KR20090029409A - Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof - Google Patents

Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof Download PDF

Info

Publication number
KR20090029409A
KR20090029409A KR1020070094611A KR20070094611A KR20090029409A KR 20090029409 A KR20090029409 A KR 20090029409A KR 1020070094611 A KR1020070094611 A KR 1020070094611A KR 20070094611 A KR20070094611 A KR 20070094611A KR 20090029409 A KR20090029409 A KR 20090029409A
Authority
KR
South Korea
Prior art keywords
ionic liquid
carbon nanotubes
group
carbon nanotube
substituted
Prior art date
Application number
KR1020070094611A
Other languages
Korean (ko)
Other versions
KR100945568B1 (en
Inventor
이상기
전유성
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020070094611A priority Critical patent/KR100945568B1/en
Publication of KR20090029409A publication Critical patent/KR20090029409A/en
Application granted granted Critical
Publication of KR100945568B1 publication Critical patent/KR100945568B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

An ionic liquid-carbon nanotube supporter composite in which metal nanoparticle is fixed is provided to increase dynamic stability of metal nanoparticle using the carbon nanotube as a supporter and to be separated without a surfactant. An ionic liquid-carbon nanotube supporter composite in which metal nanoparticle is fixed is indicated as a chemical formula 1. In the chemical formula, the carbon nanotube is a single-walled carbon nanotube or a multi-walled carbon nanotube; X is selected from a group consisting of Cl, Br, I, OH, AlCl4, BF4,ClO4, PF6 and N(OTf)2; Y is O or NR5; R5 is selected from a group consisting of hydrogen, substituted or non-substituted straight-chain of C1 ~ C5 or side chain alkyl and substituted or non-substituted aryl of C1 ~ C5; R1 to R4 are independently selectively H, non-substituted or substituted C1 ~ C10 selected from a group consisting of OH, COOH and SO3H or side chain alkyl group or non-substituted or substituted C5-C7 aryl selected from a group consisting of OH, Br, Cl, COOH, COO-,SO3H, SO3-, first, second, third amine and C1 ~ C10 straight-chain or the side chain alkyl group; M is one selected from a group consisting of Pd, Rh, Ir, Pt and Au; n is 0 ~ 10.

Description

금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체 및 이의 제조방법{Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof}Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method

본 발명은 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체 및 이의 제조방법에 관한 것이다. The present invention relates to an ionic liquid-carbon nanotube support composite having a metal nanoparticle immobilized thereon and a method for preparing the same.

탄소나노튜브는 뛰어난 물리, 화학적, 기계적 및 전기적 물성을 갖고있기 때문에 상기 물성을 매우 다양한 산업에 응용할 수 있는 중요한 신소재 중에 하나이다. Carbon nanotubes have excellent physical, chemical, mechanical and electrical properties, and thus are one of the important new materials that can be applied to a wide variety of industries.

특히 탄소나노튜브-나노입자 복합체(composite)는 탄소나노튜브의 자체특성 뿐만아니라 나노입자의 특성을 응용할 수 있어, 촉매, 화학 센스 또는 나노크기의 전자기적 기기에 적용 가능하다. In particular, the carbon nanotube-nanoparticle composite can apply not only the self-characteristics of the carbon nanotubes but also the properties of the nanoparticles, and thus can be applied to a catalyst, a chemical sense, or a nano-sized electromagnetic device.

상기 적용을 위해, 탄소나노튜브 및 나노입자의 고유한 특성을 유지시키면서도 탄소나노튜브에 나노입자를 고정화한 탄소나노튜브-나노입자 복합제 제조를 위 한 다양한 기술들이 개발되었다. For this application, various techniques have been developed for the preparation of carbon nanotube-nanoparticle composites in which nanoparticles are immobilized on carbon nanotubes while maintaining the unique properties of carbon nanotubes and nanoparticles.

종래 대표적인 방법은 초임계 이산화탄소 또는 수용액하에서 탄소나노튜브에 나노입자를 고정화하는 기술이 보고되었다. 상기 방법은 탄소나노튜브가 수용액에 낮은 용해도를 가지고있어, 상기 기술을 적용시키기 위해서는 매우 격렬한 조건을 필요로하므로 탄소나노튜브의 고유 특성을 저해시킬 뿐만 아니라, 실용성이 낮은 문제가 있다. [(a) Ye, X.-R.; Lin, Y.; Wang, C.; Engelhard, M. H.; Wang, Y.; Wai, C. M. J. Mater . Chem . 2004, 14, 908. (b) Xue, B.; Chen, P.; Hong, Q.; Lin, J.; Tan, K. L. J. Mater . Chem . 2001, 11, 2378.]Representative methods of the related art have been reported to immobilize nanoparticles on carbon nanotubes under supercritical carbon dioxide or aqueous solution. Since the carbon nanotubes have low solubility in an aqueous solution and require very violent conditions in order to apply the above technique, the carbon nanotubes not only impair the intrinsic properties of the carbon nanotubes, but also have low practicality. [(a) Ye, X.-R .; Lin, Y .; Wang, C .; Engelhard, MH; Wang, Y .; Wai, CM J. Mater . Chem . 2004 , 14, 908. (b) Xue, B .; Chen, P .; Hong, Q .; Lin, J .; Tan, KL J. Mater . Chem . 2001 , 11, 2378.]

종래 기술의 문제점을 해결하기 위해, 최근 물-오일 마이크로 에멀젼 (water-oil microemulsion)을 이용한 상온 및 1 대기압의 수소압력하의 온화한 조건에서 탄소나노튜브의 물성 저하 없이 팔라듐, 로듐 등과 같은 금속 할라이드를 카르보닐 산 작용기를 도입한 탄소나노튜브 표면에 환원시킴으로써, 카르보닐 산 작용기를 도입한 탄소나노튜브에 금속 나노입자를 고정화한 방법이 개발되었다[Yoon, B.; Wai, C. M. J. Am . Chem . Soc . 2005, 127, 17174.]. 상기 방법은 탄소나노튜브의 특성을 유지시키는데 효과적인 장점이 있지만, 물-오일 마이크로 에멀젼을 형성하기 위해서는 다량의 유기 용매를 사용해야 할 뿐만 아니라 분리가 어려운 계면 활성제를 필요로 하는 문제가 있다. In order to solve the problems of the prior art, metal halides such as palladium, rhodium and the like can be carried out without deterioration of the properties of carbon nanotubes under mild conditions under recent atmospheric pressure and water pressure using a water-oil microemulsion. By reducing the carbon nanotubes on which carbonyl acid functional groups are introduced, a method of immobilizing metal nanoparticles on carbon nanotubes on which carbonyl acid functional groups are introduced has been developed [Yoon, B .; Wai, CM J. Am . Chem . Soc . 2005 , 127, 17174.]. The method has the advantage of being effective in maintaining the properties of the carbon nanotubes, but in order to form a water-oil micro-emulsion, not only a large amount of organic solvents need to be used but also need a surfactant that is difficult to separate.

이에, 본 발명자들은 상기 문제점들을 해결하기 위해서 이미다졸 염을 바탕으로 하는 이온성 액체를 탄소나노튜브 표면에 개질하는 연구를 수행하던 중 이온성 액체를 개질한 탄소 나노튜브를 제조하였다[Chemstry of Materials 2006, 18, 1546]. The present inventors have prepared the ionic liquid of the carbon nanotubes, the reforming was carried out a study to modify the ionic liquid based on the imidazole salt in order to solve the above problems, the carbon nanotube surface [Chemstry of Materials 2006 , 18, 1546].

일반적으로 이미다졸 염계 이온성 액체는 정전기적 및 착물성 (electrostatically and coordinatively) 작용에 의해서 금속 나노입자를 안정화 시키는 연구가 보고되었다[(a)Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P.F.P.; Teixeira, S. R. J. Am . Chem . Soc . 2002, 124, 4228. (b) Fonseca, G. S.; Fonseca, A. P.; Teixeira, S. R.; Dupont, J. Chem .- Eur . J. 2003, 9, 3263. (c) Scheeren, C. W.; Machado, G.; Dupont, J.; Fichtner, P.F.P.; Teixeira, S. R. Inorg . Chem . 2003, 42, 4738. (d) Silverira, E. T.; Umpierre, A. P.; Rossi, L. M.; Machado, G.; Morais, J.; Soares, G. V.; Baumvol, I. J. R.; Teixeira, S. R. Fichtner, P.F.P.; Dupont, J. Chem .- Eur . J. 2004, 10, 3734.]. In general, studies have been reported to stabilize metal nanoparticles by imidazole salt-based ionic liquids by electrostatically and coordinatively [(a) Dupont, J .; Fonseca, GS; Umpierre, AP; Fichtner, PFP; Teixeira, SR J. Am . Chem . Soc . 2002 , 124, 4228. (b) Fonseca, GS; Fonseca, AP; Teixeira, SR; Dupont, J. Chem .- Eur. J. 2003 , 9, 3263. (c) Scheeren, CW; Machado, G .; Dupont, J .; Fichtner, PFP; Teixeira, SR Inorg . Chem . 2003 , 42, 4738. (d) Silverira, ET; Umpierre, AP; Rossi, LM; Machado, G .; Morais, J .; Soares, GV; Baumvol, IJR; Teixeira, SR Fichtner, PFP; Dupont, J. Chem .- Eur. J. 2004 , 10, 3734.].

따라서, 이미다졸 염 구조의 이온성 액체를 도입한 탄소나노튜브를 이용하면, 탄소나노튜브에 고정된 금속 나노입자의 안정성이 증가될 뿐만 아니라 계면 활성제의 사용 없이 매우 온화한 조건하에서 탄소나노튜브-금속 나노입자의 복합체개발이 가능함을 예상하고, 이온성 액체를 포함하는 탄소나노튜브를 이용하여 매우 온화한 조건에서 새로운 금속 나노입자-탄소나노튜브 지지체 복합체를 제조할 수 있음을 알아내고 본 발명을 완성하였다. Therefore, using carbon nanotubes incorporating an ionic liquid having an imidazole salt structure not only increases the stability of the metal nanoparticles immobilized on the carbon nanotubes, but also carbon nanotube-metals under very mild conditions without the use of surfactants. Expecting the development of a composite of nanoparticles, and finding that it is possible to prepare a new metal nanoparticle-carbon nanotube support complex under very mild conditions using carbon nanotubes containing an ionic liquid, the present invention was completed. .

본 발명의 목적은 탄소나노튜브를 지지체로 사용하여 금속 나노입자의 동역학적 안정성을 증가시킬 뿐만 아니라, 계면활성제 없이도 분리가능한 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체를 제공하는데 있다.An object of the present invention is to provide an ionic liquid-carbon nanotube support complex in which carbon nanotubes are used as a support to increase the dynamic stability of the metal nanoparticles, and to which the metal nanoparticles that can be separated without a surfactant are immobilized. .

본 발명의 다른 목적은 상기 이온성 액체-탄소나노튜브 지지체 복합체에 금속 나노입자를 고정화시키는 방법을 제공하는데 있다. Another object of the present invention is to provide a method for immobilizing metal nanoparticles on the ionic liquid-carbon nanotube support composite.

상기 목적을 달성하기 위해, 본 발명은 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체 및 상기 복합체에 금속 나노입자를 고정화방법을 제공한다. In order to achieve the above object, the present invention provides an ionic liquid-carbon nanotube support complex immobilized metal nanoparticles and a method for immobilizing the metal nanoparticles to the complex.

본 발명의 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체는 고정화된 금속을 이용한 촉매뿐만 아니라, 탄소나노튜브를 이용한 전자 소자의 효율을 증가시켜 성능이 향상된 전자 소자를 제조하는 데 유용하게 사용할 수 있다. The ionic liquid-carbon nanotube support complexes to which the metal nanoparticles of the present invention are immobilized are useful for manufacturing electronic devices having improved performance by increasing the efficiency of electronic devices using carbon nanotubes as well as catalysts using immobilized metals. Can be used.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표시되는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체를 제공한다. The present invention provides an ionic liquid-carbon nanotube support complex to which metal nanoparticles represented by Formula 1 are immobilized.

<화학식 1><Formula 1>

Figure 112007067427748-PAT00002
Figure 112007067427748-PAT00002

상기 화학식에서,In the above formula,

상기 탄소나노튜브는 단일벽 탄소나노튜브(Single-walled carbonnanotube) 또는 다중벽 탄소나노튜브(Multiwalled carbonnanotube)이고;The carbon nanotubes are single-walled carbon nanotubes or multiwalled carbon nanotubes;

상기 X는 Cl, Br, I, OH, AlCl4, BF4,ClO4, PF6 및 N(OTf)2으로 이루어지는 군으로부터 선택되고;X is selected from the group consisting of Cl, Br, I, OH, AlCl 4 , BF 4 , ClO 4 , PF 6 and N (OTf) 2 ;

상기 Y는 O 또는 NR5이고, 여기서 R5는 수소, 비치환 또는 치환된 C1 ~ C5의 직쇄 또는 측쇄 알킬 및 비치환 또는 치환된 C5 ~ C7의 아릴로 이루어지는 군으로부터 선택되고, 바람직하게는 R5는 수소, 메틸, 에틸, 프로필, 부틸 또는 벤질이고; Y is O or NR 5 , wherein R 5 is selected from the group consisting of hydrogen, unsubstituted or substituted C 1 to C 5 straight or branched chain alkyl and unsubstituted or substituted C 5 to C 7 aryl, Preferably R 5 is hydrogen, methyl, ethyl, propyl, butyl or benzyl;

상기 R1 내지 R4는 서로 독립적으로 또는 선택적으로 H, 비치환된 또는 OH, COOH 및 SO3H로 이루어지는 군으로부터 선택되는 어느 하나로 치환된 C1 ~ C10 직쇄 또는 측쇄 알킬기, 비치환된 또는 OH, Br, Cl, COOH, COO-, SO3H, SO3 -, 1차, 2차, 3차 아민 및 C1 ~ C10 직쇄 또는 측쇄 알킬기로 이루어지는 군으로부터 선택되는 어느 하나로 치환된 C5-C7 아릴로 이루어지는 군으로부터 선택되고;R 1 to R 4 are independently of one another or optionally C 1 to C 10 straight or branched chain alkyl group, unsubstituted or substituted with any one selected from the group consisting of H, unsubstituted or OH, COOH and SO 3 H OH, Br, Cl, COOH, COO -, SO 3 H, SO 3 -, 1 primary, secondary and tertiary amines, and C 1 ~ C 10 straight-chain or by any member selected from the group consisting of branched alkyl substituted C 5 -C 7 aryl;

상기 M은 Pd, Rh, Ir, Pt 및 Au으로 이루어지는 군으로부터 선택되는 어느 하나이고; M is any one selected from the group consisting of Pd, Rh, Ir, Pt and Au;

상기 n은 0 ~ 10이다. N is from 0 to 10.

또한, 본 발명에 따른 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체내 금속 나노입자의 비율은 5 ~ 60 중량%이다. 상기 비율이 5 중량%미만이면 촉매로 응용될 경우 그 효율이 감소될 수 있고 60 중량% 초과하면 금속 나노입자의 크기가 증가해, 상대적으로 비표면적이 감소하여 촉매의 효율이 저하되는 문제가 있다. In addition, the ratio of the metal nanoparticles in the ionic liquid-carbon nanotube support composite to which the metal nanoparticles are immobilized is 5 to 60% by weight. If the ratio is less than 5% by weight, the efficiency may be reduced when applied as a catalyst, and if the ratio exceeds 60% by weight, the size of the metal nanoparticles is increased, so that the specific surface area is relatively decreased, thereby decreasing the efficiency of the catalyst. .

또한, 본 발명은 하기 반응식 1에 나타낸 바와 같이, In addition, the present invention as shown in Scheme 1,

탄소나노튜브를 산용액 내에서 카르복시기로 개질시키는 단계(단계 1)Step of modifying the carbon nanotubes with a carboxyl group in an acid solution (step 1)

상기 단계 1의 카르복시기로 개질된 탄소나노튜브를 염화티오닐과 반응 시킨후, 이온성 액체와 반응시켜 재개질시키는 단계(단계 2); 및Reacting the carbon nanotubes modified with the carboxyl group of step 1 with thionyl chloride, and then reacting with the ionic liquid to reform (step 2); And

상기 단계 2에서, 이온성 액체로 개질된 탄소나노튜브와 금속 전구체를 물, 알콜 또는 물과 알콜의 혼합용매에서 1 ~ 100 대기압의 수소압력하에 환원시키는 단계(단계 3)를 포함하여 이루어지는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법을 제공한다.In the step 2, the metal nanotube comprising the step of reducing the carbon nanotubes and metal precursors modified with an ionic liquid in water, alcohol or a mixed solvent of water and alcohol under a hydrogen pressure of 1 ~ 100 atmospheric pressure (step 3) Provided is a method for preparing an ionic liquid-carbon nanotube support composite to which particles are immobilized.

<반응식 1><Scheme 1>

Figure 112007067427748-PAT00003
Figure 112007067427748-PAT00003

(상기 반응식 1에서 X, Y, R1 ~ R4 및 M은 제1항의 화학식 1에서 정의한 바와 같고, (X, Y, R 1 in Scheme 1 R 4 and M are the same as defined in Formula 1 of claim 1,

상기 M(Z)n은 금속전구체로서 Na2PdCl4, PdCl2, Pd(OAc)2, RhCl3, [Rh(COD)Cl]2, IrCl3, [Ir(COD)Cl]2, Na2PtCl4, PtCl2 및 AuCl3으로 이루어지는 군으로부터 선택되는 어느 하나이다.)M (Z) n is a metal precursor as Na 2 PdCl 4 , PdCl 2 , Pd (OAc) 2 , RhCl 3 , [Rh (COD) Cl] 2 , IrCl 3 , [Ir (COD) Cl] 2 , Na 2 PtCl 4 , PtCl 2 And AuCl 3. )

이하, 본 발명에 따른 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법을 단계별로 상세히 설명한다. Hereinafter, a method for preparing an ionic liquid-carbon nanotube support composite to which metal nanoparticles are immobilized according to the present invention will be described in detail step by step.

먼저, 본 발명에 따른 상기 단계 1은 탄소나노튜브를 산용액내에서 카르복시기로 개질시키는 단계이다.First, the step 1 according to the present invention is a step of modifying the carbon nanotubes with a carboxyl group in an acid solution.

상기 단계 1의 탄소나노튜브는 정제된 단일벽 또는 다중벽 탄소나노튜브를 사용할 수 있다. 상기 산용액은 황산, 질산 또는 이의 혼합용액을 사용할 수 있으며, 상기 용액을 가열하여 탄소나노튜브 표면에 카르복시기를 개질시킬 수 있다. The carbon nanotubes of step 1 may use purified single-walled or multi-walled carbon nanotubes. The acid solution may be sulfuric acid, nitric acid, or a mixed solution thereof. The acid solution may be heated to modify the carboxyl group on the surface of the carbon nanotubes.

다음으로, 본 발명에 따른 단계 2는 상기 단계 1의 카르복시기로 개질된 탄소나노튜브를 염화티오닐과 반응시킨 후, 이온성 액체와 반응시켜 재개질시키는 단계이다. Next, step 2 according to the present invention is a step of reforming by reacting the carbon nanotubes modified with the carboxyl group of step 1 with thionyl chloride, followed by reaction with an ionic liquid.

상기 단계 2의 개질은 카르복시기로 개질되어 있는 탄소나노튜브를 염화티오닐(SOCl2)과 반응시켜 산염화물을 생성한 후, 이온성 액체와 반응시켜 탄소나노튜브 표면을 재개질시키는 것이다. 상기 단계 2에서 산염화물로 치환된 후 이온성 액체와 반응시켜 개질된 탄소나노튜브와 이온성 액체는 공유결합을 이루고 있는 반면, 카르복시기를 산염화물로 치환시키지 않고 카르복시기와 이온성 액체를 반응시키는 경우, 탄소나노튜브와 이온성 액체는 물리적인 흡착의 상대적으로 약한 결합으로 이루어져 있어 미반응된 이온성 액체를 세척하는 단계에서 제거될 수 있는 문제가 있다. In the modification of step 2, the carbon nanotubes modified with carboxyl groups are reacted with thionyl chloride (SOCl 2 ) to generate an acid chloride, followed by reaction with an ionic liquid to reform the surface of the carbon nanotubes. The carbon nanotube and the ionic liquid modified by reacting with the ionic liquid after the substitution with the acid chloride in step 2 form a covalent bond, whereas when the carboxyl group and the ionic liquid are reacted without replacing the carboxyl group with the acid chloride, Nanotubes and ionic liquids consist of relatively weak bonds of physical adsorption, which can cause removal of unreacted ionic liquids.

다음으로, 상기 단계 3은 상기 단계 2에서 이온성 액체로 개질된 탄소나노튜브와 금속 전구체를 반응시켜, 금속 나노 입자를 탄소나노튜브에 고정화시키는 단 계이다. Next, step 3 is a step of immobilizing the metal nanoparticles on the carbon nanotubes by reacting the carbon nanotubes and the metal precursor modified with the ionic liquid in the step 2.

상기 단계 3의 환원은 상기 단계 2에서 이온성 액체가 개질된 탄소나노튜브와 금속 전구체의 몰 비는 1:1~50 또는 1~50:1의 범위인 것이 바람직하다. 상기 범위를 벗어나는 경우 금속 나노입자의 크기가 증가하여 촉매의 효율이 저하되는 문제가 있다. 또한, 반응 압력은 1 ~ 100 atm의 수소압력인 것이 바람직하다. 나아가, 반응 온도는 0 ~ 100 ℃, 반응시간은 30 분 ~ 24 시간인 것이 바람직하다. 반응용매로는 물, 알콜 또는 이들의 혼합용매를 사용할 수 있으며, 이때, 상기 알콜은 메탄올 또는 에탄올을 사용하는 것이 바람직하다. In the reduction of the step 3, the molar ratio of the carbon nanotubes to which the ionic liquid is modified in the step 2 and the metal precursor is in the range of 1: 1 to 50 or 1 to 50: 1. If it is out of the range there is a problem that the size of the metal nanoparticles increase to decrease the efficiency of the catalyst. Moreover, it is preferable that reaction pressure is the hydrogen pressure of 1-100 atm. Furthermore, it is preferable that reaction temperature is 0-100 degreeC, and reaction time is 30 minutes-24 hours. Water, alcohol or a mixed solvent thereof may be used as the reaction solvent, wherein the alcohol is preferably methanol or ethanol.

본 발명에 사용되는 상기 금속 전구체는 Na2PdCl4, PdCl2, Pd(OAc)2, RhCl3, [Rh(COD)Cl]2, IrCl3,[Ir(COD)Cl]2, PtCl2 , AuCl3 등을 사용할 수 있으나, 환원되어 금속 나노입자 표면에 고정화될 수 있는 금속 나노입자 전구체라면 이에 제한되지 않는다. The metal precursors used in the present invention are Na 2 PdCl 4 , PdCl 2 , Pd (OAc) 2 , RhCl 3 , [Rh (COD) Cl] 2 , IrCl 3 , [Ir (COD) Cl] 2 , PtCl 2 , AuCl 3 may be used, but is not limited thereto as long as it is a metal nanoparticle precursor that can be reduced and immobilized on the surface of the metal nanoparticle.

이하, 본 발명을 실시예를 통해 더욱 상세히 설명한다. 단 하기 실시예는 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely to illustrate the invention, the present invention is not limited by the following examples.

<실시예 1> 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조 Example 1 Preparation of Ionic Liquid-Carbon Nanotube Support Composites Immobilized with Metal Nanoparticles

단계 1. Step 1. 카르복시기로With carboxyl group 개질된Modified 탄소나노튜브의 제조 Manufacture of Carbon Nanotubes

순도 95% 이상의 다중벽 탄소나노튜브 1.0 g을 60 %질산에 넣고 50 ℃를 유지시키면서 1.5 시간 동안 초음파(Bransonic, model 1510R-PTH, 42 kHz)처리를 하였다. 상기 질산 내에서 초음파처리된 탄소나노튜브는 절단됨과 동시에 표면은 카르복시기로 개질되었다. 1.0 g of multi-walled carbon nanotubes with purity of 95% or more was put in 60% nitric acid and subjected to ultrasonic treatment (Bransonic, model 1510R-PTH, 42 kHz) for 1.5 hours while maintaining 50 ° C. The carbon nanotubes sonicated in the nitric acid were cut and the surface was modified with a carboxyl group.

상기 카르복시기로 개질된 탄소나노튜브가 포함된 용액에 증류수 2 ℓ를 혼합한 후, 14,000 rpm으로 원심분리하고 이에 증류수와 아세톤으로 수 회 세척하였다. 상기 카르복시기고 개질된 탄소나노튜브를 여과시키고, 증류수로 재세척하는 과정을 pH가 7.0이 될 때까지 반복하여 수행하였다. 이후, 카르복시기로 개질된 탄소나노튜브를 여과시켜 진공분위기로 60 ℃에서 24 시간 건조시켰다. After mixing 2 L of distilled water to the solution containing the carbon nanotubes modified with carboxyl groups, the mixture was centrifuged at 14,000 rpm, and washed several times with distilled water and acetone. The carboxyl-modified carbon nanotubes were filtered and washed again with distilled water until the pH was 7.0. Thereafter, the carbon nanotubes modified with carboxyl groups were filtered and dried at 60 ° C. for 24 hours in a vacuum atmosphere.

단계 2. 이온성 액체로 Step 2. With ionic liquid 개질된Modified 탄소나노튜브의 제조 Manufacture of Carbon Nanotubes

상기 단계 1에서 카르복시기 개질된 탄소나노튜브 100 mg을 SOCl2 30.0 ㎖에 혼합한 후, 질소분위기에서 24시간 동안 교반시켰다. 상기 혼합용액을 여과시키고 무수 THF로 세척한 후, 진공분위기로 실온에서 2 시간 동안 건조시켜 -COCl기로 개질된 탄소나노튜브를 제조하였다. 상기 제조된 -COCl기가 개질된 탄소나노튜브 99 mg와 1-부틸-3-(3-아미노프로필)이미다졸륨 브로마이드(1-Buthyl-3-(3-aminopropyl)imidazolium bromide) 30 ㎖를 혼합한 용액을 질소분위기 하에서 120 ℃로 24시간 동안 교반시킨 후 폴리테트라프루오로에틸렌(PTFE) 여과막을 이용하여 여과시키고, 1 N의 염산 용액, 농축된 중조(NaHCo3) 및 무수 THF의 차례로 세척시켰 다. 다음으로, 증류수를 이용하여 pH가 7.0이 되도록 세척한 후 여과시켰다. 상기 여과된 이온성 액체를 개질 시킨 탄소나노튜브를 알콜로 세척한 후, 진공에서 60 ℃으로 밤새 건조시켰다. In step 1, 100 mg of the carboxyl-modified carbon nanotubes were mixed in 30.0 ml of SOCl 2 , and stirred in a nitrogen atmosphere for 24 hours. The mixed solution was filtered, washed with anhydrous THF, and dried in a vacuum atmosphere at room temperature for 2 hours to prepare a carbon nanotube modified with -COCl. 99 mg of the -COCl group-modified carbon nanotube prepared above and 30 ml of 1-butyl-3- (3-aminopropyl) imidazolium bromide (1-Buthyl-3- (3-aminopropyl) imidazolium bromide) were mixed. The solution was stirred for 24 hours at 120 ° C. under a nitrogen atmosphere and then filtered using a polytetrafluoroethylene (PTFE) filtration membrane and washed sequentially with 1 N hydrochloric acid solution, concentrated sodium bicarbonate (NaHCo 3 ) and anhydrous THF. All. Next, the mixture was washed with distilled water to pH 7.0 and filtered. The carbon nanotubes modified with the filtered ionic liquid were washed with alcohol, and then dried in vacuo at 60 ° C. overnight.

단계 3. 금속 나노입자가 고정된 탄소나노튜브의 제조Step 3. Preparation of Carbon Nanotubes to Which Metal Nanoparticles are Fixed

상기 단계 2에서 1-부틸-3-(3-아미노프로필)이미다졸륨으로 개질된 탄소나노튜브 10 mg과 금속 전구체로서 0.1N 사염화팔라듐 나트륨(Na2PdCl4) 0.9 ㎖를 물 6 ㎖에 용해시킨 후 상온에서 수소 1기압 분위기하에서 1 시간 동안 교반하여 환원시켜 증류수로 수회 세척시킨 후, 건조하여 팔라듐 나노입자가 고정화된 탄소나노튜브 지지체 복합체를 제조하였다. In step 2, 10 mg of carbon nanotubes modified with 1-butyl-3- (3-aminopropyl) imidazolium and 0.9 ml of 0.1N sodium palladium tetrachloride (Na 2 PdCl 4 ) as metal precursors were dissolved in 6 ml of water. After the mixture was stirred for 1 hour at room temperature under hydrogen atmosphere at 1 atmosphere, reduced, washed several times with distilled water, and dried to prepare a carbon nanotube support complex having palladium nanoparticles immobilized thereon.

<분석><Analysis>

1. 투과 전자 현미경(TEM)1. Transmission Electron Microscopy (TEM)

본 발명에 따라 팔라듐 금속 나노입자가 고정화된 이온성 액체로 개질된 탄소나노튜브를 투과 전자 현미경을 이용하여 고정화된 팔라듐 금속 나노입자의 형상을 분석하여 도 1에 나타내었다. Carbon nanotubes modified with an ionic liquid in which palladium metal nanoparticles are immobilized according to the present invention are shown in FIG. 1 by analyzing the shape of the immobilized palladium metal nanoparticles using a transmission electron microscope.

도 1에 나타낸 바와 같이, 3 ~ 20 nm크기의 팔라듐 금속 나노입자가 탄소나노튜브의 표면에 균일하고, 밀도 높게 분포되어 있음을 확인하였다. As shown in FIG. 1, it was confirmed that 3 to 20 nm-sized palladium metal nanoparticles were uniformly and densely distributed on the surface of the carbon nanotubes.

2. 유도 결합 플라즈마(ICP)2. Inductively Coupled Plasma (ICP)

본 발명에 따라 팔라듐 금속 나노입자가 고정화된 이온성 액체로 개질된 탄소나노튜브를 유도 결합 플라즈마를 이용하여 고정화된 팔라듐 금속 나노입자의 상대적인 양을 측정하였다.According to the present invention, the relative amount of the immobilized palladium metal nanoparticles was measured using an inductively coupled plasma of carbon nanotubes modified with ionic liquids.

본 분석결과, 55 중량%의 팔라듐 금속 나노입자가 탄소나노튜브에 고정화되어있음을 확인하였다. As a result of the analysis, it was confirmed that 55 wt% of the palladium metal nanoparticles were immobilized on the carbon nanotubes.

3. X-선 광전자 분광기(XPS)3. X-ray photoelectron spectroscopy (XPS)

본 발명에 따라 팔라듐 금속 나노입자가 고정화된 이온성 액체로 개질된 탄소나노튜브를 X-선 광전자 분광기를 이용하여 고정화된 팔라듐 금속 나노입자의 결합에너지를 측정하여 도 2에 나타내었다. 이를 통해 팔라듐 금속 나노입자의 산화 상태를 분석하였다. According to the present invention, the carbon nanotubes modified with the ionic liquid in which the palladium metal nanoparticles are immobilized are measured in X-ray photoelectron spectroscopy, and the binding energy of the palladium metal nanoparticles immobilized is shown in FIG. 2. Through this analysis, the oxidation state of the palladium metal nanoparticles was analyzed.

도 2에 나타낸 바와 같이, 상기 팔라듐 금속 나노입자는 전형적인 Pd(O)(PdO)의 결합 구조를 나타내는 피크 335.3 eV 및 340.6 eV 가 나타난 것을 확인하고, 본 발명에 따른 팔라듐 금속 나노입자는 PdO 구조로 이루어져 탄소나노튜브 표면에 고정화된 것을 확인하였다. As shown in FIG. 2, the palladium metal nanoparticles were found to have peaks of 335.3 eV and 340.6 eV representing a typical structure of Pd (O) (PdO), and the palladium metal nanoparticles according to the present invention had a PdO structure. It was confirmed that the fixed on the surface of the carbon nanotubes.

4. X-선 회절(XRD)4. X-ray Diffraction (XRD)

본 발명에 따라 이온성 액체로 개질된 탄소나노튜브에 고정화된 팔라듐 금속 나노입자의 결정성을 확인하기위해 X-선 회절 분석을 실시하여 도 3에 나타내었다. In order to confirm the crystallinity of the palladium metal nanoparticles immobilized on the carbon nanotubes modified with an ionic liquid according to the present invention was shown in Figure 3 by X-ray diffraction analysis.

도 3에 나타낸 바와 같이, 상기 팔라듐 금속 나노입자의 결정을 나타내는 피 크들이 강하고 정확하게 나타나, 상기 팔라듐 금속 나노입자는 우수한 결정성을 갖고 탄소나노튜브에 고정화되어있는 것을 확인하였다. As shown in FIG. 3, the peaks representing the crystals of the palladium metal nanoparticles appeared strongly and accurately, and it was confirmed that the palladium metal nanoparticles have excellent crystallinity and are fixed to the carbon nanotubes.

<실험예 1> 이온성 액체로 개질된 탄소나노튜브에 고정화된 팔라듐 금속 나노입자의 촉매효능측정Experimental Example 1 Measurement of Catalytic Activity of Palladium Metal Nanoparticles Immobilized on Carbon Nanotubes Modified with Ionic Liquid

본 발명에 따른 이온성 액체로 개질된 탄소나노튜브에 고정화된 팔라듐 금속 나노입자의 촉매 반응을 알아보기 위해, 본 발명의 복합체를 이용하여 탄소-탄소 이중결합을 수소화 환원하는 반응을 1 atm의 수소압력 하에서, 상온으로 수행하였다. In order to examine the catalytic reaction of the palladium metal nanoparticles immobilized on the ionic liquid-modified carbon nanotubes according to the present invention, the reaction of hydrogenating a carbon-carbon double bond using a complex of the present invention is performed at 1 atm of hydrogen. Under pressure, it was performed at room temperature.

그 결과, 상기 반응이 10 분만에 완료됨으로써 촉매 전환 빈도(turn over frequency, TOF)가 600 h-1인 촉매 효능을 나타내었고, 본 발명은 반복하여 50회 재사용이 가능하여 총 전환 횟수가 5000으로 나타났다. 이에, 본 발명에 따른 이온성 액체로 개질된 탄소나노튜브에 고정화된 팔라듐 금속 나노입자가 촉매로서 우수한 효과가 있음을 확인하였다. As a result, the reaction was completed in 10 minutes, resulting in a catalyst turnover frequency (TOF) of 600 h −1 , and the present invention can be repeatedly reused 50 times, resulting in a total conversion of 5000. appear. Thus, it was confirmed that the palladium metal nanoparticles immobilized on the carbon nanotubes modified with the ionic liquid according to the present invention have an excellent effect as a catalyst.

도 1은 본 발명에 따른 일실시형태의 투과전자현미경(TEM) 사진이고;((a) 눈금자의 크기 50 nm, (b): 눈금자의 크기 20 nm)1 is a transmission electron microscope (TEM) photograph of an embodiment according to the present invention; ((a) ruler size 50 nm, (b) ruler size 20 nm)

도 2는 본 발명에 따른 일실시형태에 포함된 금속 나노입자의 X-선 광전자 분광기 분석 그래프이고;2 is an X-ray photoelectron spectroscopic analysis graph of the metal nanoparticles included in one embodiment according to the present invention;

도 3은 본 발명에 따른 일실시형태에 포함된 금속 나노입자의 X-선 회절 분석 그래프이다.3 is an X-ray diffraction analysis graph of metal nanoparticles included in one embodiment according to the present invention.

Claims (8)

하기 화학식 1로 표시되는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체. An ionic liquid-carbon nanotube support complex to which metal nanoparticles represented by Formula 1 are immobilized. <화학식 1><Formula 1>
Figure 112007067427748-PAT00004
Figure 112007067427748-PAT00004
상기 화학식에서,In the above formula, 상기 탄소나노튜브는 단일벽 탄소나노튜브(Single-walled carbonnanotube) 또는 다중벽 탄소나노튜브(Multiwalled carbonnanotube)이고;The carbon nanotubes are single-walled carbon nanotubes or multiwalled carbon nanotubes; 상기 X는 Cl, Br, I, OH, AlCl4, BF4,ClO4, PF6 및 N(OTf)2으로 이루어지는 군으로부터 선택되고;X is selected from the group consisting of Cl, Br, I, OH, AlCl 4 , BF 4 , ClO 4 , PF 6 and N (OTf) 2 ; 상기 Y는 O 또는 NR5이고, 여기서 R5는 수소, 비치환 또는 치환된 C1 ~ C5의 직쇄 또는 측쇄 알킬 및 비치환 또는 치환된 C5 ~ C7의 아릴로 이루어지는 군으로부터 선택되고; Y is O or NR 5 , wherein R 5 is selected from the group consisting of hydrogen, unsubstituted or substituted C 1 to C 5 straight or branched chain alkyl and unsubstituted or substituted C 5 to C 7 aryl; 상기 R1 내지 R4는 서로 독립적으로 또는 선택적으로 H, 비치환된 또는 OH, COOH 및 SO3H로 이루어지는 군으로부터 선택되는 어느 하나로 치환된 C1 ~ C10 직쇄 또는 측쇄 알킬기, 비치환된 또는 OH, Br, Cl, COOH, COO-, SO3H, SO3 -, 1차, 2차, 3차 아민 및 C1 ~ C10 직쇄 또는 측쇄 알킬기로 이루어지는 군으로부터 선택되는 어느 하나로 치환된 C5-C7 아릴로 이루어지는 군으로부터 선택되고;R 1 to R 4 are independently of one another or optionally C 1 to C 10 straight or branched chain alkyl group, unsubstituted or substituted with any one selected from the group consisting of H, unsubstituted or OH, COOH and SO 3 H OH, Br, Cl, COOH, COO -, SO 3 H, SO 3 -, 1 primary, secondary and tertiary amines, and C 1 ~ C 10 straight-chain or by any member selected from the group consisting of branched alkyl substituted C 5 -C 7 aryl; 상기 M은 Pd, Rh, Ir, Pt 및 Au으로 이루어지는 군으로부터 선택되는 어느 하나이고; M is any one selected from the group consisting of Pd, Rh, Ir, Pt and Au; 상기 n은 0 ~ 10이다. N is from 0 to 10.
제1항에 있어서, R5는 수소, 메틸, 에틸, 프로필, 부틸 또는 벤질인 것을 특징으로 하는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체.The ionic liquid-carbon nanotube support composite of claim 1, wherein R 5 is hydrogen, methyl, ethyl, propyl, butyl or benzyl. 제1항에 있어서, 상기 복합체내 금속 나노입자의 비율은 5 ~ 60 중량%인 것을 특징으로 하는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체. The ionic liquid-carbon nanotube support composite of claim 1, wherein the ratio of the metal nanoparticles in the composite is 5 to 60 wt%. 탄소나노튜브를 산용액내에서 카르복시기로 개질시키는 단계(단계 1)Reforming the carbon nanotubes to carboxyl groups in an acid solution (step 1) 상기 단계 1의 카르복시기로 개질된 탄소나노튜브를 염화티오닐과 반응시킨후, 이온성 액체와 반응시켜 재개질시키는 단계(단계 2);Reacting the carbon nanotubes modified with the carboxyl group of step 1 with thionyl chloride and then reacting with the ionic liquid to reform (step 2); 상기 단계 2에서, 이온성 액체로 개질된 탄소나노튜브와 금속 전구체를 용매에서 환원시키는 단계(단계 3)를 포함하여 이루어지는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법.In the step 2, a method for producing an ionic liquid-carbon nanotube support complex to which the metal nanoparticles are immobilized comprising the step of reducing the carbon nanotubes and metal precursors modified with an ionic liquid in a solvent (step 3). <반응식 1><Scheme 1>
Figure 112007067427748-PAT00005
Figure 112007067427748-PAT00005
상기 반응식 1에서 X, Y, R1 ~ R4 및 M은 제1항의 화학식 1에서 정의한 바와 같고, X, Y, R 1 in Scheme 1 R 4 and M are the same as defined in Formula 1 of claim 1, 상기 M(Z)n은 금속전구체로서 Na2PdCl4, PdCl2, Pd(OAc)2, RhCl3, [Rh(COD)Cl]2, IrCl3, [Ir(COD)Cl]2, Na2PtCl4, PtCl2 및 AuCl3으로 이루어지는 군으로부터 선택되는 어느 하나이다.M (Z) n is a metal precursor as Na 2 PdCl 4 , PdCl 2 , Pd (OAc) 2 , RhCl 3 , [Rh (COD) Cl] 2 , IrCl 3 , [Ir (COD) Cl] 2 , Na 2 PtCl 4 , PtCl 2 And AuCl 3 .
제4항에 있어서, 상기 단계 1의 산용액은 황산 또는 질산용액 또는 이의 혼 합용액인 것을 특징으로 하는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법. The method of claim 4, wherein the acid solution of step 1 is sulfuric acid or nitric acid solution or a mixture thereof. 제4항에 있어서, 상기 단계 2의 개질은 카르복시기를 산염화물로 치환시킨 후, 이온성 액체를 개질시키는 것을 특징으로 하는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법. 5. The method of claim 4, wherein the modifying of Step 2 comprises replacing the carboxyl group with an acid chloride and then modifying the ionic liquid. 6. 제4항에 있어서, 상기 단계 3의 환원은 상기 단계 2에서 이온성 액체가 개질된 탄소나노튜브와 금속 전구체의 몰 비는 1:1 ~ 50 또는 1 ~ 50:1인 것을 특징으로 하는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법.The method of claim 4, wherein the reduction of the step 3 is a metal nano-molecular ratio of the carbon nanotubes and the metal precursor in which the ionic liquid is modified in the step 2 is 1: 1 to 50 or 1 to 50: 1 A method for preparing an ionic liquid-carbon nanotube support composite in which particles are immobilized. 제4항에 있어서, 상기 단계 3의 환원은 1 ~ 100 atm의 수소압력하에서 0 ~ 100 ℃의 반응온도로 30분 내지 24시간 동안 수행되는 것을 특징으로 하는 금속 나노입자가 고정화된 이온성 액체-탄소나노튜브 지지체 복합체의 제조방법.5. The ionic liquid of claim 4, wherein the reduction of step 3 is performed for 30 minutes to 24 hours at a reaction temperature of 0 to 100 ° C. under a hydrogen pressure of 1 to 100 atm. 6. Method for preparing a carbon nanotube support composite.
KR1020070094611A 2007-09-18 2007-09-18 Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof KR100945568B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070094611A KR100945568B1 (en) 2007-09-18 2007-09-18 Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070094611A KR100945568B1 (en) 2007-09-18 2007-09-18 Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20090029409A true KR20090029409A (en) 2009-03-23
KR100945568B1 KR100945568B1 (en) 2010-03-09

Family

ID=40696134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070094611A KR100945568B1 (en) 2007-09-18 2007-09-18 Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100945568B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071295A2 (en) * 2009-12-07 2011-06-16 Suh Kwang Suck Carbon nanotube/polymer ionic liquid composite, and carbon nanotube/conductive polymer composite prepared using same
KR101046098B1 (en) * 2009-07-17 2011-07-01 삼성전기주식회사 Polarizable Electrodes for Capacitors and Electrical Double Layer Capacitors Comprising the Same
KR101324686B1 (en) * 2011-06-16 2013-11-01 이화여자대학교 산학협력단 Composite of polymerized ionic liquid-carbon nanotube-metallic nanoparticle, preparation method of the same, and use of the same
KR101400774B1 (en) * 2012-08-01 2014-06-19 이화여자대학교 산학협력단 Zwitterionic carbon nanotube, and composite of zwitterionic carbon nanotube- metallic nanoparticle
US9181278B2 (en) 2009-12-21 2015-11-10 Electronics And Telecommunications Research Institute Method of preparing carbon nanotube composite surface having metal particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890888B1 (en) 2017-02-09 2018-08-22 울산과학기술원 Carbon-eutectic gallium indium composite material, and method of manufacturing the same, and electrode material having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558966B1 (en) * 2003-07-25 2006-03-10 한국과학기술원 Metal Nanocomposite Powders Reinforced with Carbon Nanotubes and Their Fabrication Process
KR100556978B1 (en) * 2003-10-20 2006-03-03 한국과학기술원 Method for fabricating carbon nanotubes/metal nanocomposite materials using metal nanopowders
KR20080084461A (en) * 2007-03-16 2008-09-19 삼성전자주식회사 A composition of carbon nanotube, a carbon nanotube conductive thin film, and processes for the preparation thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046098B1 (en) * 2009-07-17 2011-07-01 삼성전기주식회사 Polarizable Electrodes for Capacitors and Electrical Double Layer Capacitors Comprising the Same
WO2011071295A2 (en) * 2009-12-07 2011-06-16 Suh Kwang Suck Carbon nanotube/polymer ionic liquid composite, and carbon nanotube/conductive polymer composite prepared using same
WO2011071295A3 (en) * 2009-12-07 2011-11-24 Suh Kwang Suck Carbon nanotube/polymer ionic liquid composite, and carbon nanotube/conductive polymer composite prepared using same
US9181278B2 (en) 2009-12-21 2015-11-10 Electronics And Telecommunications Research Institute Method of preparing carbon nanotube composite surface having metal particles
KR101324686B1 (en) * 2011-06-16 2013-11-01 이화여자대학교 산학협력단 Composite of polymerized ionic liquid-carbon nanotube-metallic nanoparticle, preparation method of the same, and use of the same
KR101400774B1 (en) * 2012-08-01 2014-06-19 이화여자대학교 산학협력단 Zwitterionic carbon nanotube, and composite of zwitterionic carbon nanotube- metallic nanoparticle

Also Published As

Publication number Publication date
KR100945568B1 (en) 2010-03-09

Similar Documents

Publication Publication Date Title
Mohammadi et al. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis
Nasrollahzadeh et al. Recent progress in application of graphene supported metal nanoparticles in C− C and C− X coupling reactions
Kumar et al. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures
Zhu et al. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties
KR100945568B1 (en) Complex of ionic liquid-carbon nanotubes support containing immobilized metallic nanoparticles and preparation method thereof
Labulo et al. Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions
Navaee et al. Efficient amine functionalization of graphene oxide through the Bucherer reaction: an extraordinary metal-free electrocatalyst for the oxygen reduction reaction
Xu et al. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance
US9133034B2 (en) Chelating agent modified graphene oxides, methods of preparation and use
Guo et al. Cu-CDots nanocorals as electrocatalyst for highly efficient CO 2 reduction to formate
CN110790944B (en) Method for preparing zirconium metal organic framework nanotube
Kim et al. Effect of Pd particle size on the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd core–porous SiO 2 shell catalysts
Della Pina et al. Gold-catalyzed oxidation in organic synthesis: a promise kept
Ghiaci et al. Preparation of Pd (0) and Pd (II) nanotubes and nanoparticles on modified bentonite and their catalytic activity in oxidation of ethyl benzene to acetophenone
US20100173221A1 (en) Catalyst for fuel cell electrode, process for producing catalyst for fuel cell electrode, membrane electrode assembly and fuel cell
Alavi et al. Ultrasound and modulation assisted synthesis of {[Cu2 (BDC-NH2) 2 (dabco)] DMF. 3H2O} nanostructures; New precursor to prepare nanorods and nanotubes of copper (II) oxide
Song et al. Liquid-phase oxidation of toluene to benzaldehyde with molecular oxygen catalyzed by copper nanoparticles supported on graphene
Mohammad et al. Facile access to amides from oxygenated or unsaturated organic compounds by metal oxide nanocatalysts derived from single-source molecular precursors
Hajnajafi et al. Nanoscale engineering of building blocks to synthesize a three-dimensional architecture of Pd aerogel as a robust self-supporting catalyst toward ethanol electrooxidation
Zheng et al. Alcohols selective oxidation with H2O2 catalyzed by robust heteropolyanions intercalated in ionic liquid-functionalized graphene oxide
Nie et al. Preparation of Pd nanoparticles deposited on a polyaniline/multiwall carbon nanotubes nanocomposite and their application in the Heck reaction
Chen et al. Facile synthesis of polyaniline using gold catalyst
Wang et al. Simultaneous defect and size control of metal–organic framework nanostructures for highly efficient carbon dioxide electroreduction to multicarbon products
Cheng et al. Palladium nanoparticles-decorated graphene nanosheets as highly regioselective catalyst for cyclotrimerization reaction
JP4296074B2 (en) Method for purifying carbon nanotube and method for producing carbon nanotube structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130221

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee