KR20090026667A - Sn-filled and te-doped skutterudite thermoelectric material and method for manufacturing the same - Google Patents

Sn-filled and te-doped skutterudite thermoelectric material and method for manufacturing the same Download PDF

Info

Publication number
KR20090026667A
KR20090026667A KR1020070091779A KR20070091779A KR20090026667A KR 20090026667 A KR20090026667 A KR 20090026667A KR 1020070091779 A KR1020070091779 A KR 1020070091779A KR 20070091779 A KR20070091779 A KR 20070091779A KR 20090026667 A KR20090026667 A KR 20090026667A
Authority
KR
South Korea
Prior art keywords
filled
doped
thermoelectric material
based thermoelectric
thermoelectric
Prior art date
Application number
KR1020070091779A
Other languages
Korean (ko)
Other versions
KR100910158B1 (en
Inventor
어순철
김일호
Original Assignee
충주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충주대학교 산학협력단 filed Critical 충주대학교 산학협력단
Priority to KR1020070091779A priority Critical patent/KR100910158B1/en
Publication of KR20090026667A publication Critical patent/KR20090026667A/en
Application granted granted Critical
Publication of KR100910158B1 publication Critical patent/KR100910158B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A Sn-filled and Te-doped skutterudite thermoelectric material and method for manufacturing the same is provided to increase thermal conductivity by optimizing the concentration of a carrier. An Sn-filled and Te-doped skutterudite thermoelectric material is comprised of the steps: inserting cobalt, antimony, indium, and tellurium into the quartz tube; heating and melting the inserted material with high frequency induction power; rapidly freezing in the water in order to prevent formation of the second phase after melting; perform vacuum heating treatment to fill indium into the aperture and activate Te.

Description

Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 및 그 제조방법{Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME}SN-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 열전특성이 우수한 스커테루다이트계 고효율 열전재료 및 그 제조방법에 관한 것으로, 더욱 자세하게는 CoSb3 스커테루다이트의 공극에 Sn을 충진시키고 Te를 Sb와 치환시킨 SnzCo4Sb12 - yTey 스커테루다이트계 열전재료와 밀폐유도용해법과 열처리를 이용하여 Sn을 충진하고 Te를 도핑하는 그 제조방법에 관한 것이다.The present invention relates to a high efficiency thermoelectric material, and a method for manufacturing the same, and more particularly, Sn z Co 4 Sb 12 filled with Sn and substituted Te with Sb in the pores of CoSb 3 scouterite. - y Te y hibiscus Teruel filled with Sn using a die teugye thermoelectric material and sealed induction melting method and heat treatment, and relates to a manufacturing method for doped with Te.

최근 대체 에너지의 개발 및 에너지 절약에 대한 관심이 고조되고 있는 가운데, 효율적인 에너지 변환 신 물질에 관한 조사 및 연구가 활발히 진행되고 있다. 특히 열-전기 에너지 변환재료인 열전재료에 대한 연구가 가속화되고 있다.Recently, as interest in development and energy saving of alternative energy is increasing, researches and studies on efficient new energy conversion materials are actively conducted. In particular, research on thermoelectric materials, which are thermo-electric energy conversion materials, is being accelerated.

열전재료의 효율은 무차원 열전성능지수(dimensionless figure of merit, ZT)로 평가되며, ZT=α2-1λ-1로 정의된다. α는 제벡계수, T는 절대온도, ρ는 전기비저항 그리고 λ는 열전도도이다. The efficiency of thermoelectric materials is evaluated by the dimensionless thermoelectric figure of merit (ZT), which is defined as ZT = α 2-1 λ -1 . α is the Seebeck coefficient, T is the absolute temperature, ρ is the electrical resistivity, and λ is the thermal conductivity.

우수한 열전특성을 갖기 위한 기본 조건으로는 단위격자가 클 것, 결정구조 가 복잡할 것, 원자질량이 무거울 것, 공유결합이 강할 것, 유효 운반자 질량이 클 것, 운반자 이동도가 높을 것(~103cm2/Vs), 에너지 밴드갭(~KBT)이 좁을 것 그리고 구성 원자 간의 전기 음성도 차이가 작을 것이 요구된다. 이러한 ZT의 최대값이 1이라는 개념이 이론적인 한계로 간주되었고, 그 개념은 지난 몇 십 년 동안 유지되어 왔다. 초격자 내에서의 PGEC (Phonon Glass and Electron Crystal)개념을 채용한 특정방법으로 맞춤 제조된 물질의 경우 ZT 값을 1보다 크게 할 수 있음이 알려졌다.Basic conditions for having excellent thermoelectric properties include large unit lattice, complex crystal structure, heavy atomic mass, strong covalent bonds, large effective carrier mass, and high carrier mobility. 10 3 cm 2 / Vs), narrow energy bandgap (~ K B T), and small differences in electronegativity between constituent atoms are required. This notion of a maximum value of ZT of 1 was considered a theoretical limit, and the concept has been maintained for decades. It is known that ZT values can be greater than 1 for custom-made materials using a specific method employing the PGEC (Phonon Glass and Electron Crystal) concept in the superlattice.

결정학적으로 입방형 Im3의 공간군에 속하는 단위격자를 갖는 2원계 스커테루다이트(skutterudite) 구조는 높은 ZT값을 갖기 위한 조건을 충족시키는 가장 잠재력이 큰 물질로 조사되었다. Crystallographically, binary skutterudite structures with unit grids belonging to the cubic Im3 space group have been investigated as the most potent materials that meet the conditions for high ZT values.

스커테루다이트 구조는 단위격자 안에 8개의 TX3 그룹에 32개의 원자를 포함할 뿐만 아니라, 비교적 단위격자가 커서 격자 열전도도의 감소에 의한 열전특성 향상이 가능한 격자구조이다. 여기서 T는 천이원소로서 Co, Rh, Ir 등의 원소가 점유하고, X는 니코젠(pnicogen) 원소로서 P, As, Sb 원소가 점유한다. The scrutherite structure includes not only 32 atoms in 8 TX 3 groups in a unit grid, but also a lattice structure in which the unit grid is relatively large and the thermoelectric properties can be improved by reducing the lattice thermal conductivity. Here, T is occupied by elements such as Co, Rh and Ir as transition elements, and X is occupied by P, As, and Sb elements as niconic elements.

그러나 2원계 스커테루다이트만으로는 상대적으로 높은 격자 열전도도에 기인한 저효율의 열전특성을 나타내고 있다. 이를 개선하기 위한 방안으로서, 스테루다이트 단위격자 안에 존재하는 2개의 공극(void)에 필러(filler)원소를 충진하여 래틀링(rattling)효과를 유발시킴으로써 격자 열전도도를 감소시키는 방안과, 원소의 일부를 도핑원소로 치환하여 정공운반자의 농도를 조절하고 격자 산란을 유 도하여 열전성능지수를 개선하는 방안이 제시되고 있다.However, binary scutterudite alone exhibits low efficiency thermoelectric properties due to relatively high lattice thermal conductivity. In order to improve this problem, a method of reducing lattice thermal conductivity by filling a filler element in two voids in a unit of sterudite lattice and causing a rattling effect, A method of improving the thermoelectric performance index by controlling the concentration of hole carriers and inducing lattice scattering by replacing some of them with doping elements has been proposed.

CoSb3는 가장 유망한 스커테루다이트 열전재료이지만, 이 역시 상대적으로 높은 격자 열전도도에 기인한 저효율의 열전특성을 나타내며, 상온에서 p형 반도체의 성질을 나타낸다. CoSb 3 is the most promising scuderudite thermoelectric material, but it also exhibits low efficiency thermoelectric properties due to relatively high lattice thermal conductivity and exhibits the properties of p-type semiconductors at room temperature.

본 발명은 상기 문제점을 해결하기 위하여 발명된 것으로, Sn이 격자 내 공극에 충진되고 Te이 Sb와 치환되어 열전특성이 우수한 스커테루다이트계 열전재료를 제공하는 것을 목적으로 한다. 또 본 발명의 다른 목적은 그 열전재료의 제조방법을 제공하는 것이다.The present invention has been invented to solve the above problems, an object of the present invention is to provide a scutterrudite-based thermoelectric material excellent in the thermoelectric properties of Sn is filled in the pores in the lattice, Te is substituted with Sb. Another object of the present invention is to provide a method for producing the thermoelectric material.

상기의 목적을 달성하기 위하여 본 발명에 의한 스커테루다이트계 열전재료는, CoSb3을 이용한 스커테루다이트계 열전재료에 있어서, 단위격자 내의 공극이 Sn으로 충진되고 Te가 도핑되어 SnzCo4Sb12-yTey의 조성을 가지며, 상기 z와 y가 0<z≤0.25 및 0<y≤0.375 범위에 있는 것을 특징으로 한다.In order to achieve the above object, in the scutterrudite thermoelectric material according to the present invention, in the scutterrudite thermoelectric material using CoSb 3 , the pores in the unit lattice are filled with Sn and doped with Te to give Sn z Co 4 Sb. It has a composition of 12-y Te y , characterized in that z and y are in the range 0 <z ≤ 0.25 and 0 <y ≤ 0.375.

또 본 발명에 의한 스커테루다이트계 열전재료 제조방법은, SnzCo4Sb12-yTey의 조성을 가지는 스커테루다이트 열전재료의 제조방법에 있어서, 원료물질인 Co, Sb, Sn 및 Te를 석영관에 장입한 후 진공 하에서 밀폐하는 단계, 상기 장입된 원료물질의 혼합물을 고주파 유도 전력에 의해 밀폐유도용해로에서 가열 용해하는 단계, 상기 용해된 재료를 제2상의 형성을 방지하기 위하여 물속에서 급랭하는 단계, 상기 재료를 Sn의 공극 충진과 Te의 활성화를 위하여 진공 열처리하는 단계를 포함하는 것을 특징으로 한다.In addition, the method for producing a skutterudite-based thermoelectric material according to the present invention is a method for producing a skutterrudite thermoelectric material having a composition of Sn z Co 4 Sb 12-y Te y , wherein Co, Sb, Sn, and Te as raw materials are used. Charging to a quartz tube and sealing under vacuum, heating and dissolving the mixture of charged raw materials in a hermetic induction furnace by high frequency induction power, and dissolving the dissolved material in water to prevent the formation of a second phase. Quenching, vacuum-heat-treating the material for filling voids of Sn and activating Te.

본 발명에 따르면, Sn이 충진되고 Te가 도핑됨으로써 열전성능지수가 우수한 SnzCo4Sb12-yTey 스커테루다이트계 열전재료가 제공되며, 그 열전재료를 제2상이 형성되는 문제 없이 제조할 수 있다.According to the present invention, Sn is filled and Te is doped to provide a Sn z Co 4 Sb 12-y Te y scerrudite-based thermoelectric material having an excellent thermoelectric index, and the thermoelectric material is manufactured without a problem of forming a second phase. can do.

본 발명자들은 CoSb3(Co8Sb24)에 Sn을 충진한 경우가 다른 원자를 충진한 경우에 비하여 낮은 ZT값을 나타내는 이유는 낮은 제벡계수와 높은 운반자 농도 때문이므로, SnzCo8Sb24의 열전특성 향상을 위해서는 도핑에 의한 운반자 농도의 최적화가 필요하다고 판단하였다. 그에 따라 SnzCo8Sb24에 Te를 도핑하여 열전특성을 향상시켰다.The inventors have CoSb 3 of (Co 8 Sb 24) in so reason indicating the low ZT value as compared to when the case packed with Sn filled with other atoms is low Seebeck coefficient and a high concentration carriers, Sn z Co 8 Sb 24 In order to improve the thermoelectric properties, it was determined that the carrier concentration was optimized by doping. Accordingly, Te was doped with Sn z Co 8 Sb 24 to improve thermoelectric properties.

이하 본 발명을 실시예를 통해 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 실시예에 따른를 제조하기 위해 먼저 원료물질을 준비하였다. 원료물질은 Co(순도 99.95%), Sb(순도 99.999%), Sn(순도 99.99%) 및 Te(순도 99.99%)의 고순도 원소물질로 준비하고, 이들을 석영관에 장입한 후 진공 밀폐하였다.To prepare a raw material according to this embodiment, first, a raw material was prepared. The raw material was prepared with high purity elemental materials of Co (purity 99.95%), Sb (purity 99.999%), Sn (purity 99.99%) and Te (purity 99.99%), and these were charged into a quartz tube and vacuum-sealed.

그리고 이들 원료물질을 밀폐유도용해(EIM: Encapsulated Induction Melting)로를 이용하여 용해하였다. 용해 조건은 7kW의 전력과 40kHz의 주파수로 1시간 동안 용해하였으며, 용해 뒤에는 제2상의 형성을 막기 위하여 물속에 넣어 급랭하였다.And these raw materials were dissolved using an encapsulated induction melting (EIM) furnace. Dissolution conditions were dissolved for 1 hour at a power of 7kW and a frequency of 40kHz, and after the dissolution was quenched in water to prevent the formation of a second phase.

상기 과정을 거쳐 형성된 잉곳을 823K의 온도로 144시간(6일) 동안 열처리하였다. 이는 Sn이 스커테루다이트 구조의 공극에 채워질 시간을 제공할 뿐만 아니 라 Te 도펀트(dopant)의 활성화를 위한 것이다.The ingot formed through the above process was heat-treated at a temperature of 823K for 144 hours (6 days). This not only gives Sn the time to fill the pores of the scrudentite structure, but also for the activation of the Te dopant.

이러한 방법으로 Sn이 충진되고 Te가 도핑된 SnzCo4Sb12-yTey(z=0, 0.25, y=0, 0.375)화합물을 합성하였다. In this manner, Sn-filled and Te-doped Sn z Co 4 Sb 12-y Te y (z = 0, 0.25, y = 0, 0.375) compounds were synthesized.

이렇게 제조된 SnzCo4Sb12-yTey의 물성, 특히 열전특성을 확인하기 위하여, 여러 가지 측정과 분석을 하였다.In order to confirm the physical properties of the thus prepared Sn z Co 4 Sb 12-y Te y , in particular the thermoelectric properties, various measurements and analysis were performed.

먼저 상을 확인하기 위하여 CuK (40kV, 200mA)방사선을 사용하는 고분해능 X선 회절기(HRXRD, Rigaku DMAX2500VPC)를 이용하여 X선 회절패턴을 주사간격 0.004°, 주사속도 1°/min 의 조건으로 측정하였다.First, X-ray diffraction pattern was measured under scanning interval of 0.004 ° and scanning speed of 1 ° / min using high-resolution X-ray diffractometer (HRXRD, Rigaku DMAX2500VPC) using CuK (40kV, 200mA) radiation to check the phase. It was.

제벡계수(Seebeck coefficient), 전기비저항 그리고 열전도도는 300K에서 700K까지의 범위에서 측정하였다. 제벡계수와 전기비저항은 각각 온도 미분법과 DC 4단자법(Ulvac-Riko ZEM2-M8)으로 측정하였고, 열전도도는 레이저 플래시법(Ulvac-Riko TC7000)에 의한 열확산도, 비열 그리고 밀도의 측정값으로부터 산출하였다. 홀효과는 자기장 1T, 전류 50mA 및 300K에서 측정되었다.Seebeck coefficient, electrical resistivity and thermal conductivity were measured from 300K to 700K. Seebeck coefficient and electrical resistivity were measured by temperature differential method and DC 4-terminal method (Ulvac-Riko ZEM2-M8), respectively, and thermal conductivity was determined from the measured values of thermal diffusivity, specific heat and density by laser flash method (Ulvac-Riko TC7000). Calculated. Hall effect was measured at magnetic field 1T, current 50mA and 300K.

제벡계수와 전기비저항 측정을 위하여 열처리된 잉곳을 3×3×10㎣ 크기로 절단하였으며, 열전도도와 홀효과(Hall effect)를 측정하기 위하여 10φ×1mm로 절단하였다. Heated ingots were cut into 3 × 3 × 10 mm size to measure Seebeck coefficient and electrical resistivity, and were cut into 10φ × 1 mm to measure thermal conductivity and Hall effect.

이와 같이 측정된 물성을 분석한 결과를 설명하면 다음과 같다. The results of analyzing the measured physical properties as described above are as follows.

도 1은 EIM법으로 제조되고 823K의 온도로 144시간(6일)동안 후열처리한 SnzCo4Sb12-yTey(z=0, 0.25, y=0, 0.375)의 X선 회절 패턴이다. 이에 따르면 이 물질 은 단일의 δ-상만 갖는 다결정구조임을 알 수 있다. CoSb3의 공극반경은 1.892Å 이며 Sn의 원자 반경은 1.72Å 이다. 본 실시예에서는 도 1에서와 같이 제2상이 발견되지 않았으며, 이는 Sn이 공극에 위치하고 SnzCo4Sb12-yTey(z=0, 0.25, y=0, 0.375) 화합물이 열역학적으로 안정함을 다시 확인시켜준다. 1 is an X-ray diffraction pattern of Sn z Co 4 Sb 12-y Te y (z = 0, 0.25, y = 0, 0.375) prepared by EIM and post-heat treated at 144 hours (6 days) at a temperature of 823K. to be. This suggests that this material is a polycrystalline structure with only a single δ-phase. The pore radius of CoSb 3 is 1.892 Å and the atomic radius of Sn is 1.72 Å. In the present embodiment, as shown in FIG. 1, no second phase was found, which means that Sn is positioned in the pore and the Sn z Co 4 Sb 12-y Te y (z = 0, 0.25, y = 0, 0.375) compound is thermodynamically modified. Reassure stability.

도 2는 SnzCo4Sb12-yTey(z=0, 0.25, y=0, 0.375) 스커테루다이트에 대한 제벡계수의 온도의존성을 나타낸다. 진성의 CoSb3은 300K와 400K사이에서 n형 전도성을 보이고, 약 400K에서 p형 전도성으로 천이되었다. 300K에서 700K까지 Sn0.25Co4Sb12는 p형 전도성을 보임에 반하여 Co4Sb11.625Te0.375와 Sn0.25Co4Sb11.625Te0.375는 n형 전도성을 보인다. Sn충진 및/또는 Te도핑 CoSb3의 제벡계수 절대값은 온도 증가에 따라 증가한다. n형 물질에서 제벡계수(열전 능력)의 증가는 표 1에서 보는 바와 같이 운반자 농도를 증가시키고 운반자 이동도를 감소시키는 Te 도핑효과 때문이다. FIG. 2 shows the temperature dependence of the Seebeck coefficient for Sn z Co 4 Sb 12-y Te y (z = 0, 0.25, y = 0, 0.375) skuterudite. Intrinsic CoSb 3 exhibited n-type conductivity between 300K and 400K and transitioned to p-type conductivity at about 400K. Sn 0.25 Co 4 Sb 12 from 300K to 700K shows p-type conductivity, while Co 4 Sb 11.625 Te 0.375 and Sn 0.25 Co 4 Sb 11.625 Te 0.375 show n-type conductivity. The absolute Seebeck coefficient of Sn-filled and / or Te-doped CoSb 3 increases with increasing temperature. The increase in Seebeck coefficient (thermoelectric capacity) in n-type material is due to the Te doping effect which increases carrier concentration and decreases carrier mobility, as shown in Table 1.

도 3은 EIM법으로 제조되고 823K에서 144시간 후열처리된 SnzCo4Sb12-yTey에 대한 전기비저항의 온도의존성을 나타낸다. 진성 Co8Sb24는 Sn 충진 및 Te 도핑된 물질보다 높은 비저항을 갖는다. CoSb3의 경우 온도의 증가에 따라 비저항이 감소하는 반도체 거동을 보인다. 그러나 Sn 충진과 Te 도핑을 하는 경우 온도 증가에 따라 전기비저항이 증가하고, Te 도핑된 시편(Co4Sb11.625Te0.375, Sn0.25Co4Sb11.625Te0.375)의 경우 전기 비저항이 온도에 거의 의존적이지 않다. Figure 3 shows the temperature dependence of the electrical resistivity for Sn z Co 4 Sb 12-y Te y prepared by EIM method and post-treated at 823 K for 144 hours. Intrinsic Co 8 Sb 24 has a higher resistivity than Sn filled and Te doped materials. In the case of CoSb 3 , the resistivity decreases with increasing temperature. However, the electrical resistivity increases with increasing temperature for Sn filling and Te doping, and the electrical resistivity of Te-doped specimens (Co 4 Sb 11.625 Te 0.375 , Sn 0.25 Co 4 Sb 11.625 Te 0.375 ) is almost independent of temperature. not.

표 1에서 보듯이, Sn 충진되고 Te 도핑된 시편의 운반자 농도는 1019~1020cm-3의 범위를 갖기 때문에, 이 재료는 높은 축퇴성을 가지며 전기 비저항의 온도 의존성이 금속 거동과 비슷하다. As shown in Table 1, because the carrier concentrations of Sn-filled and Te-doped specimens range from 10 19 to 10 20 cm -3 , the material is highly degenerate and its temperature dependence of electrical resistivity is comparable to metal behavior. .

도 4는 EIM법으로 제조되고 823K에서 144시간 후열처리된 SnzCo4Sb12-yTey에 대한 열전도도의 온도의존성을 나타낸다. 진성 CoSb3는 높은 열전도도를 갖으며, 그 값이 300K에서 0.11 W/cmK 이고 700K에서는 0.07 W/cmK로 감소하였다. Sn 충진 및/또는 Te 도핑에 따라 열전도도는 현저하게 감소한다. Sn0.25Co4Sb11.625Te0.375은 Co4Sb11.625Te0.375와 Sn0.25Co4Sb12보다 높은 열전도도를 갖지만 CoSb3보다는 열전도도가 낮다. 이로부터 Sn 필러가 래틀러(rattler)로 작용하여 포논의 평균자유행로를 감소시킨 결과 열전도도가 낮아졌다는 점과, 나아가 도펀트인 Te에 의해 불순물-포논 산란(impurity-phonon scattering)이 증가한다는 것이 확인된다. 하지만, Te가 도핑된 경우에 Sn이 효과적인 필러가 아님을 알 수 있다. Figure 4 shows the temperature dependence of the thermal conductivity for Sn z Co 4 Sb 12-y Te y prepared by EIM method and post-treated at 823 K for 144 hours. Intrinsic CoSb 3 has high thermal conductivity, which is reduced to 0.11 W / cmK at 300K and 0.07 W / cmK at 700K. Thermal conductivity is significantly reduced with Sn filling and / or Te doping. Sn 0.25 Co 4 Sb 11.625 Te 0.375 has higher thermal conductivity than Co 4 Sb 11.625 Te 0.375 and Sn 0.25 Co 4 Sb 12 , but has lower thermal conductivity than CoSb 3 . From this, the Sn filler acts as a rattler, reducing the average free path of phonons, resulting in lower thermal conductivity, and further increasing impurity-phonon scattering by the dopant Te. It is confirmed. However, it can be seen that Sn is not an effective filler when Te is doped.

도 5는 EIM법으로 제조되고 823K에서 144시간 후열처리된 SnzCo4Sb12-yTey에 대한 열전성능지수(ZT)의 온도의존성을 나타낸다. Sn 충진과 Te 도핑으로 ZT는 현저하게 향상된다. ZT는 온도 상승에 따라 증가하는데, 제벡계수의 상승과 낮은 열전도도의 유지가 주된 원인이다. Sn0.25Co4Sb11.625Te0.375은 Co4Sb11.625Te0.375보다 낮은 ZT값을 갖지만, Sn0.25Co4Sb12보다는 향상된 ZT값을 갖고, 이는 Te 도핑에 의해 운반 자 농도를 최적화한 결과로 여겨진다.Figure 5 shows the temperature dependence of the thermoelectric performance index (ZT) for Sn z Co 4 Sb 12-y Te y prepared by EIM method and post-treated at 823 K for 144 hours. Sn filling and Te doping significantly improve ZT. ZT increases with temperature, mainly due to the increase of Seebeck coefficient and the maintenance of low thermal conductivity. Sn 0.25 Co 4 Sb 11.625 Te 0.375 has a lower ZT value than Co 4 Sb 11.625 Te 0.375 , but has an improved ZT value than Sn 0.25 Co 4 Sb 12 , which is considered to be the result of optimizing the carrier concentration by Te doping.

이상으로부터 밀폐유도용해와 후속 진공 열처리에 의하여 Sn이 충진되고 Te가 도핑된 SnzCo4Sb12-yTey를 합성할 수 있으며, 이렇게 제조된 화합물은 단일의 δ상으로 구성됨을 알 수 있다. 또한 제벡계수 측정으로부터 n형 전도성으로 확인되고, 전기비저항의 온도 의존성 조사로부터 축퇴 반도체로 확인되며, 나아가 전기 비저항과 열전도도가 현저하게 감소한다. 이로 인해 열전성능이 현저하게 향상되며, 특히 Sn만 충진된 스커테루다이트에 비하여 열전성능이 향상되어 열전재료로서 보다 유용함을 알 수 있다.From the above, it is possible to synthesize Sn z Co 4 Sb 12-y Te y filled with Sn and Te-doped by sealed induction melting and subsequent vacuum heat treatment, and the compound thus prepared is composed of a single δ phase. . In addition, it is confirmed as n-type conductivity from the Seebeck coefficient measurement, and as a degenerate semiconductor from the temperature dependence investigation of the electrical resistivity, further reducing the electrical resistivity and thermal conductivity. As a result, the thermoelectric performance is remarkably improved, and in particular, the thermoelectric performance is improved as compared to Sn-filled screuterite, which is more useful as a thermoelectric material.

Figure 112007065648662-PAT00001
Figure 112007065648662-PAT00001

도 1은 EIM법으로 제조되고 823K에서 6일 동안 후열처리한 SnzCo4Sb12-yTey 스커테루다이트의 X선 회절 패턴을 나태는 그래프이다.FIG. 1 is a graph showing an X-ray diffraction pattern of Sn z Co 4 Sb 12-y Te y skaterrudite prepared by EIM and post-treated at 823 K for 6 days.

도 2는 SnzCo4Sb12-yTey의 제벡계수를 온도의 함수로서 나타내는 그래프이다.2 is a graph showing the Seebeck coefficient of Sn z Co 4 Sb 12-y Te y as a function of temperature.

도 3은 SnzCo4Sb12-yTey의 전기 비저항을 온도의 함수로서 나타내는 그래프이다.3 is a graph showing the electrical resistivity of Sn z Co 4 Sb 12-y Te y as a function of temperature.

도 4는 SnzCo4Sb12-yTey의 열전도도를 온도의 함수로서 나타내는 그래프이다.4 is a graph showing the thermal conductivity of Sn z Co 4 Sb 12-y Te y as a function of temperature.

도 5는 SnzCo4Sb12-yTey의 열전성능지수를 온도의 함수로서 나타내는 그래프이다.5 is a graph showing the thermoelectric performance index of Sn z Co 4 Sb 12-y Te y as a function of temperature.

Claims (6)

Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료로서,Sn-filled and Te-doped scouterite-based thermoelectric materials, 단위격자 내의 공극이 Sn으로 충진되고 Te가 도핑되어 SnzCo4Sb12-yTey의 조성을 가지며,The pores in the unit grid are filled with Sn and doped with Te to have a composition of Sn z Co 4 Sb 12-y Te y , 상기 z와 y가 0<z≤0.25 및 0<y≤0.375 범위에 있는 것을 특징으로 하는 스커테루다이트계 열전재료.And z and y are in the range of 0 <z ≦ 0.25 and 0 <y ≦ 0.375. 제1항에 있어서,The method of claim 1, 상기 z=0.25 이고 y=0.375인 것을 특징으로 하는 스커테루다이트계 열전재료.Scutterrudite-based thermoelectric material, characterized in that z = 0.25 and y = 0.375. Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 제조방법으로서,As a method of manufacturing Sn-filled and Te-doped skateriteite-based thermoelectric materials, 원료물질인 Co, Sb, Sn 및 Te를 석영관에 장입한 후 진공 하에서 밀폐하는 단계;Charging the raw materials Co, Sb, Sn and Te into a quartz tube and then sealing them under vacuum; 상기 장입된 원료물질의 혼합물을 고주파 유도 전력에 의해 밀폐유도용해로에서 가열 용해하는 단계;Heating and dissolving the charged raw material mixture in a closed induction furnace by high frequency induction power; 상기 용해 후 응고된 재료를 Sn의 공극 충진과 Te의 활성화를 위하여 진공 열처리하는 단계를 포함하여 SnzCo4Sb12-yTey를 형성하는 것을 특징으로 하는 스커테 루다이트계 열전재료 제조방법.Method of producing a scutter ludite-based thermoelectric material, characterized in that to form Sn z Co 4 Sb 12-y Te y comprising the step of vacuum heat-treating the solidified material after the melting to fill the voids and activate the Te. 제3항에 있어서,The method of claim 3, 상기 용해된 재료를 제2상의 형성을 방지하기 위하여 물속에서 급랭하는 단계를 더 포함하는 것을 특징으로 하는 스커테루다이트계 열전재료 제조방법.And quenching the dissolved material in water to prevent formation of a second phase. 제3항 또는 제4항에 있어서,The method according to claim 3 or 4, 상기 진공 열처리 단계가 823K에서 6일 동안 항온 열처리함으로써 이루어지는 것을 특징으로 하는 스커테루다이트계 열전재료 제조방법.The vacuum heat treatment step is a method for producing a skutterrudite-based thermoelectric material, characterized in that the constant temperature heat treatment for 8 days at 823K. 제5항에 있어서,The method of claim 5, 상기 z=0.25 이고 y=0.375인 것을 특징으로 하는 스커테루다이트계 열전재료 제조방법.And z = 0.25 and y = 0.375.
KR1020070091779A 2007-09-10 2007-09-10 Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME KR100910158B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070091779A KR100910158B1 (en) 2007-09-10 2007-09-10 Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070091779A KR100910158B1 (en) 2007-09-10 2007-09-10 Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
KR20090026667A true KR20090026667A (en) 2009-03-13
KR100910158B1 KR100910158B1 (en) 2009-07-30

Family

ID=40694573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070091779A KR100910158B1 (en) 2007-09-10 2007-09-10 Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
KR (1) KR100910158B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346760B1 (en) * 2012-06-01 2013-12-31 한국세라믹기술원 Skutterudite having advanced thermoelectric properties and method of synthesis and sintering
KR101469759B1 (en) * 2013-10-04 2014-12-08 국방과학연구소 Manufacturing method for Fe-Sb thermoelectric material doped with Yb
WO2018124660A1 (en) * 2016-12-28 2018-07-05 주식회사 엘지화학 Novel compound semiconductor and use thereof
KR20180077040A (en) * 2016-12-28 2018-07-06 주식회사 엘지화학 Compound semiconductors and their application
JP2018148114A (en) * 2017-03-08 2018-09-20 株式会社豊田中央研究所 p-type thermoelectric material
CN109103323A (en) * 2018-07-16 2018-12-28 电子科技大学 A method of Sb is replaced by filling Ga, Te and improves based square cobalt mineral conducting material thermoelectricity performance
KR20190003335A (en) * 2017-06-30 2019-01-09 주식회사 엘지화학 Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
CN110098064A (en) * 2019-05-06 2019-08-06 电子科技大学 A kind of CoSb3Preparation method of the based square cobalt mineral material as electrode material for super capacitor
EP3553837A4 (en) * 2017-03-15 2020-02-19 LG Chem, Ltd. Novel compound semiconductor and use thereof
US10790428B2 (en) 2015-11-11 2020-09-29 Lg Chem, Ltd. P-type skutterudite thermoelectric material, method for preparing the same, and thermoelectric device including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042574B1 (en) 2009-08-11 2011-06-20 충주대학교 산학협력단 In-Co-Ni-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR101042575B1 (en) 2009-08-11 2011-06-20 충주대학교 산학협력단 In-Co-Fe-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR101198304B1 (en) 2010-10-19 2012-11-07 한국전기연구원 fabrication method for Zn4Sb3 thermoelectric materials and thermoelectric materials thereby
KR101215562B1 (en) 2011-03-31 2012-12-26 한국전기연구원 GeTe thermoelectric material doped Sb and manufacturing method thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060563A (en) 1996-08-20 1998-03-03 Chichibu Onoda Cement Corp Cobalt triantimonide series composite material
JPH1140862A (en) 1997-07-22 1999-02-12 Yamaguchi Pref Gov Sangyo Gijutsu Kaihatsu Kiko Manufacture of cobalt antomonide thermoelectric material
JP2005116746A (en) 2003-10-07 2005-04-28 Toshiba Corp Thermoelectric conversion material and thermoelectric convertor
KR100746647B1 (en) 2006-10-23 2007-08-06 충주대학교 산학협력단 Method for producing thermoelectric skutterudites

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346760B1 (en) * 2012-06-01 2013-12-31 한국세라믹기술원 Skutterudite having advanced thermoelectric properties and method of synthesis and sintering
KR101469759B1 (en) * 2013-10-04 2014-12-08 국방과학연구소 Manufacturing method for Fe-Sb thermoelectric material doped with Yb
US10790428B2 (en) 2015-11-11 2020-09-29 Lg Chem, Ltd. P-type skutterudite thermoelectric material, method for preparing the same, and thermoelectric device including the same
JP2019519092A (en) * 2016-12-28 2019-07-04 エルジー・ケム・リミテッド Novel compound semiconductor and utilization thereof
CN109275341A (en) * 2016-12-28 2019-01-25 株式会社Lg化学 New compound semiconductor and application thereof
KR20180077040A (en) * 2016-12-28 2018-07-06 주식회사 엘지화학 Compound semiconductors and their application
WO2018124660A1 (en) * 2016-12-28 2018-07-05 주식회사 엘지화학 Novel compound semiconductor and use thereof
US11072530B2 (en) 2016-12-28 2021-07-27 Lg Chem, Ltd. Compound semiconductor and use thereof
CN109275341B (en) * 2016-12-28 2022-03-15 株式会社Lg化学 Compound semiconductor and use thereof
JP2018148114A (en) * 2017-03-08 2018-09-20 株式会社豊田中央研究所 p-type thermoelectric material
EP3553837A4 (en) * 2017-03-15 2020-02-19 LG Chem, Ltd. Novel compound semiconductor and use thereof
JP2020507913A (en) * 2017-03-15 2020-03-12 エルジー・ケム・リミテッド New compound semiconductor and its utilization
US11724944B2 (en) 2017-03-15 2023-08-15 Lg Chem, Ltd. Compound semiconductor and use thereof
KR20190003335A (en) * 2017-06-30 2019-01-09 주식회사 엘지화학 Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
CN109103323A (en) * 2018-07-16 2018-12-28 电子科技大学 A method of Sb is replaced by filling Ga, Te and improves based square cobalt mineral conducting material thermoelectricity performance
CN110098064A (en) * 2019-05-06 2019-08-06 电子科技大学 A kind of CoSb3Preparation method of the based square cobalt mineral material as electrode material for super capacitor

Also Published As

Publication number Publication date
KR100910158B1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
KR100910158B1 (en) Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR100910173B1 (en) CoSb? SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR101042574B1 (en) In-Co-Ni-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR101042575B1 (en) In-Co-Fe-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
Tang et al. Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4− xSb12
Tsujii et al. Phase stability and chemical composition dependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46− x (8≤ x≤ 15)
Xing et al. Suppressed intrinsic excitation and enhanced thermoelectric performance in Ag x Bi 0.5 Sb 1.5− x Te 3
KR101995917B1 (en) Power factor enhanced thermoelectric material and method of producing same
KR20100009455A (en) Thermoelectric materials and chalcogenide compounds
JP2009277735A (en) Method of manufacturing thermoelectric material
KR20120106730A (en) Gasb-filled skutterudite composite material and method of preparing the same
CN109671840B (en) Antimony tellurium selenium matrix alloy construction method for thermoelectric material and antimony tellurium selenium matrix thermoelectric material
KR102059674B1 (en) P type skutterudite thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same
US20160343930A1 (en) Thermoelectric composite material and method for producing same
Peng et al. Synthesis and thermoelectric properties of the double-filled skutterudite Yb 0.2 In y Co 4 Sb 12
Li et al. Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2. 7Se0. 3
CN112397634B (en) Method for improving performance of Bi-Sb-Te-based thermoelectric material
Wang et al. High thermoelectric performance and anisotropy studies of n-type Mg3Bi2-based single crystal
Li et al. Effects of Nb doping on thermoelectric properties of Zn4Sb3 at high temperatures
KR20090026664A (en) Skutterudite thermoelectric material and method for manufacturing the same
US11097947B2 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
KR100802152B1 (en) Method for producing thermoelectric skutterudites
Qiu et al. Thermoelectric Properties of Manganese-Doped p-Type Skutterudites Ce y Fe 4-x Mn x Sb 12
US20160035954A1 (en) Thermoelectric performance of calcium and calcium-cerium filled n-type skutterudites
KR101322779B1 (en) Bismuth doped Magnesium Silicide composition for thermoelectric material and the manufacturing method of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120629

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140124

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160822

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170721

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee