼리토금속에서 선택된 성분; 주석-루테늄, 플래티늄 및 로듐 중에서 선택된 성분; 루테늄-주석-플래티늄/활성탄소].  For example, US Pat. No. 6,495,730 and the patent cited in the patent disclose a hydrogenation catalyst system for producing 1,4-butanediol by directly hydrogenating maleic acid or succinic acid under reaction conditions in which excess water is supplied relative to carboxylic acid. Are known [ruthenium-tin / activated carbon; Ruthenium-iron oxide; Ruthenium-tin / titanium or alumina; Ruthenium-tin and a component selected from alkali metals or alkaline earth metals; A component selected from tin-ruthenium, platinum and rhodium; Ruthenium-tin-platinum / active carbon].

한편, USP 4,443,639 에서는 n-부탄산의 수소화 촉매로서 ARuDEOx(A = Zn, Cd, Ni 및 그들의 혼합물, E = Fe, Cu, Rh, Pd, Os, Ir, Pt 및 그들의 혼합물)의 루테늄계 촉매를 개시하고 있으며, 물이 존재하는 경우 n-부탄올이 얻어지나 물이 없는 경우 n-부탄산부틸(n-butyl butyrate)이 얻어지는 것을 예시하고 있다.On the other hand, in USP 4,443,639, ruthenium-based catalysts of ARuDEO x (A = Zn, Cd, Ni and mixtures thereof, E = Fe, Cu, Rh, Pd, Os, Ir, Pt and mixtures thereof) as hydrogenation catalysts of n-butanoic acid It discloses that n-butanol is obtained when water is present, but n-butyl butyrate is obtained when there is no water.

즉, 상기 종래 기술은 카르복실산으로부터 일급 알콜을 제조하기 위하여 과량의 물을 사용해야 하므로 (USP 4,443,639: 10wt% 산 수용액 사용) 폐수 발생량이 많고 에너지 사용 비용이 높아지며 또한 생산성이 낮고 (예, LHSV : 0.1hr-1 이하) 수소화 반응 압력이 높은 등의 문제점들이 있다.That is, the prior art requires the use of excess water to prepare a primary alcohol from carboxylic acid (USP 4,443,639: 10 wt% acid aqueous solution), which generates a large amount of waste water, high energy use costs, low productivity (e.g., LHSV: 0.1 hr -1 or less) There are problems such as high hydrogenation pressure.

이에 따라, n-부탄산의 수소화 반응에 의한 n-부탄올의 공업적 생산을 위한 경제적인 제조 공정 기술의 개발이 요구되고 있다.  Accordingly, there is a demand for the development of economical manufacturing process technology for the industrial production of n-butanol by hydrogenation of n-butanoic acid.

따라서, 본 발명의 목적은, 특정 촉매를 사용하여 물을 사용하지 않는 반응 조건 하에서, n-부탄산을 단독으로 직접 수소화시키거나 또는 무수 n-부탄산이나 n-부탄산의 n-부틸에스테르와 같은 부탄산 유도체를 함유한 n-부탄산을 수소화 하는 공정에 있어서, 부반응의 억제 하에 높은 선택성 및 높은 공간 수율로 n-부탄올을 제조할 수 있는 수소화 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to directly hydrogenate n-butanoic acid alone or to n-butyl esters of n-butanoic acid or n-butanoic acid under specific reaction conditions using no specific catalyst. In the process of hydrogenating n-butanoic acid containing the same butanoic acid derivative, it is to provide a hydrogenation method capable of producing n-butanol with high selectivity and high space yield under the inhibition of side reactions.

상기 목적을 달성하기 위해, 본 발명은 하기한 바와 같은 특정 조건을 만족하는 구리계 촉매 상에서 n-부탄산을 기상 수소화 반응에 의하여 직접 환원시킴을 특징으로 하는 n-부탄올의 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing n-butanol, characterized in that the n-butanoic acid is directly reduced by a gas phase hydrogenation reaction on a copper-based catalyst that satisfies specific conditions as described below.

본 발명에서, 구리계 촉매는 구리-실리카, 구리-알루미나, 구리-티타니아, 구리-산화아연, 구리-크롬계 등의 구리를 주성분으로 하는 모든 촉매를 의미한다.In the present invention, the copper-based catalyst means all catalysts mainly containing copper such as copper-silica, copper-alumina, copper-titania, copper-zinc oxide, and copper-chromium.

구체적으로, 본 발명은, 환원된 구리계 촉매 상에서 n-부탄산을 수소에 의하여 직접 기상 환원시키는 것을 포함하는 n-부탄올의 제조 방법으로서, 상기 환원형 구리계 촉매는, 실리카, 알루미나, 티타니아 및 산화아연으로 이루어진 군에서 선택되는 하나 이상의 희석제와 산화구리 성분의 복합 산화물을 환원시켜 수득된 구리계 촉매로서, 산화구리 성분의 함량이 40~95wt%이고, 산화구리 입자크기가 50nm 이하가 되도록 제조된 촉매이다.Specifically, the present invention is a method for producing n-butanol comprising directly gas-phase reduction of n-butanoic acid by hydrogen on a reduced copper-based catalyst, wherein the reduced-type copper-based catalyst includes silica, alumina, titania and A copper catalyst obtained by reducing a complex oxide of at least one diluent selected from a group consisting of zinc oxide and a copper oxide component, wherein the copper oxide component is 40 to 95 wt% and manufactured to have a copper oxide particle size of 50 nm or less. Catalyst.

상기 구리계 촉매는 코발트, 아연, 크롬, 망간, 루테늄, 레늄, 팔라듐, 백 금, 은, 텔루륨, 셀레륨, 마그네슘 및 칼슘으로 이루어진 군에서 선택되는 하나 이상의 개량 성분을 추가로 포함함으로써 개질될 수 있다.The copper-based catalyst can be modified by further including one or more refined components selected from the group consisting of cobalt, zinc, chromium, manganese, ruthenium, rhenium, palladium, platinum, silver, tellurium, selenium, magnesium and calcium. Can be.

또한, 상기 n-부탄올 제조 방법에서, 반응물로서 n-부탄산 단독 또는 n-부탄산 유도체를 함유하는 n-부탄산을 사용할 수 있다. Further, in the n-butanol production method, n-butanoic acid containing n-butanoic acid alone or n-butanoic acid derivatives may be used as a reactant.

본 발명의 n-부탄올 제조 방법에 의하여, 특정의 환원형 구리계 촉매를 사용하여 물을 사용하지 않는 반응 조건 하에서 n-부탄산을 단독으로 직접 수소화시키거나 또는 무수 n-부탄산이나 n-부탄산의 n-부틸에스테르와 같은 부탄산 유도체를 함유한 n-부탄산을 수소화함으로써 부반응을 억제하면서 높은 선택성 및 높은 공간 수율로 n-부탄올을 제조할 수 있으며, 따라서, n-부탄올이 경제적인 방법으로 제조될 수 있다.According to the process for producing n-butanol of the present invention, a specific reduced copper-based catalyst is used to directly hydrogenate n-butanoic acid alone or under reaction conditions without using water, or n-butanoic acid or n-part anhydride By hydrogenating n-butanoic acid containing butanoic acid derivatives such as n-butyl ester of carbonic acid, n-butanol can be produced with high selectivity and high space yield while suppressing side reactions, and thus n-butanol is an economical method. It can be prepared as.

일반적으로 유기 카르복실산이나 이들의 무수물 또는 에스테르화물을 수소화 반응시켜 알콜을 제조하는 반응에 있어서 반응조건은 반응압력을 높여서 적절한 반응속도를 얻고, 반응온도는 가능한 낮게 유지하는 것이 유리하다. 이것은, 생성물인 알콜이 높은 온도에서는 촉매 상에서 탈수되기 때문에 선택성이 저하되므로, 이와 같은 탈수 반응을 억제시켜 높은 수율로 목적물을 얻기 위해서는 반응온도를 낮게 유지할 필요가 있기 때문이다. 그러나 에스테르화물의 수소화인 경우에는 통상적으로 140~200℃의 반응온도에서 수소화가 진행되므로 상술한 바가 의미가 있으나, 본 발명의 대상 반응인 n-부탄산의 수소화 반응의 경우, n-부탄산의 카르복 실기와 환원촉매 성분인 금속 간의 강한 상호작용으로 인하여 카르복실산이 환원되는 반응온도는 에스테르화물에 비해 훨씬 높아진다. 또한, 적절한 반응속도를 얻기 위해서는 반응압력을 높게 유지할 필요가 있다. 이때, n-부탄산이 촉매와 액상으로 접촉되어 촉매성분이 유리되거나 또는 입자성장이 일어나 촉매가 비활성화되는 것을 피하기 위해서는 n-부탄산은 항상 기체 상태로 촉매와 접촉되도록 하여야 한다.In general, in the reaction for producing an alcohol by hydrogenation of an organic carboxylic acid or anhydrides or esterified substances thereof, it is advantageous to obtain an appropriate reaction rate by increasing the reaction pressure, and to keep the reaction temperature as low as possible. This is because the selectivity is lowered because the alcohol, which is a product, is dehydrated on the catalyst at a high temperature. Therefore, it is necessary to keep the reaction temperature low in order to suppress such dehydration reaction and obtain a target product in high yield. However, in the case of the hydrogenation of the esterification, since the hydrogenation usually proceeds at a reaction temperature of 140-200 ° C., the above-mentioned meaning is significant. Due to the strong interaction between the carboxyl group and the metal as a reducing catalyst, the reaction temperature at which the carboxylic acid is reduced is much higher than that of the esterified product. In addition, in order to obtain an appropriate reaction rate, it is necessary to keep the reaction pressure high. In this case, in order to avoid n-butanoic acid contacting the catalyst in a liquid phase to free the catalyst component or particle growth to deactivate the catalyst, the n-butanoic acid should always be in contact with the catalyst in a gaseous state.

따라서 고압 조건 하에서 n-부탄산이 기체 상태로 존재하기 위해서는 n-부탄산 대비 과량의 수소 흐름 조건을 유지해야하며, 이는 곧 짧은 접촉 시간 내에 n-부탄산의 수소화가 이루어질 수 있어야 한다는 것을 의미하고, 이를 만족시키기 위해서는 촉매가 고활성을 가져야 한다. 한편, 에너지 비용을 저감시키고 높은 수율로 목적물을 얻기 위해서는 반응 온도와 압력은 가능한 낮을수록 바람직할 것이다.Therefore, in order for n-butanoic acid to exist in the gas state under high pressure conditions, it is necessary to maintain an excess hydrogen flow condition compared to n-butanoic acid, which means that hydrogenation of n-butanoic acid can be achieved within a short contact time. To satisfy this, the catalyst must have high activity. On the other hand, in order to reduce the energy cost and obtain the target product in high yield, the reaction temperature and the pressure will be preferable as low as possible.

상술한 전제 조건하에서 n-부탄산의 기상 환원반응에 의하여 고수율 및 고생산성으로 n-부탄올을 제조하기 위해서, 본 발명의 구리계 촉매는 촉매 조성 중 산화구리 (구리 성분의 전구체)의 함량이 40~95wt%, 바람직하게는 50~90wt%이고, 또한, 산화구리의 입자크기가 50 nm 이하, 바람직하게는 30 nm 이하, 더욱 바람직하게는 20 nm 이하의 입자크기를 갖도록 제조된 촉매이어야 한다. 또한, 상기 구리 성분과 함께 희석제로서 실리카, 알루미나, 티타니아, 아연 등을 사용하는 데, 상기 희석제는 통상적인 촉매에서의 담체가 아니며 그 자체가 나노크기의 미세입자로서 구리 성분과 복합화됨으로써 미세 구리 입자의 입자 이동을 억제시켜, 촉매가 열안정성을 갖도록 하여야 한다.In order to produce n-butanol in high yield and high productivity by gas phase reduction of n-butanoic acid under the above-described preconditions, the copper-based catalyst of the present invention has a content of copper oxide (precursor of copper component) in the catalyst composition. 40 to 95 wt%, preferably 50 to 90 wt%, and should be a catalyst prepared to have a particle size of copper oxide of 50 nm or less, preferably 30 nm or less, more preferably 20 nm or less. . In addition, silica, alumina, titania, zinc, and the like are used as the diluent together with the copper component, which is not a carrier in a conventional catalyst and is itself a nano-sized microparticle which is complexed with the copper component to form fine copper particles. The particle migration of the catalyst should be suppressed to make the catalyst thermally stable.

이는 n-부탄산의 수소화 반응이 200~350℃, 바람직하게는 220~300℃의 반응온도에서 수행되는 반면에, 촉매 주성분인 미세구리 입자의 입자이동이 180℃정도에서 시작되는 것 [참고문헌 : Topics in Catalysis 8 (1999) 259]을 고려할 때 더욱 분명해진다. 따라서 본 발명 에서 사용되는 상기 촉매는 담지 방법으로 제조되는 경우 효율이 떨어지며, 복합화 효과를 얻기 위해서 공침법이나 졸-겔 방법으로 제조하는 것이 효율적이다.The hydrogenation of n-butanoic acid is carried out at a reaction temperature of 200 to 350 ° C., preferably 220 to 300 ° C., whereas the particle migration of the fine copper particles, which is the main component of the catalyst, starts at about 180 ° C. [Topic in Catalysis 8 (1999) 259]. Therefore, the catalyst used in the present invention is less efficient when prepared by the supporting method, it is efficient to prepare by the co-precipitation method or sol-gel method in order to obtain a compounding effect.

상기한 특성을 갖는 구리계 촉매 상에서 n-부탄산을 기상 수소화 반응시킬 경우, 상기 공지된 특허 문헌들에서 물을 필수적으로 사용하는 것과는 달리, 물을 사용하지 않고도 n-부탄산을 직접 수소화시켜 n-부탄올을 높은 생산성 및고수율로 수득할 수 있다.In the case of gas phase hydrogenation of n-butanoic acid on a copper-based catalyst having the above-described properties, unlike the use of water in the above-mentioned patent documents, it is necessary to directly hydrogenate n-butanoic acid without using water. Butanol can be obtained with high productivity and high yield.

본 발명에 있어서 촉매 상에서의 n-부탄산의 기상 수소화 조건은 상기한 반응 온도 이외에, 반응 압력은 5~70 기압, 바람직하게는 15~40 기압 하에서 실시되며, 압력이 낮을 경우 전환율이 낮고, 높을 경우 n-부탄산의 기상 상태 유지를 위해 과량의 수소를 사용해야 하므로 바람직하지 않다. 또한, H2/n-부탄산의 몰비는 10~200:1, 바람직하게는 20~150:1이며, 이보다 낮은 경우 n-부탄산의 기상 상태 유지가 어렵고, 이보다 높을 경우 과량의 수소를 회수, 재사용해야 하므로 바람직하지 않다. n-부탄산의 공급속도(LHSV)는 0.05~5hr-1, 바람직하게는 0.2~2hr-1이다.In the present invention, the gaseous hydrogenation conditions of n-butanoic acid on the catalyst are carried out under a reaction pressure of 5 to 70 atm, preferably 15 to 40 atm, in addition to the above reaction temperature, and when the pressure is low, the conversion rate is low and high. It is not preferable to use excess hydrogen to maintain the gaseous state of n-butanoic acid. In addition, the molar ratio of H 2 / n-butanoic acid is 10 to 200: 1, preferably 20 to 150: 1, and when it is lower than this, it is difficult to maintain the gaseous state of n-butanoic acid, and when higher than this, excess hydrogen is recovered. This is undesirable because it must be reused. a feed rate (LHSV) of n- butanoic acid is 0.05 ~ 5hr -1, preferably 0.2 ~ 2hr -1.

본 발명에 있어서, 바람직한 촉매는 n-부탄산의 수소화 반응이 200℃ 이상, 상세하게는 220~300℃에서 수행됨을 고려할 때, 생성물인 n-부탄올의 탈수반응을 억제하여 고선택성을 얻기 위해서는 촉매가 중성 특성을 갖는 것이 바람직하고, 이런 점에서 상기한 구리계 촉매에서 희석제가 나노입자의 실리카로 구성된 구리-실리카 복합계 촉매가 본 발명 목적을 달성시키는데 효과적이다.In the present invention, the preferred catalyst is a catalyst for obtaining high selectivity by inhibiting dehydration of n-butanol as a product, considering that the hydrogenation of n-butanoic acid is performed at 200 ° C. or higher, in particular at 220 to 300 ° C. It is desirable to have weighting properties, and in this regard, a copper-silica composite catalyst in which the diluent is composed of silica of nanoparticles is effective in achieving the object of the present invention.

더욱 바람직하게는 구리 성분과 함께 수소화 능력을 증가시키고 또한 탈카복실화를 억제시키기 위해서 개량 성분으로서 코발트, 아연, 크롬, 망간, 루테늄, 레늄, 팔라듐, 백금, 은, 텔루륨, 셀레륨, 마그네슘 및 칼슘 등의 성분들 중에서 적어도 하나 이상의 성분으로 개질된 (modified) 촉매가 더욱 효과적이다. 상기 개량제 성분은 산화구리 함량에 대해서 20 wt% 이하로 사용하는 것이 바람직하며, 과량 사용시 촉매성능이 오히려 떨어진다.More preferably cobalt, zinc, chromium, manganese, ruthenium, rhenium, palladium, platinum, silver, tellurium, selenium, magnesium and Catalysts modified with at least one of the components, such as calcium, are more effective. The modifier component is based on the copper oxide content It is preferable to use it at 20 wt% or less, and the catalyst performance is rather poor when used in excess.

본 발명의 n-부탄올 제조 방법에 있어서, 반응물은 본 발명 목적상 n-부탄산을 단독으로 사용할 수 있으나 n-부탄산과 함께 n-부탄산으로부터 유도되는 무수 n-부탄산이나 n-부탄산의 부틸에스테르를 혼합하여 공급되는 경우도 본 발명의 범위에 포함된다.In the n-butanol preparation method of the present invention, the reactant may be used alone n-butanoic acid for the purpose of the present invention, but the n-butanoic acid or n-butanoic acid derived from n-butanoic acid together with n-butanoic acid The case where the butyl ester is mixed and supplied is also included in the scope of the present invention.

본 발명의 n-부탄올 제조 방법에 있어서, 촉매는 통상적으로 산화물 형태로 제조되어 반응기에 충진되며, 환원 반응을 실시하기 전에 질소로 희석된 수소 기체의 흐름 하에서 250~300℃까지 승온하여 환원시키는 활성화 과정을 거친다.In the n-butanol production method of the present invention, the catalyst is usually prepared in the form of an oxide and filled in the reactor, and the activation is reduced by raising the temperature to 250 to 300 ° C. under a stream of hydrogen gas diluted with nitrogen before carrying out the reduction reaction. Go through the process.

이하, 실시예를 통하여 본 발명을 좀더 자세히 설명한다. 그러나, 본 발명 의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to the following examples.

본원에서 촉매의 각 성분의 함량에 있어서 다른 표시가 없는 경우 중량% (wt%)를 의미한다.By weight herein (wt%) is used unless otherwise indicated in the content of each component of the catalyst.

[[ 실시예Example ]]

실시예Example 1  One

촉매: CuO(80)SiO2(20)Catalyst: CuO (80) SiO 2 (20)

탈이온수 200ml에 질산구리[Cu(NO3)2·3H2O] 50g을 용해시킨 용액 A를 준비하였다. 탈이온수 100ml에 수산화나트륨 수용액을 가해 pH를 9.2로 맞추고 여기에 콜로이달 실리카 Ludox SM-30 13.75g을 가한 용액 B를 준비하고, 탈이온수 200ml에 수산화나트륨 16.6g을 용해시킨 용액 C를 준비하였다. 교반기가 부착된 반응기에서 용액 A,B, 및 C를 동시에 적가하여 20℃ 이하에서 침전 과정을 수행한다. 이 후, 수득된 슬러리 용액을 85℃로 가온한 상태에서 6시간 동안 수열 숙성 시켰다. 수득된 슬러리를 탈이온수로 충분히 세척, 여과하고, 얻어진 케익 (cake)을 120℃에서 12시간 동안 건조한 뒤, 분말화하였다.Solution A was prepared by dissolving 50 g of copper nitrate [Cu (NO 3 ) 2 .3H 2 O] in 200 ml of deionized water. Aqueous solution of sodium hydroxide was added to 100 ml of deionized water to adjust the pH to 9.2, and solution B in which 13.75 g of colloidal silica Ludox SM-30 was added thereto was prepared, and solution C was prepared by dissolving 16.6 g of sodium hydroxide in 200 ml of deionized water. In the reactor to which the stirrer is attached, solutions A, B, and C are simultaneously added dropwise to carry out the precipitation process at 20 ° C. or lower. Thereafter, the obtained slurry solution was hydrothermally aged for 6 hours while being heated to 85 ° C. The resulting slurry was washed with deionized water sufficiently, filtered and the cake obtained was dried at 120 ° C. for 12 hours and then powdered.

상기 수득된 분말을 가압 성형 후 20~40메쉬 크기로 파쇄, 분별 후 600℃에서 6시간 동안 소성하여 산화물 상태의 촉매를 얻었다. 상기 촉매의 산화구리 입자 크기는 X-선 회절기 선폭 넓힘 방법(XRD line broading method)에 의해 측정한 결과 4nm 이었다. 위 촉매 1.0g을 튜브형반응기(ID=7mm)에 충전시키고 5% H2 함유 N2 가스를 흘려보내면서 280℃까지 승온하여 촉매를 활성화시켰다. 이 후, 반응기 온도와 압력을 265℃, 370psi로 맞추고 130ml/min의 수소기체 흐름 하에서 n-부탄산을 0.9cc/hr 속도로 공급하면서 반응을 수행하였다. 반응개시 24시간 뒤의 반응 결과는 n-부탄산 전환율 99.9%에 n-부탄올 선택율는 94.3%이었고 n-부탄산 부틸의 선택율는 3.2%이었다.The powder obtained was crushed to a size of 20 to 40 mesh after pressure molding, and then calcined at 600 ° C. for 6 hours to obtain an oxide catalyst. The copper oxide particle size of the catalyst was 4 nm, as measured by the XRD line broading method. 1.0 g of the catalyst was charged in a tubular reactor (ID = 7 mm) and heated to 280 ° C. while flowing N 2 gas containing 5% H 2 to activate the catalyst. Thereafter, the reactor temperature and pressure were adjusted to 265 ° C. and 370 psi, and the reaction was performed while supplying n-butanoic acid at a rate of 0.9 cc / hr under a hydrogen gas flow of 130 ml / min. 24 hours after the initiation of the reaction, the conversion rate of n-butanoic acid was 99.9%, the selectivity of n-butanol was 94.3%, and the selectivity of butyl n-butanoic acid was 3.2%.

실시예Example 2 2

촉매: CuO(80)-ZnO(20)Catalyst: CuO (80) -ZnO (20)

탈이온수 200ml에 질산구리[Cu(NO3)2·3H2O] 50g과 질산아연[Zn(NO3)2·6H2O] 15.05g을 용해시킨 용액 A와 탈이온수 200ml에 수산화나트륨 20.6g을 녹인 용액 B를 준비하였다. 교반기가 부착된 반응기에 용액 A와 B를 동시에 적가하여 공침과정을 수행하였다. 이 후의 과정은 실시예 1에서와 같으며, 촉매는 450℃에서 6시간 동안 소성하여 산화물 상태의 촉매를 얻었다. 상기 촉매를 XRD 선폭 넓힘 방법에 의해 측정한 결과 산화구리의 입자크기는 12nm 이었다.50 g of copper nitrate [Cu (NO 3 ) 2 · 3H 2 O] and 15.05 g of zinc nitrate [Zn (NO 3 ) 2 · 6H 2 O] were dissolved in 200 ml of deionized water and 20.6 g of sodium hydroxide in 200 ml of deionized water. To prepare a solution B in which was dissolved. Co-precipitation was performed by dropwise adding solutions A and B to the reactor to which the stirrer was attached. The subsequent procedure was the same as in Example 1, and the catalyst was calcined at 450 ° C. for 6 hours to obtain an oxide catalyst. The particle size of the copper oxide was 12 nm as measured by the XRD line broadening method.

상기 촉매 1.0g을 튜브형 반응기에 충전한 후 실시예 1에서와 같은 방법으로 활성화 시킨 뒤, 동일한 반응 조건 하에서 반응을 실시하였다. 반응개시 24시간 뒤 반응성은 n-부탄산 전환율 98.2%에 n-부탄올의 선택율은 81.5%이었고, n-부탄산 부틸의 선택율이 18.2%이었다.1.0 g of the catalyst was charged in a tubular reactor and activated in the same manner as in Example 1, followed by reaction under the same reaction conditions. 24 hours after the start of the reaction, the reactivity was 98.2% in n-butanoic acid conversion, 81.5% in n-butanol, and 18.2% in butyl n-butanoic acid.

실시예Example 3 3

촉매: CuO(80)SiO2(10)TiO2(10)Catalyst: CuO (80) SiO 2 (10) TiO 2 (10)

상기 촉매를 실시예 1에서와 같은 방법으로 제조하였다. 다만 TiO2 성분은 전구체로서 티타늄(Ⅳ) 이소프로폭사이드 [Titanium(Ⅳ) isopropoxide]를 사용하였고, 이것을 이소프로판올에 용해시켜 사용하였다. 600℃에서 소성한 상기 촉매의 산화구리 입자크기는 15nm 이었다. 상기 촉매 1.0g을 튜브형 반응기에 충전시키고 실시예 1에서와 동일한 방법으로 활성화시키고, 동일 조건에서 반응을 실시하였다. 반응개시 24시간 뒤의 반응 결과는 n-부탄산 전환율 99.9%에 n-부탄올의 선택율은 94.5%, n-부탄산 부틸의 선택율은 1.3% 이었다.The catalyst was prepared in the same manner as in Example 1. However, TiO 2 was used as a precursor of titanium (IV) isopropoxide [Titanium (IV) isopropoxide], which was dissolved in isopropanol. The copper oxide particle size of the catalyst calcined at 600 ° C. was 15 nm. 1.0 g of the catalyst was charged to a tubular reactor and activated in the same manner as in Example 1, and the reaction was carried out under the same conditions. 24 hours after the initiation of the reaction, the conversion rate was 99.9%, the selectivity of n-butanol was 94.5%, and the selectivity of butyl n-butanoate was 1.3%.

실시예Example 4 4

촉매: CuO(80.4)CoO(3.0)ZnO(0.2)CaO(0.2)MgO(0.2)TeO2(0.02)SiO2(16.0)Catalyst: CuO (80.4) CoO (3.0) ZnO (0.2) CaO (0.2) MgO (0.2) TeO 2 (0.02) SiO 2 (16.0)

탈이온수 200ml에 질산구리[Cu(NO3)2·3H2O] 50g, 질산코발트[Co(NO3)2·3H2O] 2.3g, 질산아연[Zn(NO3)2·3H2O] 0.15g을 용해시켜 용액 A를 준비하였다. 탈이온수 100ml에 수산화나트륨 수용액을 가해 pH를 9.2로 맞추고, 여기에 콜로이달 실리카 Ludox SM-30 11g을 가한 용액 B를 준비하고 탈이온수 200ml에 수산화나트륨 17.3g을 녹인 용액 C를 준비하였다. 교반기가 부착된 반응기에 용액 A,B, 및 C를 동시에 적가하여 20℃ 이하에서 공침과정을 수행하였다. 이 때, 용액 C의 적가속 도를 조절하여 pH를 맞추고, 공침 완료 후 슬러리액의 최종 pH를 9.30로 맞추었다. 이 후, 85℃에서 6시간 동안 수열 숙성시킨 후, 수득된 슬러리를 탈이온수로 충분히 세척하고, 여과한 뒤 침전물을 회수하였다. 상기 수득된 케익에 0.13g 초산칼슘[Ca(OAc)2·H2O]과 0.22g 초산 마그네슘[Mg(OAc)2·4H2O] 및 텔루륨산[Te(OH)6] 0.006g을 탈이온수에 녹인 용액을 가하고 혼합시킨 뒤 120℃에서 12시간동안 건조시킨 후 분말화하였다. 분말을 가압 성형 후 20~40메쉬 크기로 파쇄, 분별 후 600℃에서 5시간동안 소성하여 산화물 상태의 촉매를 얻었다. 상기 촉매의 산화구리 입자크기는 X-선 회절기 선폭 넓힘 방법에 의해 측정한 결과 5.6nm 이었다.50 g of copper nitrate [Cu (NO 3 ) 2 .3H 2 O] in 200 ml of deionized water, 2.3 g of cobalt nitrate [Co (NO 3 ) 2 .3H 2 O], zinc nitrate [Zn (NO 3 ) 2 .3H 2 O Solution A was prepared by dissolving 0.15 g. Aqueous solution of sodium hydroxide was added to 100 ml of deionized water to adjust the pH to 9.2, and solution B in which 11 g of colloidal silica Ludox SM-30 was added thereto was prepared, and solution C in which 17.3 g of sodium hydroxide was dissolved in 200 ml of deionized water was prepared. The solution A, B, and C were simultaneously added dropwise to the reactor to which the stirrer was attached, and coprecipitation was performed at 20 ° C. or lower. At this time, the pH was adjusted by adjusting the acceleration rate of the solution C, and the final pH of the slurry solution was adjusted to 9.30 after completion of coprecipitation. Thereafter, after hydrothermal aging at 85 ° C. for 6 hours, the resulting slurry was sufficiently washed with deionized water, filtered and the precipitate was recovered. To the cake obtained, 0.13 g calcium acetate [Ca (OAc) 2 H 2 O], 0.22 g magnesium acetate [Mg (OAc) 2 4H 2 O] and telluric acid [Te (OH) 6 ] 0.006 g were removed. The solution dissolved in deionized water was added, mixed, dried at 120 ° C. for 12 hours, and then powdered. The powder was crushed to a size of 20 to 40 mesh after pressure molding, and fractionated and calcined at 600 ° C. for 5 hours to obtain an oxide catalyst. The copper oxide particle size of the catalyst was 5.6 nm as measured by the X-ray diffraction line broadening method.

상기 촉매 1.0g을 튜브형 반응기에 충전시키고 실시예 1에서와 같은 방법으로 활성화시킨 뒤 동일한 반응 조건에서 반응을 실시하였다. 반응개시 24시간 뒤의 반응 결과는 n-부탄산 전환율 100%에 n-부탄올의 선택율은 96.2%, n-부탄산 부틸의 선택율은 1.4% 이었다.1.0 g of the catalyst was charged to a tubular reactor, activated in the same manner as in Example 1, and then reacted under the same reaction conditions. 24 hours after the start of the reaction, the conversion of n-butanoic acid was 100%, the selectivity of n-butanol was 96.2%, and the selectivity of butyl n-butanoic acid was 1.4%.

실시예Example 5 5

실시예 1에서 반응물로서 n-부틸산 대신에 n-부틸산:무수부틸산=50:50(w/w)을 사용한 것을 제외하고는 동일하다.The same procedure was followed in Example 1 except that n-butyl acid: butyl anhydride = 50: 50 (w / w) was used instead of n-butyl acid as the reactant.

반응개시 24시간 뒤의 반응결과는 n-부탄산 전환율100%이었고 n-부탄올의 선택율은 96.0%, n-부탄산 부틸의 선택율은 1.2% 이었다.24 hours after the initiation of the reaction, the conversion of n-butanoic acid was 100%, the selectivity of n-butanol was 96.0%, and the selectivity of butyl n-butanoate was 1.2%.

Claims (10)

구리계 촉매 상에서 n-부탄산을 수소에 의하여 직접 기상 환원시키는 것을 포함하는, n-부탄올의 제조 방법으로서,A process for producing n-butanol, comprising directly gas-reducing n-butanoic acid with hydrogen on a copper catalyst. 상기 구리계 촉매는, 산화구리 성분과, 실리카, 알루미나, 티타니아 및 산화아연으로 이루어진 군에서 선택되는 하나 이상의 희석제의 복합산화물을 환원시켜 수득되며, 상기 촉매 중 상기 산화구리 성분의 함량이 40~95 wt%이고, 상기 산화구리의 입자의 크기가 50 nm 이하인 것을 특징으로 하는, n-부탄올의 제조 방법.The copper-based catalyst is obtained by reducing a composite oxide of a copper oxide component and at least one diluent selected from the group consisting of silica, alumina, titania and zinc oxide, and the content of the copper oxide component in the catalyst is 40 to 95. wt% and the particle size of the copper oxide is 50 nm or less, characterized in that the manufacturing method of n-butanol. 제 1 항에 있어서, 상기 촉매가, 코발트, 아연, 크롬, 망간, 루테늄, 레늄, 팔라듐, 백금, 은, 텔루륨, 셀레륨, 마그네슘 및 칼슘으로 이루어진 군에서 선택되는 하나 이상의 개량 성분을 추가로 포함함으로써 개질된 것임을 특징으로 하는, n-부탄올의 제조 방법.The method of claim 1, wherein the catalyst further comprises at least one improved component selected from the group consisting of cobalt, zinc, chromium, manganese, ruthenium, rhenium, palladium, platinum, silver, tellurium, selenium, magnesium and calcium. Characterized in that it is modified by including, a process for producing n-butanol. 제 1 항 또는 제 2 항에 있어서, 상기 촉매가 환원형 구리-실리카계 촉매인 것을 특징으로 하는, n-부탄올의 제조 방법.The method for producing n-butanol according to claim 1 or 2, wherein the catalyst is a reduced copper-silica catalyst. 제 1 항 또는 제 2 항에 있어서, 촉매 조성 중 산화구리 성분의 함량이 50~90 wt%인 것을 특징으로 하는, n-부탄올의 제조 방법.The method for producing n-butanol according to claim 1 or 2, wherein the content of the copper oxide component in the catalyst composition is 50 to 90 wt%. 제 1 항 또는 제 2 항에 있어서, n-부탄산이 220~300℃의 반응 온도 및 5~70 기압의 반응 압력에서 기상 환원되는 것을 특징으로 하는, n-부탄올의 제조 방법.The process for producing n-butanol according to claim 1 or 2, wherein the n-butanoic acid is gas phase reduced at a reaction temperature of 220 to 300 ° C and a reaction pressure of 5 to 70 atm. 제 1 항 또는 제 2 항에 있어서, 수소(H2)/n-부탄산의 몰비가 10~200:1 인 것을 특징으로 하는, n-부탄올의 제조 방법.The method for producing n-butanol according to claim 1 or 2, wherein the molar ratio of hydrogen (H 2 ) / n-butanoic acid is 10 to 200: 1. 제 6 항에 있어서, 수소(H2)/n-부탄산의 몰비가 20~150:1 인 것을 특징으로 하는, n-부탄올의 제조 방법.The method for producing n-butanol according to claim 6, wherein the molar ratio of hydrogen (H 2 ) / n-butanoic acid is 20 to 150: 1. 제 1 항 또는 제 2 항에 있어서, n-부탄산의 공급속도(LHSV)가 0.05~5 hr-1인 것을 특징으로 하는, n-부탄올의 제조 방법.The process for producing n-butanol according to claim 1 or 2, wherein the feed rate (LHSV) of n-butanoic acid is 0.05 to 5 hr −1 . 제 2 항에 있어서, 상기 개량 성분의 함량이 산화구리 함량에 대하여 20 wt% 이하인 것을 특징으로 하는, n-부탄올의 제조 방법.The method for producing n-butanol according to claim 2, wherein the content of the improved component is 20 wt% or less with respect to the copper oxide content. 제 1 항 또는 제 2 항에 있어서, 상기 구리계 촉매를 제조하기 위한 복합 산화물을 질소로 희석된 수소 기체의 흐름 하 250~300℃ 온도에서 환원시켜 활성화시키는 것을 특징으로 하는, n-부탄올의 제조 방법.The preparation of n-butanol according to claim 1 or 2, wherein the complex oxide for preparing the copper-based catalyst is reduced and activated at a temperature of 250 to 300 ° C under a flow of hydrogen gas diluted with nitrogen. Way.
KR1020070115831A 2007-11-14 2007-11-14 PROCESS FOR PREPARING n-BUTANOL KR100903008B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070115831A KR100903008B1 (en) 2007-11-14 2007-11-14 PROCESS FOR PREPARING n-BUTANOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070115831A KR100903008B1 (en) 2007-11-14 2007-11-14 PROCESS FOR PREPARING n-BUTANOL

Publications (2)

Publication Number Publication Date
KR20090049656A true KR20090049656A (en) 2009-05-19
KR100903008B1 KR100903008B1 (en) 2009-06-17

Family

ID=40858307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070115831A KR100903008B1 (en) 2007-11-14 2007-11-14 PROCESS FOR PREPARING n-BUTANOL

Country Status (1)

Country Link
KR (1) KR100903008B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132957A2 (en) 2010-04-21 2011-10-27 에스케이이노베이션주식회사 Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588848A (en) * 1984-11-01 1986-05-13 Air Products And Chemicals, Inc. Synthesis of neoalkanols
EP0689477B1 (en) * 1994-01-20 1998-10-28 Kao Corporation Method for preparing copper-containing hydrogenation reaction catalyst and method for producing alcohol
JP3754464B2 (en) * 1994-07-01 2006-03-15 出光興産株式会社 Carboxylic acid hydrogenation process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132957A2 (en) 2010-04-21 2011-10-27 에스케이이노베이션주식회사 Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
US8518853B2 (en) 2010-04-21 2013-08-27 Sk Innovation Co., Ltd. Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid

Also Published As

Publication number Publication date
KR100903008B1 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
KR100922998B1 (en) Process for preparing monohydric alcohols from monocarboxylic acids or derivatives thereof
Wang et al. Catalytic hydrogenolysis of glycerol to propanediols: a review
Zhao et al. Hydrogenolysis of glycerol to 1, 2-propanediol over Cu-based catalysts: A short review
US8518853B2 (en) Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
Etim et al. Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media
Li et al. Construction of mesoporous Cu/ZrO2-Al2O3 as a ternary catalyst for efficient synthesis of γ-valerolactone from levulinic acid at low temperature
EP0523818B2 (en) Hydrogenation process
KR101231615B1 (en) Preparation of cyclic compounds from C4-C6 organic acid
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
Abd Hamid et al. Nanoscale Pd-based catalysts for selective oxidation of glycerol with molecular oxygen: structure–activity correlations
Tian et al. Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
KR100903008B1 (en) PROCESS FOR PREPARING n-BUTANOL
KR101177565B1 (en) Process for producing pure butanol
JP3885139B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
EA015831B1 (en) Fischer-tropsch process
CN113856688B (en) For CO 2 Preparation method of Cu-based catalyst for preparing methanol by hydrogenation
Gundekari et al. In situ Generated Ru (0)-HRO@ Na-β From Hydrous Ruthenium Oxide (HRO)/Na-β: An Energy-Efficient Catalyst for Selective Hydrogenation of Sugars
CN113908841A (en) Application of Cu-based catalyst in preparation of pentanediol through furfuryl alcohol hydrogenolysis
CN114433097A (en) Copper-containing catalyst and preparation method and application thereof
JP3873964B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
Rodiansono et al. Effect of Precursor and Temperature Annealing on the Catalytic Activity of Intermetallic Ni3Sn2 Alloy
JP7332871B2 (en) Methanol production method and methanol production catalyst
JP2004034021A (en) Hydrogenation catalyst, and method for producing 1,3-propanediol by using the catalyst
EP3769837A1 (en) Co-precipitation method and catalyst thereof
Preedavijitkul et al. Investigation on deactivation of Cu-Cr catalyst for direct ethanol dehydrogenation to ethyl acetate, acetaldehyde, and hydrogen

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee