KR20090041909A - The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it - Google Patents

The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it Download PDF

Info

Publication number
KR20090041909A
KR20090041909A KR1020070107688A KR20070107688A KR20090041909A KR 20090041909 A KR20090041909 A KR 20090041909A KR 1020070107688 A KR1020070107688 A KR 1020070107688A KR 20070107688 A KR20070107688 A KR 20070107688A KR 20090041909 A KR20090041909 A KR 20090041909A
Authority
KR
South Korea
Prior art keywords
tyrosinase
protein
phosphorylation
screening
protein chip
Prior art date
Application number
KR1020070107688A
Other languages
Korean (ko)
Other versions
KR100940888B1 (en
Inventor
김은기
이동우
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020070107688A priority Critical patent/KR100940888B1/en
Publication of KR20090041909A publication Critical patent/KR20090041909A/en
Application granted granted Critical
Publication of KR100940888B1 publication Critical patent/KR100940888B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90219Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • G01N2333/90222Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3) in general
    • G01N2333/90225Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3) in general with a definite EC number (1.10.3.-)
    • G01N2333/90229Catechol oxidase, i.e. Tyrosinase (1.10.3.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A protein chip for screening tyrosinase phosphorylation inhibitors containing an immobilization fusion protein is provided to massively screen whitening-related target molecule by inhibiting tyrosinase phosphorylation which is a pigmentation-related enzyme caused by PKC beta(Protein Kinase C beta). A protein chip for screening tyrosinase phosphorylation inhibitors containing an immobilization fusion protein is obtained by immobilizing a fusion protein, wherein Maltose Binding Protein(MBP) and polypeptide containing all or some part of amino acid sequence of a mixture of tyrosinase cytosolic domain and transmembrane domain are fused, on a solid substrate. A method for screening the tyrosinase phosphorylation inhibitors comprises the following steps of: adding PKC and candidate inhibitors of tyrosinase phosphorylation to the protein chip; treating anti-phosphorylation tyrosinase or anti-phosphorylserine specific antibody; confirming the amount of antibodies coupled with the protein chip; and selecting the candidate material to reduce degree of coupling antibodies in comparison with a control group.

Description

티로시나제 인산화 저해제 탐색용 단백질 칩 및 이를 이용한 티로시나제 인산화 저해제 탐색방법{The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it}Protein chip for screening inhibitors of tyrosinase phosphorylation and the method for screening inhibitors of tyrosinase phosphorylation and the screening method using it

본 발명은 티로시나제 인산화(tyrosinase phosphorylation) 저해제 탐색용 단백질 칩 및 이를 이용한 티로시나제 인산화 저해제 탐색방법에 관한 것으로, 보다 상세하게는 PKC β(Protein Kinase C beta)에 의한 색소 침착 관련 효소인 티로시나제의 인산화를 저해하는 티로시나제 인산화 저해제 탐색용 생물학적 마이크로 단백질 칩 및 이를 이용한 티로시나제 인산화 저해제 탐색방법에 관한 것이다. The present invention relates to a method for detecting a tyrosinase phosphorylation inhibitor protein chip and a method for screening a tyrosinase phosphorylation inhibitor using the same, and more particularly, to inhibit the phosphorylation of tyrosinase, a pigmentation-related enzyme by PKC β (Protein Kinase C beta). The present invention relates to a biological micro protein chip for searching for a tyrosinase phosphorylation inhibitor and a method for searching for a tyrosinase phosphorylation inhibitor using the same.

PKC(Protein Kinase C)는 사이클릭 뉴클레오티드-독립 효소(cyclic nucleotide-independent enzyme)로 많은 표적 단백질들의 세린(serine)과 쓰레오닌(threonine) 잔기들을 인산화한다. 상기 PKC는 1977년 Nishizuka 및 협력자들에 의해 소의 소뇌(bovine cerebellum)에서 처음 발견되었으며 히스톤(Histone) 및 프로타민(protamine)을 인산화하는 단백질로 알려졌다. 이후, PKC는 개 발(development), 기억(memory), 분화(differentiation), 증식(proliferation) 및 발암(carcinogenesis) 등 많은 생물학적 과정에 관여하는 것으로 알려졌고, 이들은 구조, 보조인자 요구(cofactor requirements) 및 기능(function)이 서로 다른 계(family)들이 존재하는 것으로 알려졌다. 현재는 10가지의 아형(isoform)이 존재하는 것으로 확인되었으며 크게 세 분류로 나누어질 수 있다.Protein Kinase C (PKC) is a cyclic nucleotide-independent enzyme that phosphorylates the serine and threonine residues of many target proteins. The PKC was first discovered in bovine cerebellum in 1977 by Nishizuka and its partners and is known as a protein that phosphorylates histones and protamines. Since then, PKC has been known to be involved in many biological processes such as development, memory, differentiation, proliferation and carcinogenesis, and these are known to be involved in structure, cofactor requirements and It is known that families with different functions exist. There are currently 10 isoforms identified and can be divided into three categories.

- 전형적인 (c)PKC 아형들(α, βI, βⅡ, γ)Typical (c) PKC subtypes (α, βI, βII, γ)

: 활성이 되려면 칼슘(calcium) 및 디아실글리세롤(diacylglycerol, DAG)이 필요하다.: Calcium and diacylglycerol (DAG) are required to be active.

- 신규한 (n)PKC 아형들(δ, ε, η(PKC-L), θ, μ)Novel (n) PKC subtypes (δ, ε, η (PKC-L), θ, μ)

: 활성이 되려면 디아실글리세롤(diacylglycerol, DAG)이 필요하다.: Diacylglycerol (DAG) is required to be active.

- 비전형적인 (a)PKC 아형들(ζ, ι, λ)-Atypical (a) PKC subtypes (ζ, ι, λ)

: 활성이 되려면 칼슘(calcium) 및 디아실글리세롤(diacylglycerol, DAG)이 필요하지 않다.: Calcium and diacylglycerol (DAG) are not needed to be active.

상기 모든 PKC는 막 상호작용을 위한 인지질 결합 도메인(phospholipid-binding domain)을 가지고 있다. PKC 분자(molecule)의 일반적인 구조는 촉매(catalytic) 및 조절(regulatory) 도메인으로 이루어져 있으며, 상기 도메인들은 보존된 부위(conserved region) 및 가변성 부위(variable region)로 각각의 아형이 구분된다.All the PKCs have a phospholipid-binding domain for membrane interaction. The general structure of a PKC molecule consists of catalytic and regulatory domains, each of which is subtyped into a conserved region and a variable region.

cPKC의 활성은 시토졸(cytosol)에서부터 세포막의 결합 도메인으로의 전좌(translocation)가 포함된다. 이때 활성화된 C-키나제에 대한 수용체(receptors for activated C-kinase, RACK) 및 활성된 PKC의 상호작용이 존재하여 비활성 상태인 PKC와 구조적으로 구별된다. 디아실글리세롤(diacylglycerol, DAG)은 cPKC의 침투(penetration)를 촉진시키며, 부착(attachment) 후에 칼슘(calcium)과 PKC의 친화성(affinity)은 효소의 활성을 증가시킨다. 포스파티딜세린(Phosphatidylserine)은 막 지질 고정(membrane lipid anchor) 역할을 한다. PKC의 β 아형은 멜라좀(melanosome)의 막 단백질인 티로시나제를 활성화시켜 멜라닌을 형성하는 것으로 알려져 있다. Activity of cPKC includes translocation from cytosol to binding domain of cell membrane. At this time, there is an interaction between receptors for activated C-kinase (RACK) and activated PKC, which is structurally distinguished from inactive PKC. Diacylglycerol (DAG) promotes cPKC penetration, and the affinity of calcium and PKC after attachment increases the activity of the enzyme. Phosphatidylserine acts as a membrane lipid anchor. Β subtype of PKC is known to activate melanin by activating tyrosinase, a membrane protein of melanosomes.

티로시나제(Tyrosinase)는 포유류 및 식물 등에 널리 분포하고 있으며, 식물성 티로시나제는 과일 및 야채의 가공시에 갈변하는 현상에 관여하고 있다. 포유류의 티로시나제는 피부, 모낭,눈 등에 분포하는 멜라닌 형성세포(melanocyte)에 함유하고 있으며 자외선에 의한 손상을 방어하는 역할을 한다. 현재까지 여러 종의 생물체로부터 수많은 티로시나제가 분리, 정제되었으며 이들 티로시나제의 구조 및 기능에 대한 연구가 활발히 이루어졌다. 포유류의 티로시나제는 당화(glycosylation)의 상태에 따라 65 ~ 75kDa의 분자량을 가지며, 멜라노좀의 막(melanosomal membrane)에 존재하는 구리-의존적 당단백질(copper-dependent glycoprotein)이다. 티로시나제는 멜라닌 형성의 실제적인 첫 단계라고 할 수 있는 티로신을 변환(conversion) 시키는 효소로 멜라닌 세포생성(melanogenesis)의 핵심 효소라 할 수 있다. 이러한 효소의 역할은 티로시나제의 512개의 아미노산 서열 중 90% 이상을 차지하고 있는 멜라노좀 내부에서 일어나며, 나머지 짧은 서열 들은 대략 30개의 아미노산을 가지며 막통과(transmembrane) 및 세포질(cytoplasmic) 도메인을 이루고 있다(Hee-Young Park et. al., The Journal of Biological Chemistry, vol. 268, No.16 Issue of june 5, pp.11742-11749,1993). 티로시나제의 활성은 시토졸 C-말단 서열(cytosolic C-terminal sequence)의 두 개의 세린(serine)(505 및 509)이 RACK-1에 의해 멜라노좀(melanosome)으로 전좌(translocation)된 활성화된 PKC β에 의해 인산화되면서 이루어진다(Hee-Young Park et. al., The Journal of Biological Chemistry, vol. 274, No.23 Issue of june 4, pp.16470-16478, 1999).Tyrosinase is widely distributed in mammals and plants, and plant tyrosinase is involved in the browning phenomenon in the processing of fruits and vegetables. Mammalian tyrosinase is contained in melanocytes (melanocytes) distributed in the skin, hair follicles, eyes, etc. and plays a role in protecting against UV damage. To date, numerous tyrosinase has been isolated and purified from various species of organisms, and research on the structure and function of these tyrosinase has been actively conducted. Mammalian tyrosinase has a molecular weight of 65-75 kDa depending on the state of glycosylation and is a copper-dependent glycoprotein present in the melanosomal membrane. Tyrosinase is an enzyme that converts tyrosine, a practical first step in melanin formation, and is a key enzyme in melanogenesis. The role of this enzyme occurs inside the melanosomes, which account for more than 90% of the 512 amino acid sequences of tyrosinase, while the remaining short sequences have approximately 30 amino acids and form the transmembrane and cytoplasmic domains (Hee). Young Park et.al., The Journal of Biological Chemistry , vol. 268, No. 16 Issue of june 5, pp. 11742-11749,1993). Tyrosinase activity is characterized by activated PKC β in which two serines of the cytosolic C-terminal sequence (505 and 509) are translocated to melanosomes by RACK-1. Phosphorylation by Hee-Young Park et.al., The Journal of Biological Chemistry , vol. 274, No. 23 Issue of june 4, pp. 16470-16478, 1999).

멜라닌(Melanin)은 표피의 기저층에 존재하는 멜라닌 생성세포에서 합성되며 피부에 유해한 영향을 끼치는 자외선을 흡수하여 피부로의 침투를 차단함으로써 피부 자체의 방어기능을 하기 위해 생성된 고분자화합물이다. 멜라닌은 멜라노사이트(melanocyte) 안에 존재하는 멜라노좀(melanosome)의 활성된 티로시나제(tyrosinase)에 의해 티로신(tyrosine)이 변환되어 형성되는 화합물이다. 멜라닌 형성세포에서 멜라닌을 합성할 때에 티로시나제가 작용하게 되며, 티로시나제는 멜라닌 생성 초기에 아미노산의 일종인 티로신(히드록시 페닐알라닌)에 작용하여 디히드록시 페닐알라닌(DOPA)의 형성을 촉진하며 또한 디히드록시 페닐알라닌(DOPA)의 산화를 촉진하여 퀴논(도파퀴논: DOPA Quinone)을 형성시키고 형성된 도파퀴논은 일련의 단계를 거쳐 멜라닌이 생성된다. 따라서 티로시나제의 활성을 억제하는 저해제는 피부 색소 침착 병변 치료제 및 기능성 화장품의 미백 물질로 사용 가능할 것이라 여겨지고 있다.Melanin (Melanin) is a high-molecular compound synthesized in melanin-producing cells in the basal layer of the epidermis and absorbs ultraviolet rays that have harmful effects on the skin and blocks the penetration into the skin. Melanin is a compound formed by the conversion of tyrosine (tyrosine) by the active tyrosinase of the melanosome (melanosome) present in the melanocyte (melanocyte). Tyrosinase acts on the synthesis of melanin in melanin-forming cells, and tyrosinase acts on tyrosine (hydroxy phenylalanine), an amino acid, in the early stages of melanogenesis, promoting the formation of dihydroxy phenylalanine (DOPA) and also dihydroxy Promotes oxidation of phenylalanine (DOPA) to form quinones (DOPA Quinone), and the formed dopaquinones undergo a series of steps to produce melanin. Therefore, it is believed that inhibitors that inhibit the activity of tyrosinase may be used as skin whitening agents for treating skin pigmentation lesions and in functional cosmetics.

지금까지 이러한 저해제의 탐색방법으로는 gel mobility-shift analysis(C. Jansen et al., Biochem . J. 246: 227-232, 1987; K. Ruscher et al., J. Biotechnol . 78: 163-170, 2000), Southwestern blotting(B. Bowen et al., Nucleic Acids Res . 8: 120, 1980; W.K. Miskimins et al., Proc . Natl . Acad . Sci . U. S. A. 82: 6741-6744, 1985), ELISA(Y. Choo et al., Nucleic Acids Res . 21, 1993), reporter constructs in yeast assay(S.D. Hanes et al., Science 251: 426-430, 1991)가 수행되었으나 상기 방법들은 방사선 동위 원소, 웰플레이트(Well plate)를 이용한 면역효소측정법(enzyme-linked immunosorbent assay, ELISA) 또는 면역형광법을 이용하여, 제한된 실험 수행의 수와 시간, 복잡한 실험 방법 등의 LTS(low-throughput screening)의 문제점을 가지고 있었다.So far, the search for such inhibitors has been performed by gel mobility-shift analysis (C. Jansen et al., Biochem . J. 246: 227-232, 1987; K. Ruscher et al., J. Biotechnol . 78: 163-170. , 2000), Southwestern blotting (B. Bowen et al., Nucleic Acids Res . 8: 120, 1980; WK Miskimins et al., Proc . Natl . Acad . Sci . USA 82: 6741-6744, 1985), ELISA (Y. Choo et al., Nucleic Acids Res . 21, 1993), but reporter constructs in yeast assay (SD Hanes et al., Science 251: 426-430, 1991) were performed, but these methods were performed using radioisotopes, well plates. Using linked immunosorbent assay (ELISA) or immunofluorescence, there was a problem of low-throughput screening (LTS), such as limited number of experiments and time, and complicated experimental methods.

이에 본 발명자들은 PKC β 및 티로시나제의 시토졸 도메인과의 상호작용을 스크리닝의 표적으로 선정하여 단백질 칩에 구현함으로써 초고속 스크리닝(high throughput screening, HTS) 시스템을 적용하여 동시 다발적 실험 수행, 적은 농도 및 작은 분자량의 물질 탐색이 가능하여 미백 관련 표적 단백질인 티로시나제 저해제를 탐색할 수 있음을 확인함으로써 본 발명을 완성하였다.Therefore, the present inventors selected the interactions of the cytosolic domains of PKC β and tyrosinase as screening targets and implemented them on protein chips to perform simultaneous multiple experiments by applying a high throughput screening (HTS) system, a low concentration and The present invention has been completed by confirming that a small molecular weight substance can be searched to search for a tyrosinase inhibitor, a target protein related to whitening.

본 발명의 목적은 티로시나제 인산화 저해제 탐색용 단백질 칩 및 이를 이용한 티로시나제 인산화 저해제 탐색방법을 제공하는 것이다.An object of the present invention is to provide a protein chip for searching for tyrosinase phosphorylation inhibitor and a method for searching for tyrosinase phosphorylation inhibitor using the same.

상기 목적을 달성하기 위하여, 본 발명은 티로시나제의 시토졸 도메인(cytosolic domain) 및 막통과 도메인(transmembrane domain)을 합친 아미노산 서열의 전부 또는 일부를 포함하는 폴리펩티드를 말토즈 결합 단백질(Maltose Binding Protein, MBP)에 융합시킨 융합단백질이 고체 기판에 고정된 티로시나제 인산화 저해제 탐색용 단백질 칩을 제공한다.In order to achieve the above object, the present invention provides a polypeptide comprising a whole or part of an amino acid sequence combining the cytosolic domain and the transmembrane domain of tyrosinase and maltose binding protein (MBP). Provided is a protein chip for searching for tyrosinase phosphorylation inhibitor fixed in a solid substrate is a fusion protein fused to).

또한, 본 발명은 상기 단백질 칩을 포함하는 티로시나제 저해제 탐색용 키트를 제공한다.The present invention also provides a kit for searching for a tyrosinase inhibitor comprising the protein chip.

아울러, 본 발명은 In addition, the present invention

1) 상기 단백질 칩에 티로시나제 인산화 저해제 후보물질을 PKC(Protein Kinase C)와 함께 첨가하는 단계;1) adding a tyrosinase phosphorylation inhibitor candidate with PKC (Protein Kinase C) to the protein chip;

2) 항-인산화 티로시나제 또는 항-포스포 세린 특이적 항체를 처리하는 단계; 2) treating anti-phosphorylated tyrosinase or anti-phosphoserine specific antibodies;

3) 상기 단백질 칩에 결합한 항체의 양을 확인하는 단계; 및3) confirming the amount of antibody bound to the protein chip; And

4) 상기 저해제 후보물질을 처리하지 않은 대조군과 비교하여 항체 결합 정 도를 감소시킨 후보물질을 선별하는 단계를 포함하는 티로시나제 인산화 저해제 탐색방법을 제공한다.4) provides a method for screening a tyrosinase phosphorylation inhibitor comprising the step of selecting a candidate substance having a reduced antibody binding degree compared to the control group not treated with the inhibitor candidate substance.

본 발명의 티로시나제 인산화 저해제 탐색용 단백질 칩은 기존의 방사선 동위원소, 웰플레이트를 이용한 면역효소측정법(enzyme-linked immunosorbent assay, ELISA) 또는 면역형광법이 아닌 유리 칩(glass chip)을 이용하여 경제적, 보편적으로 보급할 수 있고, PKC β의 기질로 사용되는 티로시나제의 어려운 정제과정이 필요없이 컬럼 방법을 도입함으로써 간편화, 신속화할 수 있다. 또한, 유리 기판에서 동시 다발적인 실험을 수행할 수 있으며 적은 농도의 저해제 뿐아니라 작은 분자량의 저해제 역시 형광법으로 민감하게 측정하여 스크리닝할 수 있는 장점이 있다. 또한, 기존의 미백관련 표적물질 스크리닝과 관련하여 유전자 레벨이 아닌 단백질 레벨에서 분석하며, 알려진 기질을 이용하여 저해제를 스크리닝하는 목적이 아닌 미백관련 기질 자체를 이용할 수 있으므로 활용범위가 더 넓다. 따라서 본 발명의 티로시나제 저해제 탐색용 단백질 칩 및 이를 이용한 탐색방법은 색소 침착 관련 효소인 티로시나제의 인산화를 저해하는 저해제를 발굴하여 미백 관련 표적 분자 및 유효 신소재 개발에 유용하게 이용될 수 있다.Protein chip for the detection of tyrosinase phosphorylation inhibitor of the present invention is economical, universal by using a glass chip other than the conventional radioisotope, well plate immunoassay (enzyme-linked immunosorbent assay, ELISA) or immunofluorescence method It is possible to supply and to simplify the process by introducing a column method without the difficult purification process of tyrosinase used as a substrate for PKC β. In addition, simultaneous experiments can be performed on a glass substrate, and a small concentration of inhibitors as well as small molecular weight inhibitors have the advantage of being sensitively screened by the fluorescence method. In addition, it is analyzed at the protein level rather than the gene level in relation to the screening of the existing whitening-related target material, and because of the use of the whitening-related substrate itself rather than the purpose of screening the inhibitor using a known substrate, the scope of application is wider. Therefore, the protein chip for searching for tyrosinase inhibitor of the present invention and the searching method using the same can be usefully used for developing whitening-related target molecules and effective new materials by discovering inhibitors that inhibit the phosphorylation of tyrosinase, a pigmentation-related enzyme.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 티로시나제의 시토졸 도메인(cytosolic domain) 및 막통과 도메인(transmembrane domain)을 합친 아미노산 서열의 전부 또는 일부를 포함하는 폴리펩티드를 말토즈 결합 단백질(Maltose Binding Protein, MBP)에 융합시킨 융합단백질이 고체 기판에 고정된 티로시나제 인산화 저해제 탐색용 단백질 칩을 제공한다.The present invention relates to a fusion protein in which a polypeptide comprising all or part of an amino acid sequence combining a cytosolic domain and a transmembrane domain of tyrosinase is fused to a maltose binding protein (MBP). Provided is a protein chip for searching tyrosinase phosphorylation inhibitor fixed on a solid substrate.

티로시나제의 인산화는 티로시나제의 시토졸 C-말단 서열(cytosolic C-terminal sequence)의 두 개의 세린(serine)(505 및 509)이 활성화된 PKC β에 의해 인산화되는 것이다. 티로시나제는 티로신을 변환(conversion) 시키는 효소로 멜라닌 생성 중요한 역할을 함으로써 티로시나제의 인산화를 억제하는 저해제는 피부 색소 침착 병변 치료제 및 기능성 화장품의 미백 물질로 사용 가능할 것이라 여겨진다.Phosphorylation of tyrosinase is that two serines (505 and 509) of the cytosolic C-terminal sequence of tyrosinase are phosphorylated by activated PKC β. Tyrosinase is an enzyme that converts tyrosine and plays an important role in the production of melanin. Thus, inhibitors that inhibit the phosphorylation of tyrosinase may be used as therapeutic agents for skin pigmentation lesions and as whitening agents in functional cosmetics.

본 발명자들은 티로시나제의 인산화 저해제 검색을 위한 탐색방법 구축을 목표로 티로시나제 인산화 저해제 검색용 단백질 칩을 제작하였다. 단백질 칩은 하기와 같은 방법으로 제조하였다.The inventors of the present invention have fabricated a protein chip for the detection of tyrosinase phosphorylation inhibitors with the aim of constructing a search method for screening the phosphorylation inhibitors of tyrosinase. Protein chips were prepared in the following manner.

1) 에폭시 슬라이드(epoxy slide) 위에 접착식 스티커를 이용하여 웰(well)을 형성하는 단계; 1) forming a well using an adhesive sticker on an epoxy slide;

2) 단계 1)의 각 웰에 PKC β의 기질을 투입하여 배열(array)하는 단계; 및2) arranging by injecting a substrate of PKC β into each well of step 1); And

3) 단계 2)의 배열을 세척(washing) 및 블로킹(bloking)하는 단계;3) washing and blocking the arrangement of step 2);

상기 제조방법에 있어서, 단계 2)의 PKC의 기질은 티로시나제를 사용하는 것 이 바람직하나 티로시나제는 막 단백질로써 단백질 칩에 완전한 구조를 갖도록 어레이(array)하는 것에 어려움이 있으므로, 실제로 PKC β의 기질이 되는 부분인 시토졸 도메인(cytosolic domain)의 11개의 아미노산, 또는 시토졸 및 막통과(transmembrane) 도메인을 합친 30개의 아미노산 서열을 말토즈 결합 단백질(Maltose Binding Protein, MBP)에 융합(fusion)시킨 MBP-TYR 융합단백질을 사용하는 것이 더욱 바람직하나 이에 한정되지 않는다. In the above method, it is preferable that the substrate of PKC of step 2) uses tyrosinase, but since tyrosinase is difficult to array to have a complete structure on the protein chip as a membrane protein, the substrate of PKC β is actually MBP which fused 11 amino acids of cytosolic domain, or 30 amino acid sequences combining cytosol and transmembrane domains to Maltose Binding Protein (MBP) It is more preferred to use -TYR fusion protein, but not always limited thereto.

본 발명자들은 PCR을 이용하여 6H-MBP-EK-TYR11aa 및 6H-MBP-EK-TYR30aa를 제조한 후 각각 pET 벡터에 삽입하여 6H-MBP-EK-TYR11aa 및 6H-MBP-EK-TYR30aa 발현벡터를 제조하였다. 상기 재조합 벡터 pET21a-6H-MBP-EK-TYR11aa 및 pET21a-6H-MBP-EK-TYR30aa를 각각 Escherichia coli BL21(DE3)에 형질도입한 재조합 균주를 배양하여 MBP-TYR 융합 단백질(6H-MBP-EK-TYR11aa 및 6H-MBP-EK-TYR30aa)을 과발현시켜 크로마토그래피로 분리하였다. 분리한 MBP-TYR 융합 단백질(6H-MBP-EK-TYR11aa 및 6H-MBP-EK-TYR30aa)을 칩(chip) 상에 어레이(array)하였다(도 9 참조).The inventors prepared 6H-MBP-EK-TYR11aa and 6H-MBP-EK-TYR30aa using PCR, and then inserted into pET vectors, respectively, to express 6H-MBP-EK-TYR11aa and 6H-MBP-EK-TYR30aa expression vectors. Prepared. The recombinant vector pET21a-6H-MBP-EK- TYR11aa and pET21a-6H-MBP-EK- TYR30aa each Escherichia Recombinant strains transduced in coli BL21 (DE3) were cultured and chromatographed by overexpressing MBP-TYR fusion proteins (6H-MBP-EK-TYR11aa and 6H-MBP-EK-TYR30aa). Separated MBP-TYR fusion proteins (6H-MBP-EK-TYR11aa and 6H-MBP-EK-TYR30aa) were arrayed on chip (see FIG. 9).

본 발명자들은 상기 단백질 칩에 기질에 따른 티로시나제 인산화의 정도를 확인하기 위해 MBP-TYR11aa, MBP-TYR30aa, 양성 대조군의 히스톤(Histone) 및 음성 대조군의 MBP와 융합(fusion)되어 있지만 다른 서열을 가진 MBP-c2X를 각각의 기질로 이용하여 티로시나제의 인산화 정도를 형광법을 이용하여 확인하였다. 그 결과, 히스톤 및 MBP-TYR30aa는 단백질 칩의 신호(signal)가 강하게 탐색되었으나, 인산화 부위가 없는 MBP-c2X는 신호가 미약하였고, MBP-11aa는 인산화 부위가 있지만 신호가 미약하였다. 상기 MBP-11aa는 MBP와 융합된 부분이 PKC β와 반응하기 에 너무 짧아 입체 장애(steric hindrance)를 가진 것으로 보인다. 따라서 본 발명의 단백질 칩의 기질은 MBP-TYR30aa를 사용하는 것이 바람직하다는 것을 알 수 있다. The inventors of the present invention, MBP-TYR11aa, MBP-TYR30aa, the positive control histone (Histone) and the negative control MBP fusion (MBP) having a different sequence to determine the degree of tyrosinase phosphorylation according to the substrate on the protein chip Phosphorylation of tyrosinase was confirmed by fluorescence method using -c2X as each substrate. As a result, signals of histone and MBP-TYR30aa were strongly detected, but MBP-c2X without phosphorylation site had a weak signal, and MBP-11aa had a phosphorylation site but a weak signal. The MBP-11aa appears to have steric hindrance because the portion fused with MBP is too short to react with PKC β. Therefore, it can be seen that it is preferable to use MBP-TYR30aa as the substrate of the protein chip of the present invention.

또한, 본 발명자들은 상기 탐색 결과가 실제로 인산화에 의한 것인지를 확인하기 위해, PKC β 또는 포스포 세린을 탐색하는 항체의 처리 유무를 나누어 확인하였다. 그 결과, PKC β를 처리하지 않거나 포스포 세린을 탐색하는 항체를 처리하지 않았을 경우는 신호가 보이지 않았다. 따라서 상기 신호가 인산화에 의한 것임을 알 수 있다. In addition, the present inventors divided the presence or absence of treatment with PKC β or phosphoserine in order to confirm whether the search result is actually phosphorylation. As a result, no signal was seen when PKC β was not treated or the antibody searching for phosphoserine was not treated. Thus it can be seen that the signal is due to phosphorylation.

본 발명자들은 상기 인산화가 PKC β에 의해 일어나는지 확인하기 위해, 단백질 칩에 PKC β 또는 ATP의 처리를 농도 및 시간별로 나누어 인산화 정도를 측정하였다. 그 결과, 상기 PKC β 또는 ATP의 농도가 올라갈수록 인산화의 정도가 올라갔음을 알 수 있었다. 따라서 상기 인산화는 PKC β 및 ATP에 의한 기작임을 알 수 있다. The present inventors measured the degree of phosphorylation by dividing the treatment of PKC β or ATP by protein concentration and time to determine whether the phosphorylation is caused by PKC β. As a result, it was found that the degree of phosphorylation increased as the concentration of PKC β or ATP increased. Therefore, it can be seen that the phosphorylation is a mechanism by PKC β and ATP.

또한, 본 발명은 상기 단백질 칩을 포함하는 티로시나제 저해제 탐색용 키트를 제공한다.The present invention also provides a kit for searching for a tyrosinase inhibitor comprising the protein chip.

상기 키트에 티로시나제 인산화 저해제 후보물질을 처리함으로써 티로시나제의 인산화 저해 정도를 측정할 수 있다. 따라서 본 발명의 키트를 이용하면 티로시나제 저해제를 쉽게 탐색할 수 있다. By treating the kit with a tyrosinase phosphorylation inhibitor candidate, the degree of phosphorylation inhibition of tyrosinase can be measured. Thus, the kit of the present invention can be used to easily search for tyrosinase inhibitors.

아울러, 본 발명은 In addition, the present invention

1) 상기 단백질 칩에 티로시나제 인산화 저해제 후보물질을 PKC(Protein Kinase C)와 함께 첨가하는 단계;1) adding a tyrosinase phosphorylation inhibitor candidate with PKC (Protein Kinase C) to the protein chip;

2) 항-인산화 티로시나제 또는 항-포스포 세린 특이적 항체를 처리하는 단계; 2) treating anti-phosphorylated tyrosinase or anti-phosphoserine specific antibodies;

3) 상기 단백질 칩에 결합한 항체의 양을 확인하는 단계; 및3) confirming the amount of antibody bound to the protein chip; And

4) 상기 저해제 후보물질을 처리하지 않은 대조군과 비교하여 항체 결합 정도를 감소시킨 후보물질을 선별하는 단계를 포함하는 티로시나제 인산화 저해제 탐색방법을 제공한다.4) The present invention provides a method for screening a tyrosinase phosphorylation inhibitor, the method comprising selecting a candidate substance having a reduced degree of antibody binding as compared to a control group not treated with the inhibitor candidate substance.

상기 탐색방법에 있어서, 단계 1)의 PKC는 PKC βⅡ인 것이 바람직하나 이에 한정되지 않는다. In the search method, the PKC of step 1) is preferably PKC βII, but is not limited thereto.

상기 탐색방법에 있어서, 단계 2)의 항체는 마우스 항-포스포 세린/쓰레오닌(Mouse anti-phosphoSer/Thr)을 사용하는 것이 바람직하나 이에 한정되지 않고 포스포세린(phsphoserine)을 탐색(detection)할 수 있는 항체는 모두 사용가능하다. In the detection method, the antibody of step 2) preferably uses mouse anti-phosphoSer / Thr (Mouse anti-phosphoSer / Thr), but is not limited thereto, and detects phosphoserine (phsphoserine) Any antibody that can be used can be used.

상기 탐색방법에 있어서, 단계 3)의 단백질 칩에 결합한 항체의 양은 초고속 스크리닝(high throughput screening, HTS) 시스템을 도입하는 것이 바람직하고, 여기에는 형광 표지에 의한 형광을 검출함으로써 수행되는 형광법, 형광물질의 표지 없이 표면의 플라즈몬 공명(plasmon resonance) 변화를 실시간으로 측정하는 SPR(surface plasmon resonance) 방법 또는 SPR 시스템을 영상화하여 확인하는 SPRI(surface plasmon resonance imaging) 방법을 이용하는 것이 바람직하나 이에 한정되지 않는다. In the above detection method, the amount of antibody bound to the protein chip of step 3) is preferably introduced by a high throughput screening (HTS) system, which includes a fluorescence method and a fluorescent material performed by detecting fluorescence by a fluorescent label. It is preferable to use a surface plasmon resonance (SPR) method for measuring the plasmon resonance change of the surface in real time without a label of or a surface plasmon resonance imaging (SPRI) method for imaging and confirming the SPR system.

상기 형광법은 형광 스캐너 프로그램을 이용하여 단백질 칩상의 항-포스포 세린 특이적 항체에 결합하는 항체를 형광물질로 라벨링한 후 스포팅하여 신호를 확인하는 방법으로, 이 방법을 적용하여 티로시나제 인산화 저해제 처리시에는 결합이 억제됨을 확인할 수 있다. 상기 형광물질은 Cy3, Cy5, 폴리 L-라이신-플루오레세인 이소티오시아네이트(poly L-lysine-fluorescein isothiocyanate, FITC), 로다민-B-이소티오시아네이트(rhodamine-B-isothiocyanate, RITC), 로다민(rhodamine)으로 이루어진 군으로부터 선택된 어느 하나인 것 바람직하나 이에 한정되지 않는다.The fluorescence method is a method of labeling an antibody that binds to an anti-phosphoserine specific antibody on a protein chip with a fluorescent material and spotting the signal using a fluorescence scanner program, and applying this method to treat tyrosinase phosphorylation inhibitors. It can be seen that the binding is inhibited. The fluorescent material is Cy3, Cy5, poly L-lysine-fluorescein isothiocyanate (FITC), rhodamine-B-isothiocyanate (RITC) , Rhodamine (rhodamine) is preferably any one selected from the group consisting of, but not limited to.

상기 SPR 시스템은 형광법과는 달리 시료를 형광물질로 표지할 필요가 없이 티로시나제 인산화 저해 정도를 실시간으로 분석하는 것이 가능하나 동시다발적인 시료 분석이 불가능하다는 단점이 있다. SPRI의 경우에는 미세정렬 방법을 이용하여 동시다발적인 시료 분석이 가능하지만 탐지 강도가 낮은 단점이 있다. Unlike the fluorescence method, the SPR system can analyze the degree of inhibition of tyrosinase phosphorylation in real time without labeling the sample with a fluorescent material, but has the disadvantage that simultaneous sample analysis is impossible. In the case of SPRI, it is possible to analyze multiple samples simultaneously using a microalignment method, but it has a disadvantage of low detection intensity.

본 발명자들은 상기 단백질 칩이 스크리닝 장치로서 적용가능성을 확인하기 위해 티로시나제 인산화 저해제인 티로시나제 모방 단백질(Tyrosinase mimetic peptide, TMP) 또는 PKC β의 선택적 기질로 알려진 비스인돌릴말레이미드(Bisindolylmaleimide) I 을 각각 처리하여 티로시나제 인산화의 저해 정도를 형광법으로 확인하였다. 그 결과, 상기 저해제의 처리농도가 올라갈수록 인산화의 정도가 낮아지는 것을 확인하였다. 따라서, 본 발명의 단백질 칩은 티로시나제 인 산화 저해제를 탐색할 수 있음을 알 수 있다.In order to confirm the applicability of the protein chip as a screening device, the present inventors treated Birosindolylmaleimide I, which is known as tyrosinase mimetic peptide (TMP) or PKC β as a selective substrate, to confirm the applicability of the protein chip as a screening device. The degree of inhibition of tyrosinase phosphorylation was confirmed by fluorescence. As a result, it was confirmed that the degree of phosphorylation decreases as the treatment concentration of the inhibitor increases. Therefore, it can be seen that the protein chip of the present invention can search for tyrosinase phosphorylation inhibitor.

본 발명의 상기 단백질 칩 및 이를 이용한 탐색방법은 기존의 표적물질 스크리닝 방법인 유전자 레벨이 아닌 단백질 레벨에서 분석하는 것을 특징으로 하며, 기존의 알려진 기질을 이용하여 PKC β 저해제를 스크리닝하는 목적이 아닌 관련 기질 자체를 이용할 수 있으므로 활용범위가 더 넓은 것을 특징으로 한다.The protein chip of the present invention and a search method using the same are characterized in that the analysis at the protein level, not the gene level, which is a conventional target material screening method, and related to the purpose of screening PKC β inhibitor using a known substrate Since the substrate itself can be used, it is characterized by a wider range of applications.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다. However, the following Examples and Experimental Examples are only illustrative of the present invention, and the content of the present invention is not limited to the following Examples and Experimental Examples.

<< 실시예Example 1>  1> 티로시나제를Tyrosinase 모방 단백질( Mimic protein ( TyrosinaseTyrosinase mimeticmimetic peptidepeptide )의 제조Manufacturing

본 발명자들은 말토즈 결합 단백질(maltose binding protein, MBP)에 시토졸 도메인 중 11개의 아미노산, 및 막통과 및 세포질 도메인을 포함한 30개의 아미노산을 융합시켜 실제로 PKC β의 기질이 되는 부분이 PKC β에 쉽게 노출될 수 있도록 기질을 제작하였다. MBP의 표면에 상기 기질 서열이 잘 노출될 수 있도록 소수성 기질을 가진 엔테로키나제(enterokinase)의 분절부위(cleavage site)인 DDDDK를 MBP와 펩티드 사이에 삽입하였으며, 너무 짧은 서열로 인해 입체장애(steric hindrance)의 발생을 우려하여 11개의 서열보다 더 긴 30개의 아미노산을 함께 제작하였다. 상기 제조방법은 처음에 30aa의 길이의 주형을 DNA합성을 통하여 만들 고, 그 주형을 바탕으로 제한효소자리+DDDDK+30aa 및 제한효소자리+DDDDK+11aa의 프라이머(primer)를 제작하여 각각 PCR을 통해 증폭하였다. 이콜라이(E. coli) DH5α의 지노믹(genomic) DNA를 주형으로 MBP 서열을 증폭하여 앞에서 만든 서열을 붙였다. 만들어진 두 가지 서열 MBP+DDDDK+30aa 및 MBP+DDDDK+11aa를 각각 pET21a 벡터에 집어넣은 후 플라스미드를 정제, 이콜라이(E. coli) BL21에 형질전환시켜 배양 후 컬럼을 통하여 정제하였다.The present inventors fused 11 maltose of cytosolic domains and 30 amino acids including transmembrane and cytoplasmic domains to maltose binding protein (MBP) so that the portion of the substrate of PKCβ is easily Substrates were made to be exposed. The DDDDK, a cleavage site of enterokinase with a hydrophobic substrate, was inserted between the MBP and the peptide so that the substrate sequence was well exposed on the surface of the MBP. ), 30 amino acids longer than 11 sequences were produced. The preparation method initially made a template of 30aa length through DNA synthesis, and prepared primers of restriction enzyme site + DDDDK + 30aa and restriction enzyme site + DDDDK + 11aa based on the template, respectively, to perform PCR. Amplified through. The genomic DNA of E. coli DH5α was used as a template to amplify the MBP sequence and attach the previously created sequence. Two prepared sequences, MBP + DDDDK + 30aa and MBP + DDDDK + 11aa, were put into the pET21a vector, respectively, and the plasmids were purified, transformed into E. coli BL21, and cultured.

<< 실시예Example 2> 재조합  2> recombination TYR30aaTYR30aa  And TYR11aaTYR11aa 의 고농도 발현벡터의 제조Preparation of High Concentration Expression Vector

<2-1> 시약<2-1> Reagent

본 발명자들은 DNA 조작과 플라스미드 분리를 위해 사용한 대장균(Escherichia coli) 균주는 DH5α(F- φ80dlacZΔM15 Δ(lacZYA_argF)U169 end A1 recA1 hsdR17(rK- mK+)deoR thi_1 supE44 λ-gyrA96 relA1)이며, 재조합 대장균 내 유전자를 발현시키기 위해 사용한 대장균(Escherichia coli) 균주는 BL21(D3)(F-ompT hsdSB(rB-mB-) gal(λc I857 ind1 Sam7 nin5 lacUV5-T7gene1) dcm(DE3))이다. 재조합 대장균 발현을 위해 사용한 벡터는 pET21a(Novagen)이다. DNA 재조합을 위한 제한효소, DNA 폴리머라제(polymerase), T4 DNA 리가아제(ligase), RNase, PCR 시약(pfu 폴리머라제, dNTP mixture)은 Boehringer Mannheim 또는 Bioprogen 제품을 사용하였고, 배지 성분은 Difco에서 구입하였으며, 전기영동 및 단백질 정량에 사용된 시약은 Bio-rad에서 구입하여 사용하였다.The present inventors have found that the E. coli (Escherichia used for the separation of plasmid DNA manipulation and coli ) strain is DH5α (F-φ80dlacZΔM15 Δ (lacZYA_argF) U169 end A1 recA1 hsdR17 (rK-mK +) deoR thi_1 supE44 λ-gyrA96 relA1) and Escherichia coli used to express genes in recombinant E. coli coli ) strain is BL21 (D3) (F-ompT hsdSB (rB-mB-) gal (λc I857 ind1 Sam7 nin5 lacUV5-T7gene1) dcm (DE3)). The vector used for recombinant E. coli expression is pET21a (Novagen). Restriction enzymes for DNA recombination, DNA polymerase, T4 DNA ligase, RNase, PCR reagents (pfu polymerase, dNTP mixture) were used by Boehringer Mannheim or Bioprogen, and media components were purchased from Difco. Reagents used for electrophoresis and protein quantification were purchased from Bio-rad.

<2-2> 배지 및 배양 조건<2-2> medium and culture conditions

대장균용 배지로는 LB(1% 트립토판(Tryptone), 0.5% 이스트 추출물(Yeast extract), 1% NaCl)를 사용했으며 발현용 벡터로 형질 전환된 대장균의 증식을 위하여 50ug/ml 앰피실린(ampicillin)을 사용하였다. 재조합 균주를 발현시키기 위해, 50ug/ml 앰피실린이 포함된 LB 배지에서, 온도는 37℃에서 2시간 동안 배양한 후, 600nm에서 O.D 약 0.6이 되었을 때 1mM 이소프로필 1-티오-베타-디-갈락토피라노사이드(Isopropyl 1-thio-β-D-galactopyranoside, IPTG)를 첨가하여 T7 락 프로모터(lac promoter)가 발현되도록 하였다. 그리고, IPTG 첨가 후 4 ~ 6시간 더 배양하였다. 배양이 끝난 후 배양액의 최종 산소 요구량(OD)을 측정하고 균체를 회수하였다.As a medium for E. coli, LB (1% Tryptone, 0.5% Yeast extract, 1% NaCl) was used, and 50ug / ml ampicillin was used for the growth of E. coli transformed with the expression vector. Was used. To express the recombinant strain, in LB medium containing 50 ug / ml ampicillin, the temperature was incubated at 37 ° C. for 2 hours, and then 1 mM isopropyl 1-thio-beta-di- when the OD was about 0.6 at 600 nm. Galactopyranoside (Isopropyl 1-thio-β-D-galactopyranoside (IPTG)) was added to allow expression of the T7 lac promoter. And, after addition of IPTG was incubated for 4-6 hours. After incubation, the final oxygen demand (OD) of the culture was measured and the cells were recovered.

<2-3> 재조합 플라스미드의 제조<2-3> Preparation of Recombinant Plasmid

벡터 pET21a(도 1 참조)를 제한효소(restriction enzyme) NdeI 및 XhoI으로 37℃에서 밤새(overnight) 절단(digestion)시킨 후, 10% 아가로즈 겔(agarose gel)에 전기 영동하여 크기(size)를 확인하고, 파워 겔 추출 키트(Power gel extraction kit)(Bioprogen)를 이용하여 용리(elution)하였다. 벡터 내에 삽입할 6H-MBP-EK-TYR30aa는 PCR(Perkin Elmer 2400)을 이용하여 제조하였다. MBP 및 TYR의 서열을 근거로 각각의 프라이머를 제조하였다. 상기 MBP 서열은 이콜라이(E. coli) DH5α의 지노믹(genomic) DNA를 주형으로, TYR는 인간 티로시나제(oculocutaneous albinism IA, Genebank No. NM_000372)를 주형으로 하여 RT-PCR 로 증폭하였다. 이때, 막통과 도메인 및 세포질 도메인을 포함하는 단편으로는 상기 티로시나제의 염기서열 중 1580 내지 1669번째 부위를 이용하였다. MBP 및 TYR의 서열, 및 프라이머 서열들은 하기와 같다(표 1 참조).Vector pET21a (see FIG. 1) was digested overnight at 37 ° C. with restriction enzymes NdeI and XhoI, followed by electrophoresis on a 10% agarose gel to size. It was confirmed and eluted using a Power gel extraction kit (Bioprogen). 6H-MBP-EK-TYR30aa to be inserted into the vector was prepared using PCR (Perkin Elmer 2400). Each primer was prepared based on the sequence of MBP and TYR. The MBP sequence was amplified by genomic DNA of E. coli DH5α as a template and TYR by human tyrosinase (Oculocutaneous albinism IA, Genebank No. NM_000372) as RT-PCR. In this case, as the fragment including the transmembrane domain and the cytoplasmic domain, the 1580 to 1669 site of the nucleotide sequence of the tyrosinase was used. The sequences of MBP and TYR, and primer sequences are as follows (see Table 1).

MBPMBP  And TYRTYR 의 서열, 및 The sequence of, and 프라이머primer 서열  order 구분division 서열(5'->3')Sequence (5 '-> 3') MBP(Maltose binding protein)MBP (Maltose binding protein) 서열번호 1SEQ ID NO: 1 ATGAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTATGAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACA TCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACT TYRTYR 서열번호 2SEQ ID NO: 2 TGT CGT CAC AAG AGA AAG CAG CTT CCT GAA GAA AAG CAG CCA CTC CTC ATG GAG AAA GAG GAT TAC CAC AGT TTG TAT CAG AGC CAT TTATGT CGT CAC AAG AGA AAG CAG CTT CCT GAA GAA AAG CAG CCA CTC CTC ATG GAG AAA GAG GAT TAC CAC AGT TTG TAT CAG AGC CAT TTA 6H-MBP 6H-MBP 포워드(Forward)서열번호 3 Forward SEQ ID NO: 3 GGC CAT ATG CAC CAC CAC CAC CAC CAC AAA ATC GAA GAA GGT AAA CTG GTA ATCGGC CAT ATG CAC CAC CAC CAC CAC CAC AAA ATC GAA GAA GGT AAA CTG GTA ATC 리버스(reverse) 서열번호 4Reverse SEQ ID NO: 4 CC AAG CCA TGG AGT CTG CGC GTC TTT CAG GGC TTC ATC GACCC AAG CCA TGG AGT CTG CGC GTC TTT CAG GGC TTC ATC GAC TYR 주형 TYR mold 포워드(Forward) 서열번호 5Forward SEQ ID NO: 5 AAG AGA AAG CAG CTT CCT GAA GAA AAG CAG CCA CTC CTC ATG GAG AAA GAG GAT TAC CAC AGT TTG TATAAG AGA AAG CAG CTT CCT GAA GAA AAG CAG CCA CTC CTC ATG GAG AAA GAG GAT TAC CAC AGT TTG TAT 리버스(reverse) 서열번호 6Reverse SEQ ID NO: 6 CTG ATA CAA ACT GTG GTA ATC CTC TTT CTC CAT GAG GAG TGG CTG CTT TTC TTC AGG AAG CTG CTT TCT CTG ATA CAA ACT GTG GTA ATC CTC TTT CTC CAT GAG GAG TGG CTG CTT TTC TTC AGG AAG CTG CTT TCT ek-TYR 30aa ek-TYR 30aa 포워드(Forward) 서열번호 7Forward SEQ ID NO: 7 GGC CCA TGG GAC GAC GAC GAC AAG TGT CGT CAC AAG AGA AAG CAG CTTGGC CCA TGG GAC GAC GAC GAC AAG TGT CGT CAC AAG AGA AAG CAG CTT 리버스(reverse) 서열번호 8Reverse SEQ ID NO: 8 GGC CTC GAG TTA TAA ATG GCT CTG ATA CAA ACTGGC CTC GAG TTA TAA ATG GCT CTG ATA CAA ACT ek-TYR 11aaek-TYR 11aa 포워드(Forward) 서열번호 9Forward SEQ ID NO: 9 GGC CCA TGG GAC GAC GAC GAC AAG GAG GAT TAC CAC AGTGGC CCA TGG GAC GAC GAC GAC AAG GAG GAT TAC CAC AGT 리버스(reverse) 서열번호 10Reverse SEQ ID NO: 10 GGC CTC GAG TTA TAA ATG GCT CTG ATAGGC CTC GAG TTA TAA ATG GCT CTG ATA

티로시나제 주형(template)을 제조하기 위해, 티로시나제 주형의 각각의 프라이머를 100pM으로 녹이고, 포워드(forward) 및 리버스(reverse) 각각을 10ul를 섞는다. 상기 혼합물(mixture)을 PCR에서 95℃에서 5분, 55℃에서 5분, 37℃에서 10분, 20℃에서 20분으로 1 사이클(cycle) 반응시킨다. 상기 반응액을 주형으로 PCR 반응을 하는데, 그 조건은 95℃에서 30초 동안 변성(denaturation), 55℃에서 30초 동안 풀림(annealing), 72℃에서 45초 동안 신장(extension)으로, 30 사이클을 하였고, 마지막 연장(elongation)은 72℃에서 7분 동안 하였으며, 2.5 유닛(unit) pfu 폴리머라제, 5㎕ 2.5mM dNTP, 2ul 주형, 각 100pM 올리고뉴클레오티드 프라이머, 10㎕ 10X pfu 폴리머라제 완충용액을 넣고, 멸균된 3차 증류수로 최종 부피(final volume)를 100㎕로 맞춘 후 반응하였다. 이때 반응물을 아가로즈(agarose) 전기 영동으로 크기를 확인 후, PCR 정제 키트(purification kit)(Bioprogen)를 이용하여 용리(elution) 하였다. 이렇게 용리(elution)한 PCR 산출물(product)에 6H-MBP PCR 산출물(product)은 제한효소 Nde I 및 Nco I으로, EK-TYR 30aa 및 EK-TYR 11aa는 Nco I/Xho I으로 37℃에서 3시간 동안 절단(digestion)한 후, 전기영동으로 크기를 확인하고, 겔 용리(gel elution) 하였다.To prepare a tyrosinase template, each primer of the tyrosinase template is dissolved at 100 pM and 10 ul each of the forward and reverse are mixed. The mixture is subjected to one cycle of reaction at 95 ° C. for 5 minutes, 55 ° C. for 5 minutes, 37 ° C. for 10 minutes, and 20 ° C. for 20 minutes in PCR. PCR reaction was carried out using the reaction solution as a template, and the conditions were 30 cycles of denaturation at 95 ° C. for 30 seconds, annealing at 55 ° C. for 30 seconds, and extension at 72 ° C. for 45 seconds. The last elongation was carried out at 72 ° C. for 7 minutes, and 2.5 unit pfu polymerase, 5 μl 2.5 mM dNTP, 2 μl template, each 100 pM oligonucleotide primer, 10 μl 10 × pfu polymerase buffer solution. The final volume was adjusted to 100 μl with sterilized tertiary distilled water and reacted. At this time, after confirming the size of the reaction by agarose (agarose) electrophoresis, it was eluted using a PCR purification kit (Bioprogen). The 6H-MBP PCR product in this eluted PCR product was restriction enzymes Nde I and Nco I, and EK-TYR 30aa and EK-TYR 11aa were Nco I / Xho I 3 at 37 ° C. After digestion for a time, the size was confirmed by electrophoresis and gel elution was performed.

상기 각각의 PCR 산출물(product)을 먼저 제조한 pET 21a와 T4 DNA 리가제(ligase)를 이용하여 16℃에서 4시간 동안 3 조각(piece)을 리게이션(ligation)한 후, 리게이션 혼합물(ligation mixture)을 DH5α에 전환(transformation)하여 콜로니(colony)를 얻을 수 있었다. 이렇게 얻어진 콜로니(colony)를 LB/amp 3ml에 접종 후 밤새(overnight) 배양하여, 플라스미드 정제 키트(Plasmid purification kit)(Bioprogen)를 이용하여 플라스미드를 준비한 후 클로닝(cloning)에 사용한 Nde I 및 Xho I으로 절단(digestion)하여, 6H-MBP-ek-TYR30aa 및 6H-MBP-ek-TYR11aa가 제대로 삽입(insertion)되어 있는 크기의 유전자를 아가로즈 겔(agarose gel)에서 전기영동 하여 찾을 수 있었으며, MBP 내부 서열 프라이머를 이용한 서열결정을 통해 정확히 확인된 재조합 유전자를 얻었다(도 2 내지 도 7 참조).Each of the PCR products were prepared by ligation of three pieces at 16 ° C. for 4 hours using pET 21a and T4 DNA ligase, followed by ligation mixture. The mixture was transformed into DH5α to obtain colonies. The colonies thus obtained were inoculated in 3 ml of LB / amp and incubated overnight, and Nde I and Xho I used for cloning after preparing plasmids using the Plasmid purification kit (Bioprogen). By digestion, the genes of the sizes of 6H-MBP-ek-TYR30aa and 6H-MBP-ek-TYR11aa were found by electrophoresis on agarose gel, and MBP Recombinant genes correctly identified through sequencing using internal sequence primers were obtained (see FIGS. 2 to 7).

<2-4> 재조합 균주의 제조<2-4> Preparation of Recombinant Strain

상기 제조한 pET21a-6HMBP-ek-TYR30aa 및 pET21a-6HMBP-ek-TYR11aa 벡터를 단백질 발현 균주인 BL21(DE3) 100ul에 1ug을 삽입하고, 얼음에서 30분간 배양한 후, 42℃에서 90초 동안 열 충격(heat shock)을 가하고, LB 배지 100ul를 첨가하여 37℃에서 30분간 반응시킨다. 그리고 앰피실린(ampicillin)을 함유한 LB 아가 플레이트(agar plate)에 도말한 후, 37℃에서 배양하여 pET21a-6HMBP-ek-TYR30aa 및 pET21a-6HMBP-ek-TYR11aa로 형질전환된 재조합 균주를 얻었다.1 ug of the prepared pET21a-6HMBP-ek-TYR30aa and pET21a-6HMBP-ek-TYR11aa vectors were inserted into 100ul of the protein-expressing strain BL21 (DE3), incubated for 30 minutes on ice, and then heated at 42 ° C. for 90 seconds. Heat shock is added, and 100ul of LB medium is added and reacted at 37 ° C for 30 minutes. And then plated on an LB agar plate containing ampicillin (ampicillin) (agar plate), and cultured at 37 ℃ to obtain a recombinant strain transformed with pET21a-6HMBP-ek-TYR30aa and pET21a-6HMBP-ek-TYR11aa.

<< 실시예Example 3>  3> MBPMBP -- TYRTYR 재조합 융합 단백질 발현 및 분리 Recombinant Fusion Protein Expression and Isolation

<3-1> 단백질의 발현<3-1> Expression of Protein

LB/amp 배양액 3ml에 pET21a-6HMBP-ek-TYR30aa 또는 pET21a-6HMBP-ek-TYR11aa로 형질전환된 재조합 균주 1 콜로니(colony)를 접종하여 비유도(uninduction) 또는 유도(induction)시켜 발현을 확인한다. 각 관(tube)에 콜로니(colony)를 접종한 후, 600nm에서 O.D.가 0.6이 될 때까지 37℃에서 배양하였다. O.D.가 0.6이 되면, 1mM 이소프로필-1-티오-베타-디-갈락토피라노사이드(Isopropyl 1-thio-β-D-galactopyranoside, IPTG)를 첨가하여 단백질 발현을 유도하였다. 3 ml of LB / amp culture was inoculated with the recombinant strain 1 colony transformed with pET21a-6HMBP-ek-TYR30aa or pET21a-6HMBP-ek-TYR11aa to confirm the expression by induction or induction. . Each tube was inoculated with colonies, and then incubated at 37 ° C until O.D. became 0.6 at 600 nm. When O.D. reached 0.6, 1 mM isopropyl-1-thio-beta-di-galactopyranoside (Isopropyl 1-thio-β-D-galactopyranoside, IPTG) was added to induce protein expression.

<3-2> 단백질의 분리<3-2> Isolation of Protein

최종 O.D.가 >3이 되었을 때, 각 배양액을 1ml씩 취해 12,000rpm에서 1분간 원심분리하여 펠릿(pellet)을 얻는다. 이렇게 얻은 펠릿(pellet)에 DW 1ml씩을 넣어 잘 현탁시킨 후, 초음파 분해(sonication)를 30초 동안하여 파쇄시킨다. 1ml의 파쇄액 중 총 분획물(Total fraction)을 얻고, 12,000rpm에서 1분간 원심 분리하여 가용성 분획물(soluble fraction) 및 불용성 분획물(insoluble fraction)으로 분리하였다. 상기 분획물(fraction) 80ul에 5X 라이시스 완충용액(lysis buffer) 20ul를 첨가하고 100℃에서 5분간 가열한 후 얼음으로 식힌 다음 1mm 두께의 5% 축적 겔(stacking gel)에 로딩(loading)하였고, 12%의 분리 겔(separating gel)에서 분리하였다. 로딩이 완료된 PAGE 겔은 150V, 25mA로 전기영동하였고, 전기영동 후 겔을 쿠마실 브릴리언트 블루-R(coomassie brilliant blue-R) 용액으로 염색하여 6H-MBP-ek-TYR30aa 및 6H-MBP-ek-TYR11aa의 발현 정도를 확인할 수 있었다(도 8 참조).When the final O.D. is> 3, 1 ml of each culture is taken and centrifuged at 12,000 rpm for 1 minute to obtain pellets. 1 ml of DW was added to the pellet so that it was suspended well, and the ultrasonication was broken for 30 seconds. The total fraction in 1 ml of crushed liquid was obtained, and centrifuged at 12,000 rpm for 1 minute to separate the soluble fraction and the insoluble fraction. 20ul of 5X Lysis Buffer (lysis buffer) was added to 80ul of the fraction, heated at 100 ° C for 5 minutes, cooled with ice, and then loaded onto a 1% thick 5% stacking gel. Separation was carried out at 12% separating gels. The loaded PAGE gel was electrophoresed at 150 V, 25 mA, and after electrophoresis, the gels were stained with a coomasyl brilliant blue-R solution to produce 6H-MBP-ek-TYR30aa and 6H-MBP-ek-. The expression level of TYR11aa could be confirmed (see FIG. 8).

<< 실시예Example 4> 단백질 칩( 4> Protein Chips ( ProteinProtein chipchip )의 제작) Production

칩은 에폭시 슬라이드(epoxy slide)(VEPO-25C, CEL associate) 제품을 사용하였으며, 접착식 스티커에 직경 1.5mm의 구멍을 뚫어 슬라이드 위에 붙여 웰(well)을 형성하도록 제작하였다. 기질은 20%의 글리세롤(glycerol)이 포함된 농도 0.5mg/ml을 각각의 웰(well)에 스포팅(spotting)하여 30℃에서 밤새 두어 칩에 어레이(array)하였다. 세척 용액(washing solution)(0.5% Tween-20를 포함하는 PBS(pH7.4))으로 20분간 흔들며(shaking) 세척한 후 증류수로 거품이 일어나지 않을 때까지 짧게 세척한 후 3% BSA로 1시간 30분 동안 블로킹(blocking)을 하였다. 상기와 같이, 세척 용액(washing solution)(0.5% Tween-20를 포함하는 PBS(pH7.4))으로 20분간 흔들며 세척한 후 증류수로 거품이 일어나지 않을 때까지 짧게 세척한 후 질소가스로 건조를 하고 각각의 웰에 100uL PKC 용액(20mM HEPES(pH 7.4), 0.1mM CaCl2, 10μM Mg/ATP 칵테일(Upstate), 10% 지질 혼합물(100ug/ml 포스파티딜-세린(phosphatidyl-serine)(Sigma), 20ug/ml 디아실글리세롤(Diacylglycerol)(Sigma), 1mM HEPES(pH 7.4), 0.03% Triton X-100, 1.2ug/ml PKC βⅡ(Calbiochem))을 스포팅하여 30℃에서 반응시켰다. 20분간 세척과 건조 후 항체 희석 용액(antibody diluting solution)(30% 글리세롤을 포함하는 PBS(pH7.4)에서 10% BSA)로 마우스 항-포스포 세린/쓰레오닌(Mouse anti-phosphoSer/Thr)을 10ug/ml 농도에 맞게 희석하여 스포팅한 후 1시간 동안 반응시켰다. 20분간 세척과 건조 후 항체 희석 용액으로 Cy5-라벨링한 염소 항-마우스 항체(Goat anti-mouse Ab)를 20ug/ml 농도로 희석하여 스포팅한 후 30분간 반응시켰다. 20분간 세척과 건조 후 형광스캐너(Axon)로 스캐닝(scanning)하였다(도 9 참조).The chip was made of epoxy slide (VEPO-25C, CEL associate), and was made to form a well by attaching a hole of 1.5 mm in diameter to the adhesive sticker. The substrate was spotted in each well with a concentration of 0.5 mg / ml containing 20% of glycerol and placed at 30 ° C. overnight to be arrayed on the chip. Shaking for 20 minutes with a washing solution (PBS (pH7.4) containing 0.5% Tween-20) and briefly wash with distilled water until no foaming occurs. Blocking was done for 1 hour 30 minutes with 3% BSA. As described above, after washing with a washing solution (PBS (pH 7.4) containing 0.5% Tween-20) for 20 minutes, washing it briefly until no bubbles occur with distilled water, and drying with nitrogen gas. In each well, 100 uL PKC solution (20 mM HEPES (pH 7.4), 0.1 mM CaCl 2 , 10 μM Mg / ATP cocktail (Upstate), 10% lipid mixture (100 ug / ml phosphatidyl-serine (Sigma), 20 ug / ml Diacylglycerol (Sigma), 1 mM HEPES (pH 7.4), 0.03% Triton X-100, 1.2 ug / ml PKC βII (Calbiochem) were spotted and reacted at 30 ° C. 10 ug / mouse anti-phosphoSer / Thr after drying with antibody diluting solution (10% BSA in PBS containing pH 30% glycerol (pH7.4). After diluting to the ml concentration and spotting, the reaction was carried out for 1 hour After washing and drying for 20 minutes, Cy5-labeled goat anti-mouse antibody (G) oat anti-mouse Ab) was diluted to 20 ug / ml and spotted after reacting for 30 minutes, and washed with a fluorescent scanner (Axon) for 20 minutes (see Fig. 9).

<< 실험예Experimental Example 1> 기질에 따른 인산화의 정도를 측정 1> Determination of phosphorylation by substrate

상기 제작한 MBP-11aa 및 MBP-30aa이 PKC β의 기질로써 사용이 가능한지를 판단하기 위해 양성 대조군으로 히스톤(Histone)(Sigma)을, 음성 대조군으로 MBP와 융합되어 있지만 다른 서열을 가진 MBP-c2X(NEB)와 차단제(Blocking agent)인 BSA를 이용하였다. 반응조건은 ATP 10uM, 2시간 반응하였으며, 각각의 웰을 PKC β의 처리 유무, 항체 처리의 유무로 나누어 실제로 탐색(detection)되는 결과가 인산화에 의한 것인지를 확인하였다.MBP-11aa and MBP-30aa prepared above were fused with histone (Sigma) as a positive control and MBP as a negative control to determine whether it can be used as a substrate for PKC β. (NEB) and BSA, a blocking agent, were used. The reaction conditions were ATP 10 uM, and reacted for 2 hours. Each well was divided into the presence or absence of PKC β treatment and the presence of antibody treatment to confirm whether the result of phosphorylation was actually detected.

상기 결과, 양성 대조군인 히스톤(Histone)과 제작한 MBP-30aa에서만이 신호(signal)가 강하게 보였다. MBP-11aa도 인산화 부위(phosphorylation site)를 가지고 있긴 하지만 MBP와 융합된 부분이 PKC β와 반응하기에 너무 짧아 입체 장애(steric hindrance)를 가진 것을 알 수 있었다. 또한, PKC β를 처리하지 않거나 포스포세린(phsphoserine)을 탐색하는 항체를 처리하지 않았을 경우, 신호가 보이지 않으므로 이는 항체가 PKC β에 의해 인산화된 세린(serine)만을 탐색되었음을 알 수 있다(도 10 참조).As a result, only a strong control group, histone (Histone) and the produced MBP-30aa showed a strong signal (signal). MBP-11aa also has a phosphorylation site, but the fused portion of MBP was too short to react with PKC β, indicating steric hindrance. In addition, when no PKC β was treated or no antibody was searched for phosphoserine, no signal was seen, indicating that the antibody only detected serine phosphorylated by PKC β (see FIG. 10). ).

<< 실험예Experimental Example 2>  2> PKCPKC β 및  β and ATPATP 농도변화에 따른 인산화의 정도를 측정 Measure the degree of phosphorylation according to the change of concentration

실제로 <실험예 1>의 인산화가 PKC β에 의해 일어나는지 확인하기 위해 상기 <실시예 4>의 단백질 칩에 PKC β 및 ATP의 농도 및 반응시간별로 다르게 처리하였다.In order to confirm that the phosphorylation of <Experimental Example 1> is caused by PKC β, the protein chip of <Example 4> was treated differently according to the concentration and reaction time of PKC β and ATP.

상기 결과, PKC β 또는 ATP 농도가 올라갈수록 인산화가 증가하였으며, 이로써 인산화가 PKC β와 ATP에 의한 기작임을 확인할 수 있었다(도 11 및 도 12 참조).As a result, as the concentration of PKC β or ATP increased, phosphorylation increased, thereby confirming that phosphorylation is a mechanism by PKC β and ATP (see FIGS. 11 and 12).

<< 실험예Experimental Example 3> 저해제 농도변화에 따른 인산화의 정도를 측정  3> Measure the degree of phosphorylation according to the change of inhibitor concentration

<3-1> <3-1> 티로시나제를Tyrosinase 모방 단백질( Mimic protein ( TyrosinaseTyrosinase mimeticmimetic peptidepeptide ) 처리) process

상기 <실시예 4>의 단백질 칩에 인산화 서열을 가진 11개의 펩타이드(peptide)를 합성한 티로시나제 모방 단백질을 처리하여 인산화의 저해 정도를 확인하였다. The degree of inhibition of phosphorylation was confirmed by treating tyrosinase mimetic protein synthesized with 11 peptides having a phosphorylation sequence on the protein chip of <Example 4>.

상기 결과, 티로시나제 모방 단백질의 처리농도가 올라갈수록 인산화의 정도가 낮아지는 것을 확인하였다(도 13 참조).As a result, it was confirmed that the degree of phosphorylation was lowered as the treatment concentration of the tyrosinase mimic protein increased (see FIG. 13).

<3-2> <3-2> 비스인돌릴말레이미드Bisindoleylmaleimide (( BisindolylmaleimideBisindolylmaleimide ) I 처리) I treatment

상기 <실시예 4>의 단백질 칩에 PKC β의 선택적 기질로 알려진 비스인돌릴말레이미드 I를 처리하여 인산화의 저해 정도를 확인하였다. The degree of inhibition of phosphorylation was confirmed by treating bisindolylmaleimide I, which is known as a selective substrate of PKC β, to the protein chip of <Example 4>.

그 결과, 비스인돌릴말레이미드 I의 처리농도가 올라갈수록 인산화의 정도가 낮아지는 것을 확인하였다(도 14 참조). As a result, it was confirmed that the degree of phosphorylation was lowered as the treatment concentration of bis indolyl maleimide I increased (see FIG. 14).

도 1은 유전자 재조합에 사용되는 pET 21a(+) 벡터맵을 나타내는 그림이고,1 is a diagram showing a pET 21a (+) vector map used for genetic recombination,

도 2는 pET 21a-6H-MBP-EK-TYR30aa의 벡터맵을 나타내는 그림이고,2 is a diagram showing a vector map of pET 21a-6H-MBP-EK-TYR30aa,

도 3은 재조합 벡터 내에 6H-MBP-EK-TYR30aa가 삽입되어 있음을 확인하는 전기영동 결과를 나타내는 그림이고,Figure 3 is a diagram showing the results of electrophoresis confirming that 6H-MBP-EK-TYR30aa is inserted in the recombinant vector,

도 4는 6H-MBP-EK-TYR30aa의 서열결정(sequencing)의 결과를 나타내는 그림이고,4 is a diagram showing the results of sequencing of 6H-MBP-EK-TYR30aa,

도 5는 pET 21a-6H-MBP-EK-TYR11aa의 벡터맵을 나타내는 그림이고, 5 is a diagram showing a vector map of pET 21a-6H-MBP-EK-TYR11aa,

도 6은 재조합 벡터 내에 6H-MBP-EK-TYR11aa가 삽입되어 있음을 확인하는 전기영동 결과를 나타내는 그림이고,6 is a diagram showing the results of electrophoresis confirming that 6H-MBP-EK-TYR11aa is inserted into the recombinant vector.

도 7은 6H-MBP-EK-TYR11aa의 서열결정(sequencing)의 결과를 나타내는 그림이고,7 is a diagram showing the results of sequencing of 6H-MBP-EK-TYR11aa,

도 8은 재조합 대장균에서 6H-MBP-EK-TYR30aa 및 6H-MBP-EK-TYR11aa의 발현 정도를 나타내는 전기영동 결과를 나타내는 그림이고, 8 is a diagram showing the results of electrophoresis showing the expression level of 6H-MBP-EK-TYR30aa and 6H-MBP-EK-TYR11aa in recombinant E. coli,

도 9는 단백질 칩의 제작 과정을 나타내는 개략도이고,9 is a schematic diagram showing a manufacturing process of a protein chip,

도 10은 단백질 칩에서 기질에 따른 인산화 정도를 나타내는 그래프이고,10 is a graph showing the degree of phosphorylation according to substrate in the protein chip,

도 11은 단백질 칩에서 PKC β 농도에 따른 인산화 정도를 나타내는 그래프이고, 11 is a graph showing the degree of phosphorylation according to PKC β concentration in the protein chip,

도 12는 단백질 칩에서 ATP 농도에 따른 인산화 정도를 나타내는 그래프이고, 12 is a graph showing the degree of phosphorylation according to ATP concentration in the protein chip,

도 13은 단백질 칩에서 TMP 처리 농도에 따른 인산화 정도를 나타내는 그래프이고,13 is a graph showing the degree of phosphorylation according to the TMP treatment concentration in the protein chip,

도 14는 단백질 칩에서 비스인돌릴말레이미드 I의 처리 농도에 따른 인산화 정도를 나타내는 그래프이다.14 is a graph showing the degree of phosphorylation according to the treatment concentration of bis indolyl maleimide I in the protein chip.

<110> Inha Univ. <120> The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it <130> 7p-10-15 <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 1101 <212> DNA <213> nucleotide sequence of MBP(Maltose binding protein) <400> 1 atgaaaatcg aagaaggtaa actggtaatc tggattaacg gcgataaagg ctataacggt 60 ctcgctgaag tcggtaagaa attcgagaaa gataccggaa ttaaagtcac cgttgagcat 120 ccggataaac tggaagagaa attcccacag gttgcggcaa ctggcgatgg ccctgacatt 180 atcttctggg cacacgaccg ctttggtggc tacgctcaat ctggcctgtt ggctgaaatc 240 accccggaca aagcgttcca ggacaagctg tatccgttta cctgggatgc cgtacgttac 300 aacggcaagc tgattgctta cccgatcgct gttgaagcgt tatcgctgat ttataacaaa 360 gatctgctgc cgaacccgcc aaaaacctgg gaagagatcc cggcgctgga taaagaactg 420 aaagcgaaag gtaagagcgc gctgatgttc aacctgcaag aaccgtactt cacctggccg 480 ctgattgctg ctgacggggg ttatgcgttc aagtatgaaa acggcaagta cgacattaaa 540 gacgtgggcg tggataacgc tggcgcgaaa gcgggtctga ccttcctggt tgacctgatt 600 aaaaacaaac acatgaatgc agacaccgat tactccatcg cagaagctgc ctttaataaa 660 ggcgaaacag cgatgaccat caacggcccg tgggcatggt ccaacatcga caccagcaaa 720 gtgaattatg gtgtaacggt actgccgacc ttcaagggtc aaccatccaa accgttcgtt 780 ggcgtgctga gcgcaggtat taacgccgcc agtccgaaca aagagctggc gaaagagttc 840 ctcgaaaact atctgctgac tgatgaaggt ctggaagcgg ttaataaaga caaaccgctg 900 ggtgccgtag cgctgaagtc ttacgaggaa gagttggcga aagatccacg tattgccgcc 960 accatggaaa acgcccagaa aggtgaaatc atgccgaaca tcccgcagat gtccgctttc 1020 tggtatgccg tgcgtactgc ggtgatcaac gccgccagcg gtcgtcagac tgtcgatgaa 1080 gccctgaaag acgcgcagac t 1101 <210> 2 <211> 90 <212> PRT <213> amino acid sequence of Tyrosinase(TYR) <400> 2 Thr Gly Thr Cys Gly Thr Cys Ala Cys Ala Ala Gly Ala Gly Ala Ala 1 5 10 15 Ala Gly Cys Ala Gly Cys Thr Thr Cys Cys Thr Gly Ala Ala Gly Ala 20 25 30 Ala Ala Ala Gly Cys Ala Gly Cys Cys Ala Cys Thr Cys Cys Thr Cys 35 40 45 Ala Thr Gly Gly Ala Gly Ala Ala Ala Gly Ala Gly Gly Ala Thr Thr 50 55 60 Ala Cys Cys Ala Cys Ala Gly Thr Thr Thr Gly Thr Ala Thr Cys Ala 65 70 75 80 Gly Ala Gly Cys Cys Ala Thr Thr Thr Ala 85 90 <210> 3 <211> 54 <212> PRT <213> 6H-MBP forward primer <400> 3 Gly Gly Cys Cys Ala Thr Ala Thr Gly Cys Ala Cys Cys Ala Cys Cys 1 5 10 15 Ala Cys Cys Ala Cys Cys Ala Cys Cys Ala Cys Ala Ala Ala Ala Thr 20 25 30 Cys Gly Ala Ala Gly Ala Ala Gly Gly Thr Ala Ala Ala Cys Thr Gly 35 40 45 Gly Thr Ala Ala Thr Cys 50 <210> 4 <211> 41 <212> PRT <213> 6H-MBP reverse primer <400> 4 Cys Cys Ala Ala Gly Cys Cys Ala Thr Gly Gly Ala Gly Thr Cys Thr 1 5 10 15 Gly Cys Gly Cys Gly Thr Cys Thr Thr Thr Cys Ala Gly Gly Gly Cys 20 25 30 Thr Thr Cys Ala Thr Cys Gly Ala Cys 35 40 <210> 5 <211> 69 <212> PRT <213> TYR template forward primer <400> 5 Ala Ala Gly Ala Gly Ala Ala Ala Gly Cys Ala Gly Cys Thr Thr Cys 1 5 10 15 Cys Thr Gly Ala Ala Gly Ala Ala Ala Ala Gly Cys Ala Gly Cys Cys 20 25 30 Ala Cys Thr Cys Cys Thr Cys Ala Thr Gly Gly Ala Gly Ala Ala Ala 35 40 45 Gly Ala Gly Gly Ala Thr Thr Ala Cys Cys Ala Cys Ala Gly Thr Thr 50 55 60 Thr Gly Thr Ala Thr 65 <210> 6 <211> 69 <212> PRT <213> TYR template reverse primer <400> 6 Cys Thr Gly Ala Thr Ala Cys Ala Ala Ala Cys Thr Gly Thr Gly Gly 1 5 10 15 Thr Ala Ala Thr Cys Cys Thr Cys Thr Thr Thr Cys Thr Cys Cys Ala 20 25 30 Thr Gly Ala Gly Gly Ala Gly Thr Gly Gly Cys Thr Gly Cys Thr Thr 35 40 45 Thr Thr Cys Thr Thr Cys Ala Gly Gly Ala Ala Gly Cys Thr Gly Cys 50 55 60 Thr Thr Thr Cys Thr 65 <210> 7 <211> 48 <212> PRT <213> ek-TYR 30aa forward primer <400> 7 Gly Gly Cys Cys Cys Ala Thr Gly Gly Gly Ala Cys Gly Ala Cys Gly 1 5 10 15 Ala Cys Gly Ala Cys Ala Ala Gly Thr Gly Thr Cys Gly Thr Cys Ala 20 25 30 Cys Ala Ala Gly Ala Gly Ala Ala Ala Gly Cys Ala Gly Cys Thr Thr 35 40 45 <210> 8 <211> 33 <212> PRT <213> ek-TYR 30aa reverse primer <400> 8 Gly Gly Cys Cys Thr Cys Gly Ala Gly Thr Thr Ala Thr Ala Ala Ala 1 5 10 15 Thr Gly Gly Cys Thr Cys Thr Gly Ala Thr Ala Cys Ala Ala Ala Cys 20 25 30 Thr <210> 9 <211> 39 <212> PRT <213> ek-TYR 11aa forward primer <400> 9 Gly Gly Cys Cys Cys Ala Thr Gly Gly Gly Ala Cys Gly Ala Cys Gly 1 5 10 15 Ala Cys Gly Ala Cys Ala Ala Gly Gly Ala Gly Gly Ala Thr Thr Ala 20 25 30 Cys Cys Ala Cys Ala Gly Thr 35 <210> 10 <211> 27 <212> PRT <213> ek-TYR 11aa reverse primer <400> 10 Gly Gly Cys Cys Thr Cys Gly Ala Gly Thr Thr Ala Thr Ala Ala Ala 1 5 10 15 Thr Gly Gly Cys Thr Cys Thr Gly Ala Thr Ala 20 25 <110> Inha Univ. <120> The protein chip for screening inhibitors of tyrosinase          phosphorylation and the screening method using it <130> 7p-10-15 <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 1101 <212> DNA <213> Nucleotide sequence of MBP (Maltose binding protein) <400> 1 atgaaaatcg aagaaggtaa actggtaatc tggattaacg gcgataaagg ctataacggt 60 ctcgctgaag tcggtaagaa attcgagaaa gataccggaa ttaaagtcac cgttgagcat 120 ccggataaac tggaagagaa attcccacag gttgcggcaa ctggcgatgg ccctgacatt 180 atcttctggg cacacgaccg ctttggtggc tacgctcaat ctggcctgtt ggctgaaatc 240 accccggaca aagcgttcca ggacaagctg tatccgttta cctgggatgc cgtacgttac 300 aacggcaagc tgattgctta cccgatcgct gttgaagcgt tatcgctgat ttataacaaa 360 gatctgctgc cgaacccgcc aaaaacctgg gaagagatcc cggcgctgga taaagaactg 420 aaagcgaaag gtaagagcgc gctgatgttc aacctgcaag aaccgtactt cacctggccg 480 ctgattgctg ctgacggggg ttatgcgttc aagtatgaaa acggcaagta cgacattaaa 540 gacgtgggcg tggataacgc tggcgcgaaa gcgggtctga ccttcctggt tgacctgatt 600 aaaaacaaac acatgaatgc agacaccgat tactccatcg cagaagctgc ctttaataaa 660 ggcgaaacag cgatgaccat caacggcccg tgggcatggt ccaacatcga caccagcaaa 720 gtgaattatg gtgtaacggt actgccgacc ttcaagggtc aaccatccaa accgttcgtt 780 ggcgtgctga gcgcaggtat taacgccgcc agtccgaaca aagagctggc gaaagagttc 840 ctcgaaaact atctgctgac tgatgaaggt ctggaagcgg ttaataaaga caaaccgctg 900 ggtgccgtag cgctgaagtc ttacgaggaa gagttggcga aagatccacg tattgccgcc 960 accatggaaa acgcccagaa aggtgaaatc atgccgaaca tcccgcagat gtccgctttc 1020 tggtatgccg tgcgtactgc ggtgatcaac gccgccagcg gtcgtcagac tgtcgatgaa 1080 gccctgaaag acgcgcagac t 1101 <210> 2 <211> 90 <212> PRT <213> amino acid sequence of Tyrosinase (TYR) <400> 2 Thr Gly Thr Cys Gly Thr Cys Ala Cys Ala Ala Gly Ala Gly Ala Ala   1 5 10 15 Ala Gly Cys Ala Gly Cys Thr Thr Cys Cys Thr Gly Ala Ala Gly Ala              20 25 30 Ala Ala Ala Gly Cys Ala Gly Cys Cys Ala Cys Thr Cys Cys Thr Cys          35 40 45 Ala Thr Gly Gly Ala Gly Ala Ala Ala Gly Ala Gly Gly Ala Thr Thr      50 55 60 Ala Cys Cys Ala Cys Ala Gly Thr Thr Thr Gly Thr Ala Thr Cys Ala  65 70 75 80 Gly Ala Gly Cys Cys Ala Thr Thr Thr Ala                  85 90 <210> 3 <211> 54 <212> PRT <213> 6H-MBP forward primer <400> 3 Gly Gly Cys Cys Ala Thr Ala Thr Gly Cys Ala Cys Cys Ala Cys Cys   1 5 10 15 Ala Cys Cys Ala Cys Cys Ala Cys Cys Ala Cys Ala Ala Ala Ala Thr              20 25 30 Cys Gly Ala Ala Gly Ala Ala Gly Gly Thr Ala Ala Ala Cys Thr Gly          35 40 45 Gly Thr Ala Ala Thr Cys      50 <210> 4 <211> 41 <212> PRT <213> 6H-MBP reverse primer <400> 4 Cys Cys Ala Ala Gly Cys Cys Ala Thr Gly Gly Ala Gly Thr Cys Thr   1 5 10 15 Gly Cys Gly Cys Gly Thr Cys Thr Thr Thr Cys Ala Gly Gly Gly Cys              20 25 30 Thr Thr Cys Ala Thr Cys Gly Ala Cys          35 40 <210> 5 <211> 69 <212> PRT <213> TYR template forward primer <400> 5 Ala Ala Gly Ala Gly Ala Ala Ala Gly Cys Ala Gly Cys Thr Thr Cys   1 5 10 15 Cys Thr Gly Ala Ala Gly Ala Ala Ala Ala Gly Cys Ala Gly Cys Cys              20 25 30 Ala Cys Thr Cys Cys Thr Cys Ala Thr Gly Gly Ala Gly Ala Ala Ala          35 40 45 Gly Ala Gly Gly Ala Thr Thr Ala Cys Cys Ala Cys Ala Gly Thr Thr      50 55 60 Thr Gly Thr Ala Thr  65 <210> 6 <211> 69 <212> PRT <213> TYR template reverse primer <400> 6 Cys Thr Gly Ala Thr Ala Cys Ala Ala Ala Cys Thr Gly Thr Gly Gly   1 5 10 15 Thr Ala Ala Thr Cys Cys Thr Cys Thr Thr Thr Cys Thr Cys Cys Ala              20 25 30 Thr Gly Ala Gly Gly Ala Gly Thr Gly Gly Cys Thr Gly Cys Thr Thr          35 40 45 Thr Thr Cys Thr Thr Cys Ala Gly Gly Ala Ala Gly Cys Thr Gly Cys      50 55 60 Thr Thr Thr Cys Thr  65 <210> 7 <211> 48 <212> PRT <213> ek-TYR 30aa forward primer <400> 7 Gly Gly Cys Cys Cys Ala Thr Gly Gly Gly Ala Cys Gly Ala Cys Gly   1 5 10 15 Ala Cys Gly Ala Cys Ala Ala Gly Thr Gly Thr Cys Gly Thr Cys Ala              20 25 30 Cys Ala Ala Gly Ala Gly Ala Ala Ala Gly Cys Ala Gly Cys Thr Thr          35 40 45 <210> 8 <211> 33 <212> PRT <213> ek-TYR 30aa reverse primer <400> 8 Gly Gly Cys Cys Thr Cys Gly Ala Gly Thr Thr Ala Thr Ala Ala Ala   1 5 10 15 Thr Gly Gly Cys Thr Cys Thr Gly Ala Thr Ala Cys Ala Ala Ala Cys              20 25 30 Thr     <210> 9 <211> 39 <212> PRT <213> ek-TYR 11aa forward primer <400> 9 Gly Gly Cys Cys Cys Ala Thr Gly Gly Gly Ala Cys Gly Ala Cys Gly   1 5 10 15 Ala Cys Gly Ala Cys Ala Ala Gly Gly Ala Gly Gly Ala Thr Thr Ala              20 25 30 Cys Cys Ala Cys Ala Gly Thr          35 <210> 10 <211> 27 <212> PRT <213> ek-TYR 11aa reverse primer <400> 10 Gly Gly Cys Cys Thr Cys Gly Ala Gly Thr Thr Ala Thr Ala Ala Ala   1 5 10 15 Thr Gly Gly Cys Thr Cys Thr Gly Ala Thr Ala              20 25  

Claims (8)

티로시나제(Tyrosinase)의 시토졸 도메인(cytosolic domain) 및 막통과 도메인(transmembrane domain)을 합친 아미노산 서열의 전부 또는 일부를 포함하는 폴리펩티드를 말토즈 결합 단백질(Maltose Binding Protein, MBP)에 융합시킨 융합단백질이 고체 기판에 고정된 티로시나제 인산화 저해제 탐색용 단백질 칩.A fusion protein in which a polypeptide comprising all or part of an amino acid sequence combining the cytosolic domain and the transmembrane domain of Tyrosinase is fused to a Maltose Binding Protein (MBP). Protein chip for screening tyrosinase phosphorylation inhibitor fixed on a solid substrate. 제 1항에 있어서, 상기 아미노산 서열은 서열번호 2로 표시되는 것을 특징으로 하는 단백질 칩.The protein chip according to claim 1, wherein the amino acid sequence is represented by SEQ ID NO: 2. 제 1항의 단백질 칩을 포함하는 티로시나제 인산화 저해제 탐색용 키트.Kit for screening tyrosinase phosphorylation inhibitor comprising the protein chip of claim 1. 1) 제 1항의 단백질 칩에 티로시나제 인산화 저해제 후보물질을 PKC (Protein Kinase C)와 함께 첨가하는 단계;1) adding a tyrosinase phosphorylation inhibitor candidate with PKC (Protein Kinase C) to the protein chip of claim 1; 2) 항-인산화 티로시나제 또는 항-포스포 세린 특이적 항체를 처리하는 단계; 2) treating anti-phosphorylated tyrosinase or anti-phosphoserine specific antibodies; 3) 상기 단백질 칩에 결합한 항체의 양을 확인하는 단계; 및3) confirming the amount of antibody bound to the protein chip; And 4) 상기 저해제 후보물질을 처리하지 않은 대조군과 비교하여 항체 결합 정도를 감소시킨 후보물질을 선별하는 단계를 포함하는 티로시나제 인산화 저해제 탐색방법.4) A method for screening a tyrosinase phosphorylation inhibitor comprising the step of selecting a candidate substance having a reduced degree of antibody binding as compared to a control group not treated with the inhibitor candidate substance. 제 4항에 있어서, 단계 1)의 PKC는 PKC βⅡ인 것을 특징으로 하는 탐색방법.5. The search method according to claim 4, wherein the PKC of step 1) is PKC βII. 제 4항에 있어서, 단계 2)의 항체는 마우스 항-포스포 세린/쓰레오닌(Mouse anti-phosphoSer/Thr)인 것을 특징으로 하는 탐색방법.The method of claim 4, wherein the antibody of step 2) is mouse anti-phosphoSer / Thr. 제 4항에 있어서, 단계 3)의 단백질 칩에 결합한 항체의 양은 i) SPR(surface plasmon resonance) 방법 또는 SPRI(surface plasmon resonance imaging) 방법에 의해 수행되거나 ii) 항체에 부착된 형광표지에 의한 형광을 검출함으로써 수행되는 것을 특징으로 하는 탐색방법.The method according to claim 4, wherein the amount of antibody bound to the protein chip of step 3) is performed by i) surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI) or ii) fluorescence by fluorescent label attached to the antibody. The search method is performed by detecting. 제 7항에 있어서, 형광표지는 Cy3, Cy5, 폴리 L-라이신-플루오레세인 이소티 오시아네이트(poly L-lysine-fluorescein isothiocyanate, FITC), 로다민-B-이소티오시아네이트(rhodamine-B-isothiocyanate, RITC), 로다민(rhodamine)으로 이루어진 군으로부터 선택된 어느 하나의 형광물질인 것을 특징으로 하는 탐색방법.8. The fluorescent label according to claim 7, wherein the fluorescent label is Cy3, Cy5, poly L-lysine-fluorescein isothiocyanate (FITC), rhodamine-B-isothiocyanate (rhodamine-B -isothiocyanate, RITC), rhodamine (rhodamine) is a screening method characterized in that any one selected from the group consisting of.
KR1020070107688A 2007-10-25 2007-10-25 The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it KR100940888B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070107688A KR100940888B1 (en) 2007-10-25 2007-10-25 The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070107688A KR100940888B1 (en) 2007-10-25 2007-10-25 The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it

Publications (2)

Publication Number Publication Date
KR20090041909A true KR20090041909A (en) 2009-04-29
KR100940888B1 KR100940888B1 (en) 2010-02-09

Family

ID=40764854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070107688A KR100940888B1 (en) 2007-10-25 2007-10-25 The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it

Country Status (1)

Country Link
KR (1) KR100940888B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239182A (en) * 2018-09-04 2019-01-18 南京林业大学 A method of with cellulase in-situ modification gold chip
CN113924319A (en) * 2019-08-08 2022-01-11 哈坞生物科技株式会社 Anti-tyrosinase antibodies that inhibit tyrosinase and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927125B1 (en) * 2005-04-15 2009-11-18 인하대학교 산학협력단 MTF inhibitor screening kit using MTF inhibitor screening protein chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239182A (en) * 2018-09-04 2019-01-18 南京林业大学 A method of with cellulase in-situ modification gold chip
CN109239182B (en) * 2018-09-04 2021-02-09 南京林业大学 Method for in-situ modification of gold chip by cellulase
CN113924319A (en) * 2019-08-08 2022-01-11 哈坞生物科技株式会社 Anti-tyrosinase antibodies that inhibit tyrosinase and uses thereof

Also Published As

Publication number Publication date
KR100940888B1 (en) 2010-02-09

Similar Documents

Publication Publication Date Title
Kwezi et al. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants
Julien et al. Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression
Karradt et al. NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease
Shen et al. CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines
Chen et al. Wide sugar substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4
Lázár et al. Structure–function analysis of peroxidasin provides insight into the mechanism of collagen IV crosslinking
Schultz et al. Luciferase of the Japanese syllid polychaete Odontosyllis umdecimdonta
EP2816110B1 (en) Peptide having affinity for silicon nitride (si3n4), and use therefor
KR100940888B1 (en) The protein chip for screening inhibitors of tyrosinase phosphorylation and the screening method using it
Murphy et al. Multiple forms of formamidopyrimidine-DNA glycosylase produced by alternative splicing in Arabidopsis thaliana
CN101061239B (en) Method for diagnosing non-small cell lung cancers by tRNA-dihydrouridine synthase activity of URLC8
Wang et al. Recent advances and perspectives on expanding the chemical diversity of lasso peptides
AU2002367554A1 (en) Protein complexes and methods for their use
Spencer et al. The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit
Mehner et al. New peptolides from the cyanobacterium Nostoc insulare as selective and potent inhibitors of human leukocyte elastase
EP2675912B1 (en) Method for assaying ogfod1 activity
KR20010108411A (en) Ceramidase gene
Choi et al. Development of a potential protein display platform in Corynebacterium glutamicum using mycolic acid layer protein, NCgl1337, as an anchoring motif
Jin et al. Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast
EP3257868A1 (en) Peptides having affinity for polydimethylsiloxane, and uses thereof
KR100752683B1 (en) A valiolone synthase its gene and primer for valienamine biosynthesis and method for producing the same
YOO et al. Determination of the native form of FadD, the Escherichia coli fatty acyl-CoA synthetase, and characterization of limited proteolysis by outer membrane protease OmpT
JP2016161420A (en) Juvenile hormone sensor
JP4232423B2 (en) Novel ubiquitin-specific protease
RU2395813C2 (en) Application of biotin-conjugated polypeptide for protein phosphorylating enzyme analysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130123

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141204

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee